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Is Interval Uncertainty . ..

1. Is Interval Uncertainty Subjective?

e Applications of interval computations usually assume
that:

— while we only know an interval [z, Z| containing the
actual (unknown) value of a physical quantity x,
— there is the exact value x of this quantity, and that
— in principle, we can get more and more accurate

estimates of this value.

e This assumption is in line with the usual formulations
of physical theories — as
— partial differential equations
— relating exact values of different physical quanti-

ties, fields, etc., at different space-time locations.

e Due to uncertainty principle, there are limitations on
how accurately we can measure physical quantities.




It Is Desirable to Take. ..

2. It Is Desirable to Take Objective Uncertainty
into Account

e One of the important principles of modern physics is
operationalism.

e According to this principle, a physical theory should
only use observable quantities.

e This principle is behind most successes of the 20th cen-
tury physics, such as:

— relativity theory (vs. un-observable aether),

— quantum mechanics.
e Thus, it is desirable:

— to avoid using un-measurable exact values and

— to modify physical theories so that they explicitly
take objective uncertainty into account.




3.

Objective Uncertainty Is About Probabilities

e According to quantum physics, we can only predict
probabilities of different events.

e Thus, uncertainty means that instead of exact values
of these probabilities, we can only determine intervals.

e What is the observation meaning of probability?

e If a sequence wiws ... is random, it satisfies all the
probability laws such as the law of large numbers.

e If a sequence satisfies all probability laws, then for all
practical purposes we can consider it random.

e Thus, we can define a sequence to be random if it sat-
isfies all probability laws.

e A probability law is a statement S which is true with
probability 1: P(S) = 1.

Objective Uncertainty . . .




4.

Observational Meaning of Probabilities:
Kolmogorov-Martin-Lof (KML) Randomness

e A sequence is called random if it satisfies all probability
laws.

e A probability law is a statement S which is true with
probability 1: P(S) = 1.

e So, a sequence is random if it belongs to all definable
sets of measure 1.

e A sequence belongs to a set of measure 1 iff it does not
belong to its complement C' = —S with P(C) = 0.

e So, a sequence is random if it does not belong to any
definable set of measure 0.

e There are countably many definable sets, so the union
of all such sets has measure 0.

e Thus, almost all sequences are KML-random.

Observational . . .




5.

Probability Interval: Observational Meaning
e Probabilities have direct observational meaning only
for repeating events.

e In mathematical terms, independent repeating events
correspond to a product measure:

P(A& B) = P(A) - P(B).

e Traditional case: we know the exact probability p.

e Then, observable sequences wiws ... are KLM-random
relative to a product of p-measures.

e It is natural to say that a sequence is [p, p]-random if
it is random for some product measure with p; € [p, ).

o If p € [p,p], then, of course, each p-random sequence
is also [p, p]-random.

e In this case, the interval uncertainty is subjective.

Probability Interval: . ..




6.

Can There Be Objective Interval Uncertainty?

e We say that a sequence wywy... is objectively [p,p]-
random if:

— this sequence is [p, p]-random, and

— this sequence is not [¢,g|-random for any narrower

interval [¢,q] C [p,B].
e Proposition. For every interval [p,p], there exist objec-

tively [p, p]-random sequences.

e Frample: any sequence wiws . . . corresponding to p; for
which liminf p; = p and limsup p; = p.

e Proof: let us prove that this sequence wiws ... is not
[¢,G)-random for any proper subinterval [¢,q] C [p, P].

e It is known that if two measures are mutually singular,
then no sequence is random w.r.t. both measures.

Can There Be. ..




7.

Proof (cont-d)

e For product measures, singularity is equivalent to
o0

> |- v+ (Vimh - viza) | = e

i=1
e I'or a proper subinterval, p < g or ¢ < p.
e W.lo.g., let us consider the case when p < g¢.

e When liminfp; = p then, for every ¢ > 0, there are
infinitely many ¢ s.t. /p; < VP e
e For these i, we have ¢; > ¢, so \/q; > Va2

e Thus, \/¢; —/pi > @—(@—l—s) = (\/g—\/]j)—a.
e For e = (/7 — \/P)/2, we have \/g; — \/pi > € > 0 and

therefore, the above sum is infinite.

e So, a {p;}-random sequence wiws ... cannot be {g¢;}-
random. The proposition is proven.

