

Programming Techniques for Exact Real Arithmetic

Andrej Bauer

Faculty of Mathematics and Physics

University of Ljubljana, Slovenia

(joint work with Ivo List & Paul Taylor)

SCAN 2014, Würzburg, September 2014

In this talk

*We present a mathematical language **Marshall** which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.*

In this talk

*We present a mathematical language **Marshall** which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.*

In this talk

*We present a mathematical language **Marshall** which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.*

- ▶ *Descriptive language – what to compute.*

In this talk

*We present a mathematical language **Marshall** which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.*

- ▶ *Descriptive language – what to compute.*
- ▶ *How to compute?*

In this talk

*We present a mathematical language **Marshall** which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.*

- ▶ *Descriptive language – what to compute.*
- ▶ *How to compute?*
 - ▶ We present a simple-minded execution strategy

In this talk

*We present a mathematical language **Marshall** which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.*

- ▶ *Descriptive language – what to compute.*
- ▶ *How to compute?*
 - ▶ We present a simple-minded execution strategy
 - ▶ Many possibilities for optimization

In this talk

*We present a mathematical language **Marshall** which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.*

- ▶ *Descriptive language – what to compute.*
- ▶ *How to compute?*
 - ▶ We present a simple-minded execution strategy
 - ▶ Many possibilities for optimization
- ▶ *Applications:*

In this talk

*We present a mathematical language **Marshall** which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.*

- ▶ *Descriptive language – what to compute.*
- ▶ *How to compute?*
 - ▶ We present a simple-minded execution strategy
 - ▶ Many possibilities for optimization
- ▶ *Applications:*
 - ▶ specification of computational problems

In this talk

*We present a mathematical language **Marshall** which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.*

- ▶ *Descriptive language – what to compute.*
- ▶ *How to compute?*
 - ▶ We present a simple-minded execution strategy
 - ▶ Many possibilities for optimization
- ▶ *Applications:*
 - ▶ specification of computational problems
 - ▶ verification of safety and liveness properties

Foundations: Abstract Stone Duality

- ▶ Our language is based on *Abstract Stone Duality* (ASD) by Paul Taylor.

Foundations: Abstract Stone Duality

- ▶ Our language is based on *Abstract Stone Duality* (ASD) by Paul Taylor.
- ▶ ASD is a variant of λ -calculus which directly axiomatizes spaces and continuous maps.

Foundations: Abstract Stone Duality

- ▶ Our language is based on *Abstract Stone Duality* (ASD) by Paul Taylor.
- ▶ ASD is a variant of λ -calculus which directly axiomatizes spaces and continuous maps.
- ▶ We use a fragment of ASD which can be understood on its own.

Foundations: Abstract Stone Duality

- ▶ Our language is based on *Abstract Stone Duality* (ASD) by Paul Taylor.
- ▶ ASD is a variant of λ -calculus which directly axiomatizes spaces and continuous maps.
- ▶ We use a fragment of ASD which can be understood on its own.
- ▶ Further material: <http://www.paultaylor.eu/ASD/>

Axioms for real numbers

The real numbers \mathbb{R} are:

- ▶ an ordered field (“can compute with reals”)

Axioms for real numbers

The real numbers \mathbb{R} are:

- ▶ an ordered field (“can compute with reals”)
- ▶ with Archimedean property (“can obtain approximations”)

Axioms for real numbers

The real numbers \mathbb{R} are:

- ▶ an ordered field (“can compute with reals”)
- ▶ with Archimedean property (“can obtain approximations”)
- ▶ Dedekind complete (“can use iterative methods”)

Axioms for real numbers

The real numbers \mathbb{R} are:

- ▶ an ordered field (“can compute with reals”)
- ▶ with Archimedean property (“can obtain approximations”)
- ▶ Dedekind complete (“can use iterative methods”)
- ▶ overt Hausdorff space (“can search for a witness”)

