SCAN 2014
Wirzburg, Germany

Formal verification of tricky numerical computations J

Sylvie Boldo

Inria

September 25th, 2014

(joint work with Clément, Fillidtre, Mayero, Melquiond, Weis)

V4

: informatics g”mathematics

Motivations

@ Scientific Computing, Computer Arithmetic and Validated Numerics

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 2 /52

Motivations

@ Scientific Computing, Computer Arithmetic and Validated Numerics

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 2 /52

Motivations

@ Scientific Computing, Computer Arithmetic and Validated Numerics

@ My personal challenge:

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 2 /52

Motivations

@ Scientific Computing, Computer Arithmetic and Validated Numerics

@ My personal challenge:

CORRECTNESS

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 2 /52

Motivations

@ Scientific Computing, Computer Arithmetic and Validated Numerics

@ My personal challenge:

CORRECTNESS

@ consider small critical programs, where complex properties about
floating-point arithmetic are involved

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 2 /52

Motivations

@ Scientific Computing, Computer Arithmetic and Validated Numerics

@ My personal challenge:

CORRECTNESS

@ consider small critical programs, where complex properties about
floating-point arithmetic are involved

@ How can we get a high guarantee?

— formal verification

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 2 /52

Motivations

@ Scientific Computing, Computer Arithmetic and Validated Numerics

@ My personal challenge:

CORRECTNESS

@ consider small critical programs, where complex properties about
floating-point arithmetic are involved

@ How can we get a high guarantee?

— formal verification
@ Convince people of what is formally verified!

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 2 /52

Outline

© Introduction

© Tools

@ Frama-C/Jessie/Why

e Examples

@ Conclusion

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 3 /52

The used toolchain: Frama-C/Jessie/Why

Annotated C program

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 4 /52

The used toolchain: Frama-C/Jessie/Why

Annotated C program

h 4

Frama-C/Jessie plug-in

¥
’WHY verification condition generator‘

N

Verification conditions

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 4 /52

The used toolchain: Frama-C/Jessie/Why

Annotated C program

h 4

Frama-C/Jessie plug-in

¥
WHY verification condition generator

Verification conditions

Automatic provers Interactive provers
(Alt-Ergo,Gappa,CVC3,etc.) (Coq,PVS,etc.)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

4 /52

Outline

© Introduction

© Tools

o ACSL

e Examples

@ Conclusion

Sylvie Boldo (Inria)

Formal verification of numerical computations

September 25th, 2014

5 /52

Annotation language: ACSL

(how a bug differs from a rounding error)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 6 /52

Annotation language: ACSL

(how a bug differs from a rounding error)

@ ANSI/ISO C Specification Language

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 6 /52

Annotation language: ACSL

(how a bug differs from a rounding error)

@ ANSI/ISO C Specification Language

@ behavioral specification language for C programs

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

6/ 52

Annotation language: ACSL

(how a bug differs from a rounding error)

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

6/ 52

Annotation language: ACSL

(how a bug differs from a rounding error)

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 6 /52

Annotation language: ACSL

(how a bug differs from a rounding error)

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

@ assertions

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 6 /52

Annotation language: ACSL

(how a bug differs from a rounding error)

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

@ assertions

@ In annotations, all computations are exact.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 6 /52

Annotation language: ACSL

(how a bug differs from a rounding error)

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

@ assertions

@ In annotations, all computations are exact.

= For the programmer, the specification is easy to understand.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 6 /52

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 7 /52

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part

@ the value that would have been obtained with exact computations,
X — Xe €xact part

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 7 /52

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part

@ the value that would have been obtained with exact computations,
X — Xe €xact part

@ the value that we ideally wanted to compute
X — X, model part

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 7 /52

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part 1+x+x*x/2

@ the value that would have been obtained with exact computations,
2
X — Xe exact part 1+x+%

@ the value that we ideally wanted to compute
X — Xm model part exp(x)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 7 /52

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part 1+x+x*x/2

@ the value that would have been obtained with exact computations,
2
X — Xe exact part 1+x+%
@ the value that we ideally wanted to compute
X — Xm model part exp(x)

= easy to split into method error and rounding error

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 7 /52

Outline

© Introduction

© Tools

@ Proof assistant: Coq

e Examples

@ Conclusion

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 8 /52

Formal proof

The proof is checked in its deep details until the computer agrees with it.
We often use formal proof checkers, meaning programs that only check a
proof (they may also generate easy demonstrations).

Therefore the checker is a very short program (de Bruijn criteria: the
correctness of the system as a whole depends on the correctness of a very
small "kernel”).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 9 /52

The Coq proof assistant (http://coq.inria.fr)

Based on the Curry-Howard isomorphism.
(equivalence between proofs and A-terms)

Few automations.
Comprehensive libraries, including on Z and R.
Coq kernel mechanically checks each step of each proof.

The method is to apply successively tactics (theorem application,
rewriting, simplifications. ..) to transform or reduce the goal down to
the hypotheses.

The proof is handled starting from the conclusion.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 10 / 52

http://coq.inria.fr

A Coq formalization of FP arithmetic : Flocq

A FP format is only characterized by a function ¢ : Z — Z.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 11 / 52

A Coq formalization of FP arithmetic : Flocq

A FP format is only characterized by a function ¢ : Z — Z.

For x € R, we compute e such that f¢71 < |x| < €.
Then x is in the format iff

x = [xB‘W(e)J gele)

In other words: if it can be written with exponent ¢(e).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 11 / 52

Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ©(€) = emin-

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 12 / 52

Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ©(€) = emin-

Definition (FL*)
Floating-point format with precision p:
@ unbounded (FLX): ¢(e) = e — p,

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 12 / 52

Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ©(€) = emin-

Definition (FL*)
Floating-point format with precision p:

@ unbounded (FLX): ¢(e) = e — p,

@ bounded with subnormal numbers (FLT): ¢(e) = max(e — p, €min),

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 12 / 52

Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ©(€) = emin-

Definition (FL*)
Floating-point format with precision p:

@ unbounded (FLX): ¢(e) = e — p,

@ bounded with subnormal numbers (FLT): ¢(e) = max(e — p, €min),

@ bounded without subnormal numbers (FTZ).

