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Various eigenvalue problems

Laplace operator:

−∆u = λu in Ω ⊕ boundary condition
Bi-harmonic operator:

∆2u = λu or ∆2u = −λ∆u in Ω ⊕ boundary condition
Eigenvalue problems for Stokes’s operator:{

−∆u+∇p = λu
div u = 0

in Ω ⊕ boundary condition

Eigenvalue problem for Maxwell’s operator:
Find E ∈ H0(rot; Ω) and λ ∈ R, s.t.,

(rotE, rotF ) = λ(E,F ) ∀F ∈ H0(rot; Ω) .
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Objective
.

......

Verified eigenvalue bounds for eigenvalue problems defined in the form:

Find u ∈ V and λ > 0 s.t. M(u, v) = λ N(u, v), ∀v ∈ V

where M(·, ·) and N(·, ·) are bilinear forms to be defined.

Verified eigenvalue bounds means mathematically correct lower and upper
bounds. Thus interval arithmetic is adopted for this purpose.
Quantitative error estimation for various interpolation operators:

∥u−Πhu∥V ≤ Chα∥u∥U (C =?)

It is also needed in computer-assisted proof for non-linear equation solution
verification, for example,

−∆u = u2 in Ω
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Objective
.

......

Verified eigenvalue bounds for eigenvalue problems defined in the form:

Find u ∈ V and λ > 0 s.t. M(u, v) = λ N(u, v), ∀v ∈ V

where M(·, ·) and N(·, ·) are bilinear forms to be defined.

Such an abstract problem will include eigenvalue problems of the Laplace operator,
the Bi-harmonic operator, the Stokes’s operator and the Maxwell’s operator.
The famework has been successful in solving eigenvue problems of ∆, ∆2, in 1D,
2D and 3D space.
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Outline

1. Framework for high-precision eigenvalue bounds.
2. Rough eigenvalue bounds based on finite element method
3. High-precision eigenvalue bounds by applying Lehmann-Goerisch’s theorem
4. Application and computation results
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1. The framework for high-precision eigenvalue bounds
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2 Rough eigenvalue bound by applying FEM

.

......
2. The main theorem to give rough lower and upper bounds
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Error constant in Rayleigh quotient form

Preparation and assumptions
.Preparation
..

......

V : Hilbert space of real functions.
V h: Finite dimentional space; V h may not be a subspace of V .

.
Assumption [Lehmann-Goerisch, 1960-1990]
..

......

A1 M(u, v), N(u, v) are symmetric bilinear forms over V and V h; M(u, u) ≥ 0,
N(u, u) ≥ 0; N(u, u) = 0 implies u = 0.

Define | · |M :=
√

M(·, ·) , | · |N :=
√

N(·, ·).

A2 There exist sequences {ϕi}i∈N and non-decreasing {λi}i∈N such that ϕi ∈ V ,
λi ∈ R, N(ϕi, ϕj) = δij for i, j ∈ N,

M(f, ϕi) = λiN(f, ϕi) for all f ∈ V, i ∈ N. (1)

N(f, f) =
∞∑
i=1

(N(f, ϕi))
2 for all f ∈ V. (2)
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Error constant in Rayleigh quotient form

Upper eigenvalue bounds
.
Eigenvalue problem in V h

..

......

Let (λh,k, ϕh,k)k=1,··· ,n (λh,k ≤ λh,k+1) be the eigen-pairs such that,

M(vh, ϕh,k) = λh,kN(vh, ϕh,k) ∀vh ∈ V h .

.
Theorem (Upper eigenvalue bounds)
..

......

If V h ⊂ V , then an upper bound for λk is given as,

λk ≤ λh,k .
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Error constant in Rayleigh quotient form

Upper eigenvalue bounds
.
Eigenvalue problem in V h

..

......

Let (λh,k, ϕh,k)k=1,··· ,n (λh,k ≤ λh,k+1) be the eigen-pairs such that,

M(vh, ϕh,k) = λh,kN(vh, ϕh,k) ∀vh ∈ V h .

