Using range arithmetic in evaluation of compact models

Amin Maher
Technical Team Lead
Deep Submicron Division, Mentor Graphics

Dr. Hossam A. H. Fahmy
Associate Professor
Electronics and Communications Engineering, Cairo University, Egypt

SCAN2014 - Würzburg
Outline

- Introduction
- Interval based Simulation flow
- Simulator design
- Simulator models library
- Testing strategy
- Conclusion
- Future work
Process Variations

- For electronic circuit design we can define 3 variable quantities related to the circuit behavior:
 - **Design parameters**: are related to circuit structure, it is designer responsibility to change them to get optimum performance.
 - **Range parameters**: usually define the range of operation for the circuit, like supply voltage or temperature range.
 - **Statistical parameters**: describes the random variations which occur during the manufacturing process, they are modeled in form of probability density functions.

- Process variations become particularly important at smaller process nodes (< 65 nm) as the variation becomes a larger percentage of the device geometry.

- It causes measurable and predictable variance in the output performance of all circuits.
Account for Process Variations

- Circuit simulations is used to expect the behavior of electronic circuits before doing manufacturing.
- Monte-Carlo is a computational algorithm that rely on repeated random sampling to obtain numerical results for difficult or impossible to obtain a closed-form expression, or infeasible to apply a deterministic algorithm.
- Monte-Carlo simulation is used to account for process variations in the design stage.
- Many runs needed to obtain the distribution of an unknown probabilistic entity.
- For big circuits this takes long time, may be weeks.
- We need to replace MC simulation with interval based simulation.
Modal Arithmetic

In modal arithmetic the following two operators are defined for interval $X=[a,b]$ where $b>a$
- $\text{dual}(X) = [b,a]$
- $\text{opp}(X) = [-a,-b]$

We use modal arithmetic in our work to bound output results.
Interval Based Simulation flow

Traditional simulation flow

Proposed interval based simulation flow
Simulator Parts

- Front end process the design to get interval parameters.
- The solver formulate and solve the equations which describe the design.
- Models library contains mathematical equations define characteristic of each component in the design.
- Back end process the results and display it in a proper way.
Solver flow

- Flow for steady state and transient simulation
- Use Newton's method for interval system of non-linear equations.
- Interval Gauss-Seidel used to solve the system of interval linear equations.

$t = 0$

$t = t + h$

Time domain integration

Models evaluation

Linearization

Solve linear eqn

Newton Converge?

Yes

Store the solution

No

Finish?

Yes

Generate outputs

No
Models Library

- **Sources**
 - Independent current source
 - Independent voltage source

- **Passive elements**
 - Resistor
 - Capacitor
 - Inductor

- **Active elements**
 - Simple diode model
 - Simple MOSFET transistor model
 - Advanced MOSFET transistor model
Resistor Model

Voltage difference across Ohmic resistor is:

\[(v_1 - v_2) = I.R\]
Resistor Model

- This example shows how modal arithmetic enhances the results.

![Resistor Circuit Diagram]

- I_1: [0.9, 1.1]
- R_1: [9, 10]
- R_2: [18, 22]
Resistor Model

- This simple circuit is represented using modified nodal analysis as follow:

\[
\begin{bmatrix}
G_1 & -G_1 \\
-G_1 & G_1 + G_2
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}
= \begin{bmatrix} I_1 \\
0, 0
\end{bmatrix}
\]

Where \(G = 1 / R \)

- Classical results

\[
V_1 = [21.354545, 41.677778]
\]
\[
V_2 = [11.647933, 33.959671]
\]

- Modal results by replacing \(-G_1\) with \(\text{opp}(G_1)\)

\[
V_1 = [24.300000, 36.300001]
\]
\[
V_2 = [16.199999, 24.200001]
\]
Simple diode model

- Diode is a two-terminal electronic component with asymmetric conductance.
- Model is defined on regions.
- If regions boundaries (Vbr, Vd) are defined as intervals, we can use monotonic behavior, then we compute output current twice (using end points).
 - Minimum input with the minimum edge of the region, and maximum input with the maximum edge of the region
- Results are the union of the two outputs.

* Picture from Wikipedia
Simple MOSFET model

- MOSFET is a type of transistors.
- It is a four terminal electronic device and used for amplifying or switching electronic signals.
- We use a simple model to describe the MOSFET basic characteristics.
- The simple MOSFET model is defined on regions, with one equation for the output current in each region.
- The voltage on the terminals defines the region of operation.
- In case we have interval threshold (boundary), we compute twice and use the same technique used to calculate diode output.

* Picture from Wikipedia
BSIM4 MOSFET Model

- BSIM4 is an accurate compact model for MOSFET transistors.
- It is widely used by electronic circuit industry.
- It has more than 900 model parameters, and 7500 lines of code.
- Results obtained so far from the interval model is not good.
- The model still need more work and investigation to probe the problem.
Testing

- **Unit testing**: tests interval results for each element or model alone and compare it versus single point results with sweeps.

- **RLC network testing**: tests simulator behavior with linear elements only.
 - This mainly tests functionality of interval matrix solver.

- **Simple circuits**: this test show how each component is integrated within the simulator, and how much Newton’s algorithm can handle non-linear elements.

- **Big circuit**: this test show how much our simulator is reliable (capacity and speed).
Conclusion

- We have introduced simulation flow that uses interval computations.
- Basic models library is created.
- Modal arithmetic is used to enhance results.
Future work

- Work to enhance BSIM4 results
- Begin circuit testing with the simulator.
- Support small signal analysis along with steady state and transient analysis.
- Compare affine arithmetic results to modal interval arithmetic results.