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Requirements for Robust Control Approaches

@ Trajectory tracking despite non-measurable system states
@ Noisy processes and measurements

@ System models and applications are affected by uncertainty
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Bounded Uncertainty

@ Lack of knowledge about system parameters

@ Manufacturing tolerances

Solution

@ Consideration of intervals for

Parameters and states
Measurement, control, and estimation errors
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Motivation

Stochastic Uncertainty

@ Inaccurate sensor measurements
— Filtering is necessary to obtain smooth signals

@ Uncertain or random effects, e.g. friction

Solution
@ Consideration of non-modeled influences on the system as process
noise (Brownian motion)

@ Consideration of additive disturbances on measured data as
measurement noise (Brownian motion)

o It6 differential operator and Lyapunov functions for calculation of
switching amplitudes in variable-structure control and observer
strategies
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Motivation

Common Sliding Mode Techniques

Advantages
@ Definition of a sliding surface based on a Lyapunov function candidate
@ Robustness against uncertain parameters and states
@ Finite-time convergence

Disadvantage

@ Restrictive matching conditions wrt. the system model

o Chattering due to unnecessarily large predefined switching amplitudes
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Motivation

Advanced Sliding Mode Control Procedure
Robust control strategy considering noise processes
Intervals for states and uncertain parameters

Less severe restrictions on the system model

Suitable candidates of Lyapunov functions for asymptotic stability and
calculation of switching amplitudes

@ Number of calculated switching amplitudes is equal to system order
instead of predefining just one switching amplitude

@ Adaptation of switching amplitudes of the controller’s variable
structure part in every time step

@ Implementation using C++ S-functions in MATLAB with software
library C-XSC (real-time applicable)

v
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© Interval Arithmetics for Control Strategies
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Interval Definitions

for Control Design

oY |
CHATTERING/ current state x(z,)
t
- desired state trajectory x,(¢)
= desired current state x,(z,)
¥ >

1

Figure: Location

[x, ]
[x.ql=x, 1+ Ax, ]

[x pl=x, 5 [Ax, ]

of intervals for sliding mode control design.
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© Robust Sliding Mode Control Approach
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Sliding Mode Techniques

Principle

@ Definition of a sliding surface s = x — x4 such that the system states
tend to this stable mode

@ Suitable candidate of a Lyapunov function V = % sT.8>0

o Stabilization of tracking error V =s . § <0
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Sliding Mode Techniques

Principle

@ Definition of a sliding surface s = x — x4 such that the system states
tend to this stable mode

@ Suitable candidate of a Lyapunov function V = % .sT.s>0

o Stabilization of tracking error V =s . § <0

Following Description
@ Part 1: Stabilization of the linear system part by pole placement
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Sliding Mode Techniques

Principle

@ Definition of a sliding surface s = x — x4 such that the system states
tend to this stable mode

@ Suitable candidate of a Lyapunov function V = % .sT.s>0

o Stabilization of tracking error V =s . § <0

Following Description
@ Part 1: Stabilization of the linear system part by pole placement

@ Part 2: Stabilization of the nonlinear system part with bounded and
stochastic uncertainties by sliding mode control
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Sliding Mode Control: Scheme
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up to the x-th derivative
X =lxy g% g Xy 4]




Sliding Mode Control
o] T}

Sliding Mode Control: Scheme
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Desired state trajectories
up to the x-th derivative T
xy=lxy 03y g, 4]

e

Suitable cancidate of a
Lyapunov function

1
VC:E(x—xd)TPC(x—xd)
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Sliding Mode Control: Scheme

Desired state trajectories
up to the »-th derivative T
xd=[x|'d,xzyd, m,x"‘d

e

Suitable cancidate of a
Lyapunov function

1
VC=E(x—xd)TPC(x—xd)
I

1t6 differential operator A
¢ ’ . 1 T anc
L(Ve)= a(x——xd) (f(x,u,[P])—xd)+Etrace GPa(Txd)z »
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Sliding Mode Control: Scheme

Desired state trajectories
up to the »-th derivative T
xd=[xlyd,x2)d, m,xn‘d

e

Suitable cancidate of a
Lyapunov function

1
VC=E(x—xd)TPC(x—xd)

|
1t6 differential opgrator A
V¢ g . 1 T azyc
L(V )= Fr=r) (f(x,u,[p])—xld)+itrace GPa(Txd)z P

L

Robust stability & minimum convergence rate
L(VC)<—q€.abs(x—xd)
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Sliding Mode Control: Scheme

Desired state trajectories
up to the »-th derivative -
xd:[xl,d'xz,d"“‘xn‘d

'

