Bernstein Branch-and-Bound Algorithm for
Unconstrained Global Optimization of
Multivariate Polynomial MINLPs

P. S. V. Nataraj
Systems and Control Engineering Group, IIT Bombay, India

Bhagyesh V. Patil
Laboratoire d'Informatique de Nantes Atlantique, France




Overview

Introduction
- Mixed-Integer Non-Linear Programming (MINLP)

Existing solution approaches

Background
- The Bernstein form

Proposed strategy with enhancements
- Main algorithm
- Numerical Experiments

Concluding remarks




e

Introduction

A MINLP is a optimization problem of the following form:

min_ f(x)
subject to g(x) <0
h(x)=0

x,e XCR, k=12,

x, €{0,1,...q} cZ, k=I1,+1,..,]
q=20,ge Z

We consider unconstrained MINLPs wherein £ polynomial in nature.

Minimize MINLP globally.




4 N

Existing solution approaches
Generalized Benders Decomposition (Geoffrion, J Optim Theory Appl, 1972).

Branch-and-Bound (Gupta et al., Management Science, 1985).
Outer Approximation (Duran et al., Mathematical Programming, 1986).
Branch-and-Cut (Padberg et al., Operations Research Letters, 1987).

An LP/NLP-based-Branch-and-Bound (Grossmann et al., Comp Chem Engg,
1992).

Extended Cutting Plane method (Westerlund et al., Comp Chem Engg, 1995).

Limited to convex MINLPs.
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cont...

Two approaches for nonconvex MINLPs:

- Use of convex underestimators (Tawarmalani et al., Math Program, 2003)
(O-BB, BARON)

- Use of equivalent convex formulation (Liberti, Ph.D. thesis, 2004)
(Bonmin, COUENNE)

Both approaches limited to only standard forms
(linear, bilinear, trilinear terms).
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The Bernstein form

™

Consider the # variate polynomial p in power form over x' € U=[0,1].

p(x) = Za,xl, a el

I<SN

The equivalent Bernstein form is

p(x) = Z b,(U)B, ;(x)

I<SN

where By ;(x) are the Bernstein basis polynomials (C. G. Lorentz, Bernstein
Polynomials, 1997).
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Cont...

blare the Bernstein coefficients over U, can be computed as follows:

/)
H

b,(U) = 2[7\7\ a,

J<I .
7]

The unit interval is not really a restriction as any finite interval X can
be linearly transformed to it.

We shall use the matrix method to compute the Bernstein coefficients
\ (Shaswati Ray and P.S.V. Nataraj, J. Glob. Opti., 2009).
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Properties of the Bernstein form

Range Enclosure

Convex Hull

Vertex Property

The polynomial function, its Bernstein coefficients, and the convex hull.
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Convex hull property
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Figure : The polynomial function, its Bernstein coefficients, and the convex hull
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Subdivision procedure

Tightening of bounds is possible by subdivision.

Bernstein coefficients of the subdivided boxes can be computed from
the Bernstein coefficients of the original box.

Thus avoids the repeated computation of Bernstein coefficients of the
function.

Subdivision direction can be selected based on any one of the existing

subdivision direction selection rules (T. Csendes and D. Ratz, J. Glob. Optim.,
1997).

Simplest one is subdivide along direction of maximum width

y(r) = max(w(d))
where d box to be subdivided, and r is a direction in which it is subdivided.
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Subdivision using the Bernstein form
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Figure : Improvement in range enclosure with subdivision
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Cut-off test

In global minimization algorithms, cut-off test is used to delefe boxes,
which are sure not to contain the global minimum.

The usual procedure is to assign the maximum value of Bernstein
coefficients of the objective function as initial cut-off test value.

Any box whose minimum Bernstein coefficients value is greater than
this will be deleted.

