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Numerical Probabilistic Analysis

Numerical Probabilistic Ana

e NPA is the section of Computing Mathematics.

e Subject of NPA is a decision of the problems with stochastic uncertainty in
data.

e Methods of NPA use numerical operations under probability density functions
of random variables and their functions.

e Numerical operations of histogram arithmetic is one of NPA components.

e The first idea histogram arithmetic was published in the article

V.A. Gerasimov, B.S. Dobronets, and M.Yu. Shustrov

Numerical operations of histogram arithmetic and their applications. Automation
and Remote Control, (Feb 1991), 52(2), pp. 208-212.

e Arithmetic on probability density function uses operations as
* € {+,—,,/,T,max, min}, and binary relations as {<,>}.
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Numerical Probabilistic Analysis

The probability density function types

Discrete random variables.
Histograms.

Second order histograms

Splines.

Analytically given probability density.
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Probabilistic extensions

Probabilistic extensions

Definition 1.

Let (X1, ..., Xn) be a system of continuous random variables with joint probability
density function p(xy, ..., Xn) and random variable z is the function f(X1, ..., Xn)
Z = f(X1,..., Xn).

By probabilistic extension of the function f we mean an probability density
function of the random variable z.
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Probabilistic extensions

Histogram probabilistic extensions

Suppose the histogram F is defined mesh {z]i =0, ..., n}.
The region is denoted as Q; = {(x1, ..., Xn)|Z} < f(X1, ..., Xn) < Zi11}
Then the histogram value F; on the interval [}, Zj, 1] is defined as

Fi :/Q p(X1, X2, ..., Xn)dx1dX2 . .. dXn /(211 — Z;). (1)

Definition 2.

By histogram probabilistic extension of the function f we mean an histogram F
constructed from (1).
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Probabilistic extensions

Natural histogram extensions

Let f(Xq, ..., Xn) be rational function.
To construct of histogram of F replaced by the arithmetic operation on the
histogram operation, and variables X1, Xo,..., Xp replaced by histogram of values.

The resulting histogram of F is called a natural histogram extension.
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Probabilistic extensions

Histogram probabilistic extensions and arithmetic operations

Let P be a histogram of the probability density function z = x * y, and
* € {+,—,-,/,1}. Then the value of P; on the interval [z;, Z;; 1] is defined by
formula

P = / p(x, y)dxdy/(zis1 — 2), @)
Q;

where Q; = {(x,y)|zi < x xy < Zj44}.
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Probabilistic extensions

The histogram of the sum for two random variables

z=x+y,
then P; is a histogram of the probability density function of z and

psi = / p(x, y)dxay/(zis1 — 2). 3)
Q;

Support of p(x,y) is a rectangle [ay, @] x [by, b2] and
Qi ={(x,M)zi <x+y <2z}

B

bri
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Probabilistic extensions

Theorem 1.

Let Xq,...,Xn be independent random variables.
If f(Xq1,...,Xn) is a rational expression where each variable X; occurs not more than
once, then the natural histogram extension approximates a probabilistic extension

to O(h®), a > 1.

| N

Theorem 2.

Let the function f(xq,..., Xn) can be a change of variables, so that f(zy,...,2) is a
rational function of the variables zy, ..., Zx satisfying the conditions of Theorem 1.
The variable z; is a function of x;, i € Ind;. and Ind; be mutually disjoint. Suppose
for each z; is possible to construct a probabilistic extension.

Then the natural extension f(z1, ..., 2x) would be approximated by a probabilistic
extension f(Xq, ..., Xn).

foy)=xy+x+y+1=Kx+1)y+1).
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Probabilistic extensions

Example

Let f(x1,%2) = (—x2 + xq)sin(xz).

Then z; = (—x2 + x1) and 2o = sin(x).

We shell notice that possible to construct a probabilistic extension for functions
21, Zo and f = Z{ x Z» be a rational function satisfying the conditions of Theorem 1.
So natural extension will approximate probabilistic extension to function f(xy, X2).




Probabilistic extensions

General case

Consider case when necessary to find probabilistic extension for function

f(X1, X2..., Xn) but conditions of Theorem 2 are not fulfilled.

Suppose for definiteness that only X; occurs a few times.

If instead of random variable X7 to substitute determinate value t then possible
construct natural probabilistic extension to function f(t, Xz..., Xn) -

Suppose t is an discrete random value approximating x; the following

let t takes values f; with probability P; and each one function f(f;, Xo..., Xn) possible
to construct natural probabilistic extension.

Then a probabilistic extension f of the function f(x1, ..., Xn) can be approximated
by a probability density ¢ as follows:

e(&) = Piei(©).
i=1
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Probabilistic extensions

Example

Let f(x,y) = X2y + x and X, y are uniformly distributed on [0, 1] interval random
values.

We shell change x to discrete random value t, {t;|t; = (i — 0.5)/n,i =1,2,...,n},
P; = 1/n and shell calculate natural probabilistic extensions ;.

