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Biological problems: sensitive behaviour (jumps)
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Biological problems: sensitive and uncertain input data
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Biological problems: sensitivity and uncertainty
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Biological problems: sensitive and uncertain input data
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Biological problems: sensitivity and interval output data
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Heaviside step function as real (single-valued) function (wikipedia)
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H-continuous interval step function—complete graph
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Step function as real function (wikipedia)
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Step function as interval function
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Histogram (wikipedia)
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Hausdorff continuity

The concept of Hausdorff continuity generalizes the concept of
continuity in such a way that many essential properties of the usual
continuous real functions are preserved.

The set C(Ω) of all continuous real functions defined on a subset Ω of
Rn is a commutative ring with respect to the point-wise defined addition
and multiplication of functions.

Is it possible to extend the algebraic operations on C(Ω) to the set H(Ω)
in a way which preserves the algebraic structure, that is, the set of H(Ω)
is a commutative ring with respect to the extended operations?
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Upper semi-continuous function (wikipedia)
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Lower semi-continuous function (wikipedia)
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Baire semi-continuous functions: basic definition

A real-valued function f is upper semi-continuous at a point x0 if, the
function values for arguments near x0 are either close to f(x0) or less
than f(x0)

A real-valued function f is lower semi-continuous at a point x0 if, the
function values for arguments near x0 are either close to f(x0) or
greater than f(x0)
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Upper semi-continuous function—Baire operators
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Upper normal semi-continuous function—Dilworth operators)
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Dirac delta function)
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Baire semi-continuous functions: some references

1905 - R. Baire - Lecons sur les Fonctions Discontinues

1950 - R. P. Dilworth - normal upper semicontinuous functions

1953 - A. Horn - normal lower semicontinuous functions

1971 - K. Hardy - operations on normal functions

2005 - 2010 - R. Anguelov, S. Markov - H-continuous interval-valued
functions

2009 - 2011 N. Danet - H-continuous interval-valued functions

2013 J. H. van der Walt - H-continuous interval-valued functions
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The H-continuous functions do not differ to much from the usual
real-valued continuous functions because they assume interval values
only on a set of first Baire category

Wikipedia—set of first Baire category:

In topology, a meagre set, also called a set of first Baire category, is a
set that, considered as a subset of a (usually larger) topological space, is
small or negligible
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S-continuous interval function
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D-continuous interval function
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H-continuous interval function
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Notation

Ω ⊆ Rn open set

A(Ω) = {f : Ω→ I R, f locally bounded }
A(Ω) = {f : Ω→ R, f locally bounded } ⊆ A(Ω)

A real or interval-valued function f on Ω is locally bounded

if for every x ∈ Ω there exist δ > 0 and M ∈ R such that

|f(y)| < M, y ∈ Bδ(x)

Bδ(x) = {y ∈ Ω : ||x− y|| < δ}
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Baire operators

D is a dense subset of Ω

The lower/upper Baire operators

I(D,Ω, ·), S(D,Ω, ·) : A(D)→ A(Ω)

are defined for f = [f, f ] ∈ A(D) and x ∈ Ω by

I(D,Ω, f)(x) = sup
δ>0

inf {f(y) : y ∈ Bδ(x) ∩D}

S(D,Ω, f)(x) = inf
δ>0

sup {f(y) : y ∈ Bδ(x) ∩D}
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Graph completion operator

F : A(D)→ A(Ω)

F (D,Ω, f)(x) = [I(D,Ω, f)(x), S(D,Ω, f)(x)], x ∈ Ω, f ∈ A(D)

For D = Ω we write

I(f) = I(Ω,Ω, f), S(f) = S(Ω,Ω, f), F (f) = F (Ω,Ω, f)
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Presentations using end-point functions

f = [f, f ] ∈ A(Ω)

I(D,Ω, f) = I(D,Ω, f), S(D,Ω, f) = S(D,Ω, f)

F (D,Ω, f) = [I(D,Ω, f), S(D,Ω, f)]
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Continuity Concepts

Definition 1 A function f ∈ A(Ω) is S-continuous, if F (f) = f

Definition 2 A function f ∈ A(Ω) is D-continuous if for every dense
subset D of Ω we have F (D, Ω, f) = f

Definition 3 A function f ∈ A(Ω) is H-continuous, if for every function
g ∈ A(Ω) such that g(x) ⊆ f(x), x ∈ Ω,
we have F (g)(x) = f(x), x ∈ Ω
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H-continuous functions are “thin”

Theorem. For every f ∈ H(Ω) the set

Wf = {x ∈ Ω : w(f(x)) > 0}

is of first Baire category

Theorem. For every f, g ∈ H(Ω) the set

Dfg = {x ∈ Ω : w(f(x)) = w(g(x)) = 0}

is dense in Ω (Ω ⊆ Rn is open).
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Interval arithmetic

a = [a, a], b = [b, b] ∈ I R

a+ b = {α+ β : α ∈ a, β ∈ b}

a× b = {αβ : α ∈ a, β ∈ b}

[a, a] + [b, b] = [a+ b, a+ b]

[a, a]× [b, b] = [min{ab, ab, ab, ab}, max{ab, ab, ab, ab}]
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Interval arithmetic

f, g ∈ A(Ω), f = [f, f ], g = [g, g], x ∈ Ω

(f + g)(x) = f(x) + g(x) = [f(x) + g(x), f(x) + f(x)]

(f × g)(x) = f(x)× g(x)

= [min{f(x)g(x), f(x)g(x), f(x)g(x), f(x)g(x)}, max{ ... }]
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Example 1

For f, g ∈ H(R) given by

f(x) =


0, if x < 0,

[0, 1], if x = 0

1, if x > 0

and g = (−1)× f(x) ∈ H(R) we have

(f + g)(x) = f(x) + g(x) =

{
0, if x < 0 or x > 0

[−1, 1], if x = 0

Note that f + g /∈ H(R).
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Defining addition and multiplication via interval operations

Let f, g ∈ H(Ω).

Theorem. (a) There exists a unique function p ∈ H(Ω) such that
p(x) ⊆ (f + g)(x), x ∈ Ω.

(b) There exists a unique function q ∈ H(Ω) such that
q(x) ⊆ (f × g)(x), x ∈ Ω.

Definition. (a) f ⊕ g is the unique H-continuous function satisfying
(f ⊕ g)(x) ⊆ (f + g)(x), x ∈ Ω;

(b) f ⊗ g is the unique Hausdorff continuous function satisfying
(f ⊗ g)(x) ⊆ (f × g)(x), x ∈ Ω.
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Revisiting Example 1. For f ∈ H(R) given by

f(x) =

 0, if x < 0
[0, 1], if x = 0

1, if x > 0

and g = (−1)× f(x) ∈ H(R) we have

(f + g)(x) = f(x) + g(x) =

{
0, if x < 0 or x > 0

[−1, 1], if x = 0

(f ⊕ g)(x) = 0 , x ∈ R
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The commutative ring H(Ω)

Theorem. The set H(Ω) is a commutative ring with identity with respect
to the operations ⊕ and ⊗.
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The operations ⊕ and ⊗ are not point-wise in general

At a point where both operands have interval values the value of the
sum ⊕ or the product ⊗ are not determined by the values of the
operands only at that point but rather by the values of the operands in a
neighborhood of the point.

In the special case when one of the operands is a real (point) valued
function the operations ⊕ and ⊗ coincide with the point-wise operations:

(f ⊕ g)(x) = (f + g)(x) if w(f(x)) = 0 or w(g(x)) = 0

(f ⊗ g)(x) = (f × g)(x) if w(f(x)) = 0 or w(g(x)) = 0
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The set of H-continuous functions as a linear space

Multiplication by a scalar is defined as multiplication by a constant
function. Since the value of this function is a real number this
multiplication coincides with the point-wise multiplication

(α ∗ f)(x) = α ∗ f(x) =

{
[αf(x), αf(x)] if α ≥ 0

[αf(x), αf(x)] if α < 0

The set H(Ω) is a linear space with respect to “⊕” and “∗”
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Can the operations be extended further?

Let G(Ω) be the set of all D-continuous interval functions.

Theorem. Assume that the set P ⊆ G(Ω) is closed under inclusion in
the sense that

f ∈ P, g ∈ G(Ω)
g(x) ⊆ f(x), x ∈ Ω

}
=⇒ g ∈ P

If P ⊆ G(Ω) is a linear space, then P ⊆ H(Ω)

Hence the operations ⊕, ⊗ cannot be extended further than H(Ω) in a
way preserving the algebraic structure of C(Ω).
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Some open problems

To further develop numerical computations with H-cont. fns by
considering finite dimensional spaces induces by various basis

To consider quasivector spaces of D-cont. fncs (by embedding the
additive semigroup in a group)

To further explore applications to solution of PDE problems, such as the
viscosity solution for the Hamilton-Jacobi equation

illustration on the next slide
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2D case—viscosity solution for the Hamilton-Jacobi PDE
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Related problems from enzyme kinetics and cell growth dynamics

To approximate in Hausdorff metric the interval Dirac function by means
of the c-solution of Henri enzyme kinetic system (c is the enzyme
complex concentration)

To approximate in Hausdorff metric the interval Heaviside step function
by means of the biomass solution of the basic 2-state cell growth model

Illustrated on the next slides
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H-distance
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