If the maximum Bernstein coefficients value of any box is lesser than
the present cut-off test value, the cut-off test value is updated using
this value.
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Unconstrained global optimization algorithm

o

We proposed a new Bernstein unconstrained global optimization
algorithm

- a modified subdivision procedure

- a combinations of different accelerating devices
(cut-off, monotonicity, concavity tests)

- a Bernstein box and hull consistencies algorithms
for domain pruning
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Modified subdivision procedure

Continuous decision variables

/7 Xq4 = [X0.Xq) % X mi(Xg)] %X [xg, X
[x1, X1 :

X = [X1, X7] % . X [Xp, Xy X

(X1, X7] %o (X, ), X)X % [xg, X

Integer decision variables

X = [X1, X7 %o X X, K] 2 XX, X

=[x, |m(x,)]
/7
=

= [|m(x.) +1].5]

\ where, m(x, ) denotes the midpoint of [x,.X;]. /
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Domain pruning

™

Generally, subintervals of original box are thrown to isolate the
global minimum.

Classical tools, such as interval function evaluation, cut-off test
monotonicity and concavity tests are used.

Sometimes, gives no information about nonexistence of stationary

points.

Alternative: consistency techniques.

/
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cont...

Consider f(x,y)=0 xeX, yeY

a)if VxeX, dyeY, suchthat f(x,y)=0
b)if VyeY, dxe X, suchthat f(x,y)=0

Box consistency
- Compute box consistent region for an equation by box
(width) narrowing operations for a chosen variable.

Hull consistency
\ - Compute hull consistent region for an equation by constraint /

inversion for a selected term and chosen variable.

16



e

Hull consistency procedure

X, =X
x €[1,2], x,€[0.5,2.5]

x,=x,1 x
= 0.5,2.5]1 [1,4]
= [1,2.5]

— 1/2
x,=x1 x

=[L2]1 [0.7071,1.5812]
=[1,1.5812]

1 158 2

X

/
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Box consistency procedure

.

x,—x; =0
xe[l,2], x,€]0.5,2.5]
Left end point narrowing (a=1)
h(X,)=X,—(a)’
=[0.5,2.5]- (1)’
=[-0.5,1.5]
Oe h(X, ) = Cannot be increased
Right end point narrowing (b=2)
h(X,)=X, - (b)
=[0.5,2.5]-(2)"
=[-3.5,-1.5]
0¢ h(X,) = Can be decreased
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Right end point narrowing

~

cont...

X, =X NX,)
=[1,2] | (b—h(X”))
b,
[-3.5,-1.5])
—2x[1,2]

=[1,2] | [2—

=[1,2] | [1,1.6251]

=[1,1.6251]

X, —x =0, xle, x,€ [0.5,2.5]

/
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Possible set of constraints

At global minimum of the objective function all the first partial
derivatives of the objective function should be 0.

Similarly, we can apply consistency to following relation

flz)<p

P being the upper bound on the global minimum.

o /
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Bernstein unconstrained global optimization algorithm

Step 1. Compute the Bernstein coefficient array of the objective polynomial on y.

Step 2. Set p := o0 and y as the min. Bernstein value over Bernstein coefficient array of the
objective polynomial.

Step 3. Initialize the lists £ := {(v. (b.(¥)),y)}. £ = {}.
Step 4. Pick the first item from list deleting its entry. If list is empty go to step 11.

Step 5. Subdivide the box y (along longest width direction) into two boxes using modified
subdivision procedure. Obtain Bernstein coefficient arrays of objective polynomial
on these subboxes.

Step 6. If minimum on subbox greater than ﬁ, then discard. Else update P and stored the
item appropriately in list £

Step 7. (Cut-off Test) Discard the items from list £ whose minimum greater than p

Step 8. Apply monotonicity and concavity tests along with domain contraction steps based
on the Bernstein hull and Bernstein box consistency techniques.

Step 9. Check the vertex condition. If ‘true’ within specified accuracy, then put the vertex
point and domain in the solution list. Go to step 4.

Step 10. If termination criteria is satisfied, store item in the solution list Lso! . Else go to step 4.

Step 11. Analyze the solution list and return the global minimum and global minimizer(s). 21
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Numerical tests

We consider 10 test problems#
Dimension -3t09
Integer variables - 1to 6

Performance comparison based on
(a) Use of classical tools (cut-off, monotonicity, concavity) and their combinations

(b) Use of Bernstein consistency algorithms for domain pruning
(c) Use of combination of (a) and (b)

Performance metric considered total number of boxes processed
for all 10 test problems to find the global minimum.