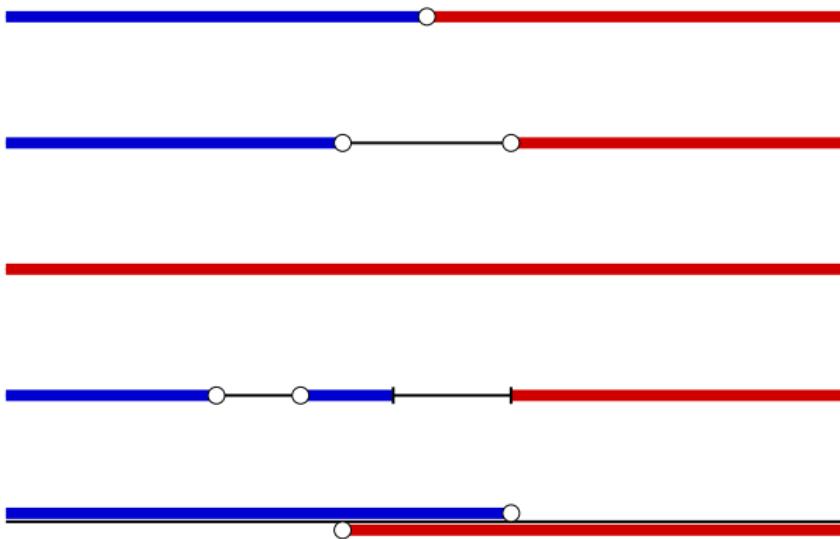
Axioms for real numbers

The real numbers \mathbb{R} are:

- ▶ an ordered field (“can compute with reals”)
- ▶ with Archimedean property (“can obtain approximations”)
- ▶ Dedekind complete (“can use iterative methods”)
- ▶ overt Hausdorff space (“can search for a witness”)
- ▶ and $[a, b]$ is compact (“can verify something holds”)

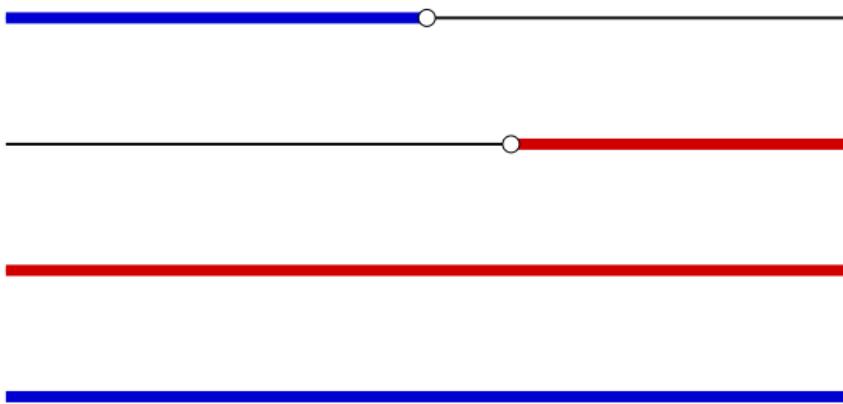
Dedekind cuts

A *cut* is a pair of *rounded, bounded, disjoint, and located* open sets.



Lower and upper reals

By taking the lower rounded sets we obtain the *lower reals*, and similarly for *upper reals*. These are more fundamental than reals.



Examples of cuts

- ▶ A number a determines a cut, which determines a :

$$a = (\text{cut } x \text{ left } x < a \text{ right } a < x)$$

Examples of cuts

- ▶ A number a determines a cut, which determines a :

$$a = (\mathbf{cut} \ x \ \mathbf{left} \ x < a \ \mathbf{right} \ a < x)$$

- ▶ \sqrt{a} is the cut

$$\mathbf{cut} \ x \ \mathbf{left} \ (x < 0 \vee x^2 < a) \ \mathbf{right} \ (x > 0 \wedge x^2 > a)$$

Examples of cuts

- ▶ A number a determines a cut, which determines a :

$$a = (\mathbf{cut} \ x \ \mathbf{left} \ x < a \ \mathbf{right} \ a < x)$$

- ▶ \sqrt{a} is the cut

$$\mathbf{cut} \ x \ \mathbf{left} \ (x < 0 \vee x^2 < a) \ \mathbf{right} \ (x > 0 \wedge x^2 > a)$$

- ▶ Exercise:

$$\mathbf{cut} \ x \ \mathbf{left} \ (x < -a \vee x < a) \ \mathbf{right} \ (-a < x \wedge a < x)$$

Examples of cuts

- ▶ A number a determines a cut, which determines a :

$$a = (\text{cut } x \text{ left } x < a \text{ right } a < x)$$

- ▶ \sqrt{a} is the cut

$$\text{cut } x \text{ left } (x < 0 \vee x^2 < a) \text{ right } (x > 0 \wedge x^2 > a)$$

- ▶ Exercise:

$$\text{cut } x \text{ left } (x < -a \vee x < a) \text{ right } (-a < x \wedge a < x)$$

- ▶ The full notation for cuts is

$$\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x)$$

This means that the cut determines a number in $[a, b]$.