A random ¢ may not allow to define a rounding: we have a valid
predicate for being a reasonable .

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 12 / 52

Usual Floating-Point Formats

©(e)
. Ip
FLX
€min FLT
p—1| FTZ FTZ
€min FLT
FLX
€min E€min + P — 1 e

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

13 / 52

Example of Coq theorem

Theorem (round_NE _abs)

Let ¢ be a format, such that the rounding to nearest, ties to even (o) can
be defined. For all x € R, o(|x|) = |o(x)].

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 14 / 52

Example of Coq theorem

Theorem (round_NE _abs)

Let ¢ be a format, such that the rounding to nearest, ties to even (o) can
be defined. For all x € R, o(|x|) = |o(x)].

Lemma round NE_abs: forall x : R,
round beta fexp ZnearestE (Rabs x) = Rabs (round beta fexp ZnearestE x).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 14 / 52

Example of Coq theorem

Theorem (round_NE _abs)

Let ¢ be a format, such that the rounding to nearest, ties to even (o) can
be defined. For all x € R, o(|x|) = |o(x)].

Lemma round NE_abs: forall x : R,
round beta fexp ZnearestE (Rabs x) = Rabs (round beta fexp ZnearestE x).
Proof with auto with typeclass_instances.
intros x; apply sym_eq.
unfold Rabs at 2.
destruct (Rcase_abs x) as [Hx|Hx].
rewrite round NE_opp.
apply Rabs_leftl.
rewrite <- (round O beta fexp ZnearestE).
apply round_le...
now apply Rlt_le.
apply Rabs_pos_eq.
rewrite <- (round O beta fexp ZnearestE).
apply round_le...
now apply Rge_le.
Qed.

With the stating of the theorem, the tactics, and the name of theorems.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 14 / 52

More about Flocq

Flocg: 16000 lines of Coq, 700 theorems,

@ any radix, any format,

@ both axiomatic and computable definitions of rounding,
o effective arithmetic operators,
°

numerous theorems.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 15 / 52

http://flocq.gforge.inria.fr/

More about Flocq

Flocg: 16000 lines of Coq, 700 theorems,

@ any radix, any format,

@ both axiomatic and computable definitions of rounding,
o effective arithmetic operators,
°

numerous theorems.

Applications:
e Frama-C/Jessie C code certifier
o CompCert certified C compiler

http://flocq.gforge.inria.fr/

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 15 / 52

http://flocq.gforge.inria.fr/

More about Flocq

Flocg: 16000 lines of Coq, 700 theorems,

@ any radix, any format,

@ both axiomatic and computable definitions of rounding,
o effective arithmetic operators,
°

numerous theorems.

Applications:
e Frama-C/Jessie C code certifier
o CompCert certified C compiler

http://flocq.gforge.inria.fr/

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 15 / 52

http://flocq.gforge.inria.fr/

Methodology for the verification of C programs

C Program

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program
(specification, invariant)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant) Jessie

Theorem statements

h 2

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Cog¥d< Human
Automatic

provers
(Alt-Ergo,
Gappa, Z3)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic Coqle Human
provers

(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic COCIl<— Human
provers

(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic Coq | « Human
provers

(Alt-Ergo,
Gappa, Z3)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Coq | «— Human

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic

provers Coq | <~ Human
(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic

provers Coq | + Human
(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human

!

Annotated C Program
(specification, invariant)

Frama-C

Sylvie Boldo (Inria)

Theorem statements

A 2

Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Coq | + Human

Formal verification of numerical computations September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human

!

Annotated C Program
(specification, invariant)

Frama-C

Sylvie Boldo (Inria)

A 2

Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Theorem statements

Coq | + Human

Proved Theorems

Formal verification of numerical computations

September 25th, 2014 16 / 52

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C

N
(specification, invariant) Jessie Leciemclalements
Automatic
provers
C
(Alt-Ergo, oq | <~ Human
Gappa, Z3)
v <l

The program is correct with

respect to its specifications Hietee e

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 16 / 52

Outline

© Examples
Sterbenz

Error of the multiplication
Accurate discriminant

Area of a triangle

1-D Wave equation discretization

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 17 / 52

Examples

@ All examples use Frama-C Neon, Why 2.34 and Why3 0.83.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 18 / 52

http://www.lri.fr/~sboldo/research.html

Examples

@ All examples use Frama-C Neon, Why 2.34 and Why3 0.83.

@ Non-automatic proof obligations are proved using Coq 8.4pl4.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 18 / 52

http://www.lri.fr/~sboldo/research.html

Examples

@ All examples use Frama-C Neon, Why 2.34 and Why3 0.83.
@ Non-automatic proof obligations are proved using Coq 8.4pl4.

@ Overflow is considered a runtime error.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 18 / 52

http://www.lri.fr/~sboldo/research.html

Examples

All examples use Frama-C Neon, Why 2.34 and Why3 0.83.
@ Non-automatic proof obligations are proved using Coq 8.4pl4.

Overflow is considered a runtime error.

Code & proofs available on
http://www.lri.fr/~sboldo/research.html.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 18 / 52

http://www.lri.fr/~sboldo/research.html

Sterbenz

Theorem (Sterbenz)

If x and y are FP numbers in a given precision such that

<x <2y,

N[

then x — y fits in a FP number in the same precision and is therefore
computed without error.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 19 / 52

Sterbenz — program

/*@ requires y/2. <= x <= 2.%y;
@ ensures \result == x-y;
Qx/

float Sterbenz(float x, float y) {
return x—vy,;
}

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 20 / 52

Sterbenz — program

Exact subtraction

/*@ requires y/2. <= x <=
@ ensures \result == x4¥;
Qx/

float Sterbenz(float x, float y) {
return x—vy,;
}

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

20 / 52

Sterbenz — proofs

Proof obligations cvC3 Coq

Nb lines
VC for behavior 2.34 6
VC for safety 0.23

Sylvie Boldo (Inria)

Formal verification of numerical computations

September 25th, 2014

21/ 52

Outline

© Introduction

© Tools

e Examples

@ Error of the multiplication

@ Conclusion

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 22 /52

Veltkamp/Dekker

Also known as Error-Free-Transformation for the multiplication.

