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In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

» Descriptive language — what to compute.

» How to compute?
» We present a simple-minded execution strategy
» Many possibilities for optimization

» Applications:

» specification of computational problems
» verification of safety and liveness properties

2/24



Foundations: Abstract Stone Duality

» Our language is based on Abstract Stone Duality (ASD) by
Paul Taylor.

3/24


http://www.paultaylor.eu/ASD/

Foundations: Abstract Stone Duality

» Our language is based on Abstract Stone Duality (ASD) by
Paul Taylor.

» ASD is a variant of A-calculus which directly axiomatizes
spaces and continuous maps.

3/24


http://www.paultaylor.eu/ASD/

Foundations: Abstract Stone Duality

» Our language is based on Abstract Stone Duality (ASD) by
Paul Taylor.

» ASD is a variant of A-calculus which directly axiomatizes
spaces and continuous maps.

» We use a fragment of ASD which can be understood on its
own.

3/24


http://www.paultaylor.eu/ASD/

Foundations: Abstract Stone Duality

» Our language is based on Abstract Stone Duality (ASD) by
Paul Taylor.

» ASD is a variant of A-calculus which directly axiomatizes
spaces and continuous maps.

» We use a fragment of ASD which can be understood on its
own.

» Further material: http://www.paultaylor.eu/ASD/
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Axioms for real numbers

The real numbers R are:

» an ordered field (“can compute with reals”)
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Axioms for real numbers

The real numbers R are:
» an ordered field (“can compute with reals”)
» with Archimedean property (“can obtain approximations”)
» Dedekind complete (“can use iterative methods”)
» overt Hausdorff space (“can search for a witness”)
» and [a, b] is compact (“can verify something holds”)
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Dedekind cuts

A cut is a pair of rounded, bounded, disjoint, and located open sets.
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Lower and upper reals

By taking the lower rounded sets we obtain the lower reals, and
similarly for upper reals. These are more fundamental than reals.
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Examples of cuts

» A number a determines a cut, which determines a:

a = (cutxleftx <arighta < x)
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Examples of cuts

» A number a determines a cut, which determines a:
a = (cutxleftx <arighta < x)
» /ais the cut
cut x left (x < 0V x% < a)right (x > 0 A x% > a)
» Exercise:
cutxleft (x < —avx <a)right(—a<xAa<x)
» The full notation for cuts is
cut x : [a, b] left ¢(x) right ¢ (x)

This means that the cut determines a number in [a, b].
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v

Number types N, Q, R
Arithmetic +, —, %, /
Decidable equality = and decidable order < on Nand Q

v

v

General recursion on N

v

v

Semidecidable order relation < on R
Logic:
» truth T and falsehood L

» connectives A and V
» existential quantifiers:

v

Ix:R, Fx:[a,b], 3x:(ab), In:N, F:Q

» universal quantifier: Vx : [a,]]
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“Topologic”

» A logical formula ¢(x) where x € A has two readings:

» logical: a predicate on A

» topological:
> anopensubset of A: ¢(x) <= T
> aclosed subset of A: ¢(x) <— L

» In particular, a formula ¢ without parameters is
» logically, a truth value
» topologically, an element of Sierpinski space ¥ = {1, T}
» We use this to express topological and analytic notions
logically.

9/24
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Example: R is locally compact

» Classically: for open U C Rand x € R,
xelU < FduecQ.xe (d,u)C[dulCU
» Topologically: for ¢ : R — ¥ and x : R,

d(x) <= FducQ.d<x<uAVyedu].oy)
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Example: [0, 1] is connected

» Classically: for open U, V C [0, 1], if
UnvV=0 and UUV =]0,1]

then U = [0,1] or V = [0, 1].
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Example: [0, 1] is connected

» Classically: for open U, V C [0, 1], if
UnvV=0 and UUV =]0,1]

then U = [0,1] or V = [0, 1].
» Topologically: for ¢, : [0,1] — %, if

(3x€[0,1].¢(x) AY(x)) <= L and
(Vxe[0,1].¢(x) V(x)) < T

then (Vx € [0,1]. ¢(x)) V (Yx € [0,1] .9 (x)).
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V4 statements

VxeA.3yeB.o(x,y)
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V4 statements

VxeA.JyeB.o(x,y)

» “For every parameter x there is solution y.”
» “In every state x good thing y happens.”

» Note: A must be overt and B compact.