From Kolmogorov-. ..
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8. From Kolmogorov-Martin-Lof Theoretical Ran-
domness to a More Physical One

e The above definition means that (definable) events with
probability 0 cannot happen.

e In practice, physicists also assume that events with a
very small probability cannot happen.

Related Idea: Physical. ..

e For example, a kettle on a cold stove will not boil by
itself — but the probability is non-zero. E"N

e If a coin falls head 100 times in a row, any reasonable T | » |
person will conclude that this coin is not fair.

e It is not possible to formalize this idea by simply setting
a threshold py > 0 below which events are not possible.

e Indeed, then, for N for which 2=V < py, no sequence
of N heads or tails would be possible at all.




9. From Kolmogorov-Martin-Lof Theoretical Ran-
domness to a More Physical One (cont-d)

e We cannot have a universal threshold py such that
events with probability < py cannot happen.

e However, we know that:

— for each decreasing (A, 2 A,+1) sequence of prop- P —
erties A, with limp(4,,) =0,
— there exists an N above which a truly random se- Es
quence cannot belong to Ay.
| »

e Resulting definition: we say that R is a set of random EEEE

elements if

— for every definable decreasing sequence {A,} for
which lim P(A,,) =0,

— there exists an N for which R N Ay = 0.




10. Related Idea: Physical Induction

e How do we come up with physical laws?
e Someone formulates a hypothesis.

e This hypothesis is tested, and if it confirmed suffi-
ciently many times.

e Then we conclude that this hypothesis is indeed a uni-
versal physical law.

e This conclusion is known as physical induction.

e Different physicists may disagree on how many exper-
iments we need to become certain.

e However, most physicists would agree that:

— after sufficiently many confirmations,

— the hypothesis should be accepted as a physical law.

e Example: normal distribution :-)




11. How to Describe Physical Induction in Precise
Terms

e Let s denote the state of the world, and let P(s, ) indi-
cate that the property P holds in the i-th experiment.

e In these terms, physical induction means that for every
property P, there is an integer NV such that:

— if the statements P(s, 1), ..., P(s, N) are all true,

— then the property P holds for all possible experi-
ments — i.e., we have Vn P(s,n).

e This cannot be true for all mathematically possible states:
we can have P(s,1),..., P(s,N) and =P(s, N + 1).

e Our understanding of the physicists’ claims is that:

— if we restrict ourselves to physically meaningful states,

— then physical induction is true.




12. Resulting Definition

e Let S be a set; its elements will be called states of the
world.

e Let T'C S be a subset of S. We say that T' consists of
physically meaningful states if:

— for every property P, there exists an integer Np
such that

— for each state s € T for which P(s,%) holds for all
i < Np, we have Vn P(s,n).

e For this definition to be precise, we need to select a
theory £ which is:
— rich enough to contain all physicists’ arguments and

— weak enough so that we will be able to formally
talk about definability in L.




13. Definition: Equivalent Form

e We can reformulate this definition in terms of definable
sets, i.e.:

— sets of the type {z : P(x)}
— corresponding to definable properties P(x).

e Let S be a set; its elements will be called states of the
world.

e Let T'C S be a subset of S. We say that T' consists of
physically meaningful states if:

— for every definable sequence of sets {4, }, there ex-
ists an integer N4

NA o0
—such that TN (N A, =TN () Ay.
n=1

n=1




14. Existence Proof

e There are no more than countably many words, so no
more than countably many definable sequences.

e For real numbers, we can enumerate all definable se-
quence, as {AL}, {AQ} ... Let us pick € € (0, 1).

e For each k, for the difference sets DF = o ﬂ AF — ﬂ AF
1=1 1=
we have DF., C DF and ﬂ DF =0, thus, u(DF) —

e Hence, there exists n; for which pu (Dﬁk) <27k g
o0
e We then take T'= S — |J D}
k=1
e Here, ,u(U Dﬁk) <> u(DE)< Y2t e=e<1,
k=1 k=1 k=1

and thus, the difference T is non-empty.

e For this set T', we can take N = ny.




