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Numerical Probabilistic Analysis (NPA)

• NPA is the section of Computing Mathematics.
• Subject of NPA is a decision of the problems with stochastic uncertainty in
data.
• Methods of NPA use numerical operations under probability density functions
of random variables and their functions.
• Numerical operations of histogram arithmetic is one of NPA components.
• The first idea histogram arithmetic was published in the article

V.A. Gerasimov, B.S. Dobronets, and M.Yu. Shustrov

Numerical operations of histogram arithmetic and their applications. Automation
and Remote Control, (Feb 1991), 52(2), pp. 208–212.

• Arithmetic on probability density function uses operations as
∗ ∈ {+,−, ·, /, ↑,max,min}, and binary relations as {≤,≥}.
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The probability density function types

• Discrete random variables.
• Histograms.
• Second order histograms
• Splines.
• Analytically given probability density.
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Probabilistic extensions

Definition 1.

Let (x1, ..., xn) be a system of continuous random variables with joint probability
density function p(x1, ..., xn) and random variable z is the function f (x1, ..., xn)

z = f (x1, ..., xn).

By probabilistic extension of the function f we mean an probability density
function of the random variable z.
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Histogram probabilistic extensions

Suppose the histogram F is defined mesh {zi |i = 0, ..., n}.
The region is denoted as Ωi = {(x1, ..., xn)|zi < f (x1, ..., xn) < zi+1}.
Then the histogram value Fi on the interval [zi , zi+1] is defined as

Fi =

∫
Ωi

p(x1, x2, . . . , xn)dx1dx2 . . . dxn/(zi+1 − zi ). (1)

Definition 2.

By histogram probabilistic extension of the function f we mean an histogram F
constructed from (1).

Boris S. Dobronets & Olga A. Popova Numerical probabilistic approach for optimization problems



Numerical Probabilistic Analysis Probabilistic extensions Monte Carlo Second Order Histogram random programming Applications

Natural histogram extensions

Let f (x1, ..., xn) be rational function.
To construct of histogram of F replaced by the arithmetic operation on the
histogram operation, and variables x1, x2,..., xn replaced by histogram of values.

Definition 3.

The resulting histogram of F is called a natural histogram extension.
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Histogram probabilistic extensions and arithmetic operations

Let P be a histogram of the probability density function z = x ∗ y , and
∗ ∈ {+,−, ·, /, ↑}. Then the value of Pi on the interval [zi , zi+1] is defined by
formula

Pi =

∫
Ωi

p(x , y)dxdy/(zi+1 − zi ), (2)

where Ωi = {(x , y)|zi ≤ x ∗ y ≤ zi+1}.
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The histogram of the sum for two random variables

z = x + y ,

then Pz is a histogram of the probability density function of z and

pzi =

∫
Ωi

p(x , y)dxdy/(zi+1 − zi ). (3)

Support of p(x , y) is a rectangle [a1, a2]× [b1, b2] and
Ωi = {(x , y)|zi ≤ x + y ≤ zi+1}.
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Theorem 1.

Let x1, . . . , xn be independent random variables.
If f (x1, . . . , xn) is a rational expression where each variable xi occurs not more than
once, then the natural histogram extension approximates a probabilistic extension
to O(hα), α ≥ 1.

Theorem 2.

Let the function f (x1, ..., xn) can be a change of variables, so that f (z1, . . . , zk ) is a
rational function of the variables z1, . . . , zk satisfying the conditions of Theorem 1.
The variable zi is a function of xi , i ∈ Indi . and Indi be mutually disjoint. Suppose
for each zi is possible to construct a probabilistic extension.
Then the natural extension f (z1, . . . , zk ) would be approximated by a probabilistic
extension f (x1, ..., xn).

f (x , y) = xy + x + y + 1 = (x + 1)(y + 1).
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Example

Let f (x1, x2) = (−x2
1 + x1)sin(x2).

Then z1 = (−x2
1 + x1) and z2 = sin(x2).