Table 1. Approximating error of the probabilistic extensions
n F—ollz

10 1.2887825282E-03
20 | 4.5592973952E-04
40 1.6120775967E-04
80 5.6996092139E-05
160 | 2.0151185588E-05

Analysis of calculated results has shown that ¢ approximates f with o = 1.4998,
here « is approximation order.
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Monte Carlo

Comparison of NPA and Monte Carlo Methods

Monte Carlo method displays convergence 1/+/N. Monte Carlo Errors reduce by a

factor of 1/\/N Where N is the number of sampled points.

Error of histogram extension is O(1/n%), o > 1.

In practice using the histogram extensions is more efficient than Monte Carlo
Methods more than 102 — 108 times.

) for optimization probler
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Monte Carlo

Necessary to find p the sum of four standard uniformly distributed random

variables.
%Xs, in0<x<H1;
p(x) = 17%3)(3+2)(272)(+§, in1<x<2;

IX¥—4x®+10x— 2, mm2<x<3.

—ix¥2x®—8x+ %, in3<x<4

Let N be the number of sampled and n be dimension of mesh.

Hp is histogram probabilistic extension of p for n (exact histogram). P is natural
histogram extension of p for n, MCp, y is histogram approximation of Monte Carlo
method of p for n, N

Table 2. Errors of histogram arithmetic and Monte Carlo Methods

n | N=10" [ N=10° [ N=10° | [|H, — Pall2.
10 0.0059 0.00168 0.00037 | 4.16e-3
20 0.0055 0.00198 0.00041 5.39e-4
50 0.0026 0.00103 0.00026 3.47e-5
100 0.0023 0.00062 0.00018 4.35e-6
150 0.0016 0.00055 0.00016 1.28e-6
200 0.0014 0.00044 0.00014 5.44e-7

This table represents the approximation errors ||Hn — Pn||2 and ||Hn — MCy nl|2.
We can see that for a fixed n error of the Monte Carlo method decreases as
~ 1/V'N, order of convergence natural histogram extension is o & 3.5.
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Second Order Histogram

Second Order Histogram (SOH)

Second-order histogram is piecewise histogram function.

SOH is determined by the mesh {z;|i = 1,2, ..., n} and set of histogram
{Pili=1,2,...,n}.
On each interval [Z;, Zj;1] SOH is a histogram P;.
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Second Order His

Example 5. Second Order Histogram

Let Pt be triangular distributed on [0, 1] random variable with height h = 2 and
top (t,2). Let t be triangular distributed on [0.25,0.75] random variable with top
(0.5,4).

The top and bottom lines corresponds to the interval histogram and the middle
line correspond to the mean SOH.
Values probability densities are shades of gray.
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Second Order Histogram

The sum of two second order histograms

I+

[ 1]
[ [T
[ ]

L

Values of probability densities are shades of gray.

approach for optimization pr.



Second Order His

The nonlinear equations

f(x,k) =0,

where k — vector of random parameters, X € [a, b].
Let ¢z be probabilistic extensions of f(z, k) and z € [a, b].
Then P(z) is a probability that the root x is to the left (right) point z:

0
P@) = [ oxode.
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Second Order Histogram

The nonlinear

equations

ax? — b =0, where @, b — random variable with uniform distribution on [1,2],
[2,4].
1

V2

Histogram of the root of the square equation
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Second Order His

Solution of linear system equations

Ax = b.

Let b be random vector, and by, by be independing uniformly distributed

components on [0, 1] interval.
A= ( a1 a2 )
a  ax

Suppose that matrix A is
and component &11, @ is independent random value uniformly distributed on
[2,4] interval, apy, a2 — [—1,0].

Piecewise constant with step 0.1 approaching the joint density probability Xx. The
solid line shows the boundary the set of solutions of the original system.
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random T

Random Programming

Let us formulate problem of random programming as follows:
f(x,€) — min, 4)

g,(X7§) S 07 I: 17"‘7m‘ (5)

where X is the solution vector, £ is vector of parameters, f(x, ) is objective
function, gj(x, &) are constraint functions.
Relative to & is known that

ek, (6)

where £ is random vector.
Vector x* is the solution of problem (4) — (6), if

F(x™, &) = inff(x, ),

rie

U= {xlgi(x,€) <0, i=1,..m)
The solution set of (4)— (6) is defined as follows

X = {x|f(x,£) = min, g;(x,§) <0, i=1,..,m¢¢c&}
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Example

(¢, x) — min, (7)
Ax = b,x > 0. (8)
A€ A beb,cec, 9)

where A = (&) is uniform random matrix, each element are the uniform random
variable with support [g,»j,é,'j], the same b, ¢ is random vector with elements in a
uniform random variables.




random programmis

Supports

o [M=r1+1] [M—=r141]
A_( f=rt4+r [-1—=r,—1+1]

B—=r,83+r [1—=r,141]
f=r1+r [2-r,24T1] )’

3—r,3+
bz( {1—:,1+:} )
c=(-1-r,=1+r,[-1=r, =1+ 1], [=r,+r], [=r,+1]).