2/24



The maximum off : [0,1] - R

cutx left (3ye[0,1].x < f(y))
right (Vze€[0,1].f(z) < x)



Cauchy completeness

» A rapid Cauchy sequence (a,), satisfies

lap41 —an| <27
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Cauchy completeness

» A rapid Cauchy sequence (a,), satisfies
lap41 —an| <27
» Its limit is the cut

cutx left 3neN.x < a, — 27"
right 3neN.a, + 27" < x)

14 /24
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The interval lattice L

» The lattice of pairs [a, b], where a is upper and b lower real.

» Ordered by [a,b] C [c,d] <= a<cAd<b.
» The lattice contains R as [a, a].

[OO, _OO]

[—OO, OO]



Extending arithmetic to L

» Extend operations fromR x R - RtoL x L — L:
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Extending arithmetic to L

» Extend operations fromR x R - RtoL x L — L:

» L is equipped with the Scott topology
» any continuous extension is acceptable
» (improper) intervals are understood order-theoretically

» The interesting case is Kaucher multiplication.

» Given an arithmetical expression e we compute its lower
and upper approximants e~ and e™ in L:

e Celet.
» Wealsoextend <toL x L — X:

[a,b] < [c,d] <= b<c

7/24



Lower and upper approximants

» For each sentence ¢ we define a lower and upper
approximants ¢~, ¢ € {T, L} such that

T = ¢ = o".
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Lower and upper approximants

» For each sentence ¢ we define a lower and upper
approximants ¢, ¢+ € {T, L} such that

T = ¢ = o".

» The approximants should be easy to compute.
» If¢p~ =Tthen¢p=T,andif 7 = L thenp = L.

» Easy cases:

1 =1 1t =1

T =T TH=T
(GAY)” =¢ Ay~ (qbw)* ¢t AYT
(V) =¢ Vi~ (pVy)t=¢"vy®
(e1<e)” = (e <ey) (e1 <)t (e1 <ey).
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Approximants for cuts and quantifiers

» Cuts:

(cut x : [a,b] left ¢(x) right ¢(x))~ = [a, ]
(cut x : [a, b] left ¢(x) right ¢)(x)) ™ = [b, 4]

19 /24



Approximants for cuts and quantifiers

» Cuts:

(cut x : [a,b] left ¢(x) right ¢(x))~ = [a, ]
(cut x : [a, b] left ¢(x) right ¢)(x)) ™ = [b, 4]

» Quantifiers:

o(la.b]) = Vreht]l.ox) = (%)

o(tt) = Fxehll.okx) = o([ba))
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¢ = ¢ = o

» If p = L and ¢ = T we cannot say much about ¢.
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Refinement

¢ = ¢ = o

» If p = L and ¢ = T we cannot say much about ¢.

» To make progress, we refine ¢ to an equivalent formula in
which quantifers range over smaller intervals.

» A simple strategy is to split quantified intervals in halves:
» Vx€a,b]. ¢(x) is refined to

(Vxea, 5] 6(x)) A (Yx € [, 5] 6(x))
» Jxea,b]. ¢(x) is refined to

(3xeln, 2. 6(x) v @xe[552,0]. 6(x))

» This amounts to searching with bisection.
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Refinement of cuts

» To refine a cut
cut x : [a, b] left ¢(x) right ¢ (x)

we try tomovea — a’ and b — b'.
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Refinement of cuts

» To refine a cut
cut x : [a, b] left ¢(x) right ¢ (x)

we try tomovea — a’ and b — b'.

a a b b

» If o~ (a') = T then movea — a'.
» If )= (V') = T then move b — b'.

» One or the other endpoint moves eventually because cuts
are located.
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Evaluation

» To evaluate a sentence ¢:
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Evaluation

» To evaluate a sentence ¢:
» if 9~ = T then output T,
» if 97 = L then output L,
» otherwise refine ¢ and repeat.
» Evaluation may not terminate, but this is expected, as ¢ is
only semidecidable.
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Speeding up the computation

Estimate an inequality f(x) < 0 on [a, b] by approximating f
with a linear map from above and below.

This is essentially Newton’s interval method.

N

3/24



Questions

» How do we incorporate N and recursion?
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Questions

v

How do we incorporate N and recursion?

v

How to extend Newton’s method to improper intervals?
How to extend Newton’s method to the multivariate case?

v

v

Can we do higher-type computations [ and ;—x?

v

Can this lead to a useful domain-specific language?
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