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Definition of chaos (not complete)

I Consider two areas in the plane (L and R), and a
continuous map (ϕ) from plane to plane.

I If one point is in L (or R), then we say it is ”L” (or ”R”)

I The notation for bi-infinite L/R sequence is
..., e−1, e0, e1, ... where ei ∈ {L,R}, for all i .

I If we can give a point (p) in a region for all bi-infinite
L/R sequences for which

..., ϕ−1(p) ∈ e−1, ϕ
0(p) ∈ e0, ϕ

1(p) ∈ e1, ...,

then we say that the system is chaotic in that region.
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A method to prove the chaotic behavior
I Find such zones (a, b, c , and d), for which the images

are located as on the figure (horseshoe method).
I In this case, there exist points for all bi-infinite series.

This is a result from the Miranda theorem.

Figure: A classical Smale horseshoe
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Other horseshoe

Figure: A Smale horseshoe for Σ3 chaos
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The forced damped pendulum
Consider a forced damped pendulum with these parameters:

I The mass and the length of the pendulum are both unit.
I The friction factor is b = 0.1. The friction depends on

the speed of the pendulum.
I The degree of forcing is cos(t), where t is the time.
I The differential equation:

x ′′ = cos(t)− 0.1x ′ − sin(x),

where x is an angle of the pendulum, and x ′ is speed of
the pendulum.

Figure: The forced damped pendulum
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The forced damped pendulum (movie)

(Loading the Movie)




Pendulum_Forced_xvid.avi
Media File (video/avi)
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Notations

Let an Ik be a time interval: [2kπ, 2(k + 1)π]. Let us
consider those trajectories, for which one of the following
happens during the Ik time interval:

I the pendulum goes clockwise through the bottom
position exactly once (εk = 	),

I the pendulum does not go through the bottom position
(εk = ⊗), or

I the pendulum goes counterclockwise through exactly
once (εk = ⊕).

We do not consider those trajectories where the pendulum
does something else.
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Theorem

Theorem
Given any bi-infinite sequence of events : ..., ε−1; ε0; ε1; ...
with εk ∈ {	,⊗,⊕}, there exists a solution of our
differential equation that during each time interval
[2kπ; 2(k + 1)π)] will do εk .1

Figure: Four length example for Theorem

1Hubbard, John H.: The Forced Damped Pendulum: Chaos,
Complication and Control. American Mathematical Monthly, 8:741-758,
1999.
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Frame of proof

If we want to prove it, we must solve two subproblems:

I to show a Smale horseshoe between two Poincaré
sections, and

Figure: Illustration of covering

I to show what the pendulum does during Ik .

Remark: The angle of the pendulum is 2π periodic, so it is
enough to analyze only one period of the pendulum to prove
the existence of a Horseshoe.
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The problem of the trajectories verified location

I We present a fitting verified numerical technique
capable to find long trajectory segments with prescribed
qualitative behaviour and thus shadowing different
types of chaotic trajectories with large (theoretically,
with arbitrary) precision.

I For example, we can achieve that our pendulum goes
through any specified finite sequence of gyrations by
choosing the initial conditions correctly.

Figure: Four length example for Theorem



A
computer-assisted

technologies

Balázs Bánhelyi

Introduction

Chaotic behaviour

The forced damped
pendulum

Proof of chaotic
behavior

Theorem

The proof

Verified location of
trajectories

Optimization modell

Numerical results

Appendix

References

Acknowledgement

Objective function

I The search for a starting point for the expected series
was modelled as a constrained global optimization
problem.

I We add a nonnegative value proportional to how much
the given condition was hurt, plus a fixed penalty term
in case at least one of the properties was not satisfied.

I In the objective function we used the Hausdorff distance
of the aimed region of the pendulum angle and speed
(E ), and the union of inclusions boxes of trajectories I ,
which is a series of rectangle shaped, two dimensional
regions, each one of them contains a part of the whole
trajectories:

max
z∈I

inf
y∈E

d(z , y),

where d(z , y) is a given metric, a distance between two
two-dimensional points.
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Expected regions
I The aimed region of ⊗, is

E⊗ =
{

(x , x ′), where 0 < x < 2π
}
.

I The expected region of 	 is

E	 =

{
(x , x ′), where 0 < x < 2π,
before the intersection

}
,

∪
{

(x , x ′), where − 2π < x < 2π and x ′ < 0,
during the intersection

}
,

∪
{

(x , x ′), where − 2π < x < 0,
after the intersection

}
.

(a) ⊗ case. (b) 	 case.
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Objective functions
I Objective functions for trajectories of unit length.

(c) The ⊗ case. (d) The ⊕ case.

(e) The 	 case.
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Found starting points for the length three series
(examples).

S X ZO FE CT 2

ˇ⊕⊕⊕ (3.5145566; 1.1854134) 3 2 305 666
ˇ⊕⊕⊗ (3.541253; 1.1780008) 1 3 356 965
ˇ⊕⊕	 (4.1354217; 1.1146838) 9 1 489 431

ˇ⊗⊕⊕ (2.6045829; 0.056101674) 2 3 680 1 061
ˇ⊗⊕⊗ (2.6558599; 0.004679824) 1 11 882 3 439
ˇ⊗⊕	 (2.5851486; 0.081902247) 6 2 054 594

ˇ⊗⊗⊕ (2.6840309;−0.024118557) 1 8 940 2 582
ˇ⊗⊗⊗ − 0 8 885 2 573
ˇ⊗⊗	 (2.4871575; 0.17213042) 1 2 782 803

2Here S stands for series, X for the suitable point, ZO for the
number of different optimization points with zero objective function
value, FE for the number of function evaluations, and CT for CPU time
in seconds.
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The found starting points for different length ⊗
series.

L S X ZO 3

1
[
2.84; 0.20

]
(2.7108515;−0.030099507) 12

2
[
2.76; 0.10

]
(2.6469962; 0.013297356) 4

3
[
2.635

4; 0.027
6

]
(2.6342106; 0.026105974) 1

4
[
2.6343

2; 0.0261
0

]
(2.634273; 0.026043388) 1

5
[
2.634274

2; 0.026044
2

]
(2.6342733; 0.026043083) 0

3Here L stands for the series length, S for the search area (Here 2.84
means the [2.4, 2.8] interval.), X for the suitable point, ZO for the
number of zero optimum values.
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