We shell notice that possible to construct a probabilistic extension for functions
z1, z2 and f = z1 ∗ z2 be a rational function satisfying the conditions of Theorem 1.
So natural extension will approximate probabilistic extension to function f (x1, x2).
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General case

Consider case when necessary to find probabilistic extension for function
f (x1, x2..., xn) but conditions of Theorem 2 are not fulfilled.
Suppose for definiteness that only x1 occurs a few times.
If instead of random variable x1 to substitute determinate value t then possible
construct natural probabilistic extension to function f (t , x2..., xn) .
Suppose t is an discrete random value approximating x1 the following
let t takes values ti with probability Pi and each one function f (ti , x2..., xn) possible
to construct natural probabilistic extension.
Then a probabilistic extension f of the function f (x1, ..., xn) can be approximated
by a probability density ϕ as follows:

ϕ(ξ) =
n∑

i=1

Piϕi (ξ).
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Example

Let f (x , y) = x2y + x and x , y are uniformly distributed on [0, 1] interval random
values.
We shell change x to discrete random value t , {ti |ti = (i − 0.5)/n, i = 1, 2, ..., n},
Pi = 1/n and shell calculate natural probabilistic extensions ϕi .

Table 1. Approximating error of the probabilistic extensions
n ||f − ϕ||2
10 1.2887825282E-03
20 4.5592973952E-04
40 1.6120775967E-04
80 5.6996092139E-05
160 2.0151185588E-05

Analysis of calculated results has shown that ϕ approximates f with α = 1.4998,
here α is approximation order.
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Comparison of NPA and Monte Carlo Methods

Monte Carlo method displays convergence 1/
√

N. Monte Carlo Errors reduce by a
factor of 1/

√
N. Where N is the number of sampled points.

Error of histogram extension is O(1/nα), α ≥ 1.
In practice using the histogram extensions is more efficient than Monte Carlo
Methods more than 102 − 103 times.
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Necessary to find p the sum of four standard uniformly distributed random
variables.

p(x) =


1
6 x3, in 0 ≤ x ≤ 1;
− 1

2 x3 + 2x2 − 2x + 2
3 , in 1 ≤ x ≤ 2;

1
2 x3 − 4x2 + 10x − 22

3 , in 2 ≤ x ≤ 3.
− 1

6 x3 + 2x2 − 8x + 32
3 , in 3 ≤ x ≤ 4.

Let N be the number of sampled and n be dimension of mesh.
Hn is histogram probabilistic extension of p for n (exact histogram). Pn is natural
histogram extension of p for n, MCn,N is histogram approximation of Monte Carlo
method of p for n,N

Table 2. Errors of histogram arithmetic and Monte Carlo Methods
n N = 104 N = 105 N = 106 ||Hn − Pn||2.

10 0.0059 0.00168 0.00037 4.16e-3
20 0.0055 0.00198 0.00041 5.39e-4
50 0.0026 0.00103 0.00026 3.47e-5

100 0.0023 0.00062 0.00018 4.35e-6
150 0.0016 0.00055 0.00016 1.28e-6
200 0.0014 0.00044 0.00014 5.44e-7

This table represents the approximation errors ||Hn − Pn||2 and ||Hn −MCn,N ||2.
We can see that for a fixed n error of the Monte Carlo method decreases as
≈ 1/

√
N, order of convergence natural histogram extension is α ≈ 3.5.
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Second Order Histogram (SOH)

Definition 4.

Second-order histogram is piecewise histogram function.

SOH is determined by the mesh {zi |i = 1, 2, ..., n} and set of histogram
{Pi |i = 1, 2, ..., n}.
On each interval [zi , zi+1] SOH is a histogram Pi .
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Example 5. Second Order Histogram

Let Pt be triangular distributed on [0, 1] random variable with height h = 2 and
top (t , 2). Let t be triangular distributed on [0.25, 0.75] random variable with top
(0.5, 4).