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the exact error of the multiplication using only FP operations.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 23 /52

Veltkamp/Dekker

Also known as Error-Free-Transformation for the multiplication.

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the exact error of the multiplication using only FP operations.

Idea:

split your floats in 2, multiply all the parts, add them in the correct order.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 23 /52

Veltkamp/Dekker — program

/%@ requires xy == \round_double(\NearestEven,x*y) &&
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
[==> xxy == xy+\result);
Qx/

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;
C=0x8000001p0;
/*Q@ assert C == 0x1p27+1; */

px=x*C; qx=x—px; hx=px+qx; tx=x—hx;
py=y*C; qy=y—py; hy=py+qy; ty=y—hy;
r2=—xy+hxx*hy;

r2+=hxx*ty;

r2+=hyx*tx;

r24=txsx*ty;
return r2;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 24 / 52

Veltkamp/Dekker — program

/*@ [requires xy == \round_double (\NearestEven,x*y) && | Xy:o(xy)
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
[==> xxy == xy+\result);
Qx/

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;
C=0x8000001p0 ;
/*Q@ assert C == 0x1p27+1; */

px=x*C; qx=x—px; hx=px+qx; tx=x—hx;
py=y*C; qy=y—py; hy=py+qy; ty=y—hy;
r2=—xy+hxx*hy;

r2+=hxx*ty;

r2+=hyx*tx;

r24=txsx*ty;
return r2;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 24 / 52

Veltkamp/Dekker — program

/*@ requires xy == \round_double (\NearestEven,x*y) &&
e \abs (x) <= 0x1.p995 &&
@ \abs (y) <= 0x1.p995 && Overflow
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
[==> xxy == xy+\result);
Qx/

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;
C=0x8000001p0;
/*Q@ assert C == 0x1p27+1; */

px=x*C; qx=x—px; hx=px+qx; tx=x—hx;
py=y*C; qy=y—py; hy=py+qy; ty=y—hy;
r2=—xy+hxx*hy;

r2+=hxx*ty;

r2+=hyx*tx;

r24=txsx*ty;
return r2;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 24 / 52

Veltkamp/Dekker — program

/%@ requires xy == \round_double(\NearestEven,x*y) &&
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ |ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y)) ‘ If no Underflow
[==> x*xy == xy+\result);
Qx/

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;
C=0x8000001p0 ;
/*Q@ assert C == 0x1p27+1; */

px=x*C; qx=x—px; hx=px+qx; tx=x—hx;
py=y*C; qy=y—py; hy=py+qy; ty=y—hy;

r2=—xy+hxx*hy;
r2+=hxx*ty;
r2+=hyx*tx;
r24=txsx*ty;
return r2;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

24 / 52

Veltkamp/Dekker — program

/%@ requires xy == \round_double(\NearestEven,x*y) &&
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
¢ \/ ==> x*y == xy+\result); ' Exact error of @
Qx*

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;
C=0x8000001p0 ;
/*Q@ assert C == 0x1p27+1; */

px=x*C; qx=x—px; hx=px+qx; tx=x—hx;
py=y*C; qy=y—py; hy=py+qy; ty=y—hy;
r2=—xy+hxx*hy;

r2+=hxx*ty;

r2+=hyx*tx;

r24=txsx*ty;
return r2;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 24 / 52

Veltkamp/Dekker — program

/%@ requires xy == \round_double(\NearestEven,x*y) &&
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
[==> xxy == xy+\result);
Qx/

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;
C=0x8000001p0;
/*Q@ assert C == 0x1p27+1; */

px=x*C; gqx=x—px; hx=px+qx; tx=x—hx;

Split x and y

py=y*C; qy=y—py; hy=py+qy; ty=y—hy;

r2=—xy+hxx*hy;
r2+=hxx*ty;
r2+=hyx*tx;
r24=txsx*ty;
return r2;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 24 / 52

Veltkamp/Dekker — program

/%@ requires xy == \round_double(\NearestEven,x*y) &&
(] \abs (x) <= 0x1.p995 &&
e \abs (y) <= 0x1.p995 &&
(] \abs (x*y) <= 0x1.p1021;
@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
[==> xxy == xy+\result);
Qx/

double Dekker(double x, double y, double xy) {
double C,px,qx,hx,py,qy, hy, tx, ty,r2;
C=0x8000001p0;
/*Q@ assert C == 0x1p27+1; */

px=x*C; qx=x—px; hx=px+qx; tx=x—hx;

py=y*C; qy=y—py; hy=py+qy; ty=y—hy;

r2=—xy-+hxxhy;

r24=hxs*ty ; Multiply all halves and
r24+=hyx*tx;

,24<:t§*ty; add all the results
return r2;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 24 / 52

Veltkamp/Dekker — proof

Proof obligations Coq Time
Nb lines
Previous Coq proof (spec + proof) 2639
VC for behavior | 1. assertion 3
2. postcondition 238
VC for safety 1-9. FP overflow | 1lor?2
10. FP overflow 37
11. FP overflow 47
12. FP overflow 43
13. FP overflow 64
14. FP overflow 43
15. FP overflow 83
16. FP overflow 49
17. FP overflow 94

Total (1,248 lines spec VC excluded) | 3351 | 9 min 02

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 25 / 52

Outline

© Introduction

© Tools

e Examples

@ Accurate discriminant

@ Conclusion

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 26 / 52

Accurate discriminant

It is pretty hard to compute b?> — ac accurately.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 27 / 52

Accurate discriminant

It is pretty hard to compute b?> — ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b> — a x ¢ within 2 ulps.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 27 / 52

Accurate discriminant

It is pretty hard to compute b?> — ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b> — a x ¢ within 2 ulps.

Idea:

Test whether there is cancellation. If not, then use the naive algorithm.
Else, compute the errors of the multiplication, and add everything in the
correct order.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 27 / 52

Accurate discriminant — program

/*@ requires

@ (b==0. |l 0x1.p-916 <= \abs(b*b)) &&

[(a*xc== || 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (ptq <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52

Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[(a*xc== || 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
doub
p=Db %
g=ax*c;

Test of cancellation

When p > g, it roughly

if (ptq <£ 3xfabs(p—q)) corresponds to p > 2gq

d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52

Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[(a*xc== || 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {

else {
dp=Dekker(b,b,p
dg=Dekker(a,c,q
d=(p—q)+(dp—dq);

)
)i

return d;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

28 / 52

Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[(a*xc== [| 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;

Compute the
multiplication errors

)
)
d=(p—q)+(dp—dq);

dg=Dekker(a,c,q

return d;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52

Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[(a*xc== [| 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

Add everything,
p—q being correct.

