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Various eigenvalue problems

Laplace operator:

—Au=Auin @&  boundary condition

@ Bi-harmonic operator:

A%y =X uor A>2u=—-XAuinQ & boundary condition

Eigenvalue problems for Stokes’s operator:

{ —Au+Vp=u inQ @& boundary condition

divu=0

Eigenvalue problem for Maxwell's operator:
Find E € Ho(rot;Q2) and A € R, s.t.,

(rotE,rotF) = A\(E,F) VF € Hy(rot; Q).
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|
Objective

Verified eigenvalue bounds for eigenvalue problems defined in the form:

FindueVand A>0st.  M(u,v) =AN(u,v), YoeV
where M (-,-) and N(-,-) are bilinear forms to be defined.
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FindueVand A>0st.  M(u,v) =AN(u,v), YoeV
where M (-,-) and N(-,-) are bilinear forms to be defined.

o Verified eigenvalue bounds means mathematically correct lower and upper
bounds. Thus interval arithmetic is adopted for this purpose.
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Objective

Verified eigenvalue bounds for eigenvalue problems defined in the form:

FindueVand A>0st.  M(u,v) =AN(u,v), YoeV
where M (-,-) and N(-,-) are bilinear forms to be defined.

o Verified eigenvalue bounds means mathematically correct lower and upper
bounds. Thus interval arithmetic is adopted for this purpose.

@ Quantitative error estimation for various interpolation operators:
lu = Myully < Chlufly (€ =7)

@ It is also needed in computer-assisted proof for non-linear equation solution
verification, for example,

—Au=u%2 inQ
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Objective

Verified eigenvalue bounds for eigenvalue problems defined in the form:

FindueVand A>0st.  M(u,v) =AN(u,v), YoeV
where M (-,-) and N(-,-) are bilinear forms to be defined.

@ Such an abstract problem will include eigenvalue problems of the Laplace operator,
the Bi-harmonic operator, the Stokes's operator and the Maxwell's operator.

@ The famework has been successful in solving eigenvue problems of A, A2, in 1D,
2D and 3D space.
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N
Outline

Framework for high-precision eigenvalue bounds.
Rough eigenvalue bounds based on finite element method

High-precision eigenvalue bounds by applying Lehmann-Goerisch's theorem

B =

Application and computation results
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|
1. The framework for high-precision eigenvalue bounds

Rough eigenvalue bounds + Lehmann-Goerisch's theorem
(lower order FEMs, hyper-circle equation) (high order FEMs, saddle point problem)

High-precision eigenvalue bounds for
M(u,v) = A N(u,v)
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2 Rough eigenvalue bound by applying FEM

2. The main theorem to give rough lower and upper bounds
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Preparation and assumptions

Preparation

@ V: Hilbert space of real functions.

@ V": Finite dimentional space; V" may not be a subspace of V.

Assumption [Lehmann-Goerisch, 1960-1990]
Al M (u,v), N(u,v) are symmetric bilinear forms over V and V"; M (u,u) > 0,
N(u,u) > 0; N(u,u) =0 implies u = 0.
o Define |- |ar := v/ M(-,-) , |- |nv:=/N(, ).

A2 There exist sequences {¢;};en and non-decreasing {)\; }ien such that ¢; € V,
Ai € R, N(¢i, ¢j) = 6i5 fori,j €N,

M(f,é:) = NN (f, ¢:) forall feV,ie N.

(oo}

N(f,f)=>_(N(f.¢:))>  forall feV.

i=1

(1)
)
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Upper eigenvalue bounds
Eigenvalue problem in V"
Let (An ks @nk)k=1,-.n (Ank < Ank+1) be the eigen-pairs such that,

M (v, dn k) = M pN(vn, dng) Yo, € V.

Theorem (Upper eigenvalue bounds)

If VP C V, then an upper bound for \;, is given as,

A < Ank -
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Upper eigenvalue bounds
Eigenvalue problem in V"
Let (An ks @nk)k=1,-.n (Ank < Ank+1) be the eigen-pairs such that,

M (vn, dnr) = AN (vn, ) Vop, € V.