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- ▶ Arithmetic $+, -, \times, /$

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- ▶ Arithmetic $+, -, \times, /$
- ▶ Decidable equality $=$ and decidable order $<$ on \mathbb{N} and \mathbb{Q}

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- ▶ Arithmetic $+, -, \times, /$
- ▶ Decidable equality $=$ and decidable order $<$ on \mathbb{N} and \mathbb{Q}
- ▶ General recursion on \mathbb{N}

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- ▶ Arithmetic $+, -, \times, /$
- ▶ Decidable equality $=$ and decidable order $<$ on \mathbb{N} and \mathbb{Q}
- ▶ General recursion on \mathbb{N}
- ▶ Semidecidable order relation $<$ on \mathbb{R}

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- ▶ Arithmetic $+, -, \times, /$
- ▶ Decidable equality $=$ and decidable order $<$ on \mathbb{N} and \mathbb{Q}
- ▶ General recursion on \mathbb{N}
- ▶ Semidecidable order relation $<$ on \mathbb{R}
- ▶ Logic:

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- ▶ Arithmetic $+, -, \times, /$
- ▶ Decidable equality $=$ and decidable order $<$ on \mathbb{N} and \mathbb{Q}
- ▶ General recursion on \mathbb{N}
- ▶ Semidecidable order relation $<$ on \mathbb{R}
- ▶ Logic:
 - ▶ truth \top and falsehood \perp

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- ▶ Arithmetic $+, -, \times, /$
- ▶ Decidable equality $=$ and decidable order $<$ on \mathbb{N} and \mathbb{Q}
- ▶ General recursion on \mathbb{N}
- ▶ Semidecidable order relation $<$ on \mathbb{R}
- ▶ Logic:
 - ▶ truth \top and falsehood \perp
 - ▶ connectives \wedge and \vee

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- ▶ Arithmetic $+, -, \times, /$
- ▶ Decidable equality $=$ and decidable order $<$ on \mathbb{N} and \mathbb{Q}
- ▶ General recursion on \mathbb{N}
- ▶ Semidecidable order relation $<$ on \mathbb{R}
- ▶ Logic:
 - ▶ truth \top and falsehood \perp
 - ▶ connectives \wedge and \vee
 - ▶ existential quantifiers:

$$\exists x : \mathbb{R}, \quad \exists x : [a, b], \quad \exists x : (a, b), \quad \exists n : \mathbb{N}, \quad \exists q : \mathbb{Q}$$

A language for real analysis

- ▶ Number types $\mathbb{N}, \mathbb{Q}, \mathbb{R}$
- ▶ Arithmetic $+, -, \times, /$
- ▶ Decidable equality $=$ and decidable order $<$ on \mathbb{N} and \mathbb{Q}
- ▶ General recursion on \mathbb{N}
- ▶ Semidecidable order relation $<$ on \mathbb{R}
- ▶ Logic:
 - ▶ truth \top and falsehood \perp
 - ▶ connectives \wedge and \vee
 - ▶ existential quantifiers:

$$\exists x : \mathbb{R}, \quad \exists x : [a, b], \quad \exists x : (a, b), \quad \exists n : \mathbb{N}, \quad \exists q : \mathbb{Q}$$

- ▶ universal quantifier: $\forall x : [a, b]$

“Topologic”

- ▶ A logical formula $\phi(x)$ where $x \in A$ has two readings:

“Topologic”

- ▶ A logical formula $\phi(x)$ where $x \in A$ has two readings:
 - ▶ *logical*: a predicate on A

“Topologic”

- ▶ A logical formula $\phi(x)$ where $x \in A$ has two readings:
 - ▶ *logical*: a predicate on A
 - ▶ *topological*:

“Topologic”

- ▶ A logical formula $\phi(x)$ where $x \in A$ has two readings:
 - ▶ *logical*: a predicate on A
 - ▶ *topological*:
 - ▶ an open subset of A : $\phi(x) \iff \top$

“Topologic”

- ▶ A logical formula $\phi(x)$ where $x \in A$ has two readings:
 - ▶ *logical*: a predicate on A
 - ▶ *topological*:
 - ▶ an open subset of A : $\phi(x) \iff \top$
 - ▶ a closed subset of A : $\phi(x) \iff \perp$

“Topologic”

- ▶ A logical formula $\phi(x)$ where $x \in A$ has two readings:
 - ▶ *logical*: a predicate on A
 - ▶ *topological*:
 - ▶ an open subset of A : $\phi(x) \iff \top$
 - ▶ a closed subset of A : $\phi(x) \iff \perp$
- ▶ In particular, a formula ϕ without parameters is