The top and bottom lines corresponds to the interval histogram and the middle
line correspond to the mean SOH.
Values probability densities are shades of gray.
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The sum of two second order histograms

+
=

Values of probability densities are shades of gray.
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The nonlinear equations

f (x , k) = 0,

where k — vector of random parameters, x ∈ [a, b].
Let φz be probabilistic extensions of f (z, k) and z ∈ [a, b].
Then P(z) is a probability that the root x is to the left (right) point z:

P(z) =

∫ 0

−∞
φz (ξ)dξ.
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The nonlinear equations

ax2 − b = 0, where a, b — random variable with uniform distribution on [1, 2],
[2, 4].

Histogram of the root of the square equation
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Solution of linear system equations

Ax = b.

Let b be random vector, and b1, b2 be independing uniformly distributed
components on [0, 1] interval.
Suppose that matrix A is

A =

(
a11 a12
a21 a22

)
.

and component a11, a22 is independent random value uniformly distributed on
[2, 4] interval, a21, a12 — [−1, 0].

Piecewise constant with step 0.1 approaching the joint density probability x . The
solid line shows the boundary the set of solutions of the original system.
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Random Programming

Let us formulate problem of random programming as follows:

f (x , ξ)→ min, (4)

gi (x , ξ) ≤ 0, i = 1, ...,m. (5)

where x is the solution vector, ξ is vector of parameters, f (x , ξ) is objective
function, gi (x , ξ) are constraint functions.
Relative to ξ is known that

ξ ∈ ξ, (6)

where ξ is random vector.
Vector x∗ is the solution of problem (4) – (6), if

f (x∗, ξ) = inf
U

f (x , ξ),

где
U = {x |gi (x , ξ) ≤ 0, i = 1, ...,m.}

The solution set of (4)– (6) is defined as follows

X = {x |f (x , ξ)→ min, gi (x , ξ) ≤ 0, i = 1, ...,m, ξ ∈ ξ}
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Example

(c, x)→ min, (7)

Ax = b, x ≥ 0. (8)

A ∈ A, b ∈ b, c ∈ c, (9)

where A = (aij ) is uniform random matrix, each element are the uniform random
variable with support [aij , aij ], the same b, c is random vector with elements in a
uniform random variables.
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Supports

A =

(
[1− r , 1 + r ] [1− r , 1 + r ]
[1− r , 1 + r ] [−1− r ,−1 + r ]

[3− r , 3 + r ] [1− r , 1 + r ]
[1− r , 1 + r ] [2− r , 2 + r ]

)
,

b =

(
[3− r , 3 + r ]
[1− r , 1 + r ]

)
,

c = ([−1− r ,−1 + r ], [−1− r ,−1 + r ], [−r ,+r ], [−r ,+r ]).

If r = 0, which corresponds to the deterministic case, the solution x∗ = (2, 1, 0, 0),
columns of the matrix A1,A2 correspond to the angular point.
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Рис.: Joint density of the vector x1, x2

Boris S. Dobronets & Olga A. Popova Numerical probabilistic approach for optimization problems



Numerical Probabilistic Analysis Probabilistic extensions Monte Carlo Second Order Histogram random programming Applications

-2.0 -2.83 -4.0
Рис.: Histogram c1x1 + c2x2

Fig. 2 is a graph of the objective function c1x1 + c2x2, expectation at - 2.834.
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Random nonlinear programming

1
2

(Ax , x)− (b, x)→ min . (10)

A ∈ A, b ∈ b, (11)

where A is random matrix, b is random vector. Problem (10),(11) in the case of
symmetric positive definite matrix A is reduced to solving a random system of
linear algebraic equations

Ax = b. (12)
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Numerical examples

In the problem (10) A is uniform random matrix

A =

(
a1 a2
a2 a1

)
,

b is uniform random vector. Supports a1 = [2, 4], a2 = [−1, 0], b1 = b2 = [0.5, 1].
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Рис.: Joint density of the vector x. Samples of solutions (12)
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Optimization of hydroelectric power generation

Power generating electricity p can be represented

p = Chu,

where
C — constant;
h — height of the water level, h ∈ [hmin, hmax ],
u — water passing through the turbine, u ∈ [umin, umax ].
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Statement of the problem

Height h depends on the amount of water in the reservoir of V :

h = h(V ).