Theorem (Upper eigenvalue bounds)

If VP C V, then an upper bound for \;, is given as,

A < Ank -

e A V" satsifying V" C V is called conforming space .

@ Usually, a conforming space is easy to construct.

Liu Xuefeng erified lower eigenvalue bounds for self-adjoint differe 8 /35



Error constant in Rayleigh quotient form

Lower eigenvalue bounds

Theorem 1: Let P, : V — V" be a projection satisfying
M(u— Pyu,vp) =0, forallv, e VP
Moreover, suppose that an error estimation for P, is given as,

|’LL - Phu|N S Ch|u - Phu|M .

Assertion: The lower bounds for eigenvalues are given as,

Mo/ A+ XkC2) <A (k=1,2,---,n).
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Related results

Conforming case

@ X. Liu and S. Oishi. Verified eigenvalue evaluation for the Laplacian over
polygonal domains of arbitrary shape. SIAM J. Numer. Anal., 51(3):
1634-1654, 2013.

Non-conforming case
@ Kobayashi: upper bound for interpolation constants (2010 ).
e To consider the bound for the first eigenvalue of operators.
@ Results of [Carstensen-Gallistl, 2013], [Carstensen-Gedicke, 2014]:

o For the first eigenvalue: same result
o For the rest eigenvalues: The same lower bounds are proposed but with a
seperation condition:

Ch < (WT+ 17k - 1)/vV o
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Error constant in Rayleigh quotient form

Two tasks in the application of Theorem 1

1) Selection of proper space V" and the projection Pj,:
M(u — Pyu,v,) =0, forall v, € vh.
2) Explicit error estimation for P

|u — Phu|N < C’h|u — PhU|M .
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@ The finite element space will be adopted to deal with the eigenvalue problems
of Laplace and Biharmonic operators.
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Error constant in Rayleigh quotient form

Two tasks in the application of Theorem 1

1) Selection of proper space V" and the projection Pj,:
M(u — Pyu,v,) =0, forall v, € vh.
2) Explicit error estimation for P

|u — Phu|N < C’h|u — PhU|M .

@ The finite element space will be adopted to deal with the eigenvalue problems
of Laplace and Biharmonic operators.

@ A locally defined interpolation operator II; which is also a projection
operator will be a good candidate for P,. That is, on each element K of

triangulation 7",
(Pru)|x = Hp(ulk) -
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Error constant in Ra h quotient form

Eigenvalue problem of Laplacian
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Eigenvalue problem of Laplace operators

Eigenvalue problem for 2nd order differential operator

Assumption: 2 is a simply connected bounded domain.

—Au = Ay, u=0ondQ,
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Error constant in Rayleigh quotient form

Eigenvalue problem of Laplace operators

Eigenvalue problem for 2nd order differential operator

Assumption: 2 is a simply connected bounded domain.

—Au = Ay, u=0ondQ,

Variational formulation:
Let V :={v e HY(Q)| u=0on 9Q}.

Find w € V and A > 0 s.t. /Vu~Vvdx:)\/uvdx YoeV.
Q Q

Thus, we define: M(u,v) = [, Vu-Vudz, N(u,v)= [,uvdz.
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Error constant in Rayleigh quotient form

Eigenvalue problem of Laplace operators

Eigenvalue problem for 2nd order differential operator

Assumption: 2 is a simply connected bounded domain.

—Au = Ay, u=0ondQ,

Variational formulation:
Let V :={v e HY(Q)| u=0on 9Q}.

Find w € V and A > 0 s.t. /Vu-Vvdx:)\/uvdx YoeV.
Q Q

Thus, we define: M(u,v) = [, Vu-Vudz, N(u,v)= [,uvdz.

@ Classical methods have difficulty to bound eigenvalues for problems defined
over a domain of general shape.
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Error constant in Rayleigh quotient form

Eigenvalue bounds based on conforming FEMs
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Error constant in Rayleigh quotient form

Eigenvalue problem in FEM spaces V"

Lagrange FEM space: V(C V)

Let 7" be a triangulation of domain €2. The function space V" over T" is
consisted of function v, such that,

1) wp|k is linear function on each element K € Th,

2) wp, is a continuous function over §2.

