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Radius of nonsingularity

Original task

For given square matrix
measure the distance to the “nearest” singular one

Radius of nonsingularity of a square matrix

Minimal distance to a singular matrix in Chebyshev norm

Definition (Radius of nonsingularity)

Given a matrix A ∈ Rn×n, the radius of nonsingularity is defined by

d(A) := inf {ε > 0; ∃ singular B : |aij − bij | ≤ ε ∀i , j}.

Note

In fact, a lot of results are for generalized version

d(A,∆) := inf {ε > 0; ∃ singular B : |aij − bij | ≤ ε∆i ,j ∀i , j}.

where ∆ ∈ Rn×n is a given non-negative matrix
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Motivation to determine radius of nonsingularity

Data uncertainty

Entries of matrix A = (ai ,j) represents results of experiment
Measurement device ensures some (uniform) precision δ
It is thus guaranteed that the (unknown) actual values is in

[ai ,j − δ, ai ,j + δ]

Question: Is A suitable for further processing?
Yes: δ < d(A)
No: δ ≥ d(A)

Rounding fixed-point arithmetic

Assume A having irrational entries
e.g. formal derivation of data like distance may end in

√
2

Rounding before numerics → Ã
‖A− Ã‖ > d(Ã) ⇒ problems
presence of singular matrix within precision ⇒ Ã does not
reflect properties of A

Poljak, S., Rohn, J. (1993): Math.Control Signals Systems 6, 1–9
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Computing radius of nonsingularity

Proposition (Poljak and Rohn, 1993))

For each non-singular A there hols

d(A) :=
1

‖A−1‖∞,1

where ‖ · ‖∞,1 is a matrix norm defined as

‖M‖∞,1 := max {‖Mx‖1; ‖x‖∞ = 1} = max {‖Mz‖1; z ∈ {±1}n}

Computing exact ‖A‖∞,1 can be reduced to

max-cut of weighted graph

This provides arguments for (Poljak and Rohn, 1993):

Computing d(A) is NP-hard

There is no polynomial time algorithm for approximating d(A)
with a relative error at most 1

4n2 (Rohn, 1996)

Poljak, S., Rohn, J. (1993): Math.Control Signals Systems 6, 1–9

Rohn, J. (1996). Technical Report 686, ICS Prague.
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Bounds on radius of nonsingularity

There are several bounds for d(A)

Rohn provides (Rohn, 1996)

1

ρ(|A−1|E )
≤ d(A) ≤ 1

max
i=1,...,n

(E |A−1|)ii

Rump (Rump, 1997 and 1997b) developed the estimations

1

ρ(|A−1|E )
≤ d(A) ≤ 6n

ρ(|A−1|E )
.

Rohn, J. (1996): Technical Report 686, ICS Prague.
Rump, S. M. (1997): Linear Multilinear Algebra, 42(2):93–107.
Rump,S. M. (1997b): SIAM J. Matrix Anal. Appl., 18(1):83–103.
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Goal and main idea

Overall goal is

Provide (randomized) aprroximate algorithm for d(A)
with better constant relative error

Approach

1 Develop approximation of ‖M‖∞,1 using semi-definite relation
(This gives randomized approximation algorithm)

2 This provides also approximation for d(A) through

d(A) :=
1

‖A−1‖∞,1
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SDP relaxation

The problem of computing ‖M‖∞,1 can be formulated as

max
n∑

i ,j=1

mijxiyj subject to x , y ∈ {±1}n (1)

The SDP relaxation

replacing discrete variables xi , yj ∈ {±1}, i , j = 1, . . . , n
by unit vectors ui , vj ∈ Rn, i , j = 1, . . . , n as follows

max
n∑

i ,j=1

miju
T
i vj subject to ui , vi ∈ Rn, (2)

Connection

For any feasible solution x , y to (1)  solution u, v to (2) as

ui := (0, . . . , 0, xi ) and vi := (0, . . . , 0, yi ), i = 1, . . . , n

Thus (2) is relaxation of (1)

the OV to (2) is an upper bound on the OV to (1)

Gärtner, B. and Matoušek, J (2012): Springer
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Further adjustment

Starting at transformed problem

max
n∑

i ,j=1

miju
T
i vj subject to ui , vi ∈ Rn,

where ‖ui‖2 = ‖vi‖2 = 1, i = 1, . . . , n

Define the matrix Z ∈ R2n×2n as Z := UTU

so that U has the columns u1, . . . , un, v1, . . . , vn
note also that Z is positive semidefinite (denoted by Z � 0)

We can thus transform above program into

max
n∑

i ,j=1

mijzi ,j+n subject to Z � 0, zii = 1, i = 1, . . . , 2n (3)

David Hartman Bounds on the radius of nonsingularity
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Solving the problem

The semidefinite problem

max
n∑

i ,j=1

mijzi ,j+n subject to Z � 0, zii = 1, i = 1, . . . , 2n, (3)

can be solved with arbitrary (a priori given) precision ε

given by (Grötschel, Lovász, Schrijver, 1981)

for optimal value γ holds γ ≥ ‖M‖∞,1 − ε and thus

γ + ε ≥ ‖M‖∞,1
is a bound for our norm

Handling

Utilize optimal solution of (3) resp. (2) to find optimal
solution to (1)

Grötschel, M., Lovász, L. and Schrijver, A. (1981): Combinatorica 1, 169–197.
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Optimal solution of transformed problem

Rounding the vector solution

Let approximate optimal solution of transformed problem be
u∗1 , . . . , u

∗
n, v
∗
1 , . . . , v

∗
n

Use p ∈ Rn being a unit vector via following mapping

w 7→

{
1 if pTw ≥ 0,

−1 otherwise
(4)

to determine solution to original problem

+1
+1

+1

−1−1

p

David Hartman Bounds on the radius of nonsingularity
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Randomized algorithm computing d(A)

1 Determine inverse matrix M = A−1

2 Compute approximation of optimal solution of

max
n∑

i ,j=1

miju
T
i vj subject to ui , vi ∈ Rn, (2)

3 Choose randomly unit vector p ∈ Rn and apply

w 7→

{
1 if pTw ≥ 0,

−1 otherwise
(4)

which provides solution to problem

‖M‖∞,1 = max
n∑

i ,j=1

mijxiyj subject to x , y ∈ {±1}n (1)

4 Finally compute

d(A) :=
1

‖A−1‖∞,1
=

1

‖M‖∞,1
David Hartman Bounds on the radius of nonsingularity
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Expected value of the solution

Lemma (Gärtner and Matoušek, 2012)

Let u, v ∈ Rn be unit vectors. The probability that the
mapping (4) maps u and v to different values is 1

π arccos uT v.

Apply this lemma

Let have a feasible solution to (1)
x∗1 , . . . , x

∗
n , y
∗
1 , . . . , y

∗
n

determined by images (of defined mapping)
u∗1 , . . . , u

∗
n, v
∗
1 , . . . , v

∗
n

By the Lemma, the expected value of the solution is∑
i ,j

mij

(
1− 1

π
arccos u∗Ti v∗j

)
−mij

1

π
arccos u∗Ti v∗j

=
∑
i ,j

mij

(
1− 2

π
arccos u∗Ti v∗j

)
.

Gärtner, B. and Matoušek, J (2012): Springer.
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Gärtner, B. and Matoušek, J (2012): Springer.
David Hartman Bounds on the radius of nonsingularity



Intro Problem SDP construction Algorithm Bound

Expected value of the solution
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Bound of the expected value of the solution

Looking for bound of expected value∑
i ,j

mij

(
1− 2

π
arccos u∗Ti v∗j

)
.

Goemans-Williamson ratio α for approximating MAX-CUT

It value is α ≈ 0.87856723

It represents optimal value of the problem minz∈[−1,1]
2 arccos z
π(1−z)

Using this constant we can bound the term from expected value

Lemma

For each z ∈ [−1, 1] we have

αz + α− 1 ≤ 1− 2

π
arccos z ≤ αz + 1− α.

Goemans, M. X. and Williamson, D. P. (1995) Journal of the ACM, 42:1115–1145.
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Applying the bound

Now, we use the Lemma to find a lower bound to expected value

Let i , j ∈ {1, 2, . . . , n}, then

mij

(
1− 2

π
arccos z

)
≥

{
mij(αz + α− 1) if mij ≥ 0,

mij(αz − α + 1) otherwise,
or

mij

(
1− 2

π
arccos z

)
≥ mijαz + |mij |(α− 1).

Thus the lower bound to expected value is∑
i ,j

mij

(
1− 2

π
arccos u∗Ti v∗j

)
≥
∑
i ,j

mijαu∗Ti v∗j + |mij |(α− 1)

= αγ + (α− 1)eT |M|e,

Hence we have an expected lower bound on ‖M‖∞,1
‖M‖∞,1 ≥ αγ + (α− 1)eT |M|e.

David Hartman Bounds on the radius of nonsingularity
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i ,j

mijαu∗Ti v∗j + |mij |(α− 1)

= αγ + (α− 1)eT |M|e,

Hence we have an expected lower bound on ‖M‖∞,1
‖M‖∞,1 ≥ αγ + (α− 1)eT |M|e.
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Determining approximation ratio

We have an expected lower bound on ‖M‖∞,1

‖M‖∞,1 ≥ αγ + (α− 1)eT |M|e.

The right-hand side depends on the entries of M

we can employ the estimate ‖M‖∞,1 ≤ eT |M|e to obtain

‖M‖∞,1 ≥ αγ + (α− 1)eT |M|e ≥ αγ + (α− 1)‖M‖∞,1,

whence

‖M‖∞,1 ≥
α

2− α
γ.

This gives us a randomized algorithm with the approximation ratio

α

2− α
≈ 0.78343281
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Conclusions

Computing radius of nonsingularity
Randomized approximation of with a constant relative error

≈ 0.78343281

Using relaxation to SDP and principles from
approximating MAX-CUT

Perspectives
Derandomization of the algorithm
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Thank you
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