Suitable cancidate of a
Lyapunov function

1
VC=E(x—xd)T Po(x—x,)

|
1t6 differential opgrator A
V¢ g . 1 T azyc
L(Ve)= a(x——xd) (f(x,u,[p])—xld)+itmce Gpa(Txd)sz

L

Robust stability & minimum convergence rate
L(VC)<—qgabs(x—xd)
il

Calculatior: of the
switching amplitudes 7
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Sliding Mode Control: Scheme

Desired state trajectories
up to the »-th derivative

xd:[xl,d'xz,d““'xn‘d

'

Suitable cancidate of a
Lyapunov function
1
VC=E(x—xd)TPC(x—xd)
|
1t6 differential opgrator A
V¢ g . 1 T azyc
L(Ve)= lex,) (f(x,u,[l’])—vtld)‘*'imce Gpa(Txd)z »

L

Robust stability & minimum convergence rate
L(VC)<—q£abs(x—xd)

Calculation of the
switching amplitudes n
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Calculation of the Switching Amplitude

!

e Employing the condition L(V(t)) < —qlabs (%) (user-defined
convergence rate vector q¢ > 0) leads to component-wise calculation
of the switching amplitude vector (single-input single-output systems)

sup (MZJr . (—VQ,C —qlabs (%) — T)) +p, Mf <0
= inf (M - (Voo —afabs(®) = T)) —p, M{ >0
0, else
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Calculation of the Switching Amplitude

!
e Employing the condition L(V(t)) < —qlabs (%) (user-defined
convergence rate vector q¢ > 0) leads to component-wise calculation
of the switching amplitude vector (single-input single-output systems)

sup (MzJr . (—Va,c — qlabs (%) — T)) +pu, Mf <0
M= inf (M - (~Vae —afabs (%) = T)) =, M{ >0
0, else

e Substitution M = BLP( x|

o Left pseudo inverse of a matrix M is denoted by
M= (MT. M)_1 -MT (SISO case, M turns out to be a column
vector)
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Calculation of the Switching Amplitude

o Substitution M = BLP( x|

o Left pseudo inverse of a matrix M is denoted by
Mt = (MT. M)f1 -MT (SISO case, M turns out to be a column
vector)

@ Matrix of the absolute values |x| € R™"*" is defined with the tracking
error T; = (x; — xq,) (for all i € {1,...,n}) as

Ty -sign(&1) &y -sign(Z2) ... &1 -sign(Z,)
& Zo - sign(Z1) o -sign(Za) ... Zo-sign(Z,)
X| = , . :
Ty - sign(Z1) &y -sign(Za) ... Iy -sign(Z,)
1 if 2; >0
e Sign function sign(z;) = ¢ —1 ifZ; <0
0 else

L. Senkel et al.: Numerical Validation
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Calculation of the Switching Amplitude

!

o Employing the condition L(V(t)) < —ghabs (%) (user-defined
convergence rate vector q¢ > 0) leads to component-wise calculation
of the switching amplitude vector (single-input single-output systems)

sup (M - (~Va.o — afabs () = T) ) + 1, M <0
=19 inf (Mj : (—Va,c —qBabs(X) = T)) —p, M >0
0, else

@ Linear part of the Lyapunov function with feedforward control uy
results in Vo = X! Po(Ac — BcK)x + X PeBouy — %I Poxy
@ Vector of absolute values (component-wise)

abs (X) = [abs(zy — 241) ... abs(z, —2an)]"
@ Trace T = %trace {G;";%GP}
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Calculation of the Switching Amplitude

!

e Employing the condition L(Vc(t)) < —qlabs (%) (user-defined
convergence rate vector q¢ > 0) leads to component-wise calculation
of the switching amplitude vector (single-input single-output systems)

sup (M - (~Va.o — afiabs () = T) ) + 1, MJ <0
= inf(M{ - (~Vae —afabs(®) = T)) —p, M{ >0
0, else

@ Underlying stabilization of the error dynamics by the controller gain
matrix K (pole assignment, minimizing a quadratic cost function)

@ Matrix P results from solving the Lyapunov equation
AT . Po+PL-A+Q=0withA=A-B-Kand Q>0

@ Online evaluation of the switching amplitudes 7 in each time step
instead of predefining the switching amplitude

L. Senkel et al.: Numerical Validation



lllustrative Benchmark Example
000

@ Illustrative Benchmark Example
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Application Scenario: Drive train test-rig

deflector rolls with toothed belt

angle measurements (energy transfer)
P Mm drive side shaft ©
“ ‘IDS M T
| I ) 3 7
\z‘ J M

electric motor
control signal u=T,

load side shaft
brake (velocity-proportional torque)

