

Formal verification of tricky numerical computations

Sylvie Boldo

Inria

September 25th, 2014

(joint work with Clément, Filliâtre, Mayero, Melquiond, Weis)

Motivations

- Scientific Computing, Computer Arithmetic and Validated Numerics

Motivations

- Scientific Computing, Computer Arithmetic and **Validated Numerics**

Motivations

- Scientific Computing, Computer Arithmetic and **Validated Numerics**
- My personal challenge:

Motivations

- Scientific Computing, Computer Arithmetic and **Validated Numerics**
- My personal challenge:

CORRECTNESS

Motivations

- Scientific Computing, Computer Arithmetic and **Validated Numerics**
- My personal challenge:

CORRECTNESS

- consider small **critical** programs, where complex properties about floating-point arithmetic are involved

Motivations

- Scientific Computing, Computer Arithmetic and **Validated Numerics**
- My personal challenge:

CORRECTNESS

- consider small **critical** programs, where complex properties about floating-point arithmetic are involved
- How can we get a high guarantee?
↪ formal verification

Motivations

- Scientific Computing, Computer Arithmetic and **Validated Numerics**
- My personal challenge:

CORRECTNESS

- consider small **critical** programs, where complex properties about floating-point arithmetic are involved
- How can we get a high guarantee?
 - ↪ formal verification
- **Convince people** of what is formally verified!

