
Is Interval Uncertainty . . .

It Is Desirable to Take . . .

Objective Uncertainty . . .

Observational . . .

Probability Interval: . . .

Can There Be . . .

From Kolmogorov- . . .

Related Idea: Physical . . .

Random Sequences . . .

Home Page

Title Page

JJ II

J I

Page 1 of 37

Go Back

Full Screen

Close

Quit

Towards the Possibility of
Objective Interval

Uncertainty in Physics. II
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1. Is Interval Uncertainty Subjective?

• Applications of interval computations usually assume
that:

– while we only know an interval [x, x] containing the
actual (unknown) value of a physical quantity x,

– there is the exact value x of this quantity, and that

– in principle, we can get more and more accurate
estimates of this value.

• This assumption is in line with the usual formulations
of physical theories – as

– partial differential equations

– relating exact values of different physical quanti-
ties, fields, etc., at different space-time locations.

• Due to uncertainty principle, there are limitations on
how accurately we can measure physical quantities.
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2. It Is Desirable to Take Objective Uncertainty
into Account

• One of the important principles of modern physics is
operationalism.

• According to this principle, a physical theory should
only use observable quantities.

• This principle is behind most successes of the 20th cen-
tury physics, such as:

– relativity theory (vs. un-observable aether),

– quantum mechanics.

• Thus, it is desirable:

– to avoid using un-measurable exact values and

– to modify physical theories so that they explicitly
take objective uncertainty into account.
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3. Objective Uncertainty Is About Probabilities

• According to quantum physics, we can only predict
probabilities of different events.

• Thus, uncertainty means that instead of exact values
of these probabilities, we can only determine intervals.

• What is the observation meaning of probability?

• If a sequence ω1ω2 . . . is random, it satisfies all the
probability laws such as the law of large numbers.

• If a sequence satisfies all probability laws, then for all
practical purposes we can consider it random.

• Thus, we can define a sequence to be random if it sat-
isfies all probability laws.

• A probability law is a statement S which is true with
probability 1: P (S) = 1.
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4. Observational Meaning of Probabilities:
Kolmogorov-Martin-Löf (KML) Randomness

• A sequence is called random if it satisfies all probability
laws.

• A probability law is a statement S which is true with
probability 1: P (S) = 1.

• So, a sequence is random if it belongs to all definable
sets of measure 1.

• A sequence belongs to a set of measure 1 iff it does not
belong to its complement C = −S with P (C) = 0.

• So, a sequence is random if it does not belong to any
definable set of measure 0.

• There are countably many definable sets, so the union
of all such sets has measure 0.

• Thus, almost all sequences are KML-random.
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5. Probability Interval: Observational Meaning

• Probabilities have direct observational meaning only
for repeating events.

• In mathematical terms, independent repeating events
correspond to a product measure:

P (A&B) = P (A) · P (B).

• Traditional case: we know the exact probability p.

• Then, observable sequences ω1ω2 . . . are KLM-random
relative to a product of p-measures.

• It is natural to say that a sequence is [p, p]-random if
it is random for some product measure with pi ∈ [p, p].

• If p ∈ [p, p], then, of course, each p-random sequence
is also [p, p]-random.

• In this case, the interval uncertainty is subjective.
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6. Can There Be Objective Interval Uncertainty?

• We say that a sequence ω1ω2 . . . is objectively [p, p]-
random if:

– this sequence is [p, p]-random, and

– this sequence is not [q, q]-random for any narrower
interval [q, q] ⊂ [p, p].

• Proposition. For every interval [p, p], there exist objec-
tively [p, p]-random sequences.

• Example: any sequence ω1ω2 . . . corresponding to pi for
which lim inf pi = p and lim sup pi = p.

• Proof: let us prove that this sequence ω1ω2 . . . is not
[q, q]-random for any proper subinterval [q, q] ⊂ [p, p].

• It is known that if two measures are mutually singular,
then no sequence is random w.r.t. both measures.
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7. Proof (cont-d)

• For product measures, singularity is equivalent to
∞∑
i=1

[
(
√
pi −
√
qi)

2 +
(√

1− pi −
√

1− qi
)2]

= +∞.

• For a proper subinterval, p < q or q < p.

• W.l.o.g., let us consider the case when p < q.

• When lim inf pi = p then, for every ε > 0, there are
infinitely many i s.t.

√
pi ≤ √p+ ε.

• For these i, we have qi ≥ q, so
√
qi ≥ √q.