“Topologic”

- ▶ A logical formula $\phi(x)$ where $x \in A$ has two readings:
 - ▶ *logical*: a predicate on A
 - ▶ *topological*:
 - ▶ an open subset of A : $\phi(x) \iff \top$
 - ▶ a closed subset of A : $\phi(x) \iff \perp$
- ▶ In particular, a formula ϕ without parameters is
 - ▶ *logically*, a truth value

“Topologic”

- ▶ A logical formula $\phi(x)$ where $x \in A$ has two readings:
 - ▶ *logical*: a predicate on A
 - ▶ *topological*:
 - ▶ an open subset of A : $\phi(x) \iff \top$
 - ▶ a closed subset of A : $\phi(x) \iff \perp$
- ▶ In particular, a formula ϕ without parameters is
 - ▶ *logically*, a truth value
 - ▶ *topologically*, an element of Sierpinski space $\Sigma = \{\perp, \top\}$

“Topologic”

- ▶ A logical formula $\phi(x)$ where $x \in A$ has two readings:
 - ▶ *logical*: a predicate on A
 - ▶ *topological*:
 - ▶ an open subset of A : $\phi(x) \iff \top$
 - ▶ a closed subset of A : $\phi(x) \iff \perp$
- ▶ In particular, a formula ϕ without parameters is
 - ▶ *logically*, a truth value
 - ▶ *topologically*, an element of Sierpinski space $\Sigma = \{\perp, \top\}$
- ▶ We use this to express topological and analytic notions *logically*.

Example: \mathbb{R} is locally compact

- ▶ Classically: for open $U \subseteq \mathbb{R}$ and $x \in \mathbb{R}$,

$$x \in U \iff \exists d, u \in \mathbb{Q}. x \in (d, u) \subseteq [d, u] \subseteq U$$

Example: \mathbb{R} is locally compact

- ▶ Classically: for open $U \subseteq \mathbb{R}$ and $x \in \mathbb{R}$,

$$x \in U \iff \exists d, u \in \mathbb{Q}. x \in (d, u) \subseteq [d, u] \subseteq U$$

- ▶ Topologically: for $\phi : \mathbb{R} \rightarrow \Sigma$ and $x : \mathbb{R}$,

$$\phi(x) \iff \exists d, u \in \mathbb{Q}. d < x < u \wedge \forall y \in [d, u]. \phi(y)$$

Example: $[0, 1]$ is connected

- ▶ Classically: for open $U, V \subseteq [0, 1]$, if

$$U \cap V = \emptyset \quad \text{and} \quad U \cup V = [0, 1]$$

then $U = [0, 1]$ or $V = [0, 1]$.

Example: $[0, 1]$ is connected

- ▶ Classically: for open $U, V \subseteq [0, 1]$, if

$$U \cap V = \emptyset \quad \text{and} \quad U \cup V = [0, 1]$$

then $U = [0, 1]$ or $V = [0, 1]$.

- ▶ Topologically: for $\phi, \psi : [0, 1] \rightarrow \Sigma$, if

$$(\exists x \in [0, 1] . \phi(x) \wedge \psi(x)) \iff \perp \quad \text{and}$$

$$(\forall x \in [0, 1] . \phi(x) \vee \psi(x)) \iff \top$$

then $(\forall x \in [0, 1] . \phi(x)) \vee (\forall x \in [0, 1] . \psi(x))$.

$\forall \exists$ statements

$$\forall x \in A . \exists y \in B . \phi(x, y)$$

$\forall \exists$ statements

$$\forall x \in A . \exists y \in B . \phi(x, y)$$

- ▶ “For every parameter x there is solution y .”

$\forall \exists$ statements

$$\forall x \in A . \exists y \in B . \phi(x, y)$$

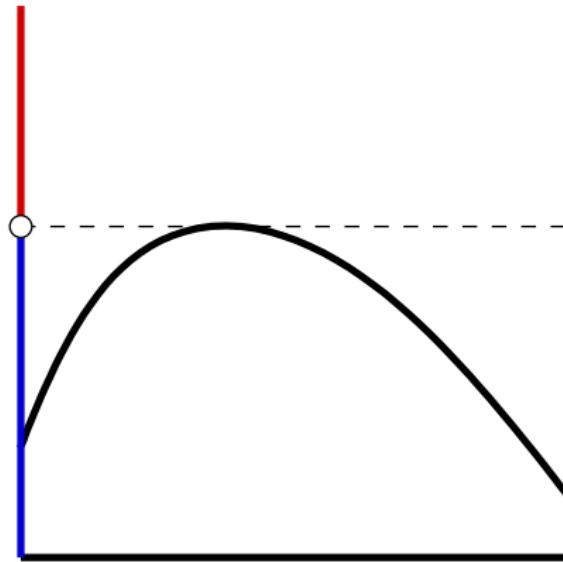
- ▶ “For every parameter x there is solution y .”
- ▶ “In every state x good thing y happens.”

