

On Unsolvability of Overdetermined Interval Linear Systems

Jaroslav Horáček, Milan Hladík

Department of Applied Mathematics,
Faculty of Mathematics and Physics,
Charles University in Prague,
Czech Republic,

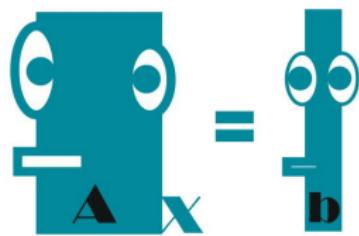
<http://kam.mff.cuni.cz/~hladik/>
<http://kam.mff.cuni.cz/~horacek/>

SCAN 2014
September 2014

Introduction

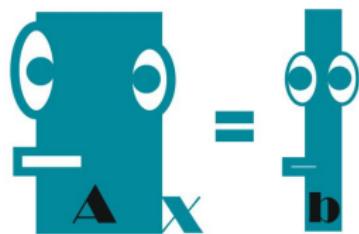
$$\begin{bmatrix} \text{A} & \text{x} \end{bmatrix} = \begin{bmatrix} \text{b} \end{bmatrix}$$

Introduction


$$\begin{matrix} \text{---} \\ \text{A} \end{matrix} \text{x} = \begin{matrix} \text{---} \\ \text{b} \end{matrix}$$

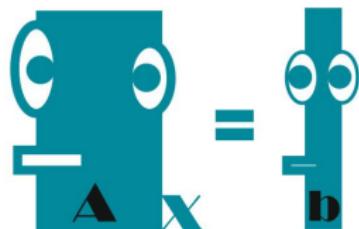
- Let $Ax = b$ be an interval linear system.

Introduction


$$\mathbf{A} \mathbf{x} = \mathbf{b}$$

- Let $\mathbf{A}\mathbf{x} = \mathbf{b}$ be an interval linear system.
- We call it **overdetermined** system, if it has more equations than variables.

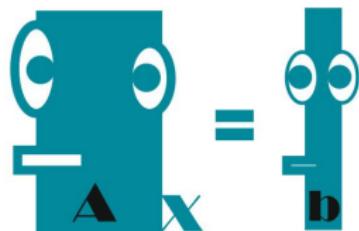
Introduction



- The solution set Σ of $Ax = b$ is defined

$$\Sigma = \{x \mid Ax = b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b}\}.$$

Introduction

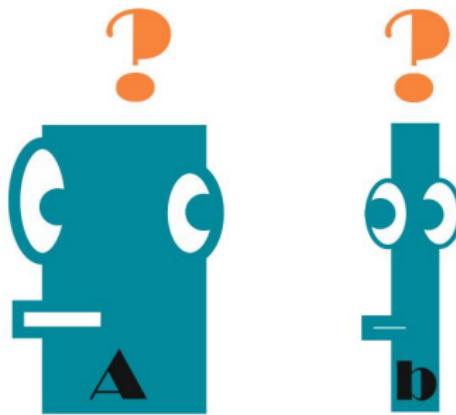


- The solution set Σ of $Ax = b$ is defined

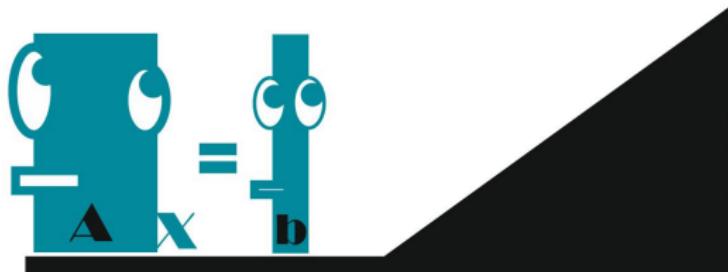
$$\Sigma = \{x \mid Ax = b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b}\}.$$

- An interval system is called **unsolvable** , when its Σ set is empty. Otherwise it is called **solvable** .