As 2 SpS2q

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52

Accurate discriminant — program

/*@ requires

(b==0. || 0x1.p-916 <= \abs(b*b)) &&
(a*xc== || 0x1.p-916 <= \abs(a*c)) &&

\abs (b) <= 0x1.p510 &&
\abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
\abs (a*c) <= 0x1.p1021;

ensures \result==0.

© © 0 0 O

*/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (ptq <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;

Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);

Underflow

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52

Accurate discriminant — program

/*@ requires
(b==0. |l 0x1.p-916 <= \abs(b*b)) &&
(axc== || 0x1.p-916 <= \abs(a*c)) &&
\abs (b) <= 0x1.p510 &&
\abs (a) <= 0x1.p995 && \abs(c) <= Ox1.p995 && Overflow
\abs (a*c) <= 0x1.p1021;
ensures \result==0.

Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);

© © 0 0 O

*/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (ptq <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52

Accurate discriminant — program

/*@ requires
@ (b==0. |l 0x1.p-916 <= \abs(b*b)) &&
(a*xc== || 0x1.p-916 <= \abs(a*c)) &&
\abs (b) <= 0x1.p510 &&
\abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
\abs (a*c) <= 0x1.p1021;
ensures \result==0.
Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);

2 ulps

© © 0 © O o O

*/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (ptq <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52

Accurate discriminant — program

/*@ requires

] (b==0. Il 0x1.p-916 <= \abs(b*b)) &&

[(a*xc== || 0x1.p-916 <= \abs(a*c)) &&

e \abs(b) <= 0x1.p510 &&

@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;

@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
e *x/

double discriminant (double a, double b, double c) {
double p,q,d,dp,dq;
p=bxb;
g=ax*c;

if (p+
d=p—q;

else { ..
dp=Dekk&(b.b,p): = pre-conditions to prove

)
dgq=Dekker(a,c,q); = post-conditions guaranteed
d=(p—q)+(dp—dq);

return d;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52

Accurate discriminant — program

/*@ requires
(b==0. |
(a*xc== |

@

| 0x1.p-916 <= \abs(b*b)) &&

(] | 0x1.p-916 <= \abs(ax*c)) &&
e \abs(b) <= 0x1.p510 &&
@ \abs (a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@ \abs (a*c) <= 0x1.p1021;
@ ensures \result==0.

Q@ Il \abs (\result-(b*b-a*c)) <= 2.xulp(\result);
Q

In initial proof,
test assumed correct

e b, double ¢) {

= Additional proof

when test is incorrect

if (p+q <= 3xfabs(p—q))
d=p—q;

else {
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 28 / 52

Accurate discriminant — proof

Proof obligations Coq Time
Previous Coq proof (spec + proof) 3390
VC for theory realization 88
Behavior | 1. postcondition 61
2. postcondition 90
Safety 1. floating-point overflow 2
2. floating-point overflow 2
3. floating-point overflow 3
4. floating-point overflow 4
5. floating-point overflow 4
6. precondition for call 2
7. precondition for call 9
8. precondition for call 1
9-13. precondition for call 2
14. floating-point overflow | 44
15. floating-point overflow | 45
Total (1,146 lines spec VC excluded) | 3655 | 5 min 47

Sylvie Boldo (Inria)

Formal verification of numerical computations

September 25th, 2014

29 / 52

Outline

© Introduction

© Tools

e Examples

@ Area of a triangle

@ Conclusion

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 30/ 52

Triangle area

a
Heron's formula: A = \/s (s —a) (s — b) (s — c) where s = Z£2%<,

Kahan's formula, for c < b < a:

A= VT (BT a) (e (a- b)) (cr(a) @+ (b))

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 31 /52

Triangle area

a
Heron's formula: A = \/s (s —a) (s — b) (s — c) where s = Z£2%<,

Kahan's formula, for c < b < a:

A= VT (BT a) (e (a- b)) (cr(a) @+ (b))

[Kahan, Miscalculating Area and Angles of a Needle-like Triangle]

Area A is accurate to within a few units in their last digits.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 31 /52

Triangle area

a
Heron's formula: A = \/s (s —a) (s — b) (s — c) where s = Z£2%<,

Kahan's formula, for c < b < a:

A= VT (BT a) (e (a- b)) (cr(a) @+ (b))

[Kahan, Miscalculating Area and Angles of a Needle-like Triangle]

Area A is accurate to within a few units in their last digits.

[Goldberg, 1991]

The rounding error of area A is at most 11 ¢, provided € < 0.005 and
subtraction and square roots are accurate.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 31/52

Triangle area

Theorem (err_A_flx_radix2)

With an unbounded exponent range, 3 = 2, and ¢ < 1%0, The rounding
error of area A is at most 4.75¢ + 33¢2.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 32 /52

Triangle area

Theorem (err_A_flx_radix2)

With an unbounded exponent range, 3 = 2, and ¢ < 1%0, The rounding
error of area A is at most 4.75¢ + 33¢2.

For underflow:

@ detect afterwards if a subnormal appeared in the computation

@ order the intermediate variables, and multiply the biggest first:
0<co(acb)<cod(ach)<ad(boc)<ad(b®dc)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 32 /52

Triangle area

Theorem (err_A_flx_radix2)

With an unbounded exponent range, 3 = 2, and ¢ <
error of area /A is at most 4.75¢ + 33&2.

100 , The rounding

For underflow:
@ detect afterwards if a subnormal appeared in the computation

@ order the intermediate variables, and multiply the biggest first:
0<co(acb)<cod(ach)<ad(boc)<ad(b®dc)

Theorem (err_A_flt_radix2)

E,-+p—1"

We assume that 3 = 2, that e < 130' and that 2[2 |72 < A, The
rounding error of area /A (computed in the given order) is at most
4.75¢ + 33¢2.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 32 /52

Triangle area

Theorem (err_A_flx_radix2)

With an unbounded exponent range, 3 = 2, and ¢ <
error of area /A is at most 4.75¢ + 33&2.