$\forall \exists$ statements

$$\forall x \in A . \exists y \in B . \phi(x, y)$$

- ▶ “For every parameter x there is solution y .”
- ▶ “In every state x good thing y happens.”
- ▶ Note: A must be *overt* and B *compact*.

The maximum of $f : [0, 1] \rightarrow \mathbb{R}$



cut x **left** $(\exists y \in [0, 1] . x < f(y))$

right $(\forall z \in [0, 1] . f(z) < x)$

Cauchy completeness

- ▶ A *rapid* Cauchy sequence $(a_n)_n$ satisfies

$$|a_{n+1} - a_n| < 2^{-n}.$$

Cauchy completeness

- ▶ A *rapid* Cauchy sequence $(a_n)_n$ satisfies

$$|a_{n+1} - a_n| < 2^{-n}.$$

- ▶ Its limit is the cut

$$\text{cut } x \text{ left } (\exists n \in \mathbb{N}. x < a_n - 2^{-n+1})$$

$$\text{right } (\exists n \in \mathbb{N}. a_n + 2^{-n+1} < x)$$

From mathematics to programming

- ▶ We would like to *compute* with our language.

From mathematics to programming

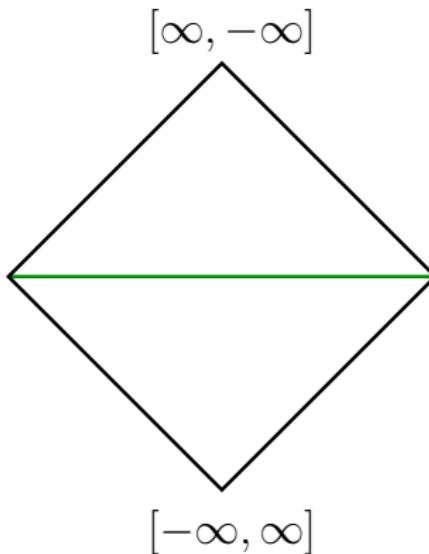
- ▶ We would like to *compute* with our language.
- ▶ We limit attention to logic and \mathbb{R} .

From mathematics to programming

- ▶ We would like to *compute* with our language.
- ▶ We limit attention to logic and \mathbb{R} .
- ▶ Not surprisingly, we compute with (improper) intervals.

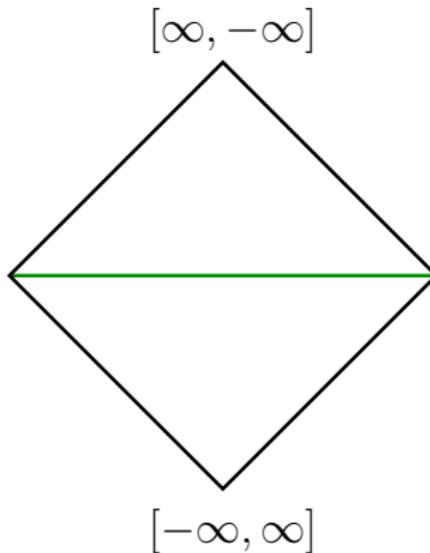
The interval lattice L

- ▶ The lattice of **pairs** $[a, b]$, where a is *upper* and b *lower real*.



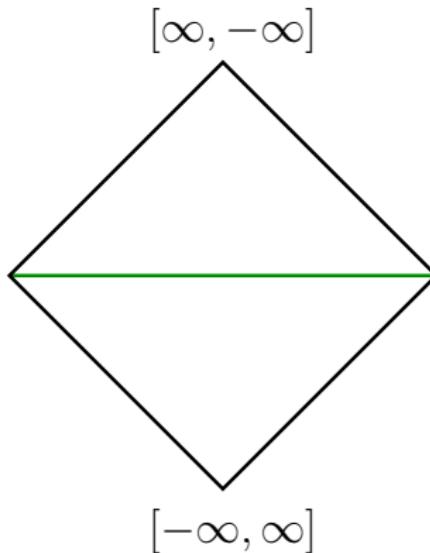
The interval lattice L

- ▶ The lattice of **pairs** $[a, b]$, where a is *upper* and b *lower real*.
- ▶ Ordered by $[a, b] \sqsubseteq [c, d] \iff a \leq c \wedge d \leq b$.