.
Theorem (Upper eigenvalue bounds)
..

......

If V h ⊂ V , then an upper bound for λk is given as,

λk ≤ λh,k .

A V h satsifying V h ⊂ V is called conforming space .
Usually, a conforming space is easy to construct.
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Error constant in Rayleigh quotient form

Lower eigenvalue bounds

Theorem 1: Let Ph : V → V h be a projection satisfying

M(u− Phu, vh) = 0, for all vh ∈ V h

Moreover, suppose that an error estimation for Ph is given as,

|u− Phu|N ≤ Ch|u− Phu|M .

.

......

Assertion: The lower bounds for eigenvalues are given as,

λh,k/(1 + λh,kC
2
h) ≤ λk (k = 1, 2, · · · , n) .
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Error constant in Rayleigh quotient form

Related results
.Conforming case..

......

X. Liu and S. Oishi. Verified eigenvalue evaluation for the Laplacian over
polygonal domains of arbitrary shape. SIAM J. Numer. Anal., 51(3):
1634-1654, 2013.

.Non-conforming case..

......

Kobayashi: upper bound for interpolation constants (2010 ).
To consider the bound for the first eigenvalue of operators.

Results of [Carstensen-Gallistl, 2013], [Carstensen-Gedicke, 2014]:
For the first eigenvalue: same result
For the rest eigenvalues: The same lower bounds are proposed but with a
seperation condition:

Ch ≤ (
√

1 + 1/k − 1)/
√

λk

Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 10 / 35
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Error constant in Rayleigh quotient form

.Two tasks in the application of Theorem 1..

......

1) Selection of proper space V h and the projection Ph:

M(u− Phu, vh) = 0, for all vh ∈ V h .

2) Explicit error estimation for Ph:

|u− Phu|N ≤ Ch|u− Phu|M .

The finite element space will be adopted to deal with the eigenvalue problems
of Laplace and Biharmonic operators.
A locally defined interpolation operator Πh which is also a projection
operator will be a good candidate for Ph. That is, on each element K of
triangulation T h,

(Phu)|K = Πh(u|K) .

Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 11 / 35
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Error constant in Rayleigh quotient form

.

......
Eigenvalue problem of Laplacian
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Error constant in Rayleigh quotient form

Eigenvalue problem of Laplace operators
.Eigenvalue problem for 2nd order differential operator..

......

Assumption: Ω is a simply connected bounded domain.

−∆u = λu, u = 0 on ∂Ω,
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Error constant in Rayleigh quotient form

Eigenvalue problem of Laplace operators
.Eigenvalue problem for 2nd order differential operator..

......

Assumption: Ω is a simply connected bounded domain.

−∆u = λu, u = 0 on ∂Ω,

.Variational formulation:..

......

Let V := {v ∈ H1(Ω)| u = 0 on ∂Ω}.

Find u ∈ V and λ ≥ 0 s.t.
∫
Ω

∇u · ∇vdx = λ

∫
Ω

uvdx ∀v ∈ V .

Thus, we define: M(u, v) =
∫
Ω
∇u · ∇vdx, N(u, v) =

∫
Ω
uvdx .

Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 13 / 35
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Error constant in Rayleigh quotient form

Eigenvalue problem of Laplace operators
.Eigenvalue problem for 2nd order differential operator..

......

Assumption: Ω is a simply connected bounded domain.

−∆u = λu, u = 0 on ∂Ω,

.Variational formulation:..

......

Let V := {v ∈ H1(Ω)| u = 0 on ∂Ω}.

Find u ∈ V and λ ≥ 0 s.t.
∫
Ω

∇u · ∇vdx = λ

∫
Ω

uvdx ∀v ∈ V .

Thus, we define: M(u, v) =
∫
Ω
∇u · ∇vdx, N(u, v) =

∫
Ω
uvdx .

Classical methods have difficulty to bound eigenvalues for problems defined
over a domain of general shape.
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Error constant in Rayleigh quotient form

.