The bilinear forms M(-,-) and N(-,-) over V":

M (up,vn) = / Vup - Vopdz, N(up,vn) = / upvpdx .
Q Q
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Eigenvalue problem in FEM spaces V"

Lagrange FEM space: V(C V)

Let 7" be a triangulation of domain €2. The function space V" over T" is
consisted of function v, such that,

1) wp|k is linear function on each element K € Th,

2) wp, is a continuous function over §2.

The bilinear forms M(-,-) and N(-,-) over V":
M (up,vn) = / Vup - Vopdz, N(up,vn) = / upvpdx .
Q Q

Eigenvalue problem in V": Find u;, € V" and A\, > 0 s.t.

M(uh,vh) = /\hN(uh,vh) Yoy, € Vh.
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Error estimation for P, : V — V"

Quantitative a priori error estimate on convex or non-convex domain:

Theorem [Liu-Oishi, SIMNM, 2013] Given f € Ly(f2), let u € H}(Q2) and
up, € V" be the solutions of variational problems below, respectively,

(Vu, Vo) = (f,v) forve HY(Q), (Vun,Vun) = (f,vn) forv, € VI(Q).

Let Cp, := (/CZ, + k%, we have error estimates as below,

IV(u—u)llz, € Cullfllrs  llu—unllo, < CEIfllL,

where Cj j, has explicit value and xj, is defined by

Kp i= sup inf  inf
FREXP\0 IJIIGW’_;J}( up €SN ||th
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Error constant in Rayleigh quotient form

Eigenvalue bounds based on non-conforming FEMs
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Eigenvalue problem in FEM spaces V"

Crouzeix-Raviart FEM space: V(¢ V)
The function vy, of V7 satisfies,
1) wy is linear on each element K € T";

2) fe vpds is continuous on interior edges; fe vpds = 0 on boundary edges;

Function vy, is only continuous on the
mid-points of interior edges.
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Crouzeix-Raviart FEM space: V(¢ V)
The function vy, of V7 satisfies,
1) wy is linear on each element K € T";

2) fe vpds is continuous on interior edges; fe vpds = 0 on boundary edges;

Extend the bilinear forms M and N from V to V + V"

M (un,vn) = Z /Vuh-Vvhdx, N(uh,vh):/uhvhdw.
K 0
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Eigenvalue problem in FEM spaces V"

Crouzeix-Raviart FEM space: V(¢ V)
The function vy, of V7 satisfies,
1) wy is linear on each element K € T";

2) fe vpds is continuous on interior edges; fe vpds = 0 on boundary edges;

Extend the bilinear forms M and N from V to V + V"

M (un,vn) = Z /Vuh-Vvhdx, N(uh,vh):/uhvhdw.
K 0

KeTh

Eigenvalue problem in V": Find u;, € V" and \;, > 0 s.t.

M(uh,vh) = )\hN(uh,vh) Yoy, € vh.
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Error estimation for projection P,

Let h be the mesh size of triangulation for domain Q.

||u — PhuHN <0.19h ||u — Phu||M for u € HI(Q)

@ The error constant C}, = 0.19h is not depending on the maximum inner
angle of triangle elements.

Related work: [Carsten-Gedicke, Mathematics of Computation, 2014] shows:

[lv = Pro||n < 0.43955h||v — Prol|ar
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Lower eigenvalue bounds based on Theorem 1

Eigenvalue problem

—Au=Mu, u=0ono9,

Setting for application of Theorem 1
o V =H}Q);
e V" Crouzeix-Rarviart FEM space (V" ¢ V);
o M(u,v) :=3 gern [ Vu- Vudz;
o N(u,v) := [, uvdx;
@ Projection P, := 1l

M(u — Pyu,vp,) =0 for vy, € VP,

Error estimation for Pj:

|u — Phu|y < Chlu — Prula (Ch 1= max CE(K)>
KeTh
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Error constant in Ra h quotient form

Computation results for Laplacian

Liu Xuefeng erified lower eigenvalue bounds for self-adjoint differe 21 /35



Example |: L-shaped domain

Domain: ©:(0,2) x (0,2) \ [1,2] x [1,2].
Problem: Find u € H(2) and A > 0 such that,

—Au=XduinQ, u=0onT.

Figure : Triangulation of L-shape domain
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Error constant in Rayleigh quotient form

Table :  Conforming FEM (uniform mesh with h = 1/32)

A; | Lower bound Exact Upper bound | ReErr
1 9.5585 9.63972 9.6699 0.012
2 14.950 15.1973 15.225 0.018
3 19.326 19.7392 19.787 0.024
4 28.605 29.5215 29.626 0.035
5 30.866 31.9126 32.058 0.038

Table : Nonconforming FEM (uniform mesh with h = 1/32)

Ai | Lower bound | Approx. | Exact.
1 9.6122 9.6155 | 9.63972
2 15.1833 15.1915 | 15.1973
3 19.7202 19.7339 | 19.7392
4 29.4697 29.5003 | 29.5215
5 31.7969 31.8326 | 31.9126
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Error constant in Rayleigh quotient form

3. High-precision eigen-bounds from Lehmann-Goerisch's theorem
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Challenges in desiring high-precision bounds
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Error constant in Rayleigh quotient form

Challenges in desiring high-precision bounds

Take the eigenvalue problem of A as an example.

Kato’s bound [Kato, 1949]

Let @ € D(A) be approximate eigenvector, and A := ||V4|//||@|? and
o:=|— Aa — \u||/||@||. Suppose that u and v satisfy, for certain n,

)\n,1§yJ<5\<I/§)\n+1.

Thus,

N
3]

INA
>
3
IN
or
+

or
|
=
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Challenges in desiring high-precision bounds

Take the eigenvalue problem of A as an example.

Kato’s bound [Kato, 1949]

Let @ € D(A) be approximate eigenvector, and A := ||V4|//||@|? and
o:=|— Aa — \u||/||@||. Suppose that u and v satisfy, for certain n,

)\n,1§yJ<5\<I/§)\n+1.

Thus,
2 2

<A <At 2
—

a
v—2A

>

@ A priori eigenvalue bounds i and v are needed,;

@ Well-constructed vector 4 can provide high-precision bounds;

o Kato, T., On the Upper and Lower Bounds of Eigenvalues. Journal of the Physical Society of
Japan, 4(4), 334-339. 1949
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Error constant in Rayleigh quotient form

Various results related to eigenvalue bounds

@ The original result of Kato can also deal with clustered eigenvalues, but it is
not easy to use in practical computation since it requires the approximate
eigenfunctions to be orthogonal to each other.
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Error constant in Rayleigh quotient form

Various results related to eigenvalue bounds

@ The original result of Kato can also deal with clustered eigenvalues, but it is
not easy to use in practical computation since it requires the approximate
eigenfunctions to be orthogonal to each other.

@ Lehmann's theorem is almost the same as Kato's bound, but it can easily
deal with clustered eigenvalues.
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Error constant in Rayleigh quotient form

Remark

Various results related to eigenvalue bounds

@ The original result of Kato can also deal with clustered eigenvalues, but it is
not easy to use in practical computation since it requires the approximate
eigenfunctions to be orthogonal to each other.

@ Lehmann's theorem is almost the same as Kato's bound, but it can easily
deal with clustered eigenvalues.

@ Kato's bound or Lehmann’s theorem requires that the approximate function
is smooth enough, while Lehmann-Goerisch's theorem relaxes such a
condition.
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Error constant in Rayleigh quotient form

Remark

Various results related to eigenvalue bounds

@ The original result of Kato can also deal with clustered eigenvalues, but it is
not easy to use in practical computation since it requires the approximate
eigenfunctions to be orthogonal to each other.

@ Lehmann's theorem is almost the same as Kato's bound, but it can easily
deal with clustered eigenvalues.

@ Kato's bound or Lehmann’s theorem requires that the approximate function
is smooth enough, while Lehmann-Goerisch's theorem relaxes such a
condition.

For example, for the eigenvalue problem of —A:

o Kato's bound or Lehmann'’s theorem: @ € D(—A).
o Lehmann-Goerisch's theorem: @ € H'(Q).
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Error constant in Rayleigh quotient form

Computation examples for high-precision eigenvalue bounds
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Error constant in Rayleigh quotient form

Examples of 2nd order operators

Eigenvalue problem of Laplacian

—Au = Au (boundary condition)
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Example: Poincare’'s constant [Liu-Oishi, JJIAM, 2013]

Average interpolation operator 1ly: Let K be a triangle,

/ Moy —uds =0
K

Poincare’s constant C);:

llw — Moul| £, (1) < Cplulp iy for u € H'(K)

Triangulation mesh

Figure : Triangulation of K (from left to right, h = 0.25,0.25,0.25,0.22)
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Error constant in Rayleigh quotient form

Example: Poincare’s constant [Liu-Oishi, JJIAM, 2013]

@ Triangle with three vertices: (0,0), (

1,0), (a,b)

Table : High-precision bound for constant C,, (d = 5)

(a,b) shape || h A Cp

(0,1) B 0.25 | 9.8696044) | 0.3183098867
(0,v/3/3) || 0.25 | 13.159472538 | 0.27566444753
(1/2,1/3/2) A 0.25 | 17.54596335% | 0.238732414993
(—1/2,v3/2) N\ | 0.22 | 7.15533 0.37383%
o Veriied lower eigenvalue bounds for sef-adjont differe
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Error constant in Rayleigh quotient form

Example: Non-convex domain [Liu-Okayama-Oishi, Comp. Math., 2014]

o Eigenvalue problem: —Awu = Au in 2, v = 0 on 0.

e Domain Q: (0,8)2\ [1,7)%;

@ Rough a priori eigenvalue estimation: A5 < 35.0 < Ag;

@ Singular base function used around the re-entrant corners;
@ Order of Lagrange FEM space L;’ll: d = 10.

lower upper
9.1602158 | 9.1602163
9.1700883 | 9.1700889
9.1700883 | 9.1700889
9.1805675 | 9.1805681

AW R

‘Ij (e | S ey | ey 1§
S | (o W N -

Eigenfunctions corresponding to the leading 4 eigenvalues
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Error constant in Rayleigh quotient form

Examples of 4th order operators: A2

Buckling plate eigenvalue problem

A%y =—-NAu, u= @ =0 on 09,
on
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Error constant in Rayleigh quotient form

Buckling plate eigenvalue problem

Unit square domain Q2 := (0,1)?

ANESTNFIITANSSSY
NN NN

0000 g

000050

0000500

00010

Figure : Left: triangulation for domain; Right: du/dx

@ Approximate eigenvalues
A1 &2 52.3446989, Ao &2 92.1244138, A3 = 92.1244138.

@ Eigenvalue bounds: ( 64 triangle elements; d = 6; p = 85.0)

52.34468 < A\ < 52.34470

erified lower eigenvalue bounds for self-adjoint differe
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Error constant in Rayleigh quotient form

Buckling plate eigenvalue problem

Unit triangle domain T': three vertices (0,0), (1,0), (1,1).

4 M

a0
-

500005
-0000375|

-0.00070!

Figure : Left: triangulation for domain; Right: du/dx

@ Approximate eigenvalues Ay ~ 139.574, A9 = 205.554,

A3 ~ 247.864.

e Eigenvalue bounds: ( 32 triangle elements; d = 6; p = 200.0)

139.57361 < A\ < 139.57435

erified lower eigenvalue bounds for self-adjoint differe
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Error constant in Rayleigh quotient form

Summary

@ We give a theorem to provide eigenvalue bounds for generally defined
eigenvalue problems for self-adjoint operators:

FindueVand A€ R, M(u,v) =AN(u,v) YveV.
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Error constant in Rayleigh quotient form

Summary

@ We give a theorem to provide eigenvalue bounds for generally defined
eigenvalue problems for self-adjoint operators:

FindueVand A€ R, M(u,v) =AN(u,v) YveV.

@ High-precision eigenvalue bounds can be obtained as follows.

Rough eigenvalue bounds + Lehmann-Goerisch's theorem
(lower order FEMs, hyper-circle equation) (high order FEMs, saddle point problem)

High-precision eigenvalue bounds for J

M(u,v) = AN(u,v)
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