# All 10 problems taken from PHC pack, the database of polynomial systems,

Technical report, Mathematics Department, University of lllinois, Chicago, USA, 2001.
\ Problems where modified as MINLPs by restricting some decision variables as Integer./
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Use of classical tools

processed

Cut-off
Performance N? . Only Only Only Cut-off -
metric ac CEIEI. AME | Cut-off | Mono. | Conc avity N Mono.
device Mono. +
Concavity
Total boxes .
10.356 2.290 8.366 9.734 1.870 1.870
processed
Cut-oft
Cut-off Cut-off +
Performlanr:e Only n n BBC to f(x) < p
metne Cut-off | ppc o f(x) < p | BHC to £(x) < +
BHC to f(x) < p
Total boxes 2.290 1,438 2.004 1.242
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cont...
Mono.
Mono. Mono. +
Performance Only n + BHC to f(x)< p
metric Mono. | ppeio f(x)< 5 | BHC to £(x) < 5 +
BBCtof(x)<p
Total boxes 8.366 1,250 1562 816
processed
Concavity
Concavity Concavity +
Performance Only n + BHC to f(x) < p
metric Coneavity | ppcto f(x)< 5 | BHC to £(x) < p +
BBCtof(x)=p
Total boxes 9.734 1.430 1.938 1.172

processed
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Use of Bernstein box and hull
consistency algorithms

Performance
metric

Cut-off
+

Mono.
+

BBC to £, (x) =0

Cut-off
_|_

Mono.
+

BHC to f,(x) =0

Cut-off
_|_

Mono.
+

BBC to f,(x) =0
_|_
BHC to f,(x) =0

Total boxes
processed

803

1,051

788
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Concluding remarks

N

The proposed strategy has been found to give guaranteed global
minimum without using any convexification or linearization technique.

Among the classical tool combinations; cut-off and monotonicity

combination found efficient.

Among the classical tool combinations with Bernstein consistency
algorithms to the relation f(z) < p ; monotonicity performance was

superior compared to cut-off and concavity.

Overall, combination of cut-off and monotonicity alona with

Bernstein consistency algorithms to the relation f/.(x) = 0, is

found to perform best.

26
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Qualitative features of the proposed strategy
over the existing solvers

No initial guess required, only initial search domain required.

No function and gradient evaluations required.

Bounds on the global optimum are guaranteed.

No prior knowledge of stationary points required.

No convexification or linearization needed.

No need of multiple trials (like with genetic algorithms).

28
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Views about existing solvers

Most of the existing MINLP solvers can be classified as branch and bound
solvers, solvers based on the linear relaxation of the functions, or solvers based
on the combination of the relaxation and linearization of functions.

Branch and bound solvers uses NLP relaxation by relaxing integrality restriction
(Bonmin (B-BB mode), fminconset, SBB, MILANO, LINDOBB). However, NLP
solver used to solve the NLP relaxation usually ensures only local optimal
solutions, they work as heuristics in case of a nonconvex MINLP.

Another class of solvers utilizes linear relaxation of objective and constraint
functions (AOA, Bonmin (B-OA mode), DICOPT). In particular, outer approximation
uses gradient based linearization, but yields outer approximation only for convex
MINLPs. For nonconvex problems, sometimes the outer approximation method
may not be able to generate a sufficiently accurate outer approximation to the

master problem. In such cases, we may found a large number of near optimal
\ solutions without ever finding an optimal solution. /
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Cont...

An alternative way can be the use of cutting plane method (AlphaECP),
where an sequence of MILP relaxation is solved and optimal solution for
MINLP is obtained by adding the cutting planes. However, generation of
cutting plane can be time consuming and we will get a MINLP solution only
at the end.

Since gradient based linearization ensures global solutions only for convex

MINLPs, some solvers (BARON) uses an additional convexification step to
branch also on continuous variables in nonconvex terms.

/
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