
Programming Techniques for
Exact Real Arithmetic

Andrej Bauer
Faculty of Mathematics and Physics

University of Ljubljana, Slovenia

(joint work with Ivo List & Paul Taylor)

SCAN 2014, Würzburg, September 2014

1 / 24

In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

I Descriptive language – what to compute.
I How to compute?

I We present a simple-minded execution strategy
I Many possibilities for optimization

I Applications:

I specification of computational problems
I verification of safety and liveness properties

2 / 24

In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

I Descriptive language – what to compute.
I How to compute?

I We present a simple-minded execution strategy
I Many possibilities for optimization

I Applications:

I specification of computational problems
I verification of safety and liveness properties

2 / 24

In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

I Descriptive language – what to compute.

I How to compute?

I We present a simple-minded execution strategy
I Many possibilities for optimization

I Applications:

I specification of computational problems
I verification of safety and liveness properties

2 / 24

In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

I Descriptive language – what to compute.
I How to compute?

I We present a simple-minded execution strategy
I Many possibilities for optimization

I Applications:

I specification of computational problems
I verification of safety and liveness properties

2 / 24

In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

I Descriptive language – what to compute.
I How to compute?

I We present a simple-minded execution strategy

I Many possibilities for optimization
I Applications:

I specification of computational problems
I verification of safety and liveness properties

2 / 24

In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

I Descriptive language – what to compute.
I How to compute?

I We present a simple-minded execution strategy
I Many possibilities for optimization

I Applications:

I specification of computational problems
I verification of safety and liveness properties

2 / 24

In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

I Descriptive language – what to compute.
I How to compute?

I We present a simple-minded execution strategy
I Many possibilities for optimization

I Applications:

I specification of computational problems
I verification of safety and liveness properties

2 / 24

In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

I Descriptive language – what to compute.
I How to compute?

I We present a simple-minded execution strategy
I Many possibilities for optimization

I Applications:
I specification of computational problems

I verification of safety and liveness properties

2 / 24

In this talk

We present a mathematical language Marshall which is
powerful enough to let us talk about real analysis, but also
simple enough to be an efficient programming language.

I Descriptive language – what to compute.
I How to compute?

I We present a simple-minded execution strategy
I Many possibilities for optimization

I Applications:
I specification of computational problems
I verification of safety and liveness properties

2 / 24

Foundations: Abstract Stone Duality

I Our language is based on Abstract Stone Duality (ASD) by
Paul Taylor.

I ASD is a variant of �-calculus which directly axiomatizes
spaces and continuous maps.

I We use a fragment of ASD which can be understood on its
own.

I Further material: http://www.paultaylor.eu/ASD/

3 / 24

http://www.paultaylor.eu/ASD/

Foundations: Abstract Stone Duality

I Our language is based on Abstract Stone Duality (ASD) by
Paul Taylor.

I ASD is a variant of �-calculus which directly axiomatizes
spaces and continuous maps.

I We use a fragment of ASD which can be understood on its
own.

I Further material: http://www.paultaylor.eu/ASD/

3 / 24

http://www.paultaylor.eu/ASD/

Foundations: Abstract Stone Duality

I Our language is based on Abstract Stone Duality (ASD) by
Paul Taylor.

I ASD is a variant of �-calculus which directly axiomatizes
spaces and continuous maps.

I We use a fragment of ASD which can be understood on its
own.

I Further material: http://www.paultaylor.eu/ASD/

3 / 24

http://www.paultaylor.eu/ASD/

Foundations: Abstract Stone Duality

I Our language is based on Abstract Stone Duality (ASD) by
Paul Taylor.

I ASD is a variant of �-calculus which directly axiomatizes
spaces and continuous maps.

I We use a fragment of ASD which can be understood on its
own.

