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Intro
Radius of nonsingularity

Original task
@ For given square matrix
measure the distance to the “nearest” singular one
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Intro
Radius of nonsingularity

Original task
@ For given square matrix
measure the distance to the “nearest” singular one
Radius of nonsingularity of a square matrix
@ Minimal distance to a singular matrix in Chebyshev norm

Definition (Radius of nonsingularity)

Given a matrix A € R™", the radius of nonsingularity is defined by

d(A) :=inf {e > 0; 3 singular B : |ajj — bjj| < e Vi, j}.
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Intro
Radius of nonsingularity

Original task
@ For given square matrix
measure the distance to the “nearest” singular one
Radius of nonsingularity of a square matrix
@ Minimal distance to a singular matrix in Chebyshev norm

Definition (Radius of nonsingularity)

Given a matrix A € R™", the radius of nonsingularity is defined by

d(A) :=inf {e > 0; 3 singular B : |ajj — bjj| < e Vi, j}.

Note
@ In fact, a lot of results are for generalized version

d(A,A) :=inf{e > 0; Isingular B : |aj — bjj| < el Vi, j}.

where A € R™" is a given non-negative matrix
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Intro

Motivation to determine radius of nonsingularity

Data uncertainty
@ Entries of matrix A = (a;j) represents results of experiment
@ Measurement device ensures some (uniform) precision §
e It is thus guaranteed that the (unknown) actual values is in

[a;J—5,a;J+5]
Question: Is A suitable for further processing?

o Yes: 0 < d(A)
e No: § > d(A)

Poljak, S., Rohn, J. (1993): Math.Control Signals Systems 6, 1-9
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Intro

Motivation to determine radius of nonsingularity

Data uncertainty
@ Entries of matrix A = (a;j) represents results of experiment
@ Measurement device ensures some (uniform) precision §
e It is thus guaranteed that the (unknown) actual values is in

[a,"j—(s,a,"j—i-(S]
Question: Is A suitable for further processing?
o Yes: 0 < d(A)
e No: § > d(A)
Rounding fixed-point arithmetic
@ Assume A having irrational entries
e.g. formal derivation of data like distance may end in v/2
@ Rounding before numerics — A
o |[A—A|| > d(A) = problems
presence of singular matrix within precision = A does not
reflect properties of A

Poljak, S., Rohn, J. (1993): Math.Control Signals Systems 6, 1-9
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Intro
Computing radius of nonsingularity

Proposition (Poljak and Rohn, 1993))

For each non-singular A there hols
1
d(A) = ——
1A ] oo 1

e where || - ||oo,1 is @ matrix norm defined as

IMlloo1 := max {[[Mx]ls; [[x[loc =1} = max{[|Mz[}1; z € {+1}"}

Poljak, S., Rohn, J. (1993): Math.Control Signals Systems 6, 1-9
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Intro
Computing radius of nonsingularity

Proposition (Poljak and Rohn, 1993))

For each non-singular A there hols
1
d(A) = ——
1A ] oo 1

e where || - ||oo,1 is @ matrix norm defined as
[Ml[oo,1 = max {[[Mx][1; [|Ix[loc = 1} = max {[|Mz][; z € {+1}"}
o Computing exact ||A||s0,1 can be reduced to

max-cut of weighted graph
@ This provides arguments for (Poljak and Rohn, 1993):

Computing d(A) is NP-hard

Poljak, S., Rohn, J. (1993): Math.Control Signals Systems 6, 1-9
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Intro
Computing radius of nonsingularity

Proposition (Poljak and Rohn, 1993))

For each non-singular A there hols

1
A =T,

e where || - ||oo,1 is @ matrix norm defined as
IMllo,1 = max {|[Mx]|1; [[x[lcc = 1} = max{[[Mz][1; z € {+1}"}
o Computing exact ||A||s0,1 can be reduced to
max-cut of weighted graph
@ This provides arguments for (Poljak and Rohn, 1993):
Computing d(A) is NP-hard
@ There is no polynomial time algorithm for approximating d(A)
with a relative error at most 4—}72 (Rohn, 1996)

Poljak, S., Rohn, J. (1993): Math.Control Signals Systems 6, 1-9
Rohn, J. (1996). Technical Report 686, ICS Prague.
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Intro
Bounds on radius of nonsingularity

There are several bounds for d(A)
@ Rohn provides (Rohn, 1996)

1 1
—— = S d(A) < -
p(ATTE) = Y= e (Ea ),

1,...,n

@ Rump (Rump, 1997 and 1997b) developed the estimations

1 6n
J(AE) = W= ey

Rohn, J. (1996): Technical Report 686, ICS Prague.
Rump, S. M. (1997): Linear Multilinear Algebra, 42(2):93-107.
Rump,S. M. (1997b): SIAM J. Matrix Anal. Appl., 18(1):83-103.
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Problem

Goal and main idea

Overall goal is
@ Provide (randomized) aprroximate algorithm for d(A)
e with better constant relative error
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Problem
Goal and main idea

Overall goal is
@ Provide (randomized) aprroximate algorithm for d(A)
e with better constant relative error

@ Approach

@ Develop approximation of ||M||o 1 using semi-definite relation
(This gives randomized approximation algorithm)

@ This provides also approximation for d(A) through

1
9= A,
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SDP construction
SDP relaxation

The problem of computing ||M||s,1 can be formulated as

n
max Z mj;x;y; subject to x,y € {£1}" (1)
ij=1
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SDP construction

SDP relaxation

The problem of computing ||M||s,1 can be formulated as

n
max Z mjjx;jy; subject to x,y € {£1}" (1)
ij=1
The SDP relaxation
e replacing discrete variables x;,y; € {+1}, i,j=1,...,n
by unit vectors u;,v; € R”, i,j=1,...,n as follows
n

max Z mjul v; subject to u;,v; € R”, (2)
ij=1
where HU,‘H2:HV,‘||2:1, i:1,...,n

Gartner, B. and Matousek, J (2012): Springer
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SDP construction
SDP relaxation

The problem of computing ||M||s,1 can be formulated as

n
max Z mjjx;jy; subject to x,y € {£1}" (1)
ij=1
The SDP relaxation
e replacing discrete variables x;,y; € {+1}, i,j=1,...,n
by unit vectors u;,v; € R”, i,j=1,...,n as follows
n

max Z mjul v; subject to u;,v; € R”, (2)
ij=1
where HU,‘Hg = HV,‘||2 = 1, I = 1, ]
Connection

e For any feasible solution x, y to (1) ~ solution u, v to (2) as

o ui:=(0,...,0,x) and v; :=(0,...,0,y;),i=1,...,n
@ Thus (2) is relaxation of (1)

o the OV to (2) is an upper bound on the OV to (1)

Gartner, B. and Matousek, J (2012): Springer
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SDP construction

Further adjustment

Starting at transformed problem
n
max Z m,-ju,-TvJ- subject to u;,v; € R”,
ij=1

where ||u,-||2 = ||V,'H2 = 1, i = 1, ..., n
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SDP construction
Further adjustment

Starting at transformed problem
n
max Z m,-J-u,-TvJ- subject to u;,v; € R”,
ij=1

where ||u,-||2 = ||V,'H2 = 1, i = 1, .

]

Define the matrix Z € R2"%21 35 7 .= UTU

@ so that U has the columns vy, ..., us, vi,...,Vy
@ note also that Z is positive semidefinite (denoted by Z > 0)
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SDP construction
Further adjustment

Starting at transformed problem
n
max Z m,-J-u,-TvJ- subject to u;,v; € R”,
ij=1

where ||u,-||2 = ||V,'H2 = 1, i = 1, .

]

Define the matrix Z € R2"%21 35 7 .= UTU

@ so that U has the columns vy, ..., us, vi,...,Vy
@ note also that Z is positive semidefinite (denoted by Z > 0)

We can thus transform above program into
n
max Y mjzjjin subjectto Z=0,zj=1,i=1,...,2n (3)
ij=1
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Algorithm

Solving the problem

The semidefinite problem

n
max Z mj;zi jyn subjectto Z>0,z; =1, i=1,...,2n, (3)
ij=1

Grotschel, M., Lovasz, L. and Schrijver, A. (1981): Combinatorica 1, 169-197.
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Algorithm

Solving the problem

The semidefinite problem

n
max Z mj;zi jyn subjectto Z>0,z; =1, i=1,...,2n, (3)
ij=1

can be solved with arbitrary (a priori given) precision &

e given by (Grotschel, Lovasz, Schrijver, 1981)

Grotschel, M., Lovasz, L. and Schrijver, A. (1981): Combinatorica 1, 169-197.
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Algorithm
Solving the problem

The semidefinite problem

n
max Z mj;zi jyn subjectto Z>0,z; =1, i=1,...,2n, (3)
ij=1
can be solved with arbitrary (a priori given) precision
e given by (Grotschel, Lovasz, Schrijver, 1981)
e for optimal value 7 holds v > |[M||sc,1 — € and thus

T+e2 [[Mlleon

is a bound for our norm

Grotschel, M., Lovasz, L. and Schrijver, A. (1981): Combinatorica 1, 169-197.
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Algorithm
Solving the problem

The semidefinite problem

n
max Z mj;zi jyn subjectto Z>0,z; =1, i=1,...,2n, (3)
ij=1

can be solved with arbitrary (a priori given) precision &

e given by (Grotschel, Lovasz, Schrijver, 1981)
e for optimal value 7 holds v > |[M||sc,1 — € and thus

T+e2 [[Mlleon

is a bound for our norm

Handling
e Utilize optimal solution of (3) resp. (2) to find optimal
solution to (1)

Grotschel, M., Lovasz, L. and Schrijver, A. (1981): Combinatorica 1, 169-197.
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Algorithm
Optimal solution of transformed problem

Rounding the vector solution
@ Let approximate optimal solution of transformed problem be

Ul .. U v, v
@ Use p € R” being a unit vector via following mapping
1 ifpTw>0,
Wi P (4)
—1 otherwise

to determine solution to original problem

P11

+1
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Algorithm

Randomized algorithm computing d(A)

@ Determine inverse matrix M = A~1
@ Compute approximation of optimal solution of
n
max Z mjuv; subject to u;,v; € R", (2)
ij=1
© Choose randomly unit vector p € R” and apply

1 ifpw>
WH{ if p'w >0, (4)

—1 otherwise
which provides soluti,?n to problem
IM||so,1 = max Z mj;x;y; subject to x,y € {£1}" (1)
ij=1
@ Finally compute

d(A) = !

A M er IMIes
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Bound
Expected value of the solution

Lemma (Gartner and Matousek, 2012)

Let u,v € R" be unit vectors. The probability that the

mapping (4) maps u and v to different values is %arccos ulv.
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Bound
Expected value of the solution

Lemma (Gartner and Matousek, 2012)

Let u,v € R" be unit vectors. The probability that the

mapping (4) maps u and v to different values is %arccos ulv.

Apply this lemma
@ Let have a feasible solution to (1)

XP s s Xp Y Y
determined by images (of defined mapping)
77 RN V2 VS
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Bound
Expected value of the solution

Lemma (Gartner and Matousek, 2012)

Let u,v € R" be unit vectors. The probability that the
mapping (4) maps u and v to different values is %arccos ulv.

Apply this lemma
@ Let have a feasible solution to (1)

XP s s Xp Y Y
determined by images (of defined mapping)
77 RN V2 VS

@ By the Lemma, the expected value of the solution is

1 1
m;;(1 — = arccos u*T — mj;— arccos u*T ¥
E : ij T Vj i Vj
ij

2
= g m,-j<1 — — arccos u}"TvJ?">.
™

i7j
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Bound
Bound of the expected value of the solution

Looking for bound of expected value

2
E mj; (1 — — arccos u,’-“TvJ-*).
s

i
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Bound
Bound of the expected value of the solution

Looking for bound of expected value
2
(1_ = «T .*)
Z mj; ( —arccos u; v,
ij
Goemans-Williamson ratio « for approximating MAX-CUT

o It value is o = 0.87856723
o It represents optimal value of the problem min, ¢_1 1 2;{;%;)2

Goemans, M. X. and Williamson, D. P. (1995) Journal of the ACM, 42:1115-1145.
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Bound
Bound of the expected value of the solution

Looking for bound of expected value
2 * *
Zm,-j(l — —arccos u; TvJ- )
i
Goemans-Williamson ratio « for approximating MAX-CUT
o It value is o = 0.87856723
2arccos z

o It represents optimal value of the problem min,¢[_y y T(1-2)

Using this constant we can bound the term from expected value

For each z € [—1,1] we have

2
az+a—1<1——arccosz<az+1-—a.
T

Goemans, M. X. and Williamson, D. P. (1995) Journal of the ACM, 42:1115-1145.
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Applying the bound

Now, we use the Lemma to find a lower bound to expected value
o Leti,je{1,2,...,n}, then
mj(az+a—1) if m; >0,

2
m,-j<1 — — arccos z) > ] or
™ mjj(az —a+1) otherwise,

2
m,-j<1 - arccosz) > mjjoz + |mjj|(a — 1).
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Applying the bound

Now, we use the Lemma to find a lower bound to expected value
o Leti,je{1,2,...,n}, then
mj(az+a—1) if m; >0,

2
m,-j<1 — — arccos z) > ] or
™ mjj(az —a+1) otherwise,

2
m,-j<1 - arccosz) > mjjoz + |mjj|(a — 1).

@ Thus the lower bound to expected value is

2
Z mi; <1 — Zarccosuf " *> Z m,Jau*T “+ Imij|(a — 1)
i i
=ay+(a—1)e’|Mle,
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Applying the bound

Now, we use the Lemma to find a lower bound to expected value
o Leti,je{1,2,...,n}, then
mj(az+a—1) if m; >0,

2
m,-j<1 — — arccos z) > ] or
™ mjj(az —a+1) otherwise,

2
m,-j<1 - arccosz) > mjjoz + |mjj|(a — 1).

@ Thus the lower bound to expected value is

2
Z mi; <1 — Zarccosuf " *> Z m,Jau*T “+ Imij|(a — 1)
i i
=ay+(a—1)e’|Mle,

Hence we have an expected lower bound on ||M|| 1
IMllsop > a7 + (o = 1)e" [ M]e.
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Bound
Determining approximation ratio

We have an expected lower bound on ||M||s 1

Mooz > ay + (a = 1)e" | M]e.
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Bound
Determining approximation ratio

We have an expected lower bound on ||M||s 1

Mooz > ay + (a = 1)e" | M]e.

The right-hand side depends on the entries of M
@ we can employ the estimate |[M||1 < e |M|e to obtain

IMllooa > oy + (a —1)e" [Mle > oy + (a — 1) M||s1,
whence

@
M > —.
| Hoo,l_z_a')’
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Bound
Determining approximation ratio

We have an expected lower bound on ||M||s 1

Mooz > ay + (a = 1)e" | M]e.

The right-hand side depends on the entries of M
@ we can employ the estimate |[M||1 < e |M|e to obtain

IMllooa > oy + (a —1)e" [Mle > oy + (a — 1) M||s1,
whence

@
M > —.
| Hoo,l_z_a')’

This gives us a randomized algorithm with the approximation ratio

~ 0.78343281
2 —«
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Bound
Conclusions

@ Computing radius of nonsingularity
e Randomized approximation of with a constant relative error

~ 0.78343281

e Using relaxation to SDP and principles from
approximating MAX-CUT

@ Perspectives
e Derandomization of the algorithm
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Bound

Thank you
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Come swim to Prague in June

kam.mff.cuni.cz/conferences/swim2015
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