15. Random Sequences and Physically Meaning-
ful Sequences

e Let Ri denote the set of all elements which are random
in Kolmorogov-Martin-Lof sense. Then:

e Fvery set of random elements consists of physically
meaningful elements.

e For every set T of physically meaningful elements, the
intersection T' N Ry s a set of random elements.

e Proof: When A, is definable, for D,, of N A — A,
i=1 i=1

[0.9]
we have D, O D,y and (| D, =0, so P(D,) — 0.
n=1
e Therefore, there exists an N for which the set of ran-
dom elements does not contain any elements from Dy.

e Thus, every set of random elements indeed consists of
physically meaningful elements.




16. Proof (cont-d)

e Let T consist of physically meaningful elements. Let
us prove that 7 N R is a set of random elements.

oIf A, O A,:;1 and P (ﬂ An> = 0, then for B,, dof
n=1
A, — ) A, we have B, D By,.1 and () B, = 0.
n=1 n=1

e Thus, by definition of a set consisting of physically
meaningful elements, we conclude that By N'T = 0.

e Since P ( N An> = 0, we also know that
n=1
( N An> NRxg =0.
n=1

o0
e Thus, Ay = ByU | () A, | has no common elements

n=1
with the intersection TN Rg. Q.E.D.




17. Interval Case

e Reminder: we want to describe the fact that events
with very small probability are impossible.

e Case of exactly known probability p:
— in addition to requiring that the sequence of obser-
vations wiws . .. is p-random,
— we also require that this sequence is physically mean-
ingful.
e Interval case can be handled similarly:
— in addition to requiring that the sequence of obser-
vations wyws ... is [p, pJ-random,

— we also require that this sequence is physically mean-
ingful.




18. Additional Consequence

e Main objectives of science:

— guaranteed estimates for physical quantities;
— guaranteed predictions for these quantities.

e Problem: estimation and prediction are ill-posed.
o Frample:

— measurement devices are inertial;

— hence suppress high frequencies w;

— 50 p(z) and ¢(x) 4 sin(w - t) are indistinguishable.
e Fxisting approaches:

— statistical regularization (filtering);

— Tikhonov regularization (e.g., |Z| < A);

— expert-based regularization.

e Main problem: no guarantee.




19. On Physically Meaningful Solutions, Problems
Become Well-Posed

e State estimation — an ill-posed problem:
— Measurement f:
state s € S — observation r = f(s) € R.
— In principle, we can reconstruct r — s:
as s = f~1(r).
— Problem: small changes in r can lead to huge changes
in s (f~! not continuous).

e Theorem:

— Let S be a definably separable metric space.

— Let T be a set of physically meaningful elements
of S.

— Let f:.5 — R be a continuous 1-1 function.

— Then, the inverse mapping f~': R — S
is continuous for every r € f(T).




20. Everything is Related — Einstein-Podolsky-Rosen
(EPR) Paradox

e Due to Relativity Theory, two spatially separated si-
multaneous events cannot influence each other.

e Finstein, Podolsky, and Rosen intended to show that
in quantum physics, such influence is possible.

e In formal terms, let x and ' be measured values at
these two events.

e Independence means that possible values of x do not
depend on 2/, i.e., S = X x X’ for some X and X'.

e Physical induction implies that the pair (x,z") belongs
to a set S of physically meaningful pairs.

e Theorem: The set S cannot be represented as X x X'.

e Thus, everything is related — but we probably can’t use
this relation to pass information (S isn’t computable).




21. From States of the World to Specific Quanti-
ties

e Usually, we only have a partial information about a
state: we have a definable f-n f : S — X which maps

— every state of the world

— into the corresponding partial information.

e Then the range f(T) corresponding to all physically
meaningful states has the same property as 7"

e Let aset T' C S consist of physically meaningful states,
and let f: S — X be a definable function.

e Then, for every definable sequence of subsets B, C X,
there exists an integer Np such that

f(T)n ﬁ B, = f(T)N () Bn.

n=1




22. Proof

e We want to prove that for some Np,

— if an element x € f(7') belongs to the sets By, ..., By,
— then z € B,, for all n.

e An arbitrary element x € f(7') has the form = = f(s)
for some s € T'.

def

o Let us take A, = f71(B,).

e Since T consists of physically meaningful states, there

exists an appropriate integer Ny.

e Let us take Np dof Ny.

e By definition of A,,, the condition z = f(s) € B; im-
plies that s € A;; so we have s € A; for all i < Ny.

e Thus, we have s € A, for all n, which implies that
r = f(s) € B,. Q.E.D.