I Further material: http://www.paultaylor.eu/ASD/

3 / 24

http://www.paultaylor.eu/ASD/

Axioms for real numbers

The real numbers R are:
I an ordered field (“can compute with reals”)

I with Archimedean property (“can obtain approximations”)
I Dedekind complete (“can use iterative methods”)
I overt Hausdorff space (“can search for a witness”)
I and [a, b] is compact (“can verify something holds”)

4 / 24

Axioms for real numbers

The real numbers R are:
I an ordered field (“can compute with reals”)
I with Archimedean property (“can obtain approximations”)

I Dedekind complete (“can use iterative methods”)
I overt Hausdorff space (“can search for a witness”)
I and [a, b] is compact (“can verify something holds”)

4 / 24

Axioms for real numbers

The real numbers R are:
I an ordered field (“can compute with reals”)
I with Archimedean property (“can obtain approximations”)
I Dedekind complete (“can use iterative methods”)

I overt Hausdorff space (“can search for a witness”)
I and [a, b] is compact (“can verify something holds”)

4 / 24

Axioms for real numbers

The real numbers R are:
I an ordered field (“can compute with reals”)
I with Archimedean property (“can obtain approximations”)
I Dedekind complete (“can use iterative methods”)
I overt Hausdorff space (“can search for a witness”)

I and [a, b] is compact (“can verify something holds”)

4 / 24

Axioms for real numbers

The real numbers R are:
I an ordered field (“can compute with reals”)
I with Archimedean property (“can obtain approximations”)
I Dedekind complete (“can use iterative methods”)
I overt Hausdorff space (“can search for a witness”)
I and [a, b] is compact (“can verify something holds”)

4 / 24

Dedekind cuts

A cut is a pair of rounded, bounded, disjoint, and located open sets.

5 / 24

Lower and upper reals

By taking the lower rounded sets we obtain the lower reals, and
similarly for upper reals. These are more fundamental than reals.

6 / 24

Examples of cuts

I A number a determines a cut, which determines a:

a = (cut x left x < a right a < x)

I
p

a is the cut

cut x left (x < 0 _ x2 < a) right (x > 0 ^ x2 > a)

I Exercise:

cut x left (x < �a _ x < a) right (�a < x ^ a < x)

I The full notation for cuts is

cut x : [a, b] left �(x) right (x)

This means that the cut determines a number in [a, b].

7 / 24

Examples of cuts

I A number a determines a cut, which determines a:

a = (cut x left x < a right a < x)

I
p

a is the cut

cut x left (x < 0 _ x2 < a) right (x > 0 ^ x2 > a)

I Exercise:

cut x left (x < �a _ x < a) right (�a < x ^ a < x)

I The full notation for cuts is

cut x : [a, b] left �(x) right (x)

This means that the cut determines a number in [a, b].

7 / 24

Examples of cuts

I A number a determines a cut, which determines a:

a = (cut x left x < a right a < x)

I
p

a is the cut

cut x left (x < 0 _ x2 < a) right (x > 0 ^ x2 > a)

I Exercise:

cut x left (x < �a _ x < a) right (�a < x ^ a < x)

I The full notation for cuts is

cut x : [a, b] left �(x) right (x)

This means that the cut determines a number in [a, b].

7 / 24

Examples of cuts

I A number a determines a cut, which determines a:

a = (cut x left x < a right a < x)

I
p

a is the cut

cut x left (x < 0 _ x2 < a) right (x > 0 ^ x2 > a)

I Exercise:

cut x left (x < �a _ x < a) right (�a < x ^ a < x)

I The full notation for cuts is

cut x : [a, b] left �(x) right (x)

This means that the cut determines a number in [a, b].