......
Eigenvalue bounds based on conforming FEMs
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Error constant in Rayleigh quotient form

Eigenvalue problem in FEM spaces V h

.
Lagrange FEM space: V h(⊂ V )
..

......

Let T h be a triangulation of domain Ω. The function space V h over T h is
consisted of function vh such that,

1) vh|K is linear function on each element K ∈ T h;
2) vh is a continuous function over Ω.

.

......

The bilinear forms M(·, ·) and N(·, ·) over V h:

M(uh, vh) =

∫
Ω

∇uh · ∇vhdx, N(uh, vh) =

∫
Ω

uhvhdx .

Eigenvalue problem in V h: Find uh ∈ V h and λh ≥ 0 s.t.

M(uh, vh) = λhN(uh, vh) ∀vh ∈ V h.

Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 15 / 35
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Error constant in Rayleigh quotient form

Error estimation for Ph : V → V h

Quantitative a priori error estimate on convex or non-convex domain:
Theorem [Liu-Oishi, SIMNM, 2013] Given f ∈ L2(Ω), let u ∈ H1

0 (Ω) and
uh ∈ V h be the solutions of variational problems below, respectively,

(∇u,∇v) = (f, v) for v ∈ H1
0 (Ω) , (∇uh,∇vh) = (f, vh) for vh ∈ V h(Ω) .

Let Ch :=
√

C2
0,h + κ2

h, we have error estimates as below,

∥∇(u− uh)∥L2 ≤ Ch∥f∥L2 , ∥u− uh∥L2 ≤ C2
h∥f∥L2

where C0,h has explicit value and κh is defined by

κh := sup
fh∈Xh\0

inf
ph∈Wh

fh

inf
uh∈Sh

∥ph −∇uh∥
∥fh∥

Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 16 / 35
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Error constant in Rayleigh quotient form

.

......
Eigenvalue bounds based on non-conforming FEMs
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Error constant in Rayleigh quotient form

Eigenvalue problem in FEM spaces V h

.
Crouzeix-Raviart FEM space: V h(̸⊂ V )
..

......

The function vh of V h satisfies,
1) vh is linear on each element K ∈ T h;
2)

∫
e
vhds is continuous on interior edges;

∫
e
vhds = 0 on boundary edges;

Function vh is only continuous on the
mid-points of interior edges.

Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 18 / 35
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Error constant in Rayleigh quotient form

Eigenvalue problem in FEM spaces V h

.
Crouzeix-Raviart FEM space: V h(̸⊂ V )
..

......

The function vh of V h satisfies,
1) vh is linear on each element K ∈ T h;
2)

∫
e
vhds is continuous on interior edges;

∫
e
vhds = 0 on boundary edges;

.

......

Extend the bilinear forms M and N from V to V + V h:

M(uh, vh) =
∑

K∈T h

∫
K

∇uh · ∇vhdx, N(uh, vh) =

∫
Ω

uhvhdx .
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Eigenvalue problem in FEM spaces V h

.
Crouzeix-Raviart FEM space: V h(̸⊂ V )
..

......

The function vh of V h satisfies,
1) vh is linear on each element K ∈ T h;
2)

∫
e
vhds is continuous on interior edges;

∫
e
vhds = 0 on boundary edges;

.

......

Extend the bilinear forms M and N from V to V + V h:

M(uh, vh) =
∑

K∈T h

∫
K

∇uh · ∇vhdx, N(uh, vh) =

∫
Ω

uhvhdx .

.

......

Eigenvalue problem in V h: Find uh ∈ V h and λh ≥ 0 s.t.

M(uh, vh) = λhN(uh, vh) ∀vh ∈ V h.

.
Eigenvalue problem in V h

..

......

Find uh ∈ V h and λh ≥ 0 s.t.

M(uh, vh) = λhN(uh, vh) ∀vh ∈ V h.
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Error estimation for projection Ph

.

......

Let h be the mesh size of triangulation for domain Ω.

