
Motivation IA for Control Sliding Mode Control Illustrative Benchmark Example Simulation Results Experiment Conclusions

Numerical Validation of Sliding Mode
Approaches with Uncertainty

SCAN 2014: 16th GAMM-IMACS International Symposium on
Scientific Computing, Computer Arithmetic and Validated Numerics

Würzburg, Germany

25 September, 2014

Luise Senkel, Andreas Rauh, Harald Aschemann

Chair of Mechatronics
University of Rostock, Germany

L. Senkel et al.: Numerical Validation 1/18



Motivation IA for Control Sliding Mode Control Illustrative Benchmark Example Simulation Results Experiment Conclusions

Contents

Motivation

Interval Arithmetics for Control Strategies

Robust Sliding Mode Control Approach

Illustrative Benchmark Example

Simulation Results

Experimental Implementation (in Progress)

Conclusions and Outlook on Further Work

L. Senkel et al.: Numerical Validation 1/18



Motivation IA for Control Sliding Mode Control Illustrative Benchmark Example Simulation Results Experiment Conclusions

1 Motivation

2 Interval Arithmetics for Control Strategies

3 Robust Sliding Mode Control Approach

4 Illustrative Benchmark Example

5 Simulation Results

6 Experimental Implementation (in Progress)

7 Conclusions and Outlook on Further Work
L. Senkel et al.: Numerical Validation 2/18



Motivation IA for Control Sliding Mode Control Illustrative Benchmark Example Simulation Results Experiment Conclusions

Motivation

Requirements for Robust Control Approaches

Trajectory tracking despite non-measurable system states

Noisy processes and measurements

System models and applications are affected by uncertainty
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Motivation

Bounded Uncertainty

Lack of knowledge about system parameters

Manufacturing tolerances

Solution

Consideration of intervals for
I Parameters and states
I Measurement, control, and estimation errors
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Motivation

Stochastic Uncertainty

Inaccurate sensor measurements
→ Filtering is necessary to obtain smooth signals

Uncertain or random effects, e.g. friction

Solution

Consideration of non-modeled influences on the system as process
noise (Brownian motion)

Consideration of additive disturbances on measured data as
measurement noise (Brownian motion)

Itô differential operator and Lyapunov functions for calculation of
switching amplitudes in variable-structure control and observer
strategies
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Motivation

Common Sliding Mode Techniques

Advantages

Definition of a sliding surface based on a Lyapunov function candidate

Robustness against uncertain parameters and states

Finite-time convergence

Disadvantage

Restrictive matching conditions wrt. the system model

Chattering due to unnecessarily large predefined switching amplitudes

L. Senkel et al.: Numerical Validation 3/18



Motivation IA for Control Sliding Mode Control Illustrative Benchmark Example Simulation Results Experiment Conclusions

Motivation

Advanced Sliding Mode Control Procedure

Robust control strategy considering noise processes

Intervals for states and uncertain parameters

Less severe restrictions on the system model

Suitable candidates of Lyapunov functions for asymptotic stability and
calculation of switching amplitudes

Number of calculated switching amplitudes is equal to system order
instead of predefining just one switching amplitude

Adaptation of switching amplitudes of the controller’s variable
structure part in every time step

Implementation using C++ S-functions in Matlab with software
library C-XSC (real-time applicable)
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Interval Definitions for Control Design

x1

x2

[ xc ,1]

[x
c,
2
]

t

 

 

current state 

desired state trajectory

[ xc ,1]=xd ,1+[Δ xc ,1]

x (t k )

x d (t)

CHATTERING 

[ xc ,2]=xd ,2+[Δ xc ,2]

desired current state x d (t k)

Figure: Location of intervals for sliding mode control design.
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Sliding Mode Techniques

Principle

Definition of a sliding surface s = x− xd such that the system states
tend to this stable mode

Suitable candidate of a Lyapunov function V = 1
2 · s

T · s > 0

Stabilization of tracking error V̇ = sT · ṡ ≤ 0

Following Description

Part 1: Stabilization of the linear system part by pole placement

Part 2: Stabilization of the nonlinear system part with bounded and
stochastic uncertainties by sliding mode control
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Sliding Mode Control: Scheme

d x= f (x (t ) ,u (t) ,[ p ])dt+G p d w p
y=CC ([ p ]) x (t)+Gm d wm

System model, stochastic ODE
with interval parameters Desired state trajectories

up to the   -th derivative
xd=[ x1,d , x2,d , ... , xn , d ]

T
n

[ p ]=[ p ; p ]
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Sliding Mode Control: Scheme
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Sliding Mode Control: Scheme

η
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switching amplitudes
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Sliding Mode Control: Scheme

Control law in

u=uV−K x+ηT sign (x−xd )

f (x (t) ,u(t ) ,[ p])
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switching amplitudes

Robust stability & minimum convergence rate
L(VC )<−qC

T abs( x−xd )

Itô differential operator

L(VC )=(
∂V C

∂(x−xd ))
T

( f ( x ,u , [ p ])− ẋd )+
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Calculation of the Switching Amplitude

Employing the condition L(VC(t))
!
< −qT

Cabs (x̃) (user-defined
convergence rate vector qC > 0) leads to component-wise calculation
of the switching amplitude vector (single-input single-output systems)

ηi =


sup
(
M+

i ·
(
−V̇a,C − qT

Cabs (x̃)− T
))

+ µ, M+
i < 0

inf
(
M+

i ·
(
−V̇a,C − qT

Cabs (x̃)− T
))
− µ, M+

i > 0

0, else
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Calculation of the Switching Amplitude

Substitution M = BT
CPC |x̃|

Left pseudo inverse of a matrix M is denoted by
M+ =

(
MT ·M

)−1 ·MT (SISO case, M turns out to be a column
vector)

Matrix of the absolute values |x̃| ∈ Rn×n is defined with the tracking
error x̃i = (xi − xd,i) (for all i ∈ {1, ..., n}) as

|x̃| =


x̃1 · sign(x̃1) x̃1 · sign(x̃2) . . . x̃1 · sign(x̃n)
x̃2 · sign(x̃1) x̃2 · sign(x̃2) . . . x̃2 · sign(x̃n)

...
...

. . .
...

x̃n · sign(x̃1) x̃n · sign(x̃2) . . . x̃n · sign(x̃n)



Sign function sign(x̃i) =


1 if x̃i > 0
−1 if x̃i < 0
0 else
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+ µ, M+
i < 0

inf
(
M+

i ·
(
−V̇a,C − qT

Cabs (x̃)− T
))
− µ, M+

i > 0

0, else

Linear part of the Lyapunov function with feedforward control uV
results in V̇a,C = x̃TPC(AC −BCK)x+ x̃TPCBCuV − x̃TPC ẋd

Vector of absolute values (component-wise)

abs (x̃) = [abs(x1 − xd,1) ... abs(xn − xd,n)]T

Trace T = 1
2 trace

{
GT

p
∂2VC
∂x̃2 Gp

}
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−V̇a,C − qT
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− µ, M+
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Underlying stabilization of the error dynamics by the controller gain
matrix K (pole assignment, minimizing a quadratic cost function)
Matrix PC results from solving the Lyapunov equation
ÃT ·PC +PT

C · Ã+Q = 0 with Ã = A−B ·K and Q > 0
Online evaluation of the switching amplitudes η in each time step
instead of predefining the switching amplitude
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Application Scenario: Drive train test-rig

electric motor

deflector rolls with toothed belt
(energy transfer)angle measurements

drive side shaft 

load side shaft
  brake (velocity-proportional torque)

JM

ωM

ωB

ϕM,m

ϕB,m

J DS,M

J DS,B

T B

TM

control signal u=T M

Motor torque TM , braking torque TB
Angular velocity of the motor ωM

Measured angles ϕM,m as well as ϕB,m

Jrot contains all mass moments of inertia JDS,M , JDS,B, JM with
respect to the driving shaft

Braking represents a disturbance
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Application Scenario: Drive Train Test-Rig

electric motor

deflector rolls with toothed belt
(energy transfer)angle measurements

drive side shaft 

load side shaft
  brake (velocity-proportional torque)

JM

ωM

ωB

ϕM,m

ϕB,m

J DS,M

J DS,B

T B

TM

control signal u=T M

System model

ODE Jrot · ω̇M = TM − TB + TS · sign(ωM )

Compensation of static friction TS · sign(ωM,d)

Motor torque is controlled by interval-based sliding mode controller

Transmission ratio k = ωM
ωB

Braking torque TB = kD2 · ωB =
kD2
k · ωM = d · ωM
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Application Scenario: Drive train test-rig

System Model (ϕM angle of rotation of the motor shaft)

fN =

[
ẋN1

ẋN2

]
=

[
ϕ̇M

ω̇M

]
=

[
ωM

α · ωM + β · u

]
with u = TM − TS · sign(ωM )

Task for Interval-based Sliding Mode Control

Trajectory tracking ϕM − ϕM,d
!
= 0 and ωM − ωM,d

!
= 0 despite

uncertain parameters α ∈ [α] and β ∈ [β]

Simulative implementation: Interface between Matlab/Simulink
and C-XSC

Experimental implementation: in progress (later more)
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Simulation Results - Only Swiching Part in Control Law

u = ηT sign(x− xd)

x
d
,1
−
x̂
1

η1
t in s

10
8
6

0
2
4

2.5
2

1.5
0.5

1

3−10
−5 0

5
10

(a) Transient phase.
x
d
,1
−
x̂
1

t in s η1−50

10
8
6

2

0
50

100

4

10
20

40
50

60−100

0
0

30

(b) Complete time horizon.

Relation between tracking error of position and corresponding switching
amplitude
Tracking error after transient phase approx. xd,1 − x̂1 = [0.9; 1.9]
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Simulation Results - Complete Control Law

u = uV − kT · x+ ηT sign(x− xd)

x
d
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−
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1
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(c) Transient phase.
x
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(d) Complete time horizon

Relation between tracking error of position and corresponding switching
amplitude
Tracking error after transient phase approx. xd,1 − x̂1 = [−0.1; 0.2]
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Simulation Results - Only Switching Part in Control Law

u = ηT sign(x− xd)

t in s

x
d
,2
−
x̂
2

η2

20

10

0
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−20
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−40
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−100
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(e) Transient phase.

t in s

x
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−
x̂
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6050402010 30
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10
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−100
−50
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(f) Complete time horizon.

Relation between tracking error of velocity and corresponding switching
amplitude
Tracking error after transient phase approx. xd,2 − x̂2 = [−10; 10]
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Simulation Results - Complete Control Law

u = uV − kT · x+ ηT sign(x− xd)

t in s
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(h) Complete time horizon

Relation between tracking error of velocity and corresponding switching
amplitude
Tracking error after transient phase approx. xd,2 − x̂2 = [−2; 1]
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Experimental Implementation (in Progress)

electric 
drive

drive side shaft

load side shaft

deflector rolls 
with drive belt

brake

angle 
measurement
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Experimental Test-Rig

Hardware and Programming

Real-time environment: Bachmann system

Communication via serial interface and Ethernet

Compilation of Matlab/Simulink model directly on process unit

Interface with C-XSC does not work in experiment, because switching
of rounding mode is not fully supported (loss of accuracy can be
neglected)
⇒ Own structure for calculating with intervals
⇒ New implementation of all algebraic operators

Implementation of algorithm is in progress
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Experimental Test-Rig

Combined state and disturbance 
observer

System

Trajectory 
Tracking

Calculation of
with Itô-differential operator

η

u=−kT x+uv+ηT sign( x−x d)

uT S=T S sign(φ̇d )

xd=[φd ωd ]
T

ẋ=A x+b(uext+T S sign (φ̇))+G pdw p

Integrator

Integrator

˙̂x=[
0 1 0
0 α 0
0 0 0][

φ̂M
ω̂M

ẑ ]+[
0
β
0]u+H (φM−φ̂M) -ẑ

φ̂M

ω̂M

uext ωM

φM

Gm

dwm

Angular measurement

Test-rig

Figure: Schematic overview of the implementation in experiment.
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Conclusions and Outlook

Conclusions

Development of a robust interval-based sliding mode controller

Validation in simulation

Outlook

Finish experimental implementation for real-time target

Application to other nonlinear systems: thermodynamic process of a
fuel cell system

Maximization of the guaranteed stabilizable domain of the Lyapunov
function

Combination with interval-based sliding mode observer (estimation of
non-measurable states and identification of uncertain parameters) ⇒
closed-loop control
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Thank you for your attention!

L. Senkel et al.: Numerical Validation


	Motivation
	Interval Arithmetics for Control Strategies
	Robust Sliding Mode Control Approach
	Illustrative Benchmark Example
	Simulation Results
	Experimental Implementation (in Progress)
	Conclusions and Outlook on Further Work