7 / 24

A language for real analysis

I Number types N, Q, R

I Arithmetic +, �, ⇥, /
I Decidable equality = and decidable order < on N and Q
I General recursion on N
I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ?
I connectives ^ and _
I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

A language for real analysis

I Number types N, Q, R
I Arithmetic +, �, ⇥, /

I Decidable equality = and decidable order < on N and Q
I General recursion on N
I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ?
I connectives ^ and _
I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

A language for real analysis

I Number types N, Q, R
I Arithmetic +, �, ⇥, /
I Decidable equality = and decidable order < on N and Q

I General recursion on N
I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ?
I connectives ^ and _
I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

A language for real analysis

I Number types N, Q, R
I Arithmetic +, �, ⇥, /
I Decidable equality = and decidable order < on N and Q
I General recursion on N

I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ?
I connectives ^ and _
I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

A language for real analysis

I Number types N, Q, R
I Arithmetic +, �, ⇥, /
I Decidable equality = and decidable order < on N and Q
I General recursion on N
I Semidecidable order relation < on R

I Logic:

I truth > and falsehood ?
I connectives ^ and _
I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

A language for real analysis

I Number types N, Q, R
I Arithmetic +, �, ⇥, /
I Decidable equality = and decidable order < on N and Q
I General recursion on N
I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ?
I connectives ^ and _
I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

A language for real analysis

I Number types N, Q, R
I Arithmetic +, �, ⇥, /
I Decidable equality = and decidable order < on N and Q
I General recursion on N
I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ?

I connectives ^ and _
I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

A language for real analysis

I Number types N, Q, R
I Arithmetic +, �, ⇥, /
I Decidable equality = and decidable order < on N and Q
I General recursion on N
I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ?
I connectives ^ and _

I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

A language for real analysis

I Number types N, Q, R
I Arithmetic +, �, ⇥, /
I Decidable equality = and decidable order < on N and Q
I General recursion on N
I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ?
I connectives ^ and _
I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

A language for real analysis

I Number types N, Q, R
I Arithmetic +, �, ⇥, /
I Decidable equality = and decidable order < on N and Q
I General recursion on N
I Semidecidable order relation < on R
I Logic:

I truth > and falsehood ?
I connectives ^ and _
I existential quantifiers:

9x : R, 9x : [a, b], 9x : (a, b), 9n : N, 9q : Q

I universal quantifier: 8x : [a, b]

8 / 24

“Topologic”

I A logical formula �(x) where x 2 A has two readings:

I logical: a predicate on A
I topological:

I an open subset of A: �(x) () >
I a closed subset of A: �(x) () ?

I In particular, a formula � without parameters is

I logically, a truth value
I topologically, an element of Sierpinski space ⌃ = {?,>}

I We use this to express topological and analytic notions
logically.

9 / 24

“Topologic”

I A logical formula �(x) where x 2 A has two readings:
I logical: a predicate on A

I topological:

I an open subset of A: �(x) () >
I a closed subset of A: �(x) () ?

I In particular, a formula � without parameters is

I logically, a truth value
I topologically, an element of Sierpinski space ⌃ = {?,>}

I We use this to express topological and analytic notions
logically.

9 / 24

“Topologic”

I A logical formula �(x) where x 2 A has two readings:
I logical: a predicate on A
I topological:

I an open subset of A: �(x) () >
I a closed subset of A: �(x) () ?

I In particular, a formula � without parameters is

I logically, a truth value
I topologically, an element of Sierpinski space ⌃ = {?,>}

I We use this to express topological and analytic notions
logically.

9 / 24

“Topologic”

I A logical formula �(x) where x 2 A has two readings:
I logical: a predicate on A
I topological:

I an open subset of A: �(x) () >

I a closed subset of A: �(x) () ?
I In particular, a formula � without parameters is

I logically, a truth value
I topologically, an element of Sierpinski space ⌃ = {?,>}

I We use this to express topological and analytic notions
logically.

9 / 24

“Topologic”

I A logical formula �(x) where x 2 A has two readings:
I logical: a predicate on A
I topological:

I an open subset of A: �(x) () >
I a closed subset of A: �(x) () ?

I In particular, a formula � without parameters is

I logically, a truth value
I topologically, an element of Sierpinski space ⌃ = {?,>}

I We use this to express topological and analytic notions
logically.

9 / 24

“Topologic”

I A logical formula �(x) where x 2 A has two readings:
I logical: a predicate on A
I topological:

I an open subset of A: �(x) () >
I a closed subset of A: �(x) () ?

I In particular, a formula � without parameters is

I logically, a truth value
I topologically, an element of Sierpinski space ⌃ = {?,>}

I We use this to express topological and analytic notions
logically.

9 / 24

“Topologic”

I A logical formula �(x) where x 2 A has two readings:
I logical: a predicate on A
I topological:

I an open subset of A: �(x) () >
I a closed subset of A: �(x) () ?

I In particular, a formula � without parameters is
I logically, a truth value

I topologically, an element of Sierpinski space ⌃ = {?,>}
I We use this to express topological and analytic notions

logically.

9 / 24

“Topologic”

I A logical formula �(x) where x 2 A has two readings:
I logical: a predicate on A
I topological:

I an open subset of A: �(x) () >
I a closed subset of A: �(x) () ?

I In particular, a formula � without parameters is
I logically, a truth value
I topologically, an element of Sierpinski space ⌃ = {?,>}

I We use this to express topological and analytic notions
logically.

9 / 24

“Topologic”

I A logical formula �(x) where x 2 A has two readings:
I logical: a predicate on A
I topological:

I an open subset of A: �(x) () >
I a closed subset of A: �(x) () ?

I In particular, a formula � without parameters is
I logically, a truth value
I topologically, an element of Sierpinski space ⌃ = {?,>}

I We use this to express topological and analytic notions
logically.

9 / 24

Example: R is locally compact

I Classically: for open U ✓ R and x 2 R,

x 2 U () 9 d, u2Q . x 2 (d, u) ✓ [d, u] ✓ U

I Topologically: for � : R ! ⌃ and x : R,

�(x) () 9 d, u2Q . d < x < u ^ 8 y2 [d, u] .�(y)

10 / 24

Example: R is locally compact

I Classically: for open U ✓ R and x 2 R,

x 2 U () 9 d, u2Q . x 2 (d, u) ✓ [d, u] ✓ U

I Topologically: for � : R ! ⌃ and x : R,

�(x) () 9 d, u2Q . d < x < u ^ 8 y2 [d, u] .�(y)

10 / 24

Example: [0, 1] is connected

I Classically: for open U,V ✓ [0, 1], if

U \ V = ; and U [V = [0, 1]

then U = [0, 1] or V = [0, 1].

I Topologically: for �, : [0, 1] ! ⌃, if

(9 x2 [0, 1] .�(x) ^ (x)) () ? and
(8 x2 [0, 1] .�(x) _ (x)) () >

then (8 x2 [0, 1] .�(x)) _ (8 x2 [0, 1] . (x)).

11 / 24

Example: [0, 1] is connected

I Classically: for open U,V ✓ [0, 1], if

U \ V = ; and U [V = [0, 1]

then U = [0, 1] or V = [0, 1].
I Topologically: for �, : [0, 1] ! ⌃, if

(9 x2 [0, 1] .�(x) ^ (x)) () ? and
(8 x2 [0, 1] .�(x) _ (x)) () >

then (8 x2 [0, 1] .�(x)) _ (8 x2 [0, 1] . (x)).

11 / 24

89 statements

8 x2A . 9 y2B .�(x, y)

I “For every parameter x there is solution y.”
I “In every state x good thing y happens.”
I Note: A must be overt and B compact.

12 / 24

89 statements

8 x2A . 9 y2B .�(x, y)

I “For every parameter x there is solution y.”

I “In every state x good thing y happens.”
I Note: A must be overt and B compact.

12 / 24

89 statements

8 x2A . 9 y2B .�(x, y)

I “For every parameter x there is solution y.”
I “In every state x good thing y happens.”

I Note: A must be overt and B compact.

12 / 24

89 statements

8 x2A . 9 y2B .�(x, y)

I “For every parameter x there is solution y.”
I “In every state x good thing y happens.”
I Note: A must be overt and B compact.

12 / 24

The maximum of f : [0, 1] ! R

cut x left (9 y2 [0, 1] . x < f (y))
right (8 z2 [0, 1] . f (z) < x)

13 / 24

Cauchy completeness

I A rapid Cauchy sequence (an)n satisfies

|an+1 � an| < 2�n.