• Thus,
√
qi−
√
pi ≥ √q−

(√
p+ ε

)
=
(√

q −√p
)
− ε.

• For ε = (
√
q −√p)/2, we have

√
qi −
√
pi > ε > 0 and

therefore, the above sum is infinite.

• So, a {pi}-random sequence ω1ω2 . . . cannot be {qi}-
random. The proposition is proven.
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8. From Kolmogorov-Martin-Löf Theoretical Ran-
domness to a More Physical One

• The above definition means that (definable) events with
probability 0 cannot happen.

• In practice, physicists also assume that events with a
very small probability cannot happen.

• For example, a kettle on a cold stove will not boil by
itself – but the probability is non-zero.

• If a coin falls head 100 times in a row, any reasonable
person will conclude that this coin is not fair.

• It is not possible to formalize this idea by simply setting
a threshold p0 > 0 below which events are not possible.

• Indeed, then, for N for which 2−N < p0, no sequence
of N heads or tails would be possible at all.
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9. From Kolmogorov-Martin-Löf Theoretical Ran-
domness to a More Physical One (cont-d)

• We cannot have a universal threshold p0 such that
events with probability ≤ p0 cannot happen.

• However, we know that:

– for each decreasing (An ⊇ An+1) sequence of prop-
erties An with lim p(An) = 0,

– there exists an N above which a truly random se-
quence cannot belong to AN .

• Resulting definition: we say that R is a set of random
elements if

– for every definable decreasing sequence {An} for
which limP (An) = 0,

– there exists an N for which R∩ AN = ∅.
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10. Related Idea: Physical Induction

• How do we come up with physical laws?

• Someone formulates a hypothesis.

• This hypothesis is tested, and if it confirmed suffi-
ciently many times.

• Then we conclude that this hypothesis is indeed a uni-
versal physical law.

• This conclusion is known as physical induction.

• Different physicists may disagree on how many exper-
iments we need to become certain.

• However, most physicists would agree that:

– after sufficiently many confirmations,

– the hypothesis should be accepted as a physical law.

• Example: normal distribution :-)



Is Interval Uncertainty . . .

It Is Desirable to Take . . .

Objective Uncertainty . . .

Observational . . .

Probability Interval: . . .

Can There Be . . .

From Kolmogorov- . . .

Related Idea: Physical . . .

Random Sequences . . .

Home Page

Title Page

JJ II

J I

Page 12 of 37

Go Back

Full Screen

Close

Quit

11. How to Describe Physical Induction in Precise
Terms

• Let s denote the state of the world, and let P (s, i) indi-
cate that the property P holds in the i-th experiment.

• In these terms, physical induction means that for every
property P , there is an integer N such that:

– if the statements P (s, 1), . . . , P (s,N) are all true,

– then the property P holds for all possible experi-
ments – i.e., we have ∀nP (s, n).

• This cannot be true for all mathematically possible states:
we can have P (s, 1), . . . , P (s,N) and ¬P (s,N + 1).

• Our understanding of the physicists’ claims is that:

– if we restrict ourselves to physically meaningful states,

– then physical induction is true.
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12. Resulting Definition

• Let S be a set; its elements will be called states of the
world.

• Let T ⊆ S be a subset of S. We say that T consists of
physically meaningful states if:

– for every property P , there exists an integer NP

such that

– for each state s ∈ T for which P (s, i) holds for all
i ≤ NP , we have ∀nP (s, n).

• For this definition to be precise, we need to select a
theory L which is:

– rich enough to contain all physicists’ arguments and

– weak enough so that we will be able to formally
talk about definability in L.
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13. Definition: Equivalent Form

• We can reformulate this definition in terms of definable
sets, i.e.:

– sets of the type {x : P (x)}
– corresponding to definable properties P (x).

• Let S be a set; its elements will be called states of the
world.

• Let T ⊆ S be a subset of S. We say that T consists of
physically meaningful states if:

– for every definable sequence of sets {An}, there ex-
ists an integer NA

– such that T ∩
NA⋂
n=1

An = T ∩
∞⋂
n=1

An.
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14. Existence Proof

• There are no more than countably many words, so no
more than countably many definable sequences.

• For real numbers, we can enumerate all definable se-
quence, as {A1

n}, {A2
n}, . . . Let us pick ε ∈ (0, 1).

• For each k, for the difference sets Dk
n

def
=

n⋂
i=1

Ak
n−

∞⋂
i=1

Ak
n,

we have Dk
n+1 ⊆ Dk

n and
∞⋂
n=1

Dk
n = ∅, thus, µ(Dk

n)→ 0.

• Hence, there exists nk for which µ
(
Dk

nk

)
≤ 2−k · ε.

• We then take T = S −
∞⋃
k=1

Dk
nk

.

• Here, µ

( ∞⋃
k=1

Dk
nk

)
≤
∞∑
k=1

µ
(
Dk

nk

)
≤
∞∑
k=1

2−k · ε = ε < 1,

and thus, the difference T is non-empty.

• For this set T , we can take NAk = nk.
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15. Random Sequences and Physically Meaning-
ful Sequences

• LetRK denote the set of all elements which are random
in Kolmorogov-Martin-Löf sense. Then:

• Every set of random elements consists of physically
meaningful elements.

• For every set T of physically meaningful elements, the
intersection T ∩RK is a set of random elements.

• Proof: When An is definable, for Dn
def
=

n⋂
i=1

Ai −
∞⋂
i=1

Ai,

we have Dn ⊇ Dn+1 and
∞⋂
n=1

Dn = ∅, so P (Dn)→ 0.

• Therefore, there exists an N for which the set of ran-
dom elements does not contain any elements from DN .

• Thus, every set of random elements indeed consists of
physically meaningful elements.
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16. Proof (cont-d)

• Let T consist of physically meaningful elements. Let
us prove that T ∩ RK is a set of random elements.

• If An ⊇ An+1 and P

( ∞⋂
n=1

An

)
= 0, then for Bm

def
=

Am −
∞⋂
n=1

An, we have Bm ⊇ Bm+1 and
∞⋂
n=1

Bn = ∅.

• Thus, by definition of a set consisting of physically
meaningful elements, we conclude that BN ∩ T = ∅.

• Since P

( ∞⋂
n=1

An

)
= 0, we also know that( ∞⋂

n=1
An

)
∩RK = ∅.

• Thus, AN = BN ∪
( ∞⋂

n=1
An

)
has no common elements

with the intersection T ∩RK . Q.E.D.
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17. Interval Case

• Reminder: we want to describe the fact that events
with very small probability are impossible.

• Case of exactly known probability p:

– in addition to requiring that the sequence of obser-
vations ω1ω2 . . . is p-random,

– we also require that this sequence is physically mean-
ingful.

• Interval case can be handled similarly:

– in addition to requiring that the sequence of obser-
vations ω1ω2 . . . is [p, p]-random,

– we also require that this sequence is physically mean-
ingful.
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18. Additional Consequence

• Main objectives of science:

– guaranteed estimates for physical quantities;

– guaranteed predictions for these quantities.

• Problem: estimation and prediction are ill-posed.

• Example:

– measurement devices are inertial;

– hence suppress high frequencies ω;

– so ϕ(x) and ϕ(x) + sin(ω · t) are indistinguishable.

• Existing approaches:

– statistical regularization (filtering);

– Tikhonov regularization (e.g., |ẋ| ≤ ∆);

– expert-based regularization.

• Main problem: no guarantee.
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19. On Physically Meaningful Solutions, Problems
Become Well-Posed

• State estimation – an ill-posed problem:

– Measurement f :
state s ∈ S → observation r = f(s) ∈ R.

– In principle, we can reconstruct r → s:
as s = f−1(r).

– Problem: small changes in r can lead to huge changes
in s (f−1 not continuous).

• Theorem:

– Let S be a definably separable metric space.

– Let T be a set of physically meaningful elements
of S.

– Let f : S → R be a continuous 1-1 function.

– Then, the inverse mapping f−1 : R→ S

is continuous for every r ∈ f(T ).
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20. Everything is Related – Einstein-Podolsky-Rosen
(EPR) Paradox

• Due to Relativity Theory, two spatially separated si-
multaneous events cannot influence each other.

• Einstein, Podolsky, and Rosen intended to show that
in quantum physics, such influence is possible.

• In formal terms, let x and x′ be measured values at
these two events.

• Independence means that possible values of x do not
depend on x′, i.e., S = X ×X ′ for some X and X ′.

• Physical induction implies that the pair (x, x′) belongs
to a set S of physically meaningful pairs.

• Theorem: The set S cannot be represented as X ×X ′.

• Thus, everything is related – but we probably can’t use
this relation to pass information (S isn’t computable).
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21. From States of the World to Specific Quanti-
ties

• Usually, we only have a partial information about a
state: we have a definable f-n f : S → X which maps

– every state of the world

– into the corresponding partial information.

• Then the range f(T ) corresponding to all physically
meaningful states has the same property as T :

• Let a set T ⊆ S consist of physically meaningful states,
and let f : S → X be a definable function.

• Then, for every definable sequence of subsets Bn ⊆ X,
there exists an integer NB such that

f(T ) ∩
NB⋂
n=1

Bn = f(T ) ∩
∞⋂
n=1

Bn.
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22. Proof

• We want to prove that for some NB,

– if an element x ∈ f(T ) belongs to the setsB1, . . . , BNB
,

– then x ∈ Bn for all n.

• An arbitrary element x ∈ f(T ) has the form x = f(s)
for some s ∈ T .

• Let us take An
def
= f−1(Bn).

• Since T consists of physically meaningful states, there
exists an appropriate integer NA.

• Let us take NB
def
= NA.

• By definition of An, the condition x = f(s) ∈ Bi im-
plies that s ∈ Ai; so we have s ∈ Ai for all i ≤ NA.

• Thus, we have s ∈ An for all n, which implies that
x = f(s) ∈ Bn. Q.E.D.
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23. Computations with Real Numbers: Reminder

• From the physical viewpoint, real numbers x describe
values of different quantities.

• We get values of real numbers by measurements.

• Measurements are never 100% accurate, so after a mea-
surement, we get an approximate value rk of x.

• In principle, we can measure x with higher and higher
accuracy.

• So, from the computational viewpoint, a real number
is a sequence of rational numbers rk for which, e.g.,

|x− rk| ≤ 2−k.

• By an algorithm processing real numbers, we mean an
algorithm using rk as an “oracle” (subroutine).

• This is how computations with real numbers are de-
fined in computable analysis.
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24. Checking Equality of Real Numbers

• Known: equality of real numbers is undecidable.

• For physically meaningful real numbers, however, a de-
ciding algorithm is possible:

– for every set T ⊆ R2 which consists of physically
meaningful pairs (x, y) of real numbers,

– there exists an algorithm deciding whether x = y.

• Proof: We can take An = {(x, y) : 0 < |x− y| < 2−n}.
The intersection of all these sets is empty.

• Hence, T has no elements from
NA⋂
n=1

An = ANA
.

• Thus, for each (x, y) ∈ T , x = y or |x− y| ≥ 2−NA.

• We can detect this by taking 2−(NA+3)-approximations
x′ and y′ to x and y. Q.E.D.
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25. Finding Roots

• In general, it is not possible, given a f-n f(x) attaining
negative and positive values, to compute its root.

• This becomes possible if we restrict ourselves to phys-
ically meaningful functions:

• Let K be a computable compact.

• Let X be the set of all functions f : K → R that attain
0 value somewhere on K. Then:

– for every set T ⊆ X consisting of physically mean-
ingful functions and for every ε > 0,

– there is an algorithm that, given a f-n f ∈ T , com-
putes an ε-approximation to the set of roots

R
def
= {x : f(x) = 0}.

• In particular, we can compute an ε-approximation to
one of the roots.
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26. Finding Roots: Proof

• To compute the set R = {x : f(x) = 0} with accuracy
ε > 0, let us take an (ε/2)-net {x1, . . . , xn} ⊆ K.

• For each i, we can compute ε′ ∈ (ε/2, ε) for which

Bi
def
= {x : d(x, xi) ≤ ε′} is a computable compact set.

• It is possible to algorithmically compute the minimum
of a function on a computable compact set.

• Thus, we can compute mi
def
= min{|f(x)| : x ∈ Bi}.

• Since f ∈ T , similarly to the previous proof, we can
prove that ∃N ∀f ∈ T ∀i (mi = 0 ∨mi ≥ 2−N).

• Comp. mi w/acc. 2−(N+2), we check mi = 0 or mi > 0.

• Let’s prove that dH(R, {xi : mi = 0}) ≤ ε, i.e., that
∀i (mi = 0⇒ ∃x (f(x) = 0 & d(x, xi) ≤ ε)) and
∀x (f(x) = 0⇒ ∃i (mi = 0 & d(x, xi) ≤ ε)).
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27. Finding Roots: Proof (cont-d)

• mi = 0 means min{|f(x)| : x ∈ Bi
def
= Bε′(xi)} = 0.

• Since the set K is compact, this value 0 is attained,
i.e., there exists a value x ∈ Bi for which f(x) = 0.

• From x ∈ Bi, we conclude that d(x, xi) ≤ ε′ and, since
ε′ < ε, that d(x, xi) < ε.

• Thus, xi is ε-close to the root x.

• Vice versa, let x be a root, i.e., let f(x) = 0.

• Since the points xi form an (ε/2)-net, there exists an
index i for which d(x, xi) ≤ ε/2.

• Since ε/2 < ε′, this means that d(x, xi) ≤ ε′ and thus,
x ∈ Bi.

• Therefore, mi = min{|f(x)| : x ∈ Bi} = 0. So, the
root x is ε-close to a point xi for which mi = 0.
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28. Optimization

• In general, it is not algorithmically possible to find x

where f(x) attains maximum.

• Let K be a computable compact. Let X be the set of
all functions f : K → R. Then:

– for every set T ⊆ X consisting of physically mean-
ingful functions and for every ε > 0,

– there is an algorithm that, given a f-n f ∈ T , com-

putes an ε-approx. to S =

{
x : f(x) = max

y
f(y)

}
.

• In particular, we can compute an approximation to an
individual x ∈ S.

• Reduction to roots: f(x) = max
y
f(y) iff g(x) = 0,

where g(x)
def
= f(x)−max

y
f(y).
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29. Computing Fixed Points

• In general, it is not possible to compute all the fixed
points of a given computable function f(x).

• Let K be a computable compact. Let X be the set of
all functions f : K → K. Then:

– for every set T ⊆ X consisting of physically mean-
ingful functions and for every ε > 0,

– there is an algorithm that, given a f-n f ∈ T , com-
putes an ε-approximation to the set {x : f(x) = x}.

• In particular, we can compute an approximation to an
individual fixed point.

• Reduction to roots: f(x) = x iff g(x) = 0, where

g(x)
def
= d(f(x), x).
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30. Computing Limits

• In general: it is not algorithmically possible to find a
limit lim an of a convergent computable sequence.

• Let K be a computable compact. Let X be the set of
all convergent sequences a = {an}, an ∈ K. Then:

– for every set T ⊆ X consisting of physically mean-
ingful functions and for every ε > 0,

– there exists an algorithm that, given a sequence
a ∈ T , computes its limit with accuracy ε.

• Use: this enables us to compute limits of iterations and
sums of Taylor series (frequent in physics).

• Main idea: for every ε > 0 there exists δ > 0 such that
when |an − an−1| ≤ δ, then |an − lim an| ≤ ε.

• Intuitively: we stop when two consequent iterations are
close to each other.
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34. A Formal Definition of Definable Sets

• Let L be a theory.

• Let P (x) be a formula from L for which the set {x |P (x)}
exists.

• We will then call the set {x |P (x)} L-definable.

• Crudely speaking, a set is L-definable if we can explic-
itly define it in L.

• All usual sets are definable: N, R, etc.

• Not every set is L-definable:

– every L-definable set is uniquely determined by a
text P (x) in the language of set theory;

– there are only countably many texts and therefore,
there are only countably many L-definable sets;

– so, some sets of natural numbers are not definable.
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35. How to Prove Results About Definable Sets

• Our objective is to be able to make mathematical state-
ments about L-definable sets. Therefore:

– in addition to the theory L,

– we must have a stronger theory M in which the
class of all L-definable sets is a countable set.

• For every formula F from the theory L, we denote its
Gödel number by bF c.

• We say that a theory M is stronger than L if:

– M contains all formulas, all axioms, and all deduc-
tion rules from L, and

– M contains a predicate def(n, x) such that for ev-
ery formula P (x) from L with one free variable,

M ` ∀y (def(bP (x)c, y)↔ P (y)).
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36. Existence of a Stronger Theory

• As M, we take L plus all above equivalence formulas.

• Is M consistent?

• Due to compactness, we prove that for any P1(x), . . . , Pm(x),
L is consistent with the equivalences corr. to Pi(x).

• Indeed, we can take

def(n, y)↔ (n = bP1(x)c&P1(y))∨. . .∨(n = bPm(x)c&Pm(y)).

• This formula is definable in L and satisfies all m equiv-
alence properties.

• Thus, the existence of a stronger theory is proven.

• The notion of an L-definable set can be expressed in
M: S is L-definable iff ∃n ∈ N∀y (def(n, y)↔ y ∈ S).

• So, all statements involving definability become state-
ments from the M itself, not from metalanguage.
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