23. Computations with Real Numbers: Reminder

e From the physical viewpoint, real numbers x describe
values of different quantities.

e We get values of real numbers by measurements.

e Measurements are never 100% accurate, so after a mea-
surement, we get an approximate value r; of x.

e In principle, we can measure x with higher and higher
accuracy.

e So, from the computational viewpoint, a real number
is a sequence of rational numbers 7 for which, e.g.,

lz — 1| < 277
e By an algorithm processing real numbers, we mean an

algorithm using 7 as an “oracle” (subroutine).

e This is how computations with real numbers are de-
fined in computable analysis.




24. Checking Equality of Real Numbers

e Known: equality of real numbers is undecidable.

e For physically meaningful real numbers, however, a de-
ciding algorithm s possible:

— for every set T C R? which consists of physically
meaningful pairs (x,y) of real numbers,

— there exists an algorithm deciding whether © = y.
e Proof: We can take A, = {(x,y) : 0 < |z —y| < 27"}
The intersection of all these sets is empty.

Na
e Hence, T has no elements from (] 4, = Ay,.
n=1

e Thus, for each (z,y) € T, x =y or |z — y| > 27V4,

e We can detect this by taking 2-(Va+3)_approximations
2’ and ' to z and y. Q.E.D.




25. Finding Roots

e In general, it is not possible, given a f-n f(x) attaining
negative and positive values, to compute its root.

e This becomes possible if we restrict ourselves to phys-
ically meaningful functions:

e Let K be a computable compact.

o Let X be the set of all functions f : K — R that attain
0 value somewhere on K. Then:

— for every set T' C X consisting of physically mean-
ingful functions and for every e > 0,

— there is an algorithm that, given a f-n f € T, com-
putes an e-approximation to the set of roots

RY (s f(z) =0},

e In particular, we can compute an s-approximation to
one of the roots.




26. Finding Roots: Proof

e To compute the set R = {z : f(z) = 0} with accuracy
e > 0, let us take an (¢/2)-net {z1,...,2,} C K.

e For each i, we can compute ¢ € (¢/2,¢) for which
def

B; = {z : d(z,x;) < €'} is a computable compact set.
e [t is possible to algorithmically compute the minimum
of a function on a computable compact set.

e Thus, we can compute m; = min{|f(z)| : x € B;}.

e Since f € T, similarly to the previous proof, we can
prove that ANVf € TVi (m; =0V m; > 27V).

(N+2)

e Comp. m; w/acc. 2~ , we check m; =0 or m; > 0.

e Let’s prove that dy(R,{z; : m; = 0}) < ¢, i.e., that

Vi(m; =0= 3z (f(zx) =0&d(z,z;) <¢)) and
Vo (f(zx) =0= Fi(m; =0&d(x,z;) <¢)).




27. Finding Roots: Proof (cont-d)

e m; = 0 means min{|f(z)|: z € B; o B.(z;)} =0.

e Since the set K is compact, this value 0 is attained,
i.e., there exists a value x € B; for which f(z) = 0.

e From x € B;, we conclude that d(x,z;) < &’ and, since
e’ < e, that d(x,x;) < e.

e Thus, z; is e-close to the root z.
e Vice versa, let x be a root, i.e., let f(z) = 0.

e Since the points x; form an (¢/2)-net, there exists an
index ¢ for which d(z,z;) < /2.

e Since /2 < £, this means that d(z, z;) < & and thus,
r € B;.

e Therefore, m; = min{|f(z)| : = € B;} = 0. So, the
root x is e-close to a point x; for which m; = 0.




28. Optimization

e In general, it is not algorithmically possible to find x
where f(x) attains maximum.

e Let K be a computable compact. Let X be the set of
all functions f : K — R. Then:

— for every set T' C X consisting of physically mean-
ingful functions and for every e > 0,

— there is an algorithm that, given a f-n f € T', com-
putes an e-approx. to S =< x: f(r) = max f(y) p.
y

e In particular, we can compute an approximation to an
individual z € S.
e Reduction to roots: f(zr) = max f(y) iff g(z) = 0,
y
f

where g(x) < f(x) — max f(y).




29. Computing Fixed Points

e In general, it is not possible to compute all the fixed
points of a given computable function f(z).

e Let K be a computable compact. Let X be the set of
all functions f : K — K. Then:

— for every set T' C X consisting of physically mean-
ingful functions and for every e > 0,

— there is an algorithm that, given a f-n f € T', com-
putes an e-approximation to the set {x : f(x) = x}.

e In particular, we can compute an approximation to an
individual fixed point.

e Reduction to roots: f(z) = x iff g(x) = 0, where
def
g(x) = d(f(x),x).




30. Computing Limits

e In general: it is not algorithmically possible to find a
limit lim a,, of a convergent computable sequence.

e Let K be a computable compact. Let X be the set of
all convergent sequences a = {a,}, a, € K. Then:

— for every set T C X consisting of physically mean-
ingful functions and for every e > 0,
— there exists an algorithm that, given a sequence

a €T, computes its limit with accuracy €.

e Use: this enables us to compute limits of iterations and
sums of Taylor series (frequent in physics).

e Main idea: for every € > 0 there exists 0 > 0 such that
when |a,, — a,—1| < 0, then |a, — lima,| < e.

o Intuitively: we stop when two consequent iterations are
close to each other.




31. Acknowledgments

This work was supported in part by the National Science
Foundation grants:

e HRD-0734825 and HRD-1242122
(Cyber-ShARE Center of Excellence) and

e DUE-0926721.




32. Kolmogorov Randomness

e M. Li, P. Vitanyi, An Introduction to Kolmogorov Com-
plexity and Its Applications, Springer, Berlin-Heidelberg,
2008.

e V. Kreinovich, L. Longpré, Pure quantum states are
fundamental, mixtures (composite states) are mathe-
matical constructions: an argument using algorithmic
information theory, International Journal on Theoret-
ical Physics, 36(1) (1997) pp. 167-176.

e L. Longpré, V. Kreinovich, When are two wave func-
tions distinguishable: a new answer to Pauli’s question,
with potential application to quantum cosmology, In-
ternational Journal of Theoretical Physics, 47(3) (2008),
pp. 814-831.




33. Randomness: From Exact to Interval Proba-
bilities

e D. Cheu, L. Longpré, Towards the possibility of objec-
tive interval uncertainty in physics, Reliable Comput-
ing, 15(1) (2011), pp. 43-49.

e [.I. Gorban, Theory of Hyper-Random Phenomena,
Ukrainian National Academy of Sciences Publ., Kyiv,
2007 (in Russian).

e [.I. Gorban, Hyper-random phenomena: definition and
description, Information Theories and Applications, 15(3)
(2008), pp. 203-211.




34. A Formal Definition of Definable Sets

e Let L be a theory.

e Let P(x) be a formula from £ for which the set {z | P(z)}
exists.

e We will then call the set {z | P(x)} L-definable.

e Crudely speaking, a set is £-definable if we can explic-
itly define it in L.
e All usual sets are definable: N, R, etc.
e Not every set is L-definable:
— every L-definable set is uniquely determined by a
text P(z) in the language of set theory;

— there are only countably many texts and therefore,
there are only countably many L-definable sets;

— 50, some sets of natural numbers are not definable.




35. How to Prove Results About Definable Sets

e Our objective is to be able to make mathematical state-
ments about L-definable sets. Therefore:

— in addition to the theory L,

— we must have a stronger theory M in which the
class of all £-definable sets is a countable set.

e For every formula F' from the theory £, we denote its
Godel number by [ F|.

e We say that a theory M is stronger than L if:

— M contains all formulas, all axioms, and all deduc-
tion rules from £, and

— M contains a predicate def(n,z) such that for ev-
ery formula P(x) from £ with one free variable,

M Vy (def([ P(z)],y) < P(y)).




36. Existence of a Stronger Theory

e As M, we take L plus all above equivalence formulas.
e Is M consistent?

e Due to compactness, we prove that for any Py(x), ..., Py(z),
L is consistent with the equivalences corr. to P;(x).

e Indeed, we can take
def(n,y) <> (n = [Pi(z)| & Pi(y))V.. .V(n = [Pn(z)] & Pu(y)).

e This formula is definable in £ and satisfies all m equiv-
alence properties.

e Thus, the existence of a stronger theory is proven.

e The notion of an L-definable set can be expressed in
M: S is L-definable iff I3n € NVy (def(n,y) <> y € 9).

e So, all statements involving definability become state-
ments from the M itself, not from metalanguage.
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