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m We call it overdetermined system, if it has more equations than
variables.
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Introduction

m The solution set X of Az = b is defined
Y ={z| Az =0bforsome A € A,bc b}.

m An interval system is called unsolvable , when its ¥ set is empty.
Otherwise it is called solvable .



Solvability and Unsolvability
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Complexity

m Computing the set X is NP-hard
m Computing exact bounds on X is NP-hard
m Deciding whether ¥ is nonempty is NP-hard
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Existing results

m There are many existing results on unsolvability and solvability
m Exponential :(
m We would like to introduce some simple practically usable

m We mostly focus on overdetermined interval systems



Unsolvability




Overview

m Gaussian elimination
m Linear programming
m Subsquares

m Full colum rank

m LSQ
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m GE for overdetermined ILS was introduced by Hansen (2006)

m We simply eliminate elements (using interval operations) under
the main diagonal to the following shape
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1. Gaussian elimination

m Let us take a look at the last (m — n + 1) equations

=

m Each of them is of shape z,, = [ -, 7]

m If intersection of these intervals is empty, then the system is
unsolvable

m Only for small systems
m We cannot use preconditioning



Vector = € R" is a solution of an interval system if and only if

|Acz — be| < Aalz| + ba.
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2. Linear programming

Oettli-Prager theorem
Vector = € R" is a solution of an interval system if and only if

|Acx — be| < Aa|x| + bA.

m We can get rid of the first abs. value by rewriting plus / minus case

m We can get rid of the second abs. value by knowledge in which
orthant we are

m We get a system of linear inequalities in each orthant
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2. Linear programming

m Now we can use linear programming
m We have to solve 2n x 2™ linear programs

m We can search orthants according to some enclosure (usually
economical)

m We compute interval hull

m Verified linear programming can return "l don’t know" answer!
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3. Square subsystems

m |f we select only some equations from an overdetermined system,
original solution set must lie inside the solution set of the new
system

m |dea: We select some subsystems and compute their enclosures

m If the intersection of those enclosures is empty the
overdetermined system is unsolvable
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m There exist many methods for computing enclosures of solution
sets of square systems

m Therefore we select square subsystems
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3. Square subsystems

m There exist many methods for computing enclosures of solution
sets of square systems

m Therefore we select square subsystems

i
| [

m Works fine even for large intervals (for small intervals usually 2
subsystems are enough)
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4. Full column rank

m Real matrix A of size m x n has full column rank if rank(A) = n

m Interval matrix A has full column rank if every A € A has full
column rank

m If extended matrix of an interval system [A|b] has full column rank,
then the ILS is not solvable
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4. Full column rank

m Deciding whether A has fcr is NP-hard

Rohn

A matrix A has full column rank if ||I — RA|| < 1 for some suitable R
and consistent || - ||.

m = if || — RA|| < 1 then A has full column rank

m Good choiceis R ~ Af
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5. Least squares for Az = b

mY={z|Ax=0bforsome Ac A,bc b}.
m Y, ={z| ATAz = ATb for some A € A,b € b}.

| EgElSq

m We are able to get an interval enclosure x of ¥, (verifylss)
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5. Least squares

m Let us compute Ax — b using interval operations

m If this interval vector still does not contain zero vector, then for no
Ax = b exists y such that Ay —b=10

m Therefore, the interval system is unsolvable



Testing




Visualisations of testing 1

Figure: Least squares

Figure: Full colum rank



Visualisations of testing 2

Figure: Subsquares 5 sys.

Figure: Subsquares 10 sys.
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Conclusion

m We introduced some methods for deciding unsolvability of OILS

m Many of them was usable for square systems
m We can use them according to

- Systems properties (interval radii, size)
Verified solution enclosure computation
Verified linear programming
Parallelization

m New conditions in progress
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