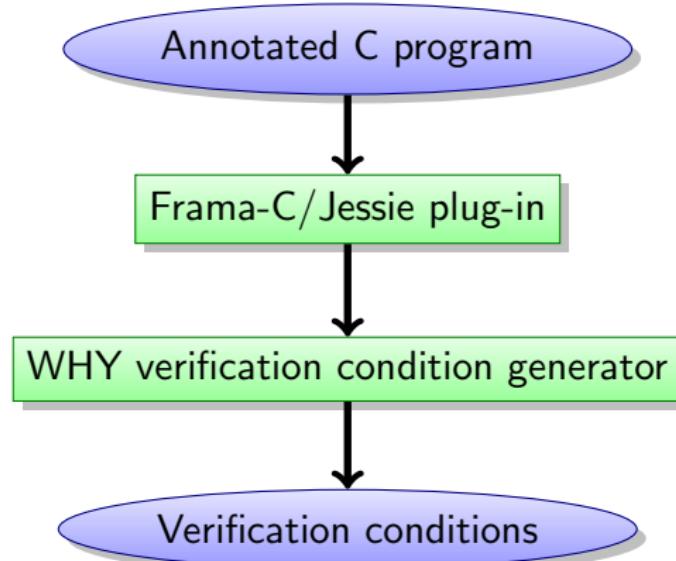
Outline

1 Introduction

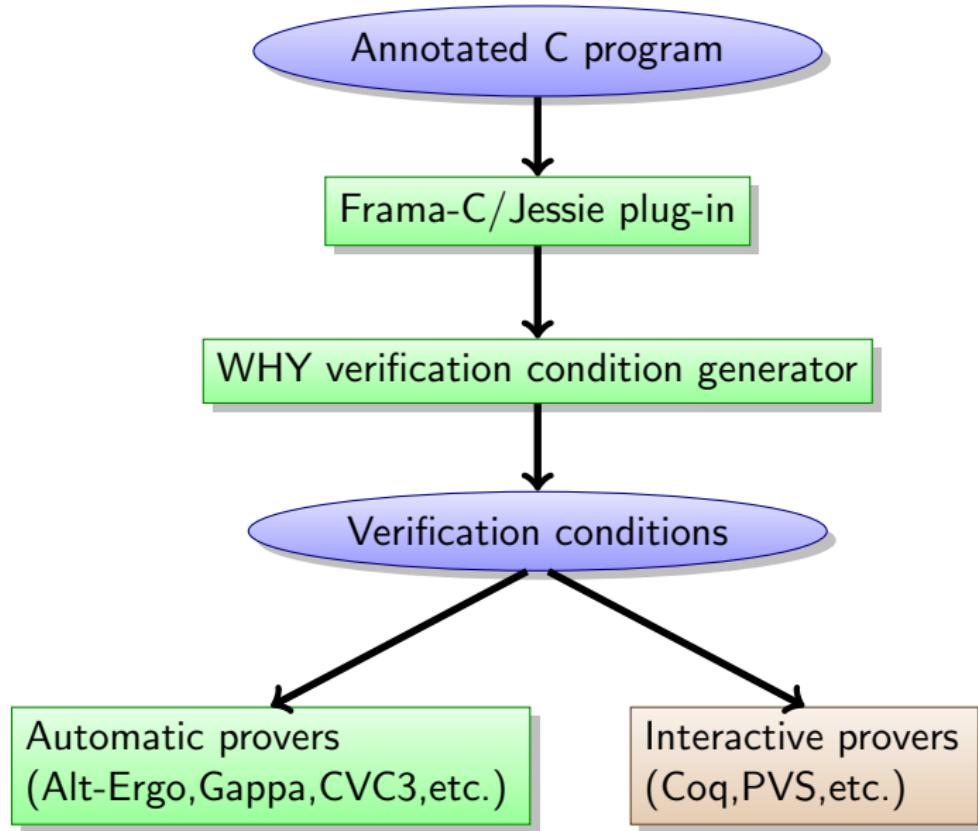
2 Tools

- Frama-C/Jessie/Why
- ACSL
- Proof assistant: Coq

3 Examples


- Sterbenz
- Error of the multiplication
- Accurate discriminant
- Area of a triangle
- 1-D Wave equation discretization

4 Conclusion


The used toolchain: Frama-C/Jessie/Why

Annotated C program

The used toolchain: Frama-C/Jessie/Why

The used toolchain: Frama-C/Jessie/Why

Outline

1 Introduction

2 Tools

- Frama-C/Jessie/Why
- ACSL
- Proof assistant: Coq

3 Examples

- Sterbenz
- Error of the multiplication
- Accurate discriminant
- Area of a triangle
- 1-D Wave equation discretization

4 Conclusion

Annotation language: ACSL

(how a bug differs from a rounding error)

Annotation language: ACSL

(how a bug differs from a rounding error)

- ANSI/ISO C Specification Language

Annotation language: ACSL

(how a bug differs from a rounding error)

- ANSI/ISO C Specification Language
- behavioral specification language for C programs

Annotation language: ACSL

(how a bug differs from a rounding error)

- ANSI/ISO C Specification Language
- behavioral specification language for C programs
- pre-conditions and post-conditions to functions
(and which variables are modified).

Annotation language: ACSL

(how a bug differs from a rounding error)

- ANSI/ISO C Specification Language
- behavioral specification language for C programs
- pre-conditions and post-conditions to functions
(and which variables are modified).
- variants and invariants of the loops.

Annotation language: ACSL

(how a bug differs from a rounding error)

- ANSI/ISO C Specification Language
- behavioral specification language for C programs
- pre-conditions and post-conditions to functions
(and which variables are modified).
- variants and invariants of the loops.
- assertions

Annotation language: ACSL

(how a bug differs from a rounding error)

- ANSI/ISO C Specification Language
- behavioral specification language for C programs
- pre-conditions and post-conditions to functions
(and which variables are modified).
- variants and invariants of the loops.
- assertions
- In annotations, all computations are exact.

Annotation language: ACSL

(how a bug differs from a rounding error)

- ANSI/ISO C Specification Language
- behavioral specification language for C programs
- pre-conditions and post-conditions to functions
(and which variables are modified).
- variants and invariants of the loops.
- assertions
- In annotations, all computations are exact.