∥u− Phu∥N ≤ 0.19h ∥u− Phu∥M for u ∈ H1(Ω)

The error constant Ch = 0.19h is not depending on the maximum inner
angle of triangle elements.

Related work: [Carsten-Gedicke, Mathematics of Computation, 2014] shows:

∥v − Phv∥N ≤ 0.43955h∥v − Phv∥M

Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 19 / 35
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Lower eigenvalue bounds based on Theorem 1
.Eigenvalue problem..
...... −∆u = λu, u = 0 on ∂Ω,

.Setting for application of Theorem 1..

......

V = H1
0 (Ω);

V h: Crouzeix-Rarviart FEM space (V h ̸⊂ V );
M(u, v) :=

∑
K∈T h

∫
K
∇u · ∇vdx;

N(u, v) :=
∫
Ω
uvdx;

Projection Ph := Πh:

M(u− Phu, vh) = 0 for vh ∈ V h .

Error estimation for Ph:

|u− Phu|N ≤ Ch|u− Phu|M
(
Ch := max

K∈T h
Ce(K)

)
Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 20 / 35
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.

......
Computation results for Laplacian
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Example I: L-shaped domain

Domain: Ω : (0, 2)× (0, 2) \ [1, 2]× [1, 2].
Problem: Find u ∈ H1

0 (Ω) and λ > 0 such that,

−∆u = λu in Ω, u = 0 on Γ .

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Figure : Triangulation of L-shape domain
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Table : Conforming FEM (uniform mesh with h = 1/32)

λi Lower bound Exact Upper bound ReErr

1 9.5585 9.63972 9.6699 0.012
2 14.950 15.1973 15.225 0.018
3 19.326 19.7392 19.787 0.024
4 28.605 29.5215 29.626 0.035
5 30.866 31.9126 32.058 0.038

Table : Nonconforming FEM (uniform mesh with h = 1/32)

λi Lower bound Approx. Exact.

1 9.6122 9.6155 9.63972
2 15.1833 15.1915 15.1973
3 19.7202 19.7339 19.7392
4 29.4697 29.5003 29.5215
5 31.7969 31.8326 31.9126
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.

......
3. High-precision eigen-bounds from Lehmann-Goerisch’s theorem
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Challenges in desiring high-precision bounds

Take the eigenvalue problem of ∆ as an example.
.
Kato’s bound [Kato, 1949]
..

......

Let ũ ∈ D(∆) be approximate eigenvector, and λ̃ := ∥∇ũ∥2/∥ũ∥2 and
σ := ∥ −∆ũ− λ̃ũ∥/∥ũ∥. Suppose that µ and ν satisfy, for certain n,

λn−1 ≤ µ < λ̃ < ν ≤ λn+1.

Thus,
λ̃− σ2

ν − λ̃
≤ λn ≤ λ̃+

σ2

λ̃− µ

A priori eigenvalue bounds µ and ν are needed;
Well-constructed vector û can provide high-precision bounds;

◦ Kato, T., On the Upper and Lower Bounds of Eigenvalues. Journal of the Physical Society of
Japan, 4(4), 334-339. 1949
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Remark

.Various results related to eigenvalue bounds..

......

The original result of Kato can also deal with clustered eigenvalues, but it is
not easy to use in practical computation since it requires the approximate
eigenfunctions to be orthogonal to each other.

Lehmann’s theorem is almost the same as Kato’s bound, but it can easily
deal with clustered eigenvalues.
Kato’s bound or Lehmann’s theorem requires that the approximate function û
is smooth enough, while Lehmann-Goerisch’s theorem relaxes such a
condition.
For example, for the eigenvalue problem of −∆:

Kato’s bound or Lehmann’s theorem: û ∈ D(−∆).
Lehmann-Goerisch’s theorem: û ∈ H1(Ω).
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Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 26 / 35



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Error constant in Rayleigh quotient form

Remark

.Various results related to eigenvalue bounds..

......

The original result of Kato can also deal with clustered eigenvalues, but it is
not easy to use in practical computation since it requires the approximate
eigenfunctions to be orthogonal to each other.
Lehmann’s theorem is almost the same as Kato’s bound, but it can easily
deal with clustered eigenvalues.
Kato’s bound or Lehmann’s theorem requires that the approximate function û
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.

......
Computation examples for high-precision eigenvalue bounds
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.

......
Examples of 2nd order operators

Eigenvalue problem of Laplacian

−∆u = λu (boundary condition)
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Example: Poincare’s constant [Liu-Oishi, JJIAM, 2013]

Average interpolation operator Π0: Let K be a triangle,∫
K

Π0u− uds = 0

Poincare’s constant Cp:

∥u−Π0u∥L2(K) ≤ Cp|u|H1(K) for u ∈ H1(K)

Triangulation mesh

Figure : Triangulation of K (from left to right, h = 0.25, 0.25, 0.25, 0.22)
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Example: Poincare’s constant [Liu-Oishi, JJIAM, 2013]

Triangle with three vertices: (0, 0), (1, 0), (a, b)

Table : High-precision bound for constant Cp (d = 5)

(a, b) shape h λ1 Cp

(0, 1) 0.25 9.8696044139 0.3183098862418

(0,
√
3/3) 0.25 13.15947253623 0.2756644478370

(1/2,
√
3/2) 0.25 17.54596338127 0.238732414993633

(−1/2,
√
3/2) 0.22 7.15535326 0.373839683

Liu Xuefeng Verified lower eigenvalue bounds for self-adjoint differential operators 30 / 35



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Error constant in Rayleigh quotient form

Example: Non-convex domain [Liu-Okayama-Oishi, Comp. Math., 2014]

Eigenvalue problem: −∆u = λu in Ω, u = 0 on ∂Ω.
Domain Ω: (0, 8)2 \ [1, 7]2;
Rough a priori eigenvalue estimation: λ5 < 35.0 < λ6;
Singular base function used around the re-entrant corners;
Order of Lagrange FEM space Ld

h: d = 10.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8 λi lower upper
1 9.1602158 9.1602163
2 9.1700883 9.1700889
3 9.1700883 9.1700889
4 9.1805675 9.1805681

Eigenfunctions corresponding to the leading 4 eigenvalues
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.

......
Examples of 4th order operators: ∆2

Buckling plate eigenvalue problem

∆2u = −λ∆u, u =
∂u

∂n
= 0 on ∂Ω,
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Buckling plate eigenvalue problem
.

......

Unit square domain Ω := (0, 1)2

Figure : Left: triangulation for domain; Right: ∂u/∂x

.

......

Approximate eigenvalues
λ1 ≈ 52.3446989, λ2 ≈ 92.1244138, λ3 = 92.1244138.
Eigenvalue bounds: ( 64 triangle elements; d = 6; ρ = 85.0)

52.34468 ≤ λ1 ≤ 52.34470
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Buckling plate eigenvalue problem
.

......

Unit triangle domain T : three vertices (0, 0), (1, 0), (1, 1).

Figure : Left: triangulation for domain; Right: ∂u/∂x

.

......

Approximate eigenvalues λ1 ≈ 139.574, λ2 ≈ 205.554, λ3 ≈ 247.864.
Eigenvalue bounds: ( 32 triangle elements; d = 6; ρ = 200.0)

139.57361 ≤ λ1 ≤ 139.57435
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Summary
We give a theorem to provide eigenvalue bounds for generally defined
eigenvalue problems for self-adjoint operators:

Find u ∈ V and λ ∈ R, M(u, v) = λN(u, v) ∀v ∈ V.

High-precision eigenvalue bounds can be obtained as follows.
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Summary
We give a theorem to provide eigenvalue bounds for generally defined
eigenvalue problems for self-adjoint operators:

Find u ∈ V and λ ∈ R, M(u, v) = λN(u, v) ∀v ∈ V.

High-precision eigenvalue bounds can be obtained as follows.
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