V (t) = V0 +

∫ t

0
q(ξ)− u(ξ)− ux (ξ)dξ.

q(t) — inflow;
ux (t) — water passing through the spillway (known and is determined by plant
personnel);
u — water passing through the turbine, u ∈ [umin, umax ].
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Statement of the problem

Suppose we want to maximize the generation of electricity in the time interval
[0,T ]. The task of optimal control

P(u) =

∫ T

0
C h

(
V0 +

∫ T

0
q(t)− u(t)− ux (t)dt

)
u(t)dt → max,

where u — control.
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Simplify the problem

Volume of the reservoir
V = V0 + S(h − h0),

h(t) = h0 + (V (t)− V0)/S = h0 + (

∫ t

0
q(ξ)− u(ξ)− ux (ξ)dξ)/S.

P(u) = C
∫ T

0

(
h0 + (

∫ t

0
q(ξ)− u(ξ)− ux (ξ)dξ)/S

)
u(t)dt → max .

q(t) — inflow;
ux (t) — water passing through the spillway;
u — water passing through the turbine, u ∈ [umin, umax ].
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The inflow of water in the reservoir

q = f (x1, x2, . . . , xn),

где xi — input parameters (rainfall, moisture content in soil, humidity,
temperature, etc.)
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Data acquisition

• Ground-based detection methods, observation and data collection.

• Space means of recording, monitoring and data collection

• Earth observation satellite.

• Remote sensing of the earth.

Boris S. Dobronets & Olga A. Popova Numerical probabilistic approach for optimization problems



Numerical Probabilistic Analysis Probabilistic extensions Monte Carlo Second Order Histogram random programming Applications

Monitoring the Earth from Space

• as a way of recording, data collection, transmission, processing, storage and
storage of the information received;
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Example of data aggregation

Histogram of P is constructed from the values of Ω.
Region Ω consists of 100 × 100 pixels, each pixel is mapped value xi .
For clarity, in Fig. values are shades of gray. Lighter colors correspond to higher
temperatures. Thus, the histogram describes the frequency distribution of
temperature in the region Ω.
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Model

P(u) = C
∫ T

0

(
h0 + (

∫ t

0
q(ξ)− u(ξ)− ux (ξ)dξ)/S

)
u(t)dt → max .

q(t) — inflow;
ux (t) — water passing through the spillway;
u — water passing through the turbine.
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Discrete model

Mesh ω = {t0 < t1 < . . . < tn},
{q i |t ∈ [ti−1, ti ]} — histogram of water inflow during [ti−1, ti ],
{uxi |t ∈ [ti−1, ti ]} — water passing through the spillway during [ti−1, ti ],
U = {ui |t ∈ [ti−1, ti ]} — histogram of water passing through the turbine during
[ti−1, ti ].

P(U) = C
n∑

i=1

h0 + (
i∑

j=1

qj − uj − uxj )/S

 ui → max .
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Random system of linear algebraic equations

Problem in some cases can be reduced to the solution of random system of linear
algebraic equations In our case, random only right-hand side of the system

2u1 + u2 + . . .+ un = h0 + q1,

u1 + 2u2 + . . .+ 2ui + . . .+ un = h0 + q1 + q2,

u1 + u2 + . . .+ 2ui + . . .+ un = h0 +
i∑

j=1

q j ,

u1 + u2 + . . .+ 2un = h0 +
n∑

j=1

q j .
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Random system of linear algebraic equations

Can be expressed in ui , i = 1, . . . , n as a linear combination of q i , i = 1, . . . , n.
For n = 3 optimal control:

u1 =
−q3 − 2q2 + q1 + h0

4
,

u2 =
−q3 + 2q2 + q1 + h0

4
,

u3 =
3q3 + 2q2 + q1 + h0

4
.
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Numerical example

Let q i ∈ [q
i
, qi ] be uniform random variables, n = 3, S = 1, supports

q1 = [0.1, 0.2], q2 = [0.2, 0.3], q3 = [0.3, 0.4] and h0 = 0.9.

Histogram u1 and joint probability density (u1, u2), (u2, u3).
Supports u1 = [0.0, 0.1], u2 = [0.25, 0.35], u3 = [0.575, 0.725] .
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