⇒ **For the programmer, the specification is easy to understand.**

ACSL and floating-point numbers

A floating-point number is a triple:

- the **floating-point number**, really computed by the program,
 $x \rightarrow x_f$ floating-point part

ACSL and floating-point numbers

A floating-point number is a triple:

- the **floating-point number**, really computed by the program,
 $x \rightarrow x_f$ floating-point part
- the **value that would have been obtained with exact computations**,
 $x \rightarrow x_e$ exact part

ACSL and floating-point numbers

A floating-point number is a triple:

- the **floating-point number**, really computed by the program,
 $x \rightarrow x_f$ floating-point part
- the **value that would have been obtained with exact computations**,
 $x \rightarrow x_e$ exact part
- the **value that we ideally wanted to compute**
 $x \rightarrow x_m$ model part

ACSL and floating-point numbers

A floating-point number is a triple:

- the **floating-point number**, really computed by the program,
 $x \rightarrow x_f$ floating-point part $1+x+x*x/2$
- the **value that would have been obtained with exact computations**,
 $x \rightarrow x_e$ exact part $1 + x + \frac{x^2}{2}$
- the **value that we ideally wanted to compute**
 $x \rightarrow x_m$ model part $\exp(x)$

ACSL and floating-point numbers

A floating-point number is a triple:

- the **floating-point number**, really computed by the program,
 $x \rightarrow x_f$ floating-point part $1+x+x*x/2$
- the **value that would have been obtained with exact computations**,
 $x \rightarrow x_e$ exact part $1 + x + \frac{x^2}{2}$
- the **value that we ideally wanted to compute**
 $x \rightarrow x_m$ model part $\exp(x)$

⇒ easy to split into **method error** and **rounding error**

Outline

1 Introduction

2 Tools

- Frama-C/Jessie/Why
- ACSL
- Proof assistant: Coq

3 Examples

- Sterbenz
- Error of the multiplication
- Accurate discriminant
- Area of a triangle
- 1-D Wave equation discretization

4 Conclusion

Formal proof

The proof is checked in its deep details until the computer agrees with it.

We often use formal proof checkers, meaning programs that only **check** a proof (they may also generate easy demonstrations).

Therefore the checker is a very short program (de Bruijn criteria: the correctness of the system as a whole depends on the correctness of a very **small "kernel"**).

The Coq proof assistant (<http://coq.inria.fr>)

- Based on the Curry-Howard isomorphism.
(equivalence between proofs and λ -terms)
- Few automations.
- Comprehensive libraries, including on \mathbb{Z} and \mathbb{R} .
- **Coq kernel mechanically checks each step of each proof.**
- The method is to apply successively **tactics** (theorem application, rewriting, simplifications...) to transform or reduce the goal down to the hypotheses.
- The proof is handled starting from the conclusion.

A Coq formalization of FP arithmetic : Flocq

A FP format is only characterized by a function $\varphi : \mathbb{Z} \rightarrow \mathbb{Z}$.

A Coq formalization of FP arithmetic : Flocq

A FP format is only characterized by a function $\varphi : \mathbb{Z} \rightarrow \mathbb{Z}$.

For $x \in \mathbb{R}$, we compute e such that $\beta^{e-1} \leq |x| < \beta^e$.

Then x is in the format iff

$$x = \left\lfloor x \beta^{-\varphi(e)} \right\rfloor \beta^{\varphi(e)}$$

In other words: **if it can be written with exponent $\varphi(e)$.**

Definition (FIX)

Fixed-point format with exponent e_{\min} : $\varphi(e) = e_{\min}$.

Usual Formats

Definition (FIX)

Fixed-point format with exponent e_{\min} : $\varphi(e) = e_{\min}$.

Definition (FL*)

Floating-point format with precision p :

- unbounded (FLX): $\varphi(e) = e - p$,

Usual Formats

Definition (FIX)

Fixed-point format with exponent e_{\min} : $\varphi(e) = e_{\min}$.