100 , The rounding

For underflow:
@ detect afterwards if a subnormal appeared in the computation

@ order the intermediate variables, and multiply the biggest first:
0<co(acb)<cod(ach)<ad(boc)<ad(b®dc)

Theorem (err_A_flt_radix2)

E;+p—1
Eitp=l)_p
We assume that B = 2, that ¢ < 130' and that 2[2 W < A. The
rounding error of area /A (computed in the given order) is at most

4.75¢ + 33¢2.

(and 5.75¢ in radix 10 as multiplying by % is not exact).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 32 /52

Triangle area — program

/%@
@

requires 0 <= x;
ensures \result==\round_double(\NearestEven,\sqrt(x));

Qx/
double sqrt(double x);

/*Q

/*Q
Q

@
Q
Q

logic real S(real a, real b, real c) =

\let s = (a+b+c)/2;
\sqrt(s*(s-a)*x(s-b)*(s-c));

*/

requires 0 <= ¢ <= b <= a && a <= b + c && a <= 0x1p255;
ensures Oxlp-513 < \result
==> \abs (\result-S(a,b,c))
<= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);
*/

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));

}

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 33 /52

Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven,h\sqrt(x));
@x*/

double sqrt(double x): Square root definition

/*@ logic real S(real a, real b, real c) =
@ \let s = (at+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*x(s-c));
Q */

/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures Oxlp-513 < \result
@ ==> \abs (\result-S(a,b,c))
Q <= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);
e */

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));
}

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 33 /52

Triangle area — program

/%@

requires 0 <= x;

@ ensures \result==\round_double (\NearestEven ,\sqrt(x));
@x*/
double sqrt(double x);

Heron's formula

(no rounding)

/*@ logic real S(real a, real b, real c) =
@ \let s = (at+b+c)/2;
@ \sqrt (s*(s-a)*(s-b)*(s-c));
Q x/
/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures Oxlp-513 < \result
@ ==> \abs (\result-S(a,b,c))
Q <= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);
@ */

double triangle (double a,double b, double c) {

return

}

Sylvie Boldo (Inria) Formal verification of numerical computations

September 25th, 2014

(0x1p—2«sqrt ((a+(bt+c))*(a+(b—c))*(c+(a—b))*x(c—(a=b))));

33 /52

Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven,b\sqrt(x));
@x*/

double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (at+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*x(s-c));
Q */

/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures Oxlp-513 < \result
@ ==> \abs (\result-S(a,b,c))
Q <= (4.75%x0x1p-53 + 33%x0x1p-106)*S(a,b,c);
@ */ Kahan's algorithm
with properly ordered values

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt ((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));
}

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 33 /52

Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven ,\sqrt(x));

@x*/

double sqrt(double x);

/*Q

logic real S(real a, real b, real c) =

@ \let s = (at+b+c)/2;

@
@ */

\sqrt(s*(s-a)*(s-b)*x(s-c));

ordered side lengths

/*@

requires 0 <= c <= b <= a && a <= b + c @& a <= 0x1p2b65;

@ ensures Oxlp-513 < \result

Q
Q
@ *x/

==> \abs (\result-S(a,b,c))

<= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);

double triangle (double a,double b, double c) {

}

return

(0x1p—2xsqrt ((a+(b+c))*(a+(b—c))*(c+(a=b))*(c—(a=b))));

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 33 /52

Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven ,\sqrt(x));
@x*/

double sqrt(double x);

/*Q

/*Q
Q

@
Q
Q

logic real S(real a, real b, real c) =
\let s = (a+b+c)/2;
\sqrt(s*(s-a)*x(s-b)*(s-c));
*/
overflow condition
requires 0 <= c <= b <= a && a <= b + c Q& a <= 0x1p2b65;
ensures Oxlp-513 < \result
==> \abs (\result-S(a,b,c))
<= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);

*/

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));

}

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 33 /52

Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven,h\sqrt(x));
Qx/

double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*x(s-c));
Q */
/*Q@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
[@ ensures 0x1p-513 < \result If no underflow |
@ ==> \abs (\result-S(a,b,c))
Q <= (4.75%0x1p-53 + 33%x0x1lp-106)*S(a,b,c);
@ */

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));

}

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 33 /52

Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven ,\sqrt(x));
@x*/

double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*x(s-c));
Q */
/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures Oxlp-513 < \result
(¢ ==> \abs (\result-S(a,b,c))
@ <= (4.75%0x1p-53 + 33*%0x1p-106)*S(a,b,c);
@ */ Error bound

double triangle (double a,double b, double c) {
return (Oxlp—2*sqrt((a+(b+c))*(a+(b—c))*(c+(a=b))*x(c—(a=b))));

}

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 33 /52

Triangle area — program

/*@ requires 0 <= x;
@ ensures \result==\round_double (\NearestEven ,\sqrt(x));
@x*/

double sqrt(double x);

/*Q

/*Q
Q

@
Q
Q

double triangle (dou

logic real S(real a, real b, real c) =

\let s = (a+b+c)/2;
\sqrt(s*(s-a)*x(s-b)*(s-c));

*/

requires 0 <= ¢ <= b <= a && a <= b + c && a <= 0x1p255;
ensures Oxlp-513 < \result
==> \abs(\result-S(a,b,c))

<= 33*0x1p-106)*S(a,b,c);

*/

a,double b, double c) {

return (Ox1lp—2xsqft ((a+(b+c))*(a+(b—c))*(c+(a=b))*(c—(a=b))));

}

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 33 /52

Triangle area — proof

Proof obligations Gappa Coq

Previous Coq proof 18.89 | 2091
Behavior | 1. postcondition 16.00 | 82
Safety 1. FP overflow 0.02

2. FP overflow 0.03

3. FP overflow 0.03

4. FP overflow 0.03

5. FP overflow 0.03

6. FP overflow 0.00

7. FP overflow 0.02

8. FP overflow 0.01

9. FP overflow 0.00

10. FP overflow 0.02

11. FP overflow 0.02

12. precondition for call 13.22 | 13

13. FP overflow 0.03

14. FP overflow 0.04

Sylvie Boldo (Inria)