The interval lattice L

- ▶ The lattice of **pairs** $[a, b]$, where a is *upper* and b *lower real*.
- ▶ Ordered by $[a, b] \sqsubseteq [c, d] \iff a \leq c \wedge d \leq b$.
- ▶ The lattice contains \mathbb{R} as $[a, a]$.



Extending arithmetic to L

- ▶ Extend operations from $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to $L \times L \rightarrow L$:

Extending arithmetic to L

- ▶ Extend operations from $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to $L \times L \rightarrow L$:
 - ▶ L is equipped with the Scott topology

Extending arithmetic to L

- ▶ Extend operations from $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to $L \times L \rightarrow L$:
 - ▶ L is equipped with the Scott topology
 - ▶ *any* continuous extension is acceptable

Extending arithmetic to L

- ▶ Extend operations from $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to $L \times L \rightarrow L$:
 - ▶ L is equipped with the Scott topology
 - ▶ *any* continuous extension is acceptable
 - ▶ (improper) intervals are understood *order-theoretically*

Extending arithmetic to L

- ▶ Extend operations from $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to $L \times L \rightarrow L$:
 - ▶ L is equipped with the Scott topology
 - ▶ *any* continuous extension is acceptable
 - ▶ (improper) intervals are understood *order-theoretically*
- ▶ The interesting case is *Kaucher multiplication*.

Extending arithmetic to L

- ▶ Extend operations from $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to $L \times L \rightarrow L$:
 - ▶ L is equipped with the Scott topology
 - ▶ *any* continuous extension is acceptable
 - ▶ (improper) intervals are understood *order-theoretically*
- ▶ The interesting case is *Kaucher multiplication*.
- ▶ Given an arithmetical expression e we compute its *lower* and *upper* approximants e^- and e^+ in L :

$$e^- \sqsubseteq e \sqsubseteq e^+.$$

Extending arithmetic to L

- ▶ Extend operations from $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to $L \times L \rightarrow L$:
 - ▶ L is equipped with the Scott topology
 - ▶ *any* continuous extension is acceptable
 - ▶ (improper) intervals are understood *order-theoretically*
- ▶ The interesting case is *Kaucher multiplication*.
- ▶ Given an arithmetical expression e we compute its *lower* and *upper* approximants e^- and e^+ in L :

$$e^- \sqsubseteq e \sqsubseteq e^+.$$

- ▶ We also extend $<$ to $L \times L \rightarrow \Sigma$:

$$[a, b] < [c, d] \iff b < c$$

Lower and upper approximants

- ▶ For each sentence ϕ we define a *lower* and *upper approximants* ϕ^- , $\phi^+ \in \{\top, \perp\}$ such that

$$\phi^- \implies \phi \implies \phi^+.$$

Lower and upper approximants

- ▶ For each sentence ϕ we define a *lower* and *upper approximants* ϕ^- , $\phi^+ \in \{\top, \perp\}$ such that

$$\phi^- \implies \phi \implies \phi^+.$$

- ▶ The approximants should be easy to compute.

Lower and upper approximants

- ▶ For each sentence ϕ we define a *lower* and *upper approximants* ϕ^- , $\phi^+ \in \{\top, \perp\}$ such that

$$\phi^- \implies \phi \implies \phi^+.$$

- ▶ The approximants should be easy to compute.
- ▶ If $\phi^- = \top$ then $\phi = \top$, and if $\phi^+ = \perp$ then $\phi = \perp$.

Lower and upper approximants

- For each sentence ϕ we define a *lower* and *upper approximants* ϕ^- , $\phi^+ \in \{\top, \perp\}$ such that

$$\phi^- \implies \phi \implies \phi^+.$$

- The approximants should be easy to compute.
- If $\phi^- = \top$ then $\phi = \top$, and if $\phi^+ = \perp$ then $\phi = \perp$.
- Easy cases:

$$\perp^- = \perp$$

$$\perp^+ = \perp$$

$$\top^- = \top$$

$$\top^+ = \top$$

$$(\phi \wedge \psi)^- = \phi^- \wedge \psi^-$$

$$(\phi \wedge \psi)^+ = \phi^+ \wedge \psi^+$$

$$(\phi \vee \psi)^- = \phi^- \vee \psi^-$$

$$(\phi \vee \psi)^+ = \phi^+ \vee \psi^+$$

$$(e_1 < e_2)^- = (e_1^- < e_2^-)$$

$$(e_1 < e_2)^+ = (e_1^+ < e_2^+).$$

Approximants for cuts and quantifiers

- ▶ Cuts:

$$(\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x))^- = [a, b]$$

$$(\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x))^+ = [b, a]$$

Approximants for cuts and quantifiers

- ▶ Cuts:

$$(\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x))^- = [a, b]$$

$$(\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x))^+ = [b, a]$$

- ▶ Quantifiers:

$$\phi([a, b]) \implies \forall x \in [a, b] . \phi(x) \implies \phi\left(\frac{a+b}{2}\right)$$

$$\phi\left(\frac{a+b}{2}\right) \implies \exists x \in [a, b] . \phi(x) \implies \phi([b, a])$$

Refinement

$$\phi^- \implies \phi \implies \phi^+$$

- If $\phi^- = \perp$ and $\phi^+ = \top$ we cannot say much about ϕ .

Refinement

$$\phi^- \implies \phi \implies \phi^+$$

- ▶ If $\phi^- = \perp$ and $\phi^+ = \top$ we cannot say much about ϕ .
- ▶ To make progress, we *refine* ϕ to an equivalent formula in which quantifiers range over smaller intervals.

Refinement

$$\phi^- \implies \phi \implies \phi^+$$

- ▶ If $\phi^- = \perp$ and $\phi^+ = \top$ we cannot say much about ϕ .
- ▶ To make progress, we *refine* ϕ to an equivalent formula in which quantifiers range over smaller intervals.
- ▶ A simple strategy is to split quantified intervals in halves:

Refinement

$$\phi^- \implies \phi \implies \phi^+$$

- ▶ If $\phi^- = \perp$ and $\phi^+ = \top$ we cannot say much about ϕ .
- ▶ To make progress, we *refine* ϕ to an equivalent formula in which quantifiers range over smaller intervals.
- ▶ A simple strategy is to split quantified intervals in halves:
 - ▶ $\forall x \in [a, b] . \phi(x)$ is refined to

$$(\forall x \in [a, \frac{a+b}{2}] . \phi(x)) \wedge (\forall x \in [\frac{a+b}{2}, b] . \phi(x))$$

Refinement

$$\phi^- \implies \phi \implies \phi^+$$

- ▶ If $\phi^- = \perp$ and $\phi^+ = \top$ we cannot say much about ϕ .
- ▶ To make progress, we *refine* ϕ to an equivalent formula in which quantifiers range over smaller intervals.
- ▶ A simple strategy is to split quantified intervals in halves:
 - ▶ $\forall x \in [a, b] . \phi(x)$ is refined to

$$(\forall x \in [a, \frac{a+b}{2}] . \phi(x)) \wedge (\forall x \in [\frac{a+b}{2}, b] . \phi(x))$$

- ▶ $\exists x \in [a, b] . \phi(x)$ is refined to

$$(\exists x \in [a, \frac{a+b}{2}] . \phi(x)) \vee (\exists x \in [\frac{a+b}{2}, b] . \phi(x))$$

Refinement

$$\phi^- \implies \phi \implies \phi^+$$

- ▶ If $\phi^- = \perp$ and $\phi^+ = \top$ we cannot say much about ϕ .
- ▶ To make progress, we *refine* ϕ to an equivalent formula in which quantifiers range over smaller intervals.
- ▶ A simple strategy is to split quantified intervals in halves:
 - ▶ $\forall x \in [a, b] . \phi(x)$ is refined to

$$(\forall x \in [a, \frac{a+b}{2}] . \phi(x)) \wedge (\forall x \in [\frac{a+b}{2}, b] . \phi(x))$$

- ▶ $\exists x \in [a, b] . \phi(x)$ is refined to

$$(\exists x \in [a, \frac{a+b}{2}] . \phi(x)) \vee (\exists x \in [\frac{a+b}{2}, b] . \phi(x))$$

- ▶ This amounts to searching with *bisection*.

Refinement of cuts

- ▶ To refine a cut

$\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x)$

we try to move $a \mapsto a'$ and $b \mapsto b'$.

Refinement of cuts

- ▶ To refine a cut

$\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x)$

we try to move $a \mapsto a'$ and $b \mapsto b'$.



- ▶ If $\phi^-(a') = \top$ then move $a \mapsto a'$.

Refinement of cuts

- ▶ To refine a cut

$\text{cut } x : [a, b] \text{ left } \phi(x) \text{ right } \psi(x)$

we try to move $a \mapsto a'$ and $b \mapsto b'$.

- ▶ If $\phi^-(a') = \top$ then move $a \mapsto a'$.
- ▶ If $\psi^-(b') = \top$ then move $b \mapsto b'$.

Refinement of cuts

- ▶ To refine a cut

cut $x : [a, b]$ left $\phi(x)$ right $\psi(x)$

we try to move $a \mapsto a'$ and $b \mapsto b'$.



- ▶ If $\phi^-(a') = \top$ then move $a \mapsto a'$.
- ▶ If $\psi^-(b') = \top$ then move $b \mapsto b'$.
- ▶ One or the other endpoint moves eventually because cuts are located.

Evaluation

- ▶ To evaluate a sentence ϕ :

Evaluation

- ▶ To evaluate a sentence ϕ :
 - ▶ if $\phi^- = \top$ then output \top ,

Evaluation

- ▶ To evaluate a sentence ϕ :
 - ▶ if $\phi^- = \top$ then output \top ,
 - ▶ if $\phi^+ = \perp$ then output \perp ,

Evaluation

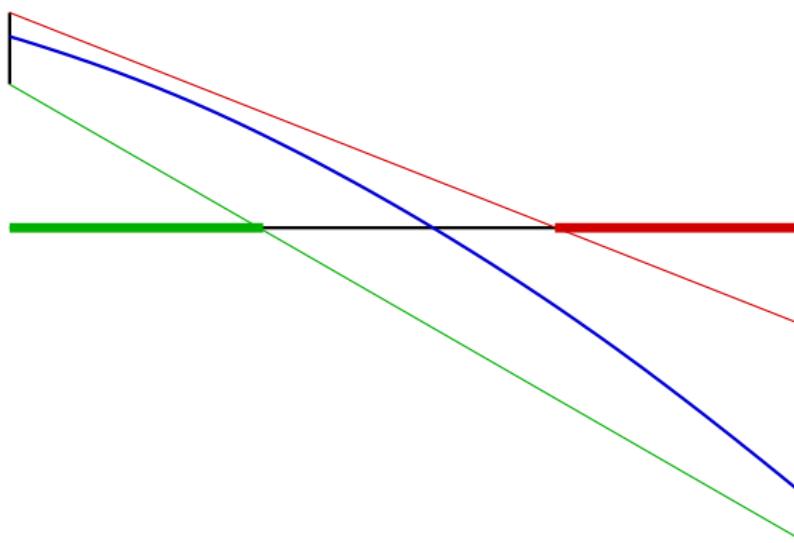
- ▶ To evaluate a sentence ϕ :
 - ▶ if $\phi^- = \top$ then output \top ,
 - ▶ if $\phi^+ = \perp$ then output \perp ,
 - ▶ otherwise refine ϕ and repeat.

Evaluation

- ▶ To evaluate a sentence ϕ :
 - ▶ if $\phi^- = \top$ then output \top ,
 - ▶ if $\phi^+ = \perp$ then output \perp ,
 - ▶ otherwise refine ϕ and repeat.
- ▶ Evaluation may not terminate, but this is expected, as ϕ is only *semidecidable*.

Speeding up the computation

Estimate an inequality $f(x) < 0$ on $[a, b]$ by approximating f with a linear map from above and below.



This is essentially Newton's interval method.

Questions

- ▶ How do we incorporate \mathbb{N} and recursion?

Questions

- ▶ How do we incorporate \mathbb{N} and recursion?
- ▶ How to extend Newton's method to improper intervals?

Questions

- ▶ How do we incorporate \mathbb{N} and recursion?
- ▶ How to extend Newton's method to improper intervals?
- ▶ How to extend Newton's method to the multivariate case?

Questions

- ▶ How do we incorporate \mathbb{N} and recursion?
- ▶ How to extend Newton's method to improper intervals?
- ▶ How to extend Newton's method to the multivariate case?
- ▶ Can we do higher-type computations \int and $\frac{d}{dx}$?

Questions

- ▶ How do we incorporate \mathbb{N} and recursion?
- ▶ How to extend Newton's method to improper intervals?
- ▶ How to extend Newton's method to the multivariate case?
- ▶ Can we do higher-type computations \int and $\frac{d}{dx}$?
- ▶ Can this lead to a useful domain-specific language?