Motor torque Ty, braking torque T

Angular velocity of the motor wys

Measured angles @ar,, as well as ¢

Jrot contains all mass moments of inertia Jps v, Jps,B, Jm with
respect to the driving shaft

Braking represents a disturbance
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Application Scenario: Drive Train Test-Rig

deflector rolls with toothed belt
angle measurements (energy transfer)

drive side shaft

electric motor

Ty control signalu=T,

load side shaft
brake (velocity-proportional torque)

System model
@ ODE Jyot-wnr =T — T + Ts - sign(wpr)
e Compensation of static friction Ts - sign(waz,q)
@ Motor torque is controlled by interval-based sliding mode controller
°

Transmission ratio k = Z—I‘;

. k
Braking torque Tg = kp, - wp = % cwy =d-wy
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Application Scenario: Drive train test-rig

System Model (¢, angle of rotation of the motor shaft)

et oM WM : - o
fy = [$N2] = [WM} = [OwwM-i-B-u} with u = Ty — Ts - sign(wpy)

v

Task for Interval-based Sliding Mode Control
@ Trajectory tracking ¢y — ©ard < 0 and WM — WM,d ) despite
uncertain parameters « € [a] and 8 € [f]

o Simulative implementation: Interface between MATLAB/SIMULINK
and C-XSC

e Experimental implementation: in progress (later more)
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© Simulation Results
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Simulation Results - Only Swiching Part in Control Law

u = nTsign(x — xq)

—_

P WERPS

Tgp — T —*>

(a) Transient phase. (b) Complete time horizon.

Relation between tracking error of position and corresponding switching
amplitude
Tracking error after transient phase approx. x4 — &1 = [0.9;1.9]
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Simulation Results - Complete Control Law

u=uy — kT - x +nTsign(x — x4)

—_

D N0 O
—_

gy — L1 —>
coNED D

Ty — B —>

(c) Transient phase. (d) Complete time horizon

Relation between tracking error of position and corresponding switching
amplitude

Tracking error after transient phase approx. =41 — &1 = [—0.1;0.2]
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Simulation Results - Only Switching Part in Control Law

u = nTsign(x — xq)

507 e
~ " _1000 05 1 L5
72

(e) Transient phase.

Tgp — Ty —>
—
o

s 3y ap 50 00
~ 0 oo 10 20 3040
7 L s

(f) Complete time horizon.

Relation between tracking error of velocity and corresponding switching
amplitude
Tracking error after transient phase approx. x4 2 — &2 = [—10; 10]
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Simulation Results - Complete Control Law

u=uy — kT - x +nTsign(x — x4)

Tgp — Ty —>
o

506 5 g

Vs O B
~— 2 1079 0102037 7, 0p 10 2 o
72 tanE 7 e

<50 30 40 0 60

(g) Transient phase. (h) Complete time horizon

Relation between tracking error of velocity and corresponding switching
amplitude

Tracking error after transient phase approx. zq2 — &2 = [—2;1]
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@ Experimental Implementation (in Progress)
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Experimental Implementation (in Progress)

angle drive side ghaft
measurement -~ .

electric
drive

deflector rolls
with drive belt

load side shaft
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Experimental Test-Rig

Hardware and Programming
@ Real-time environment: Bachmann system
@ Communication via serial interface and Ethernet
e Compilation of Matlab/Simulink model directly on process unit
o

Interface with C-XSC does not work in experiment, because switching
of rounding mode is not fully supported (loss of accuracy can be
neglected)

=- Own structure for calculating with intervals

= New implementation of all algebraic operators

@ Implementation of algorithm is in progress

L. Senkel et al.: Numerical Validation



Experimental Test-Rig

Experiment
[efe] ]

__Angular measurement_

Integrator

Trajectory
Tracking

x=le, o)

x+u,+nsign(x—x,)

Figure: Schematic overview of the implementation in experiment.
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Experimental Test-Rig

Test-rig

Angular measurement

in progress
Trajectory

Tracking
x=lo, o]

u=—k"x+u,+n'sign(x-x,)

Figure: Schematic overview of the implementation in experiment.
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@ Conclusions and Outlook on Further Work
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Conclusions and Outlook

Conclusions
@ Development of a robust interval-based sliding mode controller

@ Validation in simulation
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Conclusions and Outlook

Conclusions
@ Development of a robust interval-based sliding mode controller

@ Validation in simulation

Outlook

@ Finish experimental implementation for real-time target

@ Application to other nonlinear systems: thermodynamic process of a
fuel cell system

@ Maximization of the guaranteed stabilizable domain of the Lyapunov
function

e Combination with interval-based sliding mode observer (estimation of
non-measurable states and identification of uncertain parameters) =
closed-loop control
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