I Its limit is the cut

cut x left (9 n2N . x < an � 2�n+1)

right (9 n2N . an + 2�n+1 < x)

14 / 24

Cauchy completeness

I A rapid Cauchy sequence (an)n satisfies

|an+1 � an| < 2�n.

I Its limit is the cut

cut x left (9 n2N . x < an � 2�n+1)

right (9 n2N . an + 2�n+1 < x)

14 / 24

From mathematics to programming

I We would like to compute with our language.

I We limit attention to logic and R.
I Not surprisingly, we compute with (improper) intervals.

15 / 24

From mathematics to programming

I We would like to compute with our language.
I We limit attention to logic and R.

I Not surprisingly, we compute with (improper) intervals.

15 / 24

From mathematics to programming

I We would like to compute with our language.
I We limit attention to logic and R.
I Not surprisingly, we compute with (improper) intervals.

15 / 24

The interval lattice L

I The lattice of pairs [a, b], where a is upper and b lower real.

I Ordered by [a, b] v [c, d] () a  c ^ d  b.
I The lattice contains R as [a, a].

[1,�1]

[�1,1]

16 / 24

The interval lattice L

I The lattice of pairs [a, b], where a is upper and b lower real.
I Ordered by [a, b] v [c, d] () a  c ^ d  b.

I The lattice contains R as [a, a].

[1,�1]

[�1,1]

16 / 24

The interval lattice L

I The lattice of pairs [a, b], where a is upper and b lower real.
I Ordered by [a, b] v [c, d] () a  c ^ d  b.
I The lattice contains R as [a, a].

[1,�1]

[�1,1]

16 / 24

Extending arithmetic to L

I Extend operations from R⇥ R ! R to L ⇥ L ! L:

I L is equipped with the Scott topology
I any continuous extension is acceptable
I (improper) intervals are understood order-theoretically

I The interesting case is Kaucher multiplication.
I Given an arithmetical expression e we compute its lower

and upper approximants e� and e+ in L:

e� v e v e+.

I We also extend < to L ⇥ L ! ⌃:

[a, b] < [c, d] () b < c

17 / 24

Extending arithmetic to L

I Extend operations from R⇥ R ! R to L ⇥ L ! L:
I L is equipped with the Scott topology

I any continuous extension is acceptable
I (improper) intervals are understood order-theoretically

I The interesting case is Kaucher multiplication.
I Given an arithmetical expression e we compute its lower

and upper approximants e� and e+ in L:

e� v e v e+.

I We also extend < to L ⇥ L ! ⌃:

[a, b] < [c, d] () b < c

17 / 24

Extending arithmetic to L

I Extend operations from R⇥ R ! R to L ⇥ L ! L:
I L is equipped with the Scott topology
I any continuous extension is acceptable

I (improper) intervals are understood order-theoretically
I The interesting case is Kaucher multiplication.
I Given an arithmetical expression e we compute its lower

and upper approximants e� and e+ in L:

e� v e v e+.

I We also extend < to L ⇥ L ! ⌃:

[a, b] < [c, d] () b < c

17 / 24

Extending arithmetic to L

I Extend operations from R⇥ R ! R to L ⇥ L ! L:
I L is equipped with the Scott topology
I any continuous extension is acceptable
I (improper) intervals are understood order-theoretically

I The interesting case is Kaucher multiplication.
I Given an arithmetical expression e we compute its lower

and upper approximants e� and e+ in L:

e� v e v e+.

I We also extend < to L ⇥ L ! ⌃:

[a, b] < [c, d] () b < c

17 / 24

Extending arithmetic to L

I Extend operations from R⇥ R ! R to L ⇥ L ! L:
I L is equipped with the Scott topology
I any continuous extension is acceptable
I (improper) intervals are understood order-theoretically

I The interesting case is Kaucher multiplication.

I Given an arithmetical expression e we compute its lower
and upper approximants e� and e+ in L:

e� v e v e+.

I We also extend < to L ⇥ L ! ⌃:

[a, b] < [c, d] () b < c

17 / 24

Extending arithmetic to L

I Extend operations from R⇥ R ! R to L ⇥ L ! L:
I L is equipped with the Scott topology
I any continuous extension is acceptable
I (improper) intervals are understood order-theoretically

I The interesting case is Kaucher multiplication.
I Given an arithmetical expression e we compute its lower

and upper approximants e� and e+ in L:

e� v e v e+.

I We also extend < to L ⇥ L ! ⌃:

[a, b] < [c, d] () b < c

17 / 24

Extending arithmetic to L

I Extend operations from R⇥ R ! R to L ⇥ L ! L:
I L is equipped with the Scott topology
I any continuous extension is acceptable
I (improper) intervals are understood order-theoretically

I The interesting case is Kaucher multiplication.
I Given an arithmetical expression e we compute its lower

and upper approximants e� and e+ in L:

e� v e v e+.

I We also extend < to L ⇥ L ! ⌃:

[a, b] < [c, d] () b < c

17 / 24

Lower and upper approximants
I For each sentence � we define a lower and upper

approximants ��,�+ 2 {>,?} such that

�� =) � =) �+.

I The approximants should be easy to compute.
I If �� = > then � = >, and if �+ = ? then � = ?.
I Easy cases:

?� = ? ?+ = ?
>� = > >+ = >

(� ^)� = �� ^ � (� ^)+ = �+ ^ +

(� _)� = �� _ � (� _)+ = �+ _ +

(e1 < e2)
� = (e�1 < e�2) (e1 < e2)

+ = (e+1 < e+2).

18 / 24

Lower and upper approximants
I For each sentence � we define a lower and upper

approximants ��,�+ 2 {>,?} such that

�� =) � =) �+.

I The approximants should be easy to compute.

I If �� = > then � = >, and if �+ = ? then � = ?.
I Easy cases:

?� = ? ?+ = ?
>� = > >+ = >

(� ^)� = �� ^ � (� ^)+ = �+ ^ +

(� _)� = �� _ � (� _)+ = �+ _ +

(e1 < e2)
� = (e�1 < e�2) (e1 < e2)

+ = (e+1 < e+2).

18 / 24

Lower and upper approximants
I For each sentence � we define a lower and upper

approximants ��,�+ 2 {>,?} such that

�� =) � =) �+.

I The approximants should be easy to compute.
I If �� = > then � = >, and if �+ = ? then � = ?.

I Easy cases:

?� = ? ?+ = ?
>� = > >+ = >

(� ^)� = �� ^ � (� ^)+ = �+ ^ +

(� _)� = �� _ � (� _)+ = �+ _ +

(e1 < e2)
� = (e�1 < e�2) (e1 < e2)

+ = (e+1 < e+2).

18 / 24

Lower and upper approximants
I For each sentence � we define a lower and upper

approximants ��,�+ 2 {>,?} such that

�� =) � =) �+.

I The approximants should be easy to compute.
I If �� = > then � = >, and if �+ = ? then � = ?.
I Easy cases:

?� = ? ?+ = ?
>� = > >+ = >

(� ^)� = �� ^ � (� ^)+ = �+ ^ +

(� _)� = �� _ � (� _)+ = �+ _ +

(e1 < e2)
� = (e�1 < e�2) (e1 < e2)

+ = (e+1 < e+2).

18 / 24

Approximants for cuts and quantifiers

I Cuts:

(cut x : [a, b] left �(x) right (x))� = [a, b]
(cut x : [a, b] left �(x) right (x))+ = [b, a]

I Quantifiers:

�([a, b]) =) 8 x2 [a, b] .�(x) =) �(a+b
2)

�(a+b
2) =) 9 x2 [a, b] .�(x) =) �([b, a])

19 / 24

Approximants for cuts and quantifiers

I Cuts:

(cut x : [a, b] left �(x) right (x))� = [a, b]
(cut x : [a, b] left �(x) right (x))+ = [b, a]

I Quantifiers:

�([a, b]) =) 8 x2 [a, b] .�(x) =) �(a+b
2)

�(a+b
2) =) 9 x2 [a, b] .�(x) =) �([b, a])

19 / 24

Refinement

�� =) � =) �+

I If �� = ? and �+ = > we cannot say much about �.

I To make progress, we refine � to an equivalent formula in
which quantifers range over smaller intervals.

I A simple strategy is to split quantified intervals in halves:

I 8 x2 [a, b] .�(x) is refined to

(8 x2 [a, a+b
2] .�(x)) ^ (8 x2 [a+b

2 , b] .�(x))

I 9 x2 [a, b] .�(x) is refined to

(9 x2 [a, a+b
2] .�(x)) _ (9 x2 [a+b

2 , b] .�(x))

I This amounts to searching with bisection.

20 / 24

Refinement

�� =) � =) �+

I If �� = ? and �+ = > we cannot say much about �.
I To make progress, we refine � to an equivalent formula in

which quantifers range over smaller intervals.

I A simple strategy is to split quantified intervals in halves:

I 8 x2 [a, b] .�(x) is refined to

(8 x2 [a, a+b
2] .�(x)) ^ (8 x2 [a+b

2 , b] .�(x))

I 9 x2 [a, b] .�(x) is refined to

(9 x2 [a, a+b
2] .�(x)) _ (9 x2 [a+b

2 , b] .�(x))

I This amounts to searching with bisection.

20 / 24

Refinement

�� =) � =) �+

I If �� = ? and �+ = > we cannot say much about �.
I To make progress, we refine � to an equivalent formula in

which quantifers range over smaller intervals.
I A simple strategy is to split quantified intervals in halves:

I 8 x2 [a, b] .�(x) is refined to

(8 x2 [a, a+b
2] .�(x)) ^ (8 x2 [a+b

2 , b] .�(x))

I 9 x2 [a, b] .�(x) is refined to

(9 x2 [a, a+b
2] .�(x)) _ (9 x2 [a+b

2 , b] .�(x))

I This amounts to searching with bisection.

20 / 24

Refinement

�� =) � =) �+

I If �� = ? and �+ = > we cannot say much about �.
I To make progress, we refine � to an equivalent formula in

which quantifers range over smaller intervals.
I A simple strategy is to split quantified intervals in halves:

I 8 x2 [a, b] .�(x) is refined to

(8 x2 [a, a+b
2] .�(x)) ^ (8 x2 [a+b

2 , b] .�(x))

I 9 x2 [a, b] .�(x) is refined to

(9 x2 [a, a+b
2] .�(x)) _ (9 x2 [a+b

2 , b] .�(x))

I This amounts to searching with bisection.

20 / 24

Refinement

�� =) � =) �+

I If �� = ? and �+ = > we cannot say much about �.
I To make progress, we refine � to an equivalent formula in

which quantifers range over smaller intervals.
I A simple strategy is to split quantified intervals in halves:

I 8 x2 [a, b] .�(x) is refined to

(8 x2 [a, a+b
2] .�(x)) ^ (8 x2 [a+b

2 , b] .�(x))

I 9 x2 [a, b] .�(x) is refined to

(9 x2 [a, a+b
2] .�(x)) _ (9 x2 [a+b

2 , b] .�(x))

I This amounts to searching with bisection.

20 / 24

Refinement

�� =) � =) �+

I If �� = ? and �+ = > we cannot say much about �.
I To make progress, we refine � to an equivalent formula in

which quantifers range over smaller intervals.
I A simple strategy is to split quantified intervals in halves:

I 8 x2 [a, b] .�(x) is refined to

(8 x2 [a, a+b
2] .�(x)) ^ (8 x2 [a+b

2 , b] .�(x))

I 9 x2 [a, b] .�(x) is refined to

(9 x2 [a, a+b
2] .�(x)) _ (9 x2 [a+b

2 , b] .�(x))

I This amounts to searching with bisection.

20 / 24

Refinement of cuts

I To refine a cut

cut x : [a, b] left �(x) right (x)

we try to move a 7! a0 and b 7! b0.

a a’ b’ b

I If ��(a0) = > then move a 7! a0.
I If �(b0) = > then move b 7! b0.
I One or the other endpoint moves eventually because cuts

are located.

21 / 24

Refinement of cuts

I To refine a cut

cut x : [a, b] left �(x) right (x)

we try to move a 7! a0 and b 7! b0.

a a’ b’ b

I If ��(a0) = > then move a 7! a0.

I If �(b0) = > then move b 7! b0.
I One or the other endpoint moves eventually because cuts

are located.

21 / 24

Refinement of cuts

I To refine a cut

cut x : [a, b] left �(x) right (x)

we try to move a 7! a0 and b 7! b0.

a a’ b’ b

I If ��(a0) = > then move a 7! a0.
I If �(b0) = > then move b 7! b0.

I One or the other endpoint moves eventually because cuts
are located.

21 / 24

Refinement of cuts

I To refine a cut

cut x : [a, b] left �(x) right (x)

we try to move a 7! a0 and b 7! b0.

a a’ b’ b

I If ��(a0) = > then move a 7! a0.
I If �(b0) = > then move b 7! b0.
I One or the other endpoint moves eventually because cuts

are located.

21 / 24

Evaluation

I To evaluate a sentence �:

I if �� = > then output >,
I if �+ = ? then output ?,
I otherwise refine � and repeat.

I Evaluation may not terminate, but this is expected, as � is
only semidecidable.

22 / 24

Evaluation

I To evaluate a sentence �:
I if �� = > then output >,

I if �+ = ? then output ?,
I otherwise refine � and repeat.

I Evaluation may not terminate, but this is expected, as � is
only semidecidable.

22 / 24

Evaluation

I To evaluate a sentence �:
I if �� = > then output >,
I if �+ = ? then output ?,

I otherwise refine � and repeat.
I Evaluation may not terminate, but this is expected, as � is

only semidecidable.

22 / 24

Evaluation

I To evaluate a sentence �:
I if �� = > then output >,
I if �+ = ? then output ?,
I otherwise refine � and repeat.

I Evaluation may not terminate, but this is expected, as � is
only semidecidable.

22 / 24

Evaluation

I To evaluate a sentence �:
I if �� = > then output >,
I if �+ = ? then output ?,
I otherwise refine � and repeat.

I Evaluation may not terminate, but this is expected, as � is
only semidecidable.

22 / 24

Speeding up the computation

Estimate an inequality f (x) < 0 on [a, b] by approximating f
with a linear map from above and below.

This is essentially Newton’s interval method.

23 / 24

Questions

I How do we incorporate N and recursion?

I How to extend Newton’s method to improper intervals?
I How to extend Newton’s method to the multivariate case?
I Can we do higher-type computations

R
and d

dx ?
I Can this lead to a useful domain-specific language?

24 / 24

Questions

I How do we incorporate N and recursion?
I How to extend Newton’s method to improper intervals?

I How to extend Newton’s method to the multivariate case?
I Can we do higher-type computations

R
and d

dx ?
I Can this lead to a useful domain-specific language?

24 / 24

Questions

I How do we incorporate N and recursion?
I How to extend Newton’s method to improper intervals?
I How to extend Newton’s method to the multivariate case?

I Can we do higher-type computations
R

and d
dx ?

I Can this lead to a useful domain-specific language?

24 / 24

Questions

I How do we incorporate N and recursion?
I How to extend Newton’s method to improper intervals?
I How to extend Newton’s method to the multivariate case?
I Can we do higher-type computations

R
and d

dx ?

I Can this lead to a useful domain-specific language?

24 / 24

Questions

I How do we incorporate N and recursion?
I How to extend Newton’s method to improper intervals?
I How to extend Newton’s method to the multivariate case?
I Can we do higher-type computations

R
and d

dx ?
I Can this lead to a useful domain-specific language?

24 / 24

