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Unsolvability



Overview

Gaussian elimination
Linear programming
Subsquares
Full colum rank
LSQ



1. Gaussian elimination

GE for overdetermined ILS was introduced by Hansen (2006)

We simply eliminate elements (using interval operations) under
the main diagonal to the following shape



1. Gaussian elimination

GE for overdetermined ILS was introduced by Hansen (2006)
We simply eliminate elements (using interval operations) under
the main diagonal to the following shape



1. Gaussian elimination

Let us take a look at the last (m− n + 1) equations

Each of them is of shape xn = [ · , · ]
If intersection of these intervals is empty, then the system is
unsolvable
Only for small systems
We cannot use preconditioning



1. Gaussian elimination

Let us take a look at the last (m− n + 1) equations

Each of them is of shape xn = [ · , · ]

If intersection of these intervals is empty, then the system is
unsolvable
Only for small systems
We cannot use preconditioning



1. Gaussian elimination

Let us take a look at the last (m− n + 1) equations

Each of them is of shape xn = [ · , · ]
If intersection of these intervals is empty, then the system is
unsolvable

Only for small systems
We cannot use preconditioning



1. Gaussian elimination

Let us take a look at the last (m− n + 1) equations

Each of them is of shape xn = [ · , · ]
If intersection of these intervals is empty, then the system is
unsolvable
Only for small systems

We cannot use preconditioning



1. Gaussian elimination

Let us take a look at the last (m− n + 1) equations

Each of them is of shape xn = [ · , · ]
If intersection of these intervals is empty, then the system is
unsolvable
Only for small systems
We cannot use preconditioning



2. Linear programming
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Vector x ∈ Rn is a solution of an interval system if and only if

|Acx− bc| ≤ A∆|x|+ b∆.

We can get rid of the first abs. value by rewriting plus / minus case
We can get rid of the second abs. value by knowledge in which
orthant we are
We get a system of linear inequalities in each orthant



2. Linear programming

Oettli-Prager theorem

Vector x ∈ Rn is a solution of an interval system if and only if

|Acx− bc| ≤ A∆|x|+ b∆.

We can get rid of the first abs. value by rewriting plus / minus case

We can get rid of the second abs. value by knowledge in which
orthant we are
We get a system of linear inequalities in each orthant



2. Linear programming

Oettli-Prager theorem

Vector x ∈ Rn is a solution of an interval system if and only if

|Acx− bc| ≤ A∆|x|+ b∆.

We can get rid of the first abs. value by rewriting plus / minus case
We can get rid of the second abs. value by knowledge in which
orthant we are

We get a system of linear inequalities in each orthant



2. Linear programming

Oettli-Prager theorem

Vector x ∈ Rn is a solution of an interval system if and only if

|Acx− bc| ≤ A∆|x|+ b∆.

We can get rid of the first abs. value by rewriting plus / minus case
We can get rid of the second abs. value by knowledge in which
orthant we are
We get a system of linear inequalities in each orthant



2. Linear programming

Now we can use linear programming

We have to solve 2n× 2n linear programs

We can search orthants according to some enclosure (usually
economical)

We compute interval hull

Verified linear programming can return "I don’t know" answer!



2. Linear programming

Now we can use linear programming

We have to solve 2n× 2n linear programs

We can search orthants according to some enclosure (usually
economical)

We compute interval hull

Verified linear programming can return "I don’t know" answer!



2. Linear programming

Now we can use linear programming

We have to solve 2n× 2n linear programs

We can search orthants according to some enclosure (usually
economical)

We compute interval hull

Verified linear programming can return "I don’t know" answer!



2. Linear programming

Now we can use linear programming

We have to solve 2n× 2n linear programs

We can search orthants according to some enclosure (usually
economical)

We compute interval hull

Verified linear programming can return "I don’t know" answer!



2. Linear programming

Now we can use linear programming

We have to solve 2n× 2n linear programs

We can search orthants according to some enclosure (usually
economical)

We compute interval hull

Verified linear programming can return "I don’t know" answer!



3. Square subsystems

If we select only some equations from an overdetermined system,
original solution set must lie inside the solution set of the new
system

Idea: We select some subsystems and compute their enclosures

If the intersection of those enclosures is empty the
overdetermined system is unsolvable



3. Square subsystems

If we select only some equations from an overdetermined system,
original solution set must lie inside the solution set of the new
system

Idea: We select some subsystems and compute their enclosures

If the intersection of those enclosures is empty the
overdetermined system is unsolvable



3. Square subsystems

If we select only some equations from an overdetermined system,
original solution set must lie inside the solution set of the new
system

Idea: We select some subsystems and compute their enclosures

If the intersection of those enclosures is empty the
overdetermined system is unsolvable



3. Square subsystems

There exist many methods for computing enclosures of solution
sets of square systems

Therefore we select square subsystems

Works fine even for large intervals (for small intervals usually 2
subsystems are enough)



3. Square subsystems

There exist many methods for computing enclosures of solution
sets of square systems

Therefore we select square subsystems

Works fine even for large intervals (for small intervals usually 2
subsystems are enough)



3. Square subsystems

There exist many methods for computing enclosures of solution
sets of square systems

Therefore we select square subsystems

Works fine even for large intervals (for small intervals usually 2
subsystems are enough)



4. Full column rank

Real matrix A of size m× n has full column rank if rank(A) = n

Interval matrix A has full column rank if every A ∈ A has full
column rank

If extended matrix of an interval system [A|b] has full column rank,
then the ILS is not solvable



4. Full column rank

Real matrix A of size m× n has full column rank if rank(A) = n

Interval matrix A has full column rank if every A ∈ A has full
column rank

If extended matrix of an interval system [A|b] has full column rank,
then the ILS is not solvable



4. Full column rank

Real matrix A of size m× n has full column rank if rank(A) = n

Interval matrix A has full column rank if every A ∈ A has full
column rank

If extended matrix of an interval system [A|b] has full column rank,
then the ILS is not solvable



4. Full column rank

Deciding whether A has fcr is NP-hard
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and consistent || · ||.
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Good choice is R ≈ A+
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Visualisations of testing 1

Figure: Least squares Figure: Full colum rank



Visualisations of testing 2

Figure: Subsquares 5 sys. Figure: Subsquares 10 sys.
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Many of them was usable for square systems

We can use them according to
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- Verified solution enclosure computation
- Verified linear programming
- Parallelization

New conditions in progress
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