Formal verification of numerical computations

September 25th, 2014 34 /52

Triangle area — proof

Alt-Ergo (0.95.1 models) TheorIES/Goals

Status Time
triangle.mlw
@ Jessie_model
(@ vcfortriangle_ensures_default @

Coq (8.4pl2) v @ Jessie_program

L Eprowernn | " coq(8.4pl2) S

Gappa (0.17.1) v (A vcfortriangle_safety

| simpliy(154) | '»Q split_goal wp

1. floating-point overflow
Spass (3.7)

» (A 2. floating-point overflow
L 73(4.3.2)

» (A 3.floating-point overflow

J 4. floating-point overflow

veriT (dev) > (A s.floating-point overflow

T > @ 6.floating-point overflow

splic » (A 7. floating-point overflow

sl » (A 8. floating-point overflow

Inline. » @ 9. floating-point overflow

Tools » [10. floating-point overflow

== » (A 11.Floating-point overflow
BRI v (A 12. precondition for call

Replay & coq (8.4p12)
Cleaning ¥ (A 13. Floating-point overflow
e & Gappa (0.17.1)
|aBemove, v (A 14. floating-point overflow
Clean L Gappa (0.17.1)

Sylvie Boldo (Inria)

)

Q0000000000000 0006(

388
389 (* Why3 goal *)
390 Theorem WP _parameter_triangle_ensures_default : forall (a_0:floating_point.Doubl

1 (b_0:Floating_point.DoubleFormat.double)

(((Floating_point.Double.value c_0) <= (Floating_point.Double.value b_0))%R /\
(((Floating_point.Double.value b_0) <= (Floating_point.Double.value a_0))%R \
(((Floating_point.Double.value a_0) <= ((floating_point.Double.value b_0) + (float
((Floating_point.Double.value a_0) <
forall (o:floating_point.DoubleFormat.double),

(Floating_point.Double.sub_post floating_point.Rounding.NearestTiesToEven

0 a_0b_00)->Forall (o1:floating_point.DoubleFormat.doubl

(floating_point.Double.sub_post floating_point.Rounding.NearestTiesToEven

c_0001)->Forall (02:floating_point.DoubleFormat.double),

(foating point.Double. sub)ostﬂoatlng)olnt Rounding. Nearest'rles‘raEven
0b dou

(Floafing_point. Dauhle add)ostﬂoatlng)olnt kaunhlng Nearest'rles‘raEven

& /-®logicrealsreala,real real) -
9@ \lets = (a+b+0)/2;

10 @ \sqrt(sH(s-a) (D)5

11 @+

13 @ requi b b 1p255;
14" @ ensures Ox1p-513 <\result

\abs(\result:S(a,b,)) <=

(4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);

15 double trlangleldauhle a,double b, double q)
19 return (0x’ (@b)*(c{ab)));

ﬁle.

Formal verification of numerical computations

September 25th, 2014

ting_p

(1*5789604461865809771178549250434395392¢

35 / 52

Outline

© Introduction

© Tools

e Examples

@ 1-D Wave equation discretization

@ Conclusion

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 36 / 52

The wave equation

Looking for u : R> — R regular enough such that:

0?u(x, t) 2 O?u(x, t)
ot? Ix?

= s(x,t)

with given values for the initial position ug(x) and the initial velocity u(x).

= rope oscillation, sound, radar, oil prospection. ..

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 37 /52

Scheme?

We want u}‘ ~ u(jAx, kAt).

k o, k=1 k—2 gkl _ g k-t
u; 2uj + uj 2 Uity 2u + u _
At2 Ax2 J

And other horrible formulas to initialize uJ(-) and u}.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

38 / 52

Scheme?

We want u}‘ ~ u(jAx, kAt).

k o, k-1 k—2 gkl _ o k-1 k—1
o R N S S M o SR
At? AX2 J
And other horrible formulas to initialize uJ(-) and u}.
t
kAt []
(k—1)At o O o
(k —2)At ®
[gbx X
(—1)Ax (j+1)Ax
Three-point scheme: u depends on uk 11, u}‘_l, JkHl and u -2,
Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

38 / 52

Scheme?

We want u}‘ ~ u(jAx, kAt).

k o, k=1 k—2 uk=1 _ o k-1 k—1
ui = 2ui "+ 2 Uig —2u;p "+ _ k1
At2 Ax2 J
And other horrible formulas to initialize uJ(-) and u}.
t
kAt [)
k-1)At] @ @ @
(k — 2)At °
| jax | x
(—1)Ax (j+1)Ax
Three-point scheme: u depends on uk 11, u}‘_l, JkHl and u -2,
Not really tricky computer arithmetic!
Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

38 / 52

Program

// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
p[0][k+1] = O.;
for (i=1; i<ni; i++) {
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pLil[k+1] = 2.4p[i1[k] — p[i][k—1] + axdp;

p[ni][k+1] = 0.;

Program

// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
p[0][k+1] = O.;
for (i=1; i<ni; i++) {
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pLil[k+1] = 2.4p[i1[k] — p[i][k—1] + axdp;

p[ni][k+1] = 0.;

Two different errors:

@ round-off errors
due to floating-point roundings

@ method errors
the scheme only approximates the exact solution

Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 40 / 52

Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

|p¥ — exact(pf)| < O (2"2’53)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

40 / 52

Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

|p¥ — exact(pf)| < O (2"2’53)

This is too much because the errors do compensate.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

40 / 52

Definition of ¥

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—-1][k];
pli]lk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let Ef-(+1 be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 41 /52

Definition of ¥

Remainder:

dp = pli+1][k] — 2.xp[i][k] + p[i —1][K];
plillk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let 5;(“ be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

We know (from initializations) that the model values of the |p)"| are
bounded by 1. We assume that the floating-point values of the |p]’| are
bounded by 2.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 41 /52

Definition of ¥

Remainder:

dp = pli+1][k] — 2.xp[i][k] + p[i —1][K];
plillk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let 5;(“ be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

We know (from initializations) that the model values of the |p)"| are
bounded by 1. We assume that the floating-point values of the |p]’| are
bounded by 2.

lemM| < 78 x 2722

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 41 /52

Rounding error

k

pk — exact p, Z Z Q; 5,+J

1=0 j=—1

@ We have an analytical expression of the rounding error with known

constants af‘.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 42 /52

Rounding error

k

kKoo
pr — exact(pf) = Z Z o af‘;j’

@ We have an analytical expression of the rounding error with known
constants af‘.

@ It is not that complicated!
(we cannot get rid of the pyramidal double summation)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 42 /52

Rounding error

kKoo
k Ky _ I k=
ps — exact(p;) = E E Q€4

@ We have an analytical expression of the rounding error with known

constants af‘.
@ It is not that complicated!
(we cannot get rid of the pyramidal double summation)

© The rounding error is bounded by ()(k? 27°3):

’p!‘ — exact (p:‘)’ <78 x 2793 x (k+1)x (k+2)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 42 /52

Method error

We measure that v and uj{‘ are close when (Ax, At) — 0.

. def _
We define ej‘ = uj’-‘ — uj’f: convergence error

where B}‘ is the value of u at the (j, k) point of the grid.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 43 / 52

Method error

We measure that v and uj{‘ are close when (Ax, At) — 0.

. def _
We define ej‘ = uj’-‘ — uj’f: convergence error

where B}‘ is the value of u at the (j, k) point of the grid.

We want to bound H kae(t)

. the average of the convergence error on
X
all points of the grid at a given time ka:(t) = | 2] At.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 43 / 52

Method error

We measure that v and u}‘ are close when (Ax, At) — 0.

f
We define e ke de ujk uj’f: convergence error
where uj is the value of u at the (j, k) point of the grid.

We want to bound H kae(t)

. the average of the convergence error on
X

all points of the grid at a given time ka:(t) = | 2] At.

We want to prove:

He:m()

= O,] (AX* + AL?)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 43 / 52

Convergence

We proved that:

kAt(t)
|

=Y e tmad (AX2 + At).

(Ax, At) — 0

0<Ax AN O < AtA
A

(<cht<i¢

N

(This is out of the scope of this talk.)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

44 / 52

Extraction of the big O constants

The preceding result is a uniform big O defined by:
Jdo, C >0, Vx,Ax, [Ax]<a=|f(x,Ax)| < C-|g(Ax)|.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 45 / 52

Extraction of the big O constants

The preceding result is a uniform big O defined by:

Jdo, C >0, Vx,Ax, [Ax]<a=|f(x,Ax)| < C-|g(Ax)|.

Let (a3, G3) be the constants for the order-3 Taylor development of the
exact solution and (au, C4) for order-4. The initial support is [x1; x2]-

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 45 / 52

Extraction of the big O constants

The preceding result is a uniform big O defined by:

Ja, C > 0,

Vx, Ax,

[Ax]| < a=[f(x,Ax)| < C-[g(Ax)].

Let (a3, G3) be the constants for the order-3 Taylor development of the

exact solution and (au, C4) for order-4. The initial support is [x1; x2]-

51 =

S =

S3

Sylvie Boldo (Inria)

min(as, a4, 1, tmax)
max(1,2- Cq - (¢ +1), G- (1+c?/2) + 1)

st (LXzJ*LX1J+2-c-tmax- (1+%) +3>

1
— (G- (1+/2)+1)-e—x1+1+(2-c+4)
V2
V2
+——(2-t -5+ 2sp
e
V2
-2 - tmax - S3
V26 —¢
Formal verification of numerical computations September 25th, 2014

45 / 52

Program verification

@ 154 lines of annotations for 32 lines of C
@ 150 verification conditions:

o 44 about the behavior
o 106 about the safety (runtime errors)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 46 / 52

Program verification

@ 154 lines of annotations for 32 lines of C

@ 150 verification conditions:

o 44 about the behavior

o 106 about the safety (runtime errors)

Prover Behavior VC | Safety VC | Total
Alt-Ergo 18 80 98
Cves 18 89 107
Gappa 2 20 22
Z3 21 63 84
Automatically proved 23 94 117
Coq 21 12 33
| Total 44 106 | 150 |

Sylvie Boldo (Inria) Formal verification of numerical computations

September 25th, 2014

46 / 52

Program verification

@ About 90 % of the safety goals (matrix access, Overflow, and so on)
are proved automatically.

@ 33 theorems are interactively proved using Coq for a total of about
15,000 lines of Coq and 30 minutes of compilation.

Type of proofs Nb spec lines | Nb lines | Compilation time
Convergence 991 5275 42 s
Round-off + runtime errors 7737 13175 32 min

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 47 / 52

@ Introduction

© Tools

@ Frama-C/Jessie/Why
e ACSL
@ Proof assistant: Coq

© Examples
@ Sterbenz

@ Error of the multiplication

@ Accurate discriminant

@ Area of a triangle

@ 1-D Wave equation discretization

@ Conclusion

Conclusion

@ always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 49 / 52

Conclusion

@ always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

@ but also an annotated C program that handles exceptional behavior
(e. g. Overflow, division by zero)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 49 / 52

Conclusion

@ always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

@ but also an annotated C program that handles exceptional behavior
(e. g. Overflow, division by zero)

o formal proofs are required because algorithms are tricky

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 49 / 52

Conclusion

always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

but also an annotated C program that handles exceptional behavior
(e. g. Overflow, division by zero)

formal proofs are required because algorithms are tricky

formal proofs are possible because algorithms are small

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 49 / 52

Conclusion

@ always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

@ but also an annotated C program that handles exceptional behavior
(e. g. Overflow, division by zero)

o formal proofs are required because algorithms are tricky

@ formal proofs are possible because algorithms are small

@ (Have you seen long tricky algorithms?)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 49 / 52

Conclusion

@ always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

@ but also an annotated C program that handles exceptional behavior
(e. g. Overflow, division by zero)

o formal proofs are required because algorithms are tricky
@ formal proofs are possible because algorithms are small

@ (Have you seen long tricky algorithms?)