Definition (FL*)

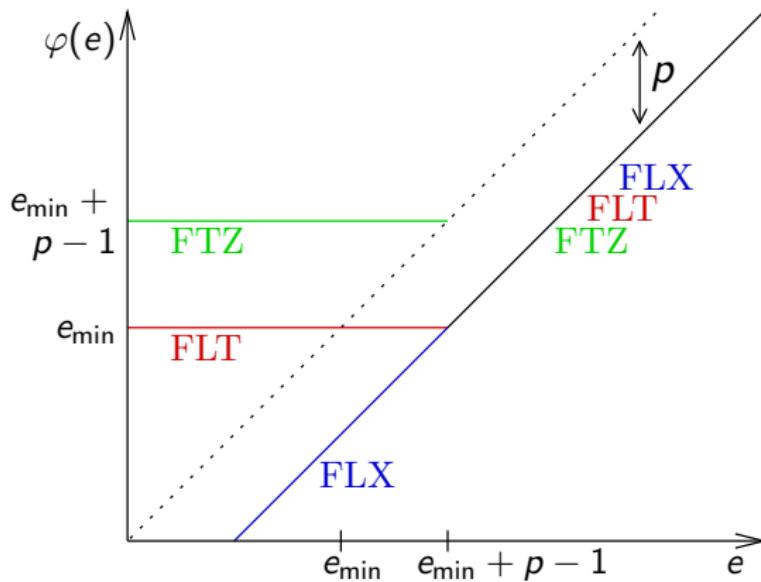
Floating-point format with precision p :

- unbounded (FLX): $\varphi(e) = e - p$,
- bounded with subnormal numbers (FLT): $\varphi(e) = \max(e - p, e_{\min})$,

Usual Formats

Definition (FIX)

Fixed-point format with exponent e_{\min} : $\varphi(e) = e_{\min}$.


Definition (FL*)

Floating-point format with precision p :

- unbounded (FLX): $\varphi(e) = e - p$,
- bounded with subnormal numbers (FLT): $\varphi(e) = \max(e - p, e_{\min})$,
- bounded without subnormal numbers (FTZ).

A random φ may not allow to define a rounding: we have a valid predicate for being a reasonable φ .

Usual Floating-Point Formats

Example of Coq theorem

Theorem (round_NE_abs)

Let φ be a format, such that the rounding to nearest, ties to even (\circ) can be defined. For all $x \in \mathbb{R}$, $\circ(|x|) = |\circ(x)|$.

Example of Coq theorem

Theorem (round_NE_abs)

Let φ be a format, such that the rounding to nearest, ties to even (\circ) can be defined. For all $x \in \mathbb{R}$, $\circ(|x|) = |\circ(x)|$.

```
Lemma round_NE_abs: forall x : R,  
  round beta fexp ZnearestE (Rabs x) = Rabs (round beta fexp ZnearestE x).
```

Example of Coq theorem

Theorem (round_NE_abs)

Let φ be a format, such that the rounding to nearest, ties to even (\circ) can be defined. For all $x \in \mathbb{R}$, $\circ(|x|) = |\circ(x)|$.

```
Lemma round_NE_abs: forall x : R,
  round beta fexp ZnearestE (Rabs x) = Rabs (round beta fexp ZnearestE x).
Proof with auto with typeclass_instances.
intros x; apply sym_eq.
unfold Rabs at 2.
destruct (Rcase_abs x) as [Hx|Hx].
rewrite round_NE_opp.
apply Rabs_left1.
rewrite <- (round_0 beta fexp ZnearestE).
apply round_le...
now apply Rlt_le.
apply Rabs_pos_eq.
rewrite <- (round_0 beta fexp ZnearestE).
apply round_le...
now apply Rge_le.
Qed.
```

With the **stating of the theorem**, the **tactics**, and the **name of theorems**.

More about Flocq

Flocq: 16 000 lines of Coq, 700 theorems,

- any radix, any format,
- both axiomatic and computable definitions of rounding,
- effective arithmetic operators,
- numerous theorems.

More about Flocq

Flocq: 16 000 lines of Coq, 700 theorems,

- any radix, any format,
- both axiomatic and computable definitions of rounding,
- effective arithmetic operators,
- numerous theorems.

Applications:

- Frama-C/Jessie C code certifier
- CompCert certified C compiler

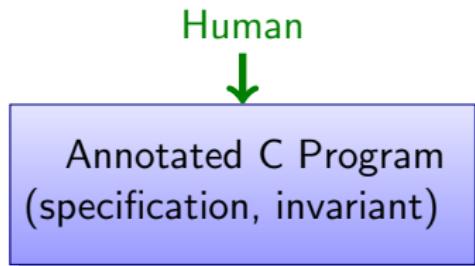
<http://flocq.gforge.inria.fr/>

More about Flocq

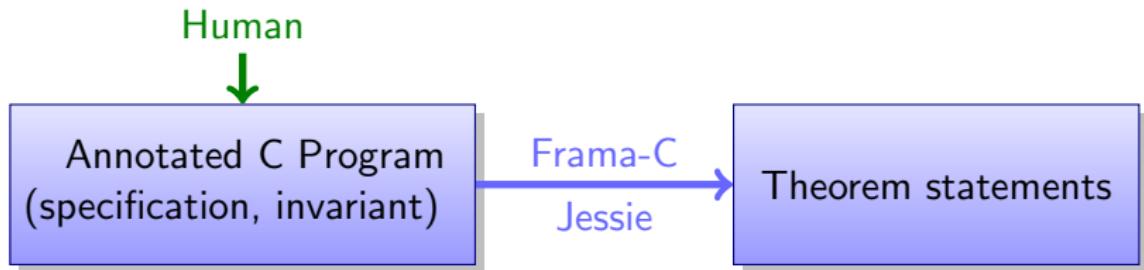
Flocq: 16 000 lines of Coq, 700 theorems,

- any radix, any format,
- both axiomatic and computable definitions of rounding,
- effective arithmetic operators,
- numerous theorems.

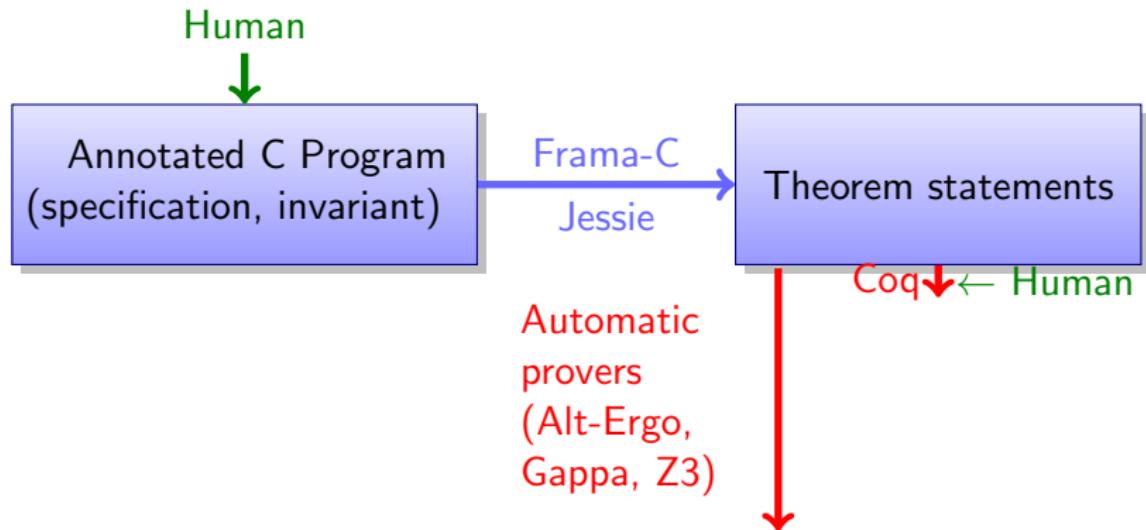
Applications:

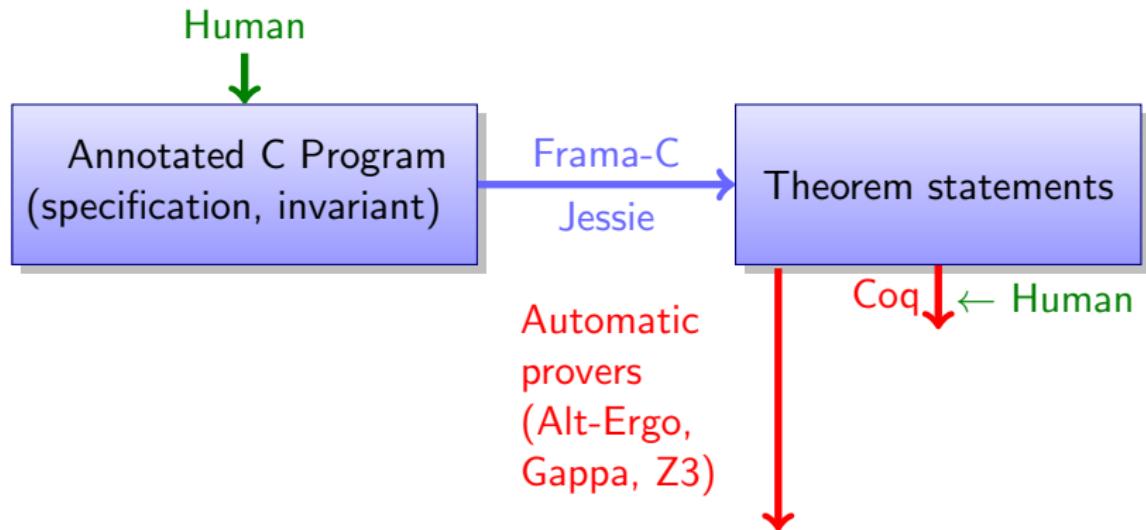

- **Frama-C/Jessie** **C code certifier**
- CompCert certified C compiler

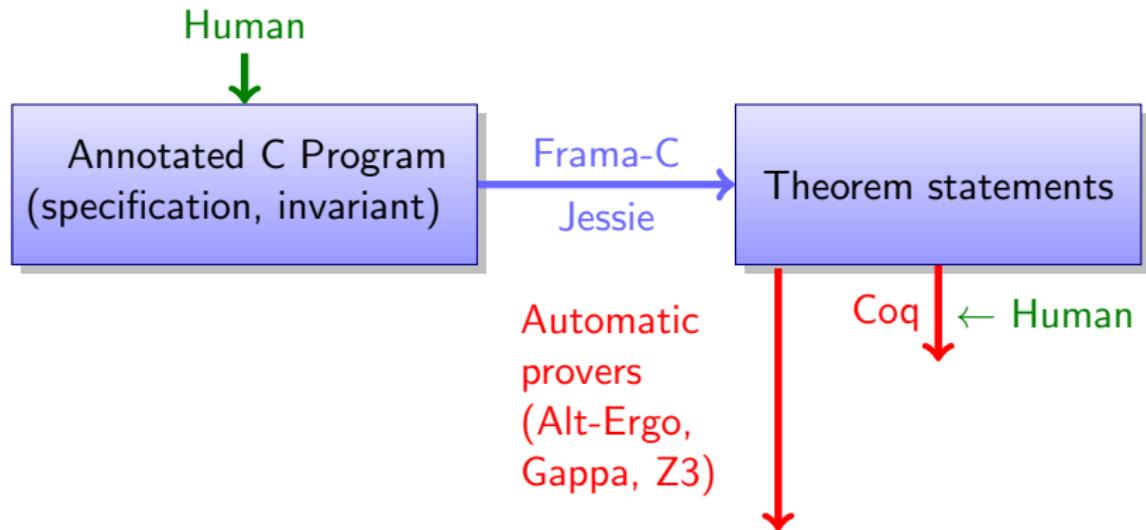
<http://flocq.gforge.inria.fr/>

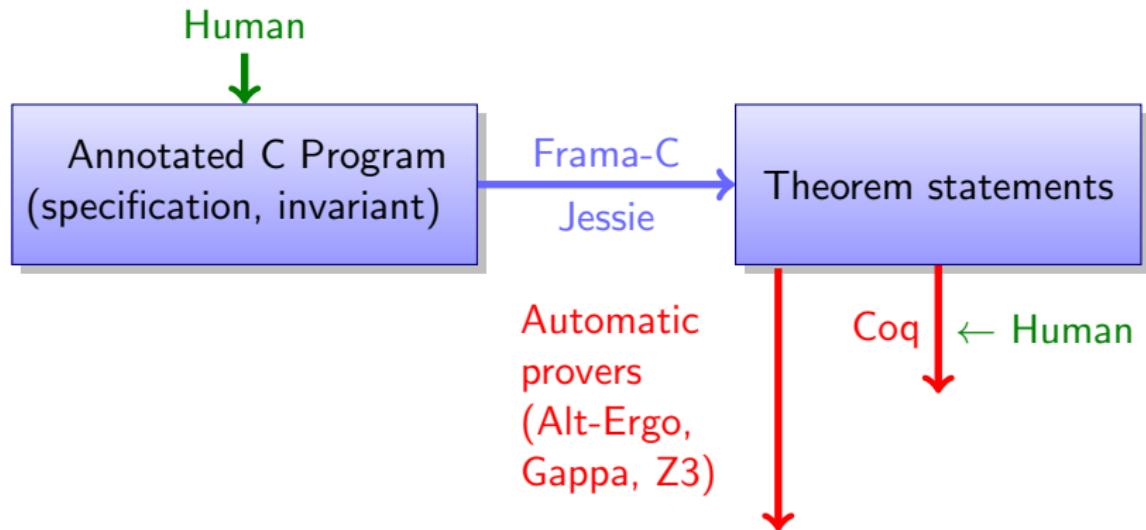

Methodology for the verification of C programs

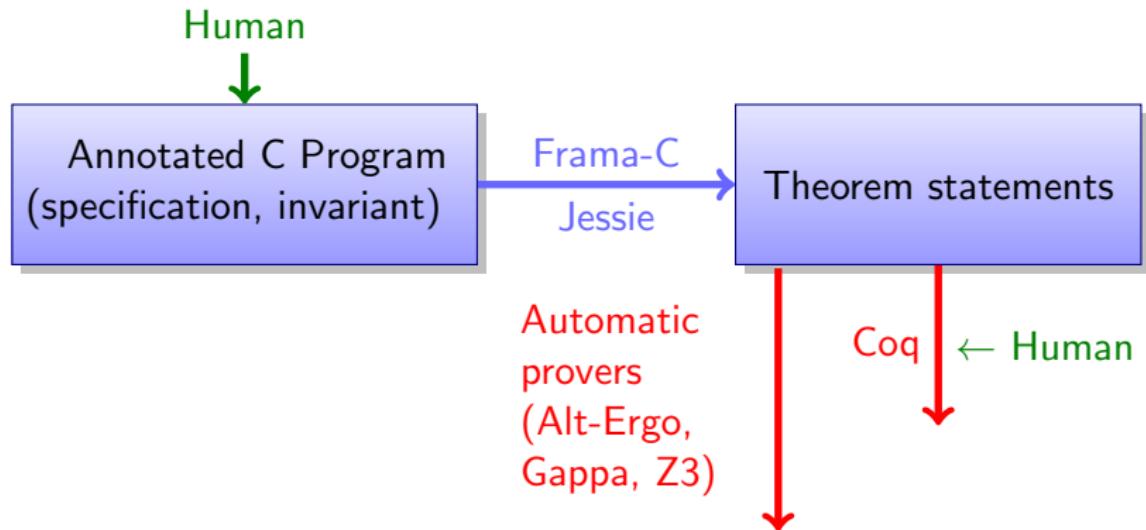
C Program

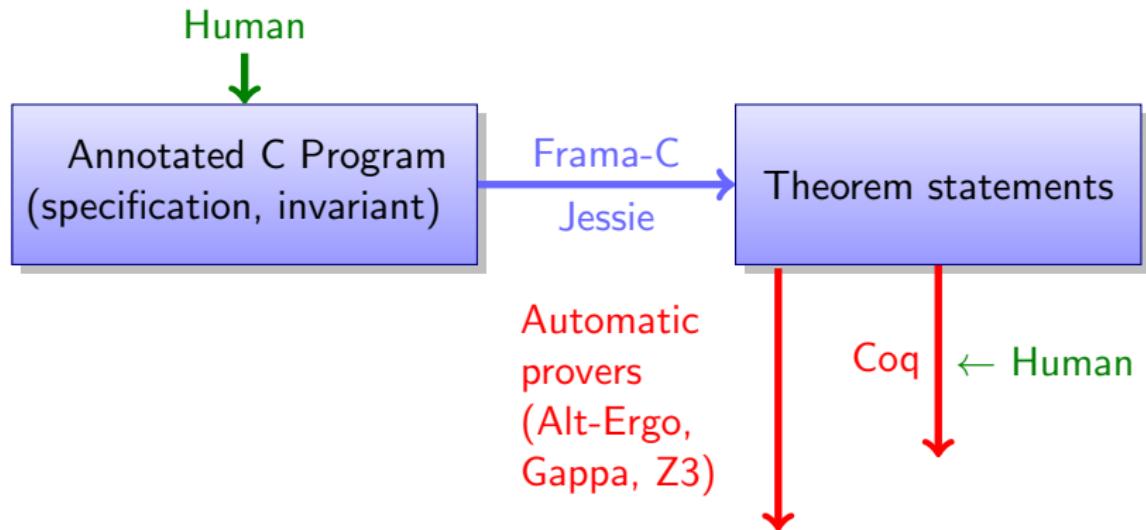

Methodology for the verification of C programs

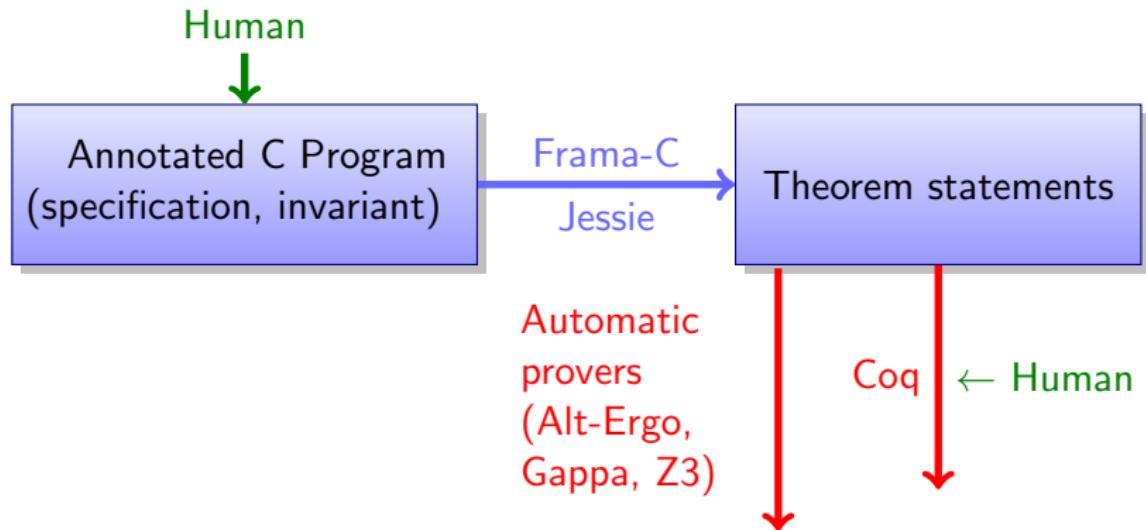

Methodology for the verification of C programs