If r = 0, which corresponds to the deterministic case, the solution x* = (2,1,0,0),
columns of the matrix Ay, As correspond to the angular point.
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Puc.: Joint density of the vector X1, Xo
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-2.0 -2.83 -4.0

Puc.: Histogram cyxq + coXo

Fig. 2 is a graph of the objective function C1Xy + CoX2, expectation at - 2.834.




random programmis

Random nonlinear programming

% (Ax, x) — (b,x) — min. (10)

AcAbeb, (11)

where A is random matrix, b is random vector. Problem (10),(11) in the case of
symmetric positive definite matrix A is reduced to solving a random system of
linear algebraic equations

Ax = b. (12)
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random pr

Numerical examples

In the problem (10) A is uniform random matrix

a
A— 1 a2 ’
a a

b is uniform random vector. Supports a; = [2,4], ax = [-1,0], by = b, = [0.5,1].
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Puc.: Joint density of the vector X. Samples of solutions (12)
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Optimization of hydroelectric power generation

Power generating electricity p can be represented

p = Chu,

where

C — constant;

h — height of the water level, h € [Apin, hmax],

u — water passing through the turbine, U € [Unin, Umax]-

Hydroelectric power generation Q '

Power transmission cables

Sluice
Transformer gates
Power house
Generator e
& plekie
& the upstear and
Qg ox-wum “w lavel,
o sty gomaiod
Dam
Downstream = ‘lurhme

Storage
outlet reservoir
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Statement of the problem

Height h depends on the amount of water in the reservoir of V:

h = h(V).

t
V() = Vo + /0 a(€) — u(€) — ux(€)de.

Reservoir

Storage

q(t) — inflow;
ux(t) — water passing through the spillway (known and is determined by plant
personnel);

u — water passing through the turbine, U € [Unjn, Umax]-

Dobrone
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Statement of the problem

Suppose we want to maximize the generation of electricity in the time interval
[0, T]. The task of optimal control

P(u) = /OT C h<V0 + /OTq(t) —u(t) — ux(t)dt> u(t)dt — max,

where U — control.
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Simplify the problem

Volume of the reservoir

V = Vo + S(h - ho),

hE) = o+ (V(0) = Vo)/S = o+ (| "9(6) - u(e) - i (©)de)/S.

;
P(u) = C/o (ho + (/Ot q(&) — u(g) — uX(E)dE)/S) u(t)dt — max.

q(t) — inflow;
ux(t) — water passing through the spillway;
u — water passing through the turbine, U € [Unin, Unax]-
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The inflow of water in the reservoir

q=f(x1,%2,...,Xn),

rae X; — input parameters (rainfall, moisture content in soil, humidity,
temperature, etc.)

approach for optimization pr.



Data acquisition

e Ground-based detection methods, observation and data collection.
e Space means of recording, monitoring and data collection
e Earth observation satellite.

e Remote sensing of the earth.

imization p



Monitoring the Earth from Space

e as a way of recording, data collection, transmission, processing, storage and
storage of the information received;

imization p



Example of data aggregation

Histogram of P is constructed from the values of Q.

Region 2 consists of 100 x 100 pixels, each pixel is mapped value X;.

For clarity, in Fig. values are shades of gray. Lighter colors correspond to higher
temperatures. Thus, the histogram describes the frequency distribution of
temperature in the region Q.
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Model

;
P(u) = C/o (ho + (/Ot q(&) — u(g) — uX(E)dg)/S) u(t)dt — max.

q(t) — inflow;
ux(t) — water passing through the spillway;
u — water passing through the turbine.
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Discrete model

Mesh w={ty < t; <...< t},

{q;|t € [ti_1, t]]} — histogram of water inflow during [t;_1, ],

{uyi|t € [ti_1, ]} — water passing through the spillway during [f_1, t],

U = {uj|t € [ti_1, tj]} — histogram of water passing through the turbine during
[ti—1, 4]

n i
P(U):CZ ho+(qu—U/—uX,-)/S U; — max.
i=1 =1
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Random system of linear algebraic equations

Problem in some cases can be reduced to the solution of random system of linear
algebraic equations In our case, random only right-hand side of the system

2U1+U2+...+Un:ho+q1,

U1+2U2+...+2U,‘+...+Un=h0+q1-‘r-qz,

1
B4+ ... +20+...+up=h+ > _q,
=1

n
b+l +...+2u=hy+ Y q
=1
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Random system of linear algebraic equations

Can be expressed in uj, i=1,...

,N as a linear combination of q;, i =1,...,n.
For n = 3 optimal control:

—q3— 29+ qy + ho

u = 4

U — —q3+29,+ g1+ ho
2 — 4 )
un— 393126, + 91+ ho
3= y .
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Numerical example

Let q; € [gl.,a,»] be uniform random variables, n = 3, S = 1, supports
g1 =[0.1,0.2], g =[0.2,0.3], g3 = [0.3,0.4] and hy = 0.9.

[t

Histogram uy and joint probability density (uy, Uz), (U2, U3).
Supports vy = [0.0,0.1], u» = [0.25,0.35], u3 = [0.575,0.725] .
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