@ not applicable on big (naive) industrial algorithms

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 49 / 52

o Very high guarantee

Conclusion

@ Very high guarantee

@ not only rounding errors:

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 50 / 52

Conclusion

@ Very high guarantee

@ not only rounding errors:
o all other errors such as pointer dereferencing or division by zero

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 50 / 52

Conclusion

@ Very high guarantee

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
o link with mathematical properties

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 50 / 52

Conclusion

@ Very high guarantee

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
o link with mathematical properties
e any property can be checked

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 50 / 52

Conclusion

@ Very high guarantee

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
o link with mathematical properties
e any property can be checked

@ expressive annotation language (as expressive as Coq)
= exactly the specification you want

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 50 / 52

Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 51 /52

Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 51 /52

Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 51 /52

Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!

@ Solution 1: cover all cases.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 51 /52

Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!

@ Solution 1: cover all cases.

only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 51 /52

Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!

@ Solution 1: cover all cases.

only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)

@ Solution 2: look into the assembly, and prove what is compiled.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 51 /52

Limits: compilation

@ We assume all double operations are direct 64-bits roundings.

@ On recent processors, we have x86 extended registers (80-bits long)
and FMA (o(ax + b) with one single rounding).

= several possible results!

@ Solution 1: cover all cases.

only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)

@ Solution 2: look into the assembly, and prove what is compiled.

@ Solution 3: use a certified compiler, then compilation is specified.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 51 /52

Perspectives

@ a better handling of exceptional behaviors

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 52 / 52

Perspectives

@ a better handling of exceptional behaviors

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 52 / 52

Perspectives

@ a better handling of exceptional behaviors

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

= basic blocks to build upon

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 52 / 52

Perspectives

@ a better handling of exceptional behaviors

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

= basic blocks to build upon

@ prove libraries with computational contents
(e.g. computational geometry)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 52 / 52

Perspectives

@ a better handling of exceptional behaviors

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community
= basic blocks to build upon

@ prove libraries with computational contents
(e.g. computational geometry)

@ go deeper into numerical analysis

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 52 / 52

Perspectives

@ a better handling of exceptional behaviors

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

= basic blocks to build upon

@ prove libraries with computational contents
(e.g. computational geometry)

@ go deeper into numerical analysis

= e.g. finite elements

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 52 / 52

Perspectives

¢

a better handling of exceptional behaviors

prove and generalize well-known facts/algorithms/programs from the

computer arithmetic community

basic blocks to build upon

prove libraries with computational contents
(e.g. computational geometry)

go deeper into numerical analysis
e.g. finite elements
e.g. stability

Sylvie Boldo (Inria) Formal verification of numerical computations

September 25th, 2014

52 / 52

This is not a slide.

Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

0,C >0, VxeR", x| <a=|f(x)] < C-lg(x).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 2/6

Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

Ja,C >0, VxeR" x| <a=|f(x)]<C-|g(x).

Here 2 variables: Ax (grid sizes, tends to 0), and x (time and space).

(Think about Taylor expansions)

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

2/6

Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

Ja,C >0, VxeR" x| <a=|f(x)]<C-|g(x).

Here 2 variables: Ax (grid sizes, tends to 0), and x (time and space).
(Think about Taylor expansions)

Vx,3a,C >0, YAxcR? |Ax| <a=|f(x,Ax)| < C-|g(Ax)|

does not work.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 2/6

Uniform big O

We used a uniform big O:

Jda, C >0, Vx,Ax, [Ax||<a=|f(x,Ax)|<C-|g(Ax)|.

where variables x and Ax are restricted to subsets of R2.
(for example such that At > 0)
= Taylor expansions

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 3/6

Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the
numerical scheme:

—k _ ork—1 | —k=2 —k—1 _ nek—1 | —k—1
k1 _ 0 2 T 2 Uiy 2uj + Uy g
J At? Ax? J

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 4/6

Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the

numerical scheme:

ul —

The consistency is the boundedness of the truncation error:

H&_Zm(t) _ O[O,t,m,‘x](AXQ + At2)

By Taylor series and many computations.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014

4/6

Proof idea 2/3: stability

We define a discrete energy by

2
k+1 k

At

L/ k k+1>
Jr2<u’”u” An(c)

kinetic energy potential energy

Ax

def def 1 —2Vitvi_
(Vhs Wh) ap(c) = (An(€) vhy wh) p, and (Ap(c) vp); & — 208

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 5/6

Proof idea 2/3: stability

We define a discrete energy by
2
k+1 k
up " — up

1
E k41 d:ef <
h(c)(up) 2 5 Az

L/ k k+1>
Jr2<u’”u” An(c)

kinetic energy potential energy

Ax

def def 1 —2Vitvi_
(Vhs Wh) ap(c) = (An(€) vhy wh) p, and (Ap(c) vp); & — 208

Note that this energy is constant if f = 0.
We prove an overestimation and an underestimation of this energy.
= up, does not diverge.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 5/6

Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

el
and sk = ghtl,

. P
up,j = 07 uij = At, j j

+ proofs about the initializations.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 6/6

Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

el

and sk = ghtl,

. P
up,j = 07 uij = At, j j

+ proofs about the initializations.

All these proofs require the existence of ¢ and £ in |0, 1[with { <1 —¢
and we require that { < %‘Xt < 1 —¢ (CFL conditions).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 6/6

	Introduction
	Tools
	Frama-C/Jessie/Why
	ACSL
	Proof assistant: Coq

	Examples
	Sterbenz
	Error of the multiplication
	Accurate discriminant
	Area of a triangle
	1-D Wave equation discretization

	Conclusion
	Appendix

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	1.75:
	1.76:
	1.77:
	1.78:
	1.79:
	1.80:
	1.81:
	1.82:
	1.83:
	1.84:
	1.85:
	1.86:
	1.87:
	1.88:
	1.89:
	1.90:
	1.91:
	1.92:
	1.93:
	1.94:
	1.95:
	1.96:
	1.97:
	1.98:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	2.62:
	2.63:
	2.64:
	2.65:
	2.66:
	2.67:
	2.68:
	2.69:
	2.70:
	2.71:
	2.72:
	2.73:
	2.74:
	2.75:
	2.76:
	2.77:
	2.78:
	2.79:
	2.80:
	2.81:
	2.82:
	2.83:
	2.84:
	2.85:
	2.86:
	2.87:
	2.88:
	2.89:
	2.90:
	2.91:
	2.92:
	2.93:
	2.94:
	2.95:
	2.96:
	2.97:
	2.98:
	anm2:

