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Motivations

@ Scientific Computing, Computer Arithmetic and Validated Numerics

@ My personal challenge:

CORRECTNESS

@ consider small critical programs, where complex properties about
floating-point arithmetic are involved

@ How can we get a high guarantee?

— formal verification
@ Convince people of what is formally verified!
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The used toolchain: Frama-C/Jessie/Why

Annotated C program

h 4

Frama-C/Jessie plug-in

¥
WHY verification condition generator

Verification conditions

Automatic provers Interactive provers
(Alt-Ergo,Gappa,CVC3,etc.) (Coq,PVS,etc.)
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Annotation language: ACSL

(how a bug differs from a rounding error)

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

@ assertions

@ In annotations, all computations are exact.

= For the programmer, the specification is easy to understand.
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ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part
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ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part 1+x+x*x/2

@ the value that would have been obtained with exact computations,
2
X — Xe exact part 1+x+%
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ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part 1+x+x*x/2

@ the value that would have been obtained with exact computations,
2
X — Xe exact part 1+x+%
@ the value that we ideally wanted to compute
X — Xm model part exp(x)

= easy to split into method error and rounding error
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Formal proof

The proof is checked in its deep details until the computer agrees with it.
We often use formal proof checkers, meaning programs that only check a
proof (they may also generate easy demonstrations).

Therefore the checker is a very short program (de Bruijn criteria: the
correctness of the system as a whole depends on the correctness of a very
small "kernel”).
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The Coq proof assistant (http://coq.inria.fr)

Based on the Curry-Howard isomorphism.
(equivalence between proofs and A-terms)

Few automations.
Comprehensive libraries, including on Z and R.
Coq kernel mechanically checks each step of each proof.

The method is to apply successively tactics (theorem application,
rewriting, simplifications. ..) to transform or reduce the goal down to
the hypotheses.

The proof is handled starting from the conclusion.
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A Coq formalization of FP arithmetic : Flocq

A FP format is only characterized by a function ¢ : Z — Z.
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A Coq formalization of FP arithmetic : Flocq

A FP format is only characterized by a function ¢ : Z — Z.

For x € R, we compute e such that f¢71 < |x| < €.
Then x is in the format iff

x = [xB‘W(e)J gele)

In other words: if it can be written with exponent ¢(e).
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Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ©(€) = emin-
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Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ©(€) = emin-

Definition (FL*)
Floating-point format with precision p:

@ unbounded (FLX): ¢(e) = e — p,

@ bounded with subnormal numbers (FLT): ¢(e) = max(e — p, €min),

@ bounded without subnormal numbers (FTZ).

A random ¢ may not allow to define a rounding: we have a valid
predicate for being a reasonable .
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Usual Floating-Point Formats

©(e)
. Ip
FLX
€min FLT
p—1| FTZ FTZ
€min FLT
FLX
€min  E€min + P — 1 e
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Example of Coq theorem

Theorem (round_NE _abs)

Let ¢ be a format, such that the rounding to nearest, ties to even (o) can
be defined. For all x € R, o(|x|) = |o(x)].
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Theorem (round_NE _abs)

Let ¢ be a format, such that the rounding to nearest, ties to even (o) can
be defined. For all x € R, o(|x|) = |o(x)].

Lemma round NE_abs: forall x : R,
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Example of Coq theorem

Theorem (round_NE _abs)

Let ¢ be a format, such that the rounding to nearest, ties to even (o) can
be defined. For all x € R, o(|x|) = |o(x)].

Lemma round NE_abs: forall x : R,
round beta fexp ZnearestE (Rabs x) = Rabs (round beta fexp ZnearestE x).
Proof with auto with typeclass_instances.
intros x; apply sym_eq.
unfold Rabs at 2.
destruct (Rcase_abs x) as [Hx|Hx].
rewrite round NE_opp.
apply Rabs_leftl.
rewrite <- (round O beta fexp ZnearestE).
apply round_le...
now apply Rlt_le.
apply Rabs_pos_eq.
rewrite <- (round O beta fexp ZnearestE).
apply round_le...
now apply Rge_le.
Qed.

With the stating of the theorem, the tactics, and the name of theorems.
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More about Flocq

Flocg: 16000 lines of Coq, 700 theorems,

@ any radix, any format,

@ both axiomatic and computable definitions of rounding,
o effective arithmetic operators,
°

numerous theorems.
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Methodology for the verification of C programs

C Program
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Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
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Outline

© Examples
Sterbenz

Error of the multiplication
Accurate discriminant

Area of a triangle

1-D Wave equation discretization
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Examples

@ All examples use Frama-C Neon, Why 2.34 and Why3 0.83.
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@ Non-automatic proof obligations are proved using Coq 8.4pl4.
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Examples

@ All examples use Frama-C Neon, Why 2.34 and Why3 0.83.
@ Non-automatic proof obligations are proved using Coq 8.4pl4.

@ Overflow is considered a runtime error.
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Examples

All examples use Frama-C Neon, Why 2.34 and Why3 0.83.
@ Non-automatic proof obligations are proved using Coq 8.4pl4.

Overflow is considered a runtime error.

Code & proofs available on
http://www.lri.fr/~sboldo/research.html.
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Sterbenz

Theorem (Sterbenz)

If x and y are FP numbers in a given precision such that

<x <2y,

N[

then x — y fits in a FP number in the same precision and is therefore
computed without error.
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Sterbenz — program

/*@ requires y/2. <= x <= 2.%y;
@ ensures \result == x-y;
Qx/

float Sterbenz(float x, float y) {
return x—vy,;
}
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Sterbenz — program

Exact subtraction

/*@ requires y/2. <= x <=
@ ensures \result == x4¥;
Qx/

float Sterbenz(float x, float y) {
return x—vy,;
}
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Sterbenz — proofs

Proof obligations cvC3 Coq

Nb lines
VC for behavior 2.34 6
VC for safety 0.23
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Veltkamp/Dekker

Also known as Error-Free-Transformation for the multiplication.

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the exact error of the multiplication using only FP operations.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 23 /52



Veltkamp/Dekker

Also known as Error-Free-Transformation for the multiplication.

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the exact error of the multiplication using only FP operations.

Idea:

split your floats in 2, multiply all the parts, add them in the correct order.
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Veltkamp/Dekker — program

/%@ requires xy == \round_double(\NearestEven,x*y) &&
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
[ ==> xxy == xy+\result);
Qx/

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;
C=0x8000001p0;
/*Q@ assert C == 0x1p27+1; */

px=x*C; qx=x—px; hx=px+qx; tx=x—hx;
py=y*C; qy=y—py; hy=py+qy; ty=y—hy;
r2=—xy+hxx*hy;

r2+=hxx*ty;

r2+=hyx*tx;

r24=txsx*ty;
return r2;
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Veltkamp/Dekker — program

/%@ requires xy == \round_double(\NearestEven,x*y) &&
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
¢ \/ ==> x*y == xy+\result); ' Exact error of @
Qx*

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;
C=0x8000001p0 ;
/*Q@ assert C == 0x1p27+1; */
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Veltkamp/Dekker — program

/%@ requires xy == \round_double(\NearestEven,x*y) &&
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
[ ==> xxy == xy+\result);
Qx/

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;
C=0x8000001p0;
/*Q@ assert C == 0x1p27+1; */

px=x*C; gqx=x—px; hx=px+qx; tx=x—hx;

Split x and y

py=y*C; qy=y—py; hy=py+qy; ty=y—hy;

r2=—xy+hxx*hy;
r2+=hxx*ty;
r2+=hyx*tx;
r24=txsx*ty;
return r2;
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Veltkamp/Dekker — program

/%@ requires xy == \round_double(\NearestEven,x*y) &&
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
[ ==> xxy == xy+\result);
Qx/

double Dekker(double x, double y, double xy) {
double C,px,qx,hx,py,qy, hy, tx, ty,r2;
C=0x8000001p0;
/*Q@ assert C == 0x1p27+1; */

px=x*C; qx=x—px; hx=px+qx; tx=x—hx;

py=y*C; qy=y—py; hy=py+qy; ty=y—hy;

r2=—xy-+hxxhy;

r24=hxs*ty ; Multiply all halves and
r24+=hyx*tx;

,24<:t§*ty; add all the results
return r2;
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Veltkamp/Dekker — proof

Proof obligations Coq Time
Nb lines
Previous Coq proof (spec + proof) 2639
VC for behavior | 1. assertion 3
2. postcondition 238
VC for safety 1-9. FP overflow | 1lor?2
10. FP overflow 37
11. FP overflow 47
12. FP overflow 43
13. FP overflow 64
14. FP overflow 43
15. FP overflow 83
16. FP overflow 49
17. FP overflow 94

Total (1,248 lines spec VC excluded) | 3351 | 9 min 02
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Accurate discriminant

It is pretty hard to compute b?> — ac accurately.
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Accurate discriminant

It is pretty hard to compute b?> — ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b> — a x ¢ within 2 ulps.
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Accurate discriminant

It is pretty hard to compute b?> — ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b> — a x ¢ within 2 ulps.