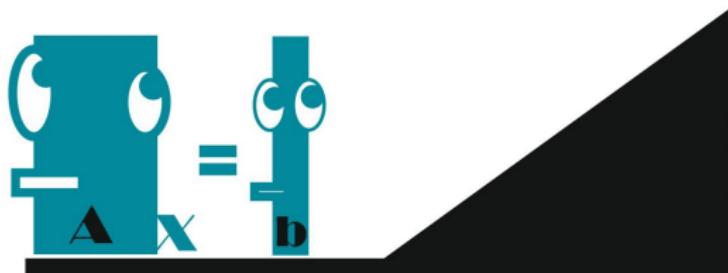
Solvability and Unsolvability



Complexity

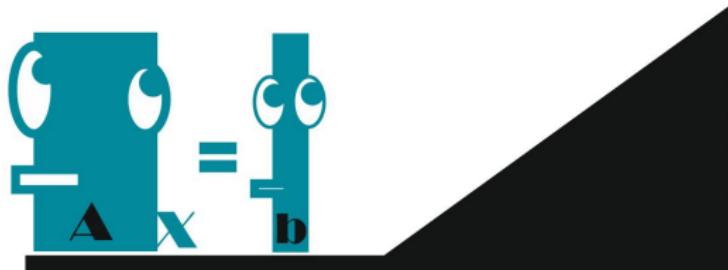


Complexity



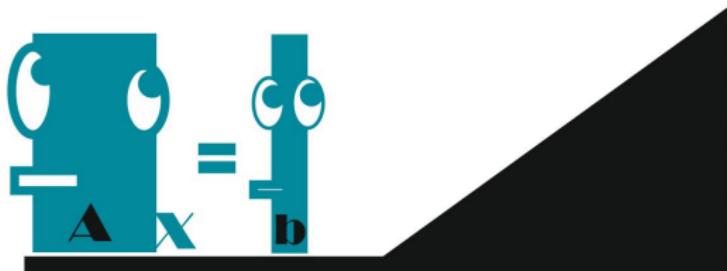
- Computing the set Σ is NP-hard

Complexity



- Computing the set Σ is NP-hard
- Computing exact bounds on Σ is NP-hard

Complexity



- Computing the set Σ is NP-hard
- Computing exact bounds on Σ is NP-hard
- Deciding whether Σ is nonempty is NP-hard

Existing results

- There are many existing results on unsolvability and solvability

Existing results

- There are many existing results on unsolvability and solvability
- Exponential :(

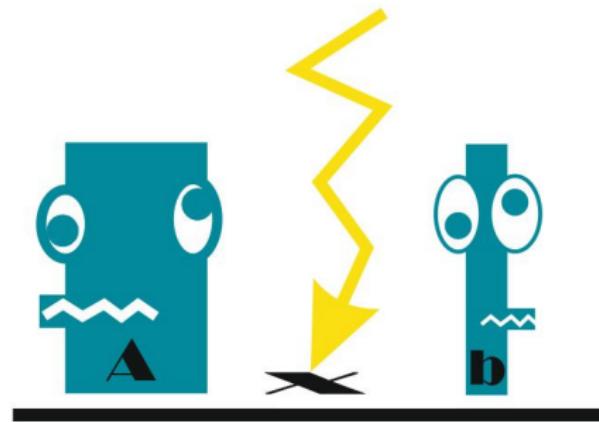
Existing results

- There are many existing results on unsolvability and solvability
- Exponential :(
- We would like to introduce some simple practically usable

Existing results

- There are many existing results on unsolvability and solvability
- Exponential :(
- We would like to introduce some simple practically usable
- We mostly focus on overdetermined interval systems

Unsolvability



Overview

- Gaussian elimination
- Linear programming
- Subsquares
- Full column rank
- LSQ

1. Gaussian elimination

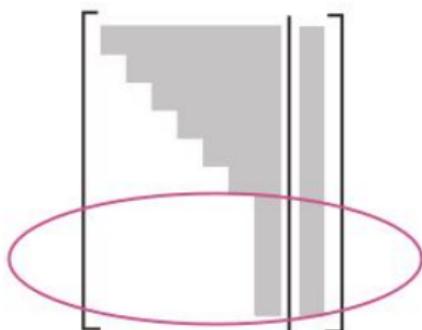
- GE for overdetermined ILS was introduced by Hansen (2006)

1. Gaussian elimination

- GE for overdetermined ILS was introduced by Hansen (2006)
- We simply eliminate elements (using interval operations) under the main diagonal to the following shape

1. Gaussian elimination

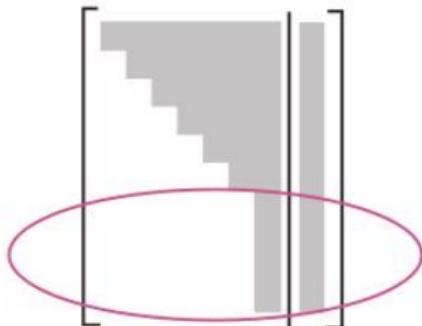
- Let us take a look at the last $(m - n + 1)$ equations



A diagram of a matrix in row echelon form. The matrix is enclosed in a large black bracket. The left side of the matrix is shaded in a light gray color, representing the pivot elements. The right side of the matrix is shaded in a medium gray color, representing the non-pivot elements. A red oval is drawn around the last row of the matrix, highlighting it. The matrix has $m - n + 1$ rows, which are the last equations in the system.

1. Gaussian elimination

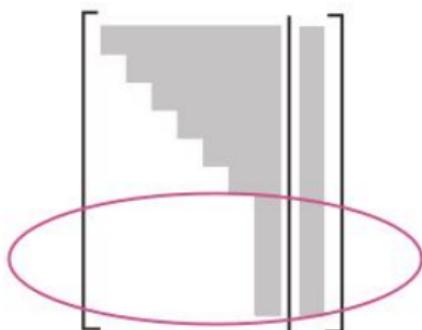
- Let us take a look at the last $(m - n + 1)$ equations


$$\left[\begin{array}{c|c|c} \text{gray shaded} & \text{gray vertical bars} & \end{array} \right]$$

- Each of them is of shape $x_n = [\cdot, \cdot]$

1. Gaussian elimination

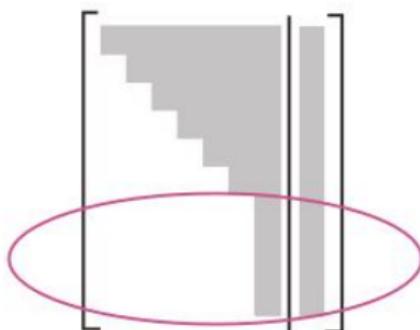
- Let us take a look at the last $(m - n + 1)$ equations



- Each of them is of shape $x_n = [\cdot, \cdot]$
- If intersection of these intervals is empty, then the system is unsolvable

1. Gaussian elimination

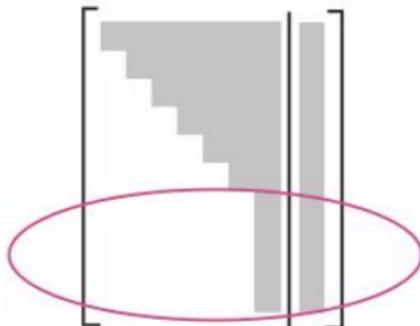
- Let us take a look at the last $(m - n + 1)$ equations



- Each of them is of shape $x_n = [\cdot, \cdot]$
- If intersection of these intervals is empty, then the system is unsolvable
- Only for small systems

1. Gaussian elimination

- Let us take a look at the last $(m - n + 1)$ equations



- Each of them is of shape $x_n = [\cdot, \cdot]$
- If intersection of these intervals is empty, then the system is unsolvable
- Only for small systems
- We cannot use preconditioning

2. Linear programming

Oettli-Prager theorem

Vector $x \in \mathbb{R}^n$ is a solution of an interval system if and only if

$$|A_c x - b_c| \leq A_\Delta |x| + b_\Delta.$$

2. Linear programming

Oettli-Prager theorem

Vector $x \in \mathbb{R}^n$ is a solution of an interval system if and only if

$$|A_c x - b_c| \leq A_\Delta |x| + b_\Delta.$$

- We can get rid of the first abs. value by rewriting plus / minus case

2. Linear programming

Oettli-Prager theorem

Vector $x \in \mathbb{R}^n$ is a solution of an interval system if and only if

$$|A_c x - b_c| \leq A_\Delta |x| + b_\Delta.$$

- We can get rid of the first abs. value by rewriting plus / minus case
- We can get rid of the second abs. value by knowledge in which orthant we are

2. Linear programming

Oettli-Prager theorem

Vector $x \in \mathbb{R}^n$ is a solution of an interval system if and only if

$$|A_c x - b_c| \leq A_\Delta |x| + b_\Delta.$$

- We can get rid of the first abs. value by rewriting plus / minus case
- We can get rid of the second abs. value by knowledge in which orthant we are
- We get a system of linear inequalities in each orthant

2. Linear programming

- Now we can use linear programming

2. Linear programming

- Now we can use linear programming
- We have to solve $2n \times 2^n$ linear programs

2. Linear programming

- Now we can use linear programming
- We have to solve $2n \times 2^n$ linear programs
- We can search orthants according to some enclosure (usually economical)

2. Linear programming

- Now we can use linear programming
- We have to solve $2n \times 2^n$ linear programs
- We can search orthants according to some enclosure (usually economical)
- We compute interval hull

2. Linear programming

- Now we can use linear programming
- We have to solve $2n \times 2^n$ linear programs
- We can search orthants according to some enclosure (usually economical)
- We compute interval hull
- Verified linear programming can return "I don't know" answer!

3. Square subsystems

- If we select only some equations from an overdetermined system, original solution set must lie inside the solution set of the new system

3. Square subsystems

- If we select only some equations from an overdetermined system, original solution set must lie inside the solution set of the new system
- Idea: We select some subsystems and compute their enclosures

3. Square subsystems

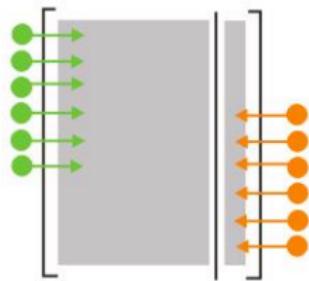
- If we select only some equations from an overdetermined system, original solution set must lie inside the solution set of the new system
- Idea: We select some subsystems and compute their enclosures
- If the intersection of those enclosures is empty the overdetermined system is unsolvable

3. Square subsystems

- There exist many methods for computing enclosures of solution sets of square systems

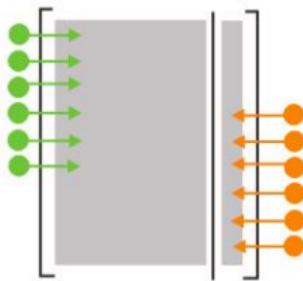
3. Square subsystems

- There exist many methods for computing enclosures of solution sets of square systems
- Therefore we select square subsystems



3. Square subsystems

- There exist many methods for computing enclosures of solution sets of square systems
- Therefore we select square subsystems



- Works fine even for large intervals (for small intervals usually 2 subsystems are enough)

4. Full column rank

- Real matrix A of size $m \times n$ has *full column rank* if $\text{rank}(A) = n$

4. Full column rank

- Real matrix A of size $m \times n$ has *full column rank* if $\text{rank}(A) = n$
- Interval matrix A has full column rank if every $A \in \mathcal{A}$ has full column rank

4. Full column rank

- Real matrix A of size $m \times n$ has *full column rank* if $\text{rank}(A) = n$
- Interval matrix A has full column rank if every $A \in \mathcal{A}$ has full column rank
- If extended matrix of an interval system $[A|b]$ has full column rank, then the ILS is not solvable

4. Full column rank

- Deciding whether A has fcr is NP-hard

4. Full column rank

- Deciding whether A has fcr is NP-hard

Rohn

A matrix A has full column rank if $\|I - RA\| < 1$ for some suitable R and consistent $\|\cdot\|$.

4. Full column rank

- Deciding whether A has fcr is NP-hard

Rohn

A matrix A has full column rank if $\|I - RA\| < 1$ for some suitable R and consistent $\|\cdot\|$.

- \Rightarrow if $\|I - RA\| < 1$ then A has full column rank

4. Full column rank

- Deciding whether A has fcr is NP-hard

Rohn

A matrix A has full column rank if $\|I - RA\| < 1$ for some suitable R and consistent $\|\cdot\|$.

- \Rightarrow if $\|I - RA\| < 1$ then A has full column rank
- Good choice is $R \approx A_c^+$

5. Least squares for $Ax = b$

5. Least squares for $Ax = b$

- $\Sigma = \{x \mid Ax = b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b}\}.$

5. Least squares for $Ax = b$

- $\Sigma = \{x \mid Ax = b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b}\}.$
- $\Sigma_{lsq} = \{x \mid A^T A x = A^T b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b}\}.$

5. Least squares for $Ax = b$

- $\Sigma = \{x \mid Ax = b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b}\}.$
- $\Sigma_{lsq} = \{x \mid A^T Ax = A^T b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b}\}.$
- $\Sigma \subseteq \Sigma_{lsq}$

5. Least squares for $Ax = b$

- $\Sigma = \{x \mid Ax = b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b}\}.$
- $\Sigma_{lsq} = \{x \mid A^T Ax = A^T b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b}\}.$
- $\Sigma \subseteq \Sigma_{lsq}$
- We are able to get an interval enclosure x of Σ_{lsq} (*verifylss*)

5. Least squares

- Let us compute $Ax - b$ using interval operations

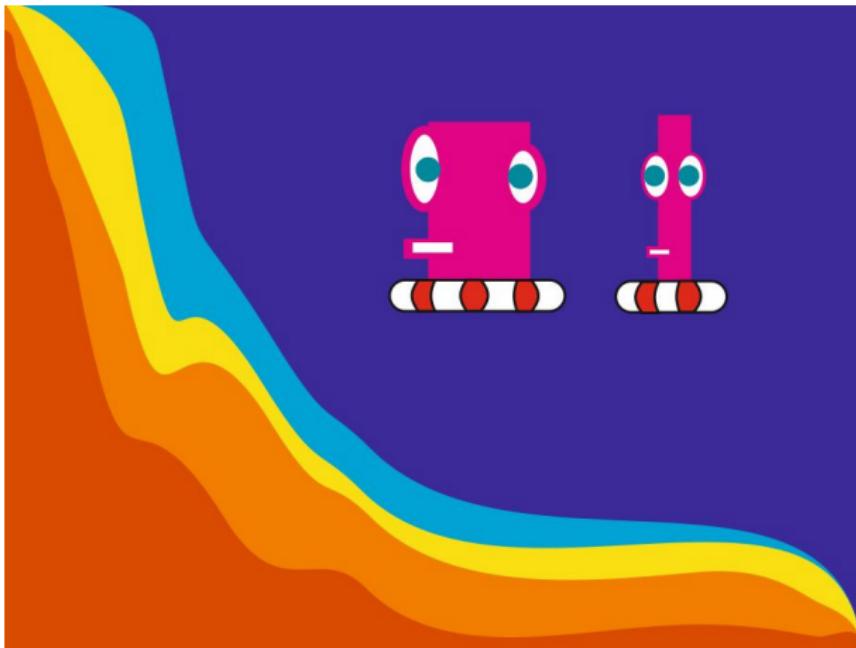
5. Least squares

- Let us compute $Ax - b$ using interval operations
- If this interval vector still does not contain zero vector, then for no $Ax = b$ exists y such that $Ay - b = 0$

5. Least squares

- Let us compute $Ax - b$ using interval operations
- If this interval vector still does not contain zero vector, then for no $Ax = b$ exists y such that $Ay - b = 0$
- Therefore, the interval system is unsolvable

Testing



Visualisations of testing 1

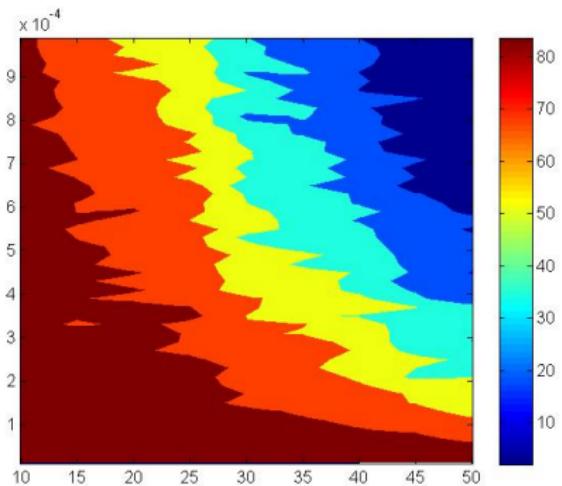


Figure: Least squares

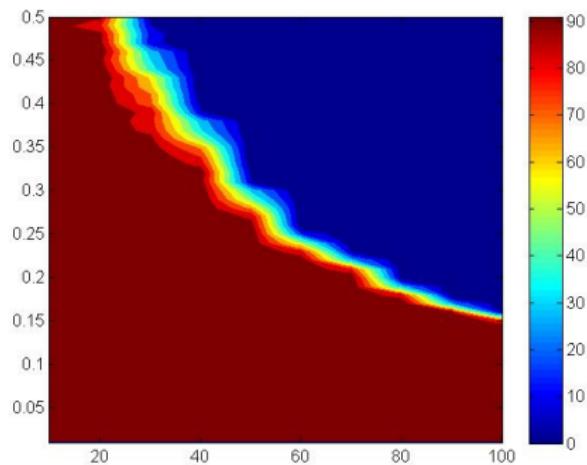


Figure: Full column rank

Visualisations of testing 2

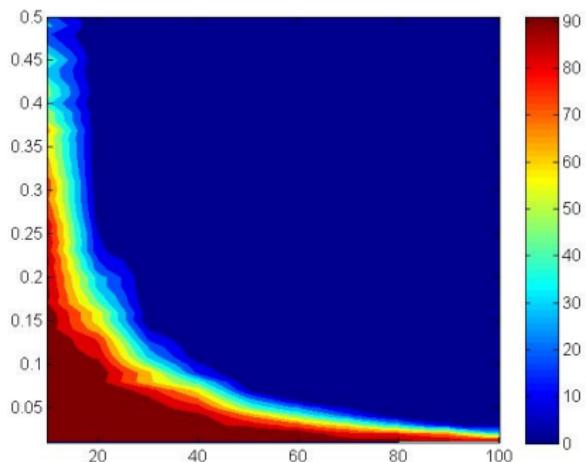


Figure: Subsquares 5 sys.

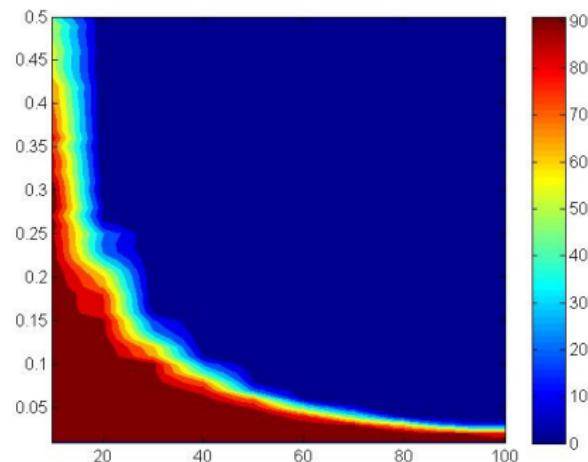


Figure: Subsquares 10 sys.

Conclusion

- We introduced some methods for deciding unsolvability of OILS

Conclusion

- We introduced some methods for deciding unsolvability of OILS
- Many of them was usable for square systems

Conclusion

- We introduced some methods for deciding unsolvability of OILS
- Many of them was usable for square systems
- We can use them according to
 - Systems properties (interval radii, size)
 - Verified solution enclosure computation
 - Verified linear programming
 - Parallelization

Conclusion

- We introduced some methods for deciding unsolvability of OILS
- Many of them was usable for square systems
- We can use them according to
 - Systems properties (interval radii, size)
 - Verified solution enclosure computation
 - Verified linear programming
 - Parallelization
- New conditions in progress

best_final_image.jpg