Idea:

Test whether there is cancellation. If not, then use the naive algorithm.
Else, compute the errors of the multiplication, and add everything in the
correct order.
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Accurate discriminant — program

/*@ requires

@ (b==0. |l 0x1.p-916 <= \abs(b*b)) &&

[ (a*xc== || 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (ptq <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;
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Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[ (a*xc== || 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
doub
p=Db %
g=ax*c;

Test of cancellation

When p > g, it roughly

if (ptq <£ 3xfabs(p—q)) corresponds to p > 2gq

d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52



Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[ (a*xc== || 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {

else {
dp=Dekker(b,b,p
dg=Dekker(a,c,q
d=(p—q)+(dp—dq);

)
)i

return d;
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Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[ (a*xc== [| 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;

Compute the
multiplication errors

)
)
d=(p—q)+(dp—dq);

dg=Dekker(a,c,q

return d;
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Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[ (a*xc== [| 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

Add everything,
p—q being correct.

As 2 SpS2q
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Accurate discriminant — program

/*@ requires

(b==0. || 0x1.p-916 <= \abs(b*b)) &&
(a*xc== || 0x1.p-916 <= \abs(a*c)) &&

\abs (b) <= 0x1.p510 &&
\abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
\abs (a*c) <= 0x1.p1021;

ensures \result==0.

© © 0 0 O

*/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (ptq <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;

Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);

Underflow
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Accurate discriminant — program

/*@ requires
(b==0. |l 0x1.p-916 <= \abs(b*b)) &&
(axc== || 0x1.p-916 <= \abs(a*c)) &&
\abs (b) <= 0x1.p510 &&
\abs (a) <= 0x1.p995 && \abs(c) <= Ox1.p995 && Overflow
\abs (a*c) <= 0x1.p1021;
ensures \result==0.

Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);

© © 0 0 O

*/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (ptq <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;
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Accurate discriminant — program

/*@ requires
@ (b==0. |l 0x1.p-916 <= \abs(b*b)) &&
(a*xc== || 0x1.p-916 <= \abs(a*c)) &&
\abs (b) <= 0x1.p510 &&
\abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
\abs (a*c) <= 0x1.p1021;
ensures \result==0.
Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);

2 ulps

© © 0 © O o O

*/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (ptq <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;
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Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[ (a*xc== || 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (p+
d=p—q;

else { ..
dp=Dekk&(b.b,p): = pre-conditions to prove

)
dgq=Dekker(a,c,q); = post-conditions guaranteed
d=(p—q)+(dp—dq);

return d;
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Accurate discriminant — program

/*@ requires
(b==0. |
(a*xc== |

@

| 0x1.p-916 <= \abs(b*b)) &&

(] | 0x1.p-916 <= \abs(ax*c)) &&
e \abs(b) <= 0x1.p510 &&
@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;
@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
Q

In initial proof,
test assumed correct

e b, double ¢) {

= Additional proof

when test is incorrect

if (p+q <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;
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Accurate discriminant — proof

Proof obligations Coq Time
Previous Coq proof (spec + proof) 3390
VC for theory realization 88
Behavior | 1. postcondition 61
2. postcondition 90
Safety 1. floating-point overflow 2
2. floating-point overflow 2
3. floating-point overflow 3
4. floating-point overflow 4
5. floating-point overflow 4
6. precondition for call 2
7. precondition for call 9
8. precondition for call 1
9-13. precondition for call 2
14. floating-point overflow | 44
15. floating-point overflow | 45
Total (1,146 lines spec VC excluded) | 3655 | 5 min 47
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© Tools
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@ Area of a triangle

@ Conclusion
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Triangle area

a
Heron's formula: A = \/s (s —a) (s — b) (s — c) where s = Z£2%<,

Kahan's formula, for c < b < a:

A= VT (BT a) (e (a- b)) (cr(a ) @+ (b))
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Triangle area

a
Heron's formula: A = \/s (s —a) (s — b) (s — c) where s = Z£2%<,

Kahan's formula, for c < b < a:

A= VT (BT a) (e (a- b)) (cr(a ) @+ (b))

[Kahan, Miscalculating Area and Angles of a Needle-like Triangle]

Area A is accurate to within a few units in their last digits.
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Triangle area

a
Heron's formula: A = \/s (s —a) (s — b) (s — c) where s = Z£2%<,

Kahan's formula, for c < b < a:

A= VT (BT a) (e (a- b)) (cr(a ) @+ (b))

[Kahan, Miscalculating Area and Angles of a Needle-like Triangle]

Area A is accurate to within a few units in their last digits.

[Goldberg, 1991]

The rounding error of area A is at most 11 ¢, provided € < 0.005 and
subtraction and square roots are accurate.
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Triangle area

Theorem (err_A_flx_radix2)

With an unbounded exponent range, 3 = 2, and ¢ < 1%0, The rounding
error of area A is at most 4.75¢ + 33¢2.
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Triangle area

Theorem (err_A_flx_radix2)

With an unbounded exponent range, 3 = 2, and ¢ < 1%0, The rounding
error of area A is at most 4.75¢ + 33¢2.

For underflow:

@ detect afterwards if a subnormal appeared in the computation

@ order the intermediate variables, and multiply the biggest first:
0<co(acb)<cod(ach)<ad(boc)<ad(b®dc)
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Triangle area

Theorem (err_A_flx_radix2)

With an unbounded exponent range, 3 = 2, and ¢ <
error of area /A is at most 4.75¢ + 33&2.

100 , The rounding

For underflow:
@ detect afterwards if a subnormal appeared in the computation

@ order the intermediate variables, and multiply the biggest first:
0<co(acb)<cod(ach)<ad(boc)<ad(b®dc)

Theorem (err_A_flt_radix2)

E,-+p—1"

We assume that 3 = 2, that e < 130' and that 2[ 2 |72 < A, The
rounding error of area /A (computed in the given order) is at most
4.75¢ + 33¢2.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 32 /52



Triangle area

Theorem (err_A_flx_radix2)

With an unbounded exponent range, 3 = 2, and ¢ <
error of area /A is at most 4.75¢ + 33&2.

100 , The rounding

For underflow:
@ detect afterwards if a subnormal appeared in the computation

@ order the intermediate variables, and multiply the biggest first:
0<co(acb)<cod(ach)<ad(boc)<ad(b®dc)

Theorem (err_A_flt_radix2)

E;+p—1
Eitp=l)_p
We assume that B = 2, that ¢ < 130' and that 2[ 2 W < A. The
rounding error of area /A (computed in the given order) is at most

4.75¢ + 33¢2.

(and 5.75¢ in radix 10 as multiplying by % is not exact).
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Triangle area — program

/%@
@

requires 0 <= x;
ensures \result==\round_double(\NearestEven,\sqrt(x));

Qx/
double sqrt(double x);

/*Q

/*Q
Q

@
Q
Q

logic real S(real a, real b, real c) =

\let s = (a+b+c)/2;
\sqrt(s*(s-a)*x(s-b)*(s-c));

*/

requires 0 <= ¢ <= b <= a && a <= b + c && a <= 0x1p255;
ensures Oxlp-513 < \result
==> \abs (\result-S(a,b,c))
<= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);
*/

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));

}
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Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven,h\sqrt(x));
@x*/

double sqrt(double x): Square root definition

/*@ logic real S(real a, real b, real c) =
@ \let s = (at+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*x(s-c));
Q */

/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures Oxlp-513 < \result
@ ==> \abs (\result-S(a,b,c))
Q <= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);
e */

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));
}
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Triangle area — program

/%@

requires 0 <= x;

@ ensures \result==\round_double (\NearestEven ,\sqrt(x));
@x*/
double sqrt(double x);

Heron's formula

(no rounding)

/*@ logic real S(real a, real b, real c) =
@ \let s = (at+b+c)/2;
@ \sqrt (s*(s-a)*(s-b)*(s-c));
Q x/
/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures Oxlp-513 < \result
@ ==> \abs (\result-S(a,b,c))
Q <= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);
@ */

double triangle (double a,double b, double c) {

return

}

Sylvie Boldo (Inria) Formal verification of numerical computations
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Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven,b\sqrt(x));
@x*/

double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (at+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*x(s-c));
Q */

/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures Oxlp-513 < \result
@ ==> \abs (\result-S(a,b,c))
Q <= (4.75%x0x1p-53 + 33%x0x1p-106)*S(a,b,c);
@ */ Kahan's algorithm
with properly ordered values

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt ((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));
}
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Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven ,\sqrt(x));

@x*/

double sqrt(double x);

/*Q

logic real S(real a, real b, real c) =

@ \let s = (at+b+c)/2;

@
@ */

\sqrt(s*(s-a)*(s-b)*x(s-c));

ordered side lengths

/*@

requires 0 <= c <= b <= a && a <= b + c @& a <= 0x1p2b65;

@ ensures Oxlp-513 < \result

Q
Q
@ *x/

==> \abs (\result-S(a,b,c))

<= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);

double triangle (double a,double b, double c) {

}

return

(0x1p—2xsqrt ((a+(b+c))*(a+(b—c))*(c+(a=b))*(c—(a=b))));
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Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven ,\sqrt(x));
@x*/

double sqrt(double x);

/*Q

/*Q
Q

@
Q
Q

logic real S(real a, real b, real c) =
\let s = (a+b+c)/2;
\sqrt(s*(s-a)*x(s-b)*(s-c));
*/
overflow condition
requires 0 <= c <= b <= a && a <= b + c Q& a <= 0x1p2b65;
ensures Oxlp-513 < \result
==> \abs (\result-S(a,b,c))
<= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);

*/

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));

}
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Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven,h\sqrt(x));
Qx/

double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*x(s-c));
Q */
/*Q@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
[ @ ensures 0x1p-513 < \result If no underflow |
@ ==> \abs (\result-S(a,b,c))
Q <= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);
@ */

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));

}
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Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven ,\sqrt(x));
@x*/

double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*x(s-c));
Q */
/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures Oxlp-513 < \result
(¢ ==> \abs (\result-S(a,b,c))
@ <= (4.75%0x1p-53 + 33*%0x1p-106)*S(a,b,c);
@ */ Error bound

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));

}
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Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven ,\sqrt(x));
@x*/

double sqrt(double x);

/*Q

/*Q
Q

@
Q
Q

double triangle (dou

logic real S(real a, real b, real c) =

\let s = (a+b+c)/2;
\sqrt(s*(s-a)*x(s-b)*(s-c));

*/

requires 0 <= ¢ <= b <= a && a <= b + c && a <= 0x1p255;
ensures Oxlp-513 < \result
==> \abs(\result-S(a,b,c))

<= 33*0x1p-106)*S(a,b,c);

*/

a,double b, double c) {

return (Ox1lp—2xsqft ((a+(b+c))*(a+(b—c))*(c+(a=b))*(c—(a=b))));

}
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Triangle area — proof

Proof obligations Gappa Coq

Previous Coq proof 18.89 | 2091
Behavior | 1. postcondition 16.00 | 82
Safety 1. FP overflow 0.02

2. FP overflow 0.03

3. FP overflow 0.03

4. FP overflow 0.03

5. FP overflow 0.03

6. FP overflow 0.00

7. FP overflow 0.02

8. FP overflow 0.01

9. FP overflow 0.00

10. FP overflow 0.02

11. FP overflow 0.02

12. precondition for call 13.22 | 13

13. FP overflow 0.03

14. FP overflow 0.04
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Triangle area — proof

Alt-Ergo (0.95.1 models) TheorIES/Goals

Status Time
triangle.mlw
@  Jessie_model
(@ vcfortriangle_ensures_default @

Coq (8.4pl2) v @ Jessie_program

L Eprowernn | " coq(8.4pl2) S

Gappa (0.17.1) v (A vcfortriangle_safety

| simpliy(154) | '»Q split_goal wp

1. floating-point overflow
Spass (3.7)

» (A 2. floating-point overflow
L 73(4.3.2)

» (A 3.floating-point overflow

J 4. floating-point overflow

veriT (dev) > (A s.floating-point overflow

T > @ 6.floating-point overflow

splic » (A 7. floating-point overflow

sl » (A 8. floating-point overflow

Inline. » @ 9. floating-point overflow

Tools » [ 10. floating-point overflow

== » (A 11.Floating-point overflow
BRI v (A 12. precondition for call

Replay & coq (8.4p12)
Cleaning ¥ (A 13. Floating-point overflow
e & Gappa (0.17.1)
|aBemove, v (A 14. floating-point overflow
Clean L Gappa (0.17.1)

Sylvie Boldo (Inria)

)

Q0000000000000 0006(

388
389 (* Why3 goal *)
390 Theorem WP _parameter_triangle_ensures_default : forall (a_0:floating_point.Doubl

1 (b_0:Floating_point.DoubleFormat.double)

(((Floating_point.Double.value c_0) <= (Floating_point.Double.value b_0))%R /\
(((Floating_point.Double.value b_0) <= (Floating_point.Double.value a_0))%R \
(((Floating_point.Double.value a_0) <= ((floating_point.Double.value b_0) + (float
((Floating_point.Double.value a_0) <
forall (o:floating_point.DoubleFormat.double),

(Floating_point.Double.sub_post floating_point.Rounding.NearestTiesToEven

0 a_0b_00)->Forall (o1:floating_point.DoubleFormat.doubl

(floating_point.Double.sub_post floating_point.Rounding.NearestTiesToEven

c_0001)->Forall (02:floating_point.DoubleFormat.double),

(foating point.Double. sub)ostﬂoatlng)olnt Rounding. Nearest'rles‘raEven
_0b_ dou

(Floafing_point. Dauhle add)ostﬂoatlng)olnt kaunhlng Nearest'rles‘raEven

& /-®logicrealsreala,real real ) -
9@ \lets = (a+b+0)/2;

10 @ \sqrt(sH(s-a) (D)5

11 @+

13 @ requi b b 1p255;
14" @ ensures Ox1p-513 <\result

\abs(\result:S(a,b,)) <=

(4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);

15 double trlangleldauhle a,double b, double q)
19 return (0x’ (@b)*(c{ab)));

ﬁle.
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Outline

© Introduction

© Tools

e Examples

@ 1-D Wave equation discretization

@ Conclusion
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The wave equation

Looking for u : R> — R regular enough such that:

0?u(x, t) 2 O?u(x, t)
ot? Ix?

= s(x,t)

with given values for the initial position ug(x) and the initial velocity u(x).

= rope oscillation, sound, radar, oil prospection. ..
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Scheme?

We want u}‘ ~ u(jAx, kAt).

k o, k=1 k—2 gkl _ g k-t
u; 2uj + uj 2 Uity 2u + u _
At2 Ax2 J

And other horrible formulas to initialize uJ(-) and u}.
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Scheme?

We want u}‘ ~ u(jAx, kAt).

k o, k-1 k—2 gkl _ o k-1 k—1
o R N S S M o SR
At? AX2 J
And other horrible formulas to initialize uJ(-) and u}.
t
kAt [ ]
(k—1)At o O o
(k —2)At ®
[ gbx X
(—1)Ax (j+1)Ax
Three-point scheme: u depends on uk 11, u}‘_l, JkHl and u -2,
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Scheme?

We want u}‘ ~ u(jAx, kAt).

k o, k=1 k—2 uk=1 _ o k-1 k—1
ui = 2ui "+ 2 Uig —2u;p "+ _ k1
At2 Ax2 J
And other horrible formulas to initialize uJ(-) and u}.
t
kAt [ )
k-1)At] @ @ @
(k — 2)At °
| jax | x
(—1)Ax (j+1)Ax
Three-point scheme: u depends on uk 11, u}‘_l, JkHl and u -2,
Not really tricky computer arithmetic!
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Program

// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
p[0][k+1] = O.;
for (i=1; i<ni; i++) {
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pLil[k+1] = 2.4p[i1[k] — p[i][k—1] + axdp;

p[ni][k+1] = 0.;



Program

// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
p[0][k+1] = O.;
for (i=1; i<ni; i++) {
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pLil[k+1] = 2.4p[i1[k] — p[i][k—1] + axdp;

p[ni][k+1] = 0.;

Two different errors:

@ round-off errors
due to floating-point roundings

@ method errors
the scheme only approximates the exact solution



Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get
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Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

|p¥ — exact(pf)| < O (2"2’53)
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Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

|p¥ — exact(pf)| < O (2"2’53)

This is too much because the errors do compensate.
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Definition of ¥

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—-1][k];
pli]lk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let Ef-(+1 be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1
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Definition of ¥

Remainder:

dp = pli+1][k] — 2.xp[i][k] + p[i —1][K];
plillk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let 5;(“ be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

We know (from initializations) that the model values of the |p)"| are
bounded by 1. We assume that the floating-point values of the |p]’| are
bounded by 2.
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Definition of ¥

Remainder:

dp = pli+1][k] — 2.xp[i][k] + p[i —1][K];
plillk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let 5;(“ be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

We know (from initializations) that the model values of the |p)"| are
bounded by 1. We assume that the floating-point values of the |p]’| are
bounded by 2.

lemM| < 78 x 2722
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Rounding error

k

pk — exact p, Z Z Q; 5,+J

1=0 j=—1

@ We have an analytical expression of the rounding error with known

constants af‘.
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Rounding error

k

kKoo
pr — exact(pf) = Z Z o af‘;j’

@ We have an analytical expression of the rounding error with known
constants af‘.

@ It is not that complicated!
(we cannot get rid of the pyramidal double summation)
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Rounding error

kKoo
k Ky _ I k=
ps — exact(p;) = E E Q€4

@ We have an analytical expression of the rounding error with known

constants af‘.
@ It is not that complicated!
(we cannot get rid of the pyramidal double summation)

© The rounding error is bounded by ()(k? 27°3):

’p!‘ — exact (p:‘)’ <78 x 2793 x (k+1)x (k+2)
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Method error

We measure that v and uj{‘ are close when (Ax, At) — 0.

. def _
We define ej‘ = uj’-‘ — uj’f: convergence error

where B}‘ is the value of u at the (j, k) point of the grid.
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Method error

We measure that v and uj{‘ are close when (Ax, At) — 0.

. def _
We define ej‘ = uj’-‘ — uj’f: convergence error

where B}‘ is the value of u at the (j, k) point of the grid.

We want to bound H kae(t)

. the average of the convergence error on
X
all points of the grid at a given time ka:(t) = | 2] At.
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Method error

We measure that v and u}‘ are close when (Ax, At) — 0.

f
We define e ke de ujk uj’f: convergence error
where uj is the value of u at the (j, k) point of the grid.

We want to bound H kae(t)

. the average of the convergence error on
X

all points of the grid at a given time ka:(t) = | 2] At.

We want to prove:

He:m( )

= O, ] (AX* + AL?)
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Convergence

We proved that:

kAt(t)
|

=Y e tmad (AX2 + At).

(Ax, At) — 0

0<Ax AN O < AtA
A

(<cht<i¢

N

(This is out of the scope of this talk.)
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Extraction of the big O constants

The preceding result is a uniform big O defined by:
Jdo, C >0, Vx,Ax, [Ax]<a=|f(x,Ax)| < C-|g(Ax)|.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 45 / 52



Extraction of the big O constants

The preceding result is a uniform big O defined by:

Jdo, C >0, Vx,Ax, [Ax]<a=|f(x,Ax)| < C-|g(Ax)|.

Let (a3, G3) be the constants for the order-3 Taylor development of the
exact solution and (au, C4) for order-4. The initial support is [x1; x2]-
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Extraction of the big O constants

The preceding result is a uniform big O defined by:

Ja, C > 0,

Vx, Ax,

[Ax]| < a=[f(x,Ax)| < C-[g(Ax)].

Let (a3, G3) be the constants for the order-3 Taylor development of the

exact solution and (au, C4) for order-4. The initial support is [x1; x2]-

51 =

S =

S3

Sylvie Boldo (Inria)

min(as, a4, 1, tmax)
max(1,2- Cq - (¢ +1), G- (1+c?/2) + 1)

st (LXzJ*LX1J+2-c-tmax- (1+%) +3>

1
— (G- (1+/2)+1)-e—x1+1+(2-c+4)
V2
V2
+——(2-t -5+ 2sp
e
V2
-2 - tmax - S3
V26 —¢
Formal verification of numerical computations September 25th, 2014
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Program verification

@ 154 lines of annotations for 32 lines of C
@ 150 verification conditions:

o 44 about the behavior
o 106 about the safety (runtime errors)
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Program verification

@ 154 lines of annotations for 32 lines of C

@ 150 verification conditions:

o 44 about the behavior

o 106 about the safety (runtime errors)

Prover Behavior VC | Safety VC | Total
Alt-Ergo 18 80 98
Cves 18 89 107
Gappa 2 20 22
Z3 21 63 84
Automatically proved 23 94 117
Coq 21 12 33
| Total 44 106 | 150 |
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Program verification

@ About 90 % of the safety goals (matrix access, Overflow, and so on)
are proved automatically.

@ 33 theorems are interactively proved using Coq for a total of about
15,000 lines of Coq and 30 minutes of compilation.

Type of proofs Nb spec lines | Nb lines | Compilation time
Convergence 991 5275 42 s
Round-off + runtime errors 7737 13175 32 min
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@ Introduction

© Tools

@ Frama-C/Jessie/Why
e ACSL
@ Proof assistant: Coq

© Examples
@ Sterbenz

@ Error of the multiplication

@ Accurate discriminant

@ Area of a triangle

@ 1-D Wave equation discretization

@ Conclusion



Conclusion

@ always a Coq proof, generic wrt precision and minimal exponent
(and often radix)
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@ but also an annotated C program that handles exceptional behavior
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o formal proofs are required because algorithms are tricky
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Conclusion

always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

but also an annotated C program that handles exceptional behavior
(e. g. Overflow, division by zero)

formal proofs are required because algorithms are tricky

formal proofs are possible because algorithms are small
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Conclusion

@ always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

@ but also an annotated C program that handles exceptional behavior
(e. g. Overflow, division by zero)

o formal proofs are required because algorithms are tricky

@ formal proofs are possible because algorithms are small

@ (Have you seen long tricky algorithms?)
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Conclusion

@ always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

@ but also an annotated C program that handles exceptional behavior
(e. g. Overflow, division by zero)

o formal proofs are required because algorithms are tricky
@ formal proofs are possible because algorithms are small

@ (Have you seen long tricky algorithms?)

@ not applicable on big (naive) industrial algorithms
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o Very high guarantee



Conclusion

@ Very high guarantee

@ not only rounding errors:
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Conclusion

@ Very high guarantee

@ not only rounding errors:
o all other errors such as pointer dereferencing or division by zero
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Conclusion

@ Very high guarantee

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
o link with mathematical properties
e any property can be checked
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Conclusion

@ Very high guarantee

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
o link with mathematical properties
e any property can be checked

@ expressive annotation language (as expressive as Coq)
= exactly the specification you want
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Limits: compilation

@ We assume all double operations are direct 64-bits roundings.
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Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).
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Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!
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Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!

@ Solution 1: cover all cases.
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Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!

@ Solution 1: cover all cases.

only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)
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Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!

@ Solution 1: cover all cases.

only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)

@ Solution 2: look into the assembly, and prove what is compiled.
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Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!

@ Solution 1: cover all cases.

only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)

@ Solution 2: look into the assembly, and prove what is compiled.

@ Solution 3: use a certified compiler, then compilation is specified.
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Perspectives

@ a better handling of exceptional behaviors
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Perspectives
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@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

= basic blocks to build upon

@ prove libraries with computational contents
(e.g. computational geometry)
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Perspectives

@ a better handling of exceptional behaviors

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community
= basic blocks to build upon
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@ go deeper into numerical analysis
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Perspectives

@ a better handling of exceptional behaviors

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

= basic blocks to build upon

@ prove libraries with computational contents
(e.g. computational geometry)

@ go deeper into numerical analysis

= e.g. finite elements
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Perspectives

¢

a better handling of exceptional behaviors

prove and generalize well-known facts/algorithms/programs from the

computer arithmetic community

basic blocks to build upon

prove libraries with computational contents
(e.g. computational geometry)

go deeper into numerical analysis
e.g. finite elements
e.g. stability
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This is not a slide.



Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

0,C >0, VxeR", x| <a=|f(x)] < C-lg(x).
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Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

Ja,C >0, VxeR" x| <a=|f(x)]<C-|g(x).

Here 2 variables: Ax (grid sizes, tends to 0), and x (time and space).

(Think about Taylor expansions)
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Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

Ja,C >0, VxeR" x| <a=|f(x)]<C-|g(x).

Here 2 variables: Ax (grid sizes, tends to 0), and x (time and space).
(Think about Taylor expansions)

Vx,3a,C >0, YAxcR? |Ax| <a=|f(x,Ax)| < C-|g(Ax)|

does not work.
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Uniform big O

We used a uniform big O:

Jda, C >0, Vx,Ax, [Ax||<a=|f(x,Ax)|<C-|g(Ax)|.

where variables x and Ax are restricted to subsets of R2.
(for example such that At > 0)
= Taylor expansions
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Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the
numerical scheme:

—k _ ork—1 | —k=2 —k—1 _ nek—1 | —k—1
k1 _ 0 2 T 2 Uiy 2uj + Uy g
J At? Ax? J
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Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the

numerical scheme:

ul —

The consistency is the boundedness of the truncation error:

H&_Zm(t) _ O[O,t,m,‘x](AXQ + At2)

By Taylor series and many computations.
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Proof idea 2/3: stability

We define a discrete energy by

2
k+1 k

At

L/ k k+1>
Jr2<u’”u” An(c)

kinetic energy potential energy

Ax

def def 1 —2Vitvi_
(Vhs Wh) ap(c) = (An(€) vhy wh) p, and (Ap(c) vp); & — 208
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Proof idea 2/3: stability

We define a discrete energy by
2
k+1 k
up " — up

1
E k41 d:ef <
h(c)(up) 2 5 Az

L/ k k+1>
Jr2<u’”u” An(c)

kinetic energy potential energy

Ax

def def 1 —2Vitvi_
(Vhs Wh) ap(c) = (An(€) vhy wh) p, and (Ap(c) vp); & — 208

Note that this energy is constant if f = 0.
We prove an overestimation and an underestimation of this energy.
= up, does not diverge.
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Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

el
and sk = ghtl,

. P
up,j = 07 uij = At, j j

+ proofs about the initializations.
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Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

el

and sk = ghtl,

. P
up,j = 07 uij = At, j j

+ proofs about the initializations.

All these proofs require the existence of ¢ and £ in |0, 1[ with { <1 —¢
and we require that { < %‘Xt < 1 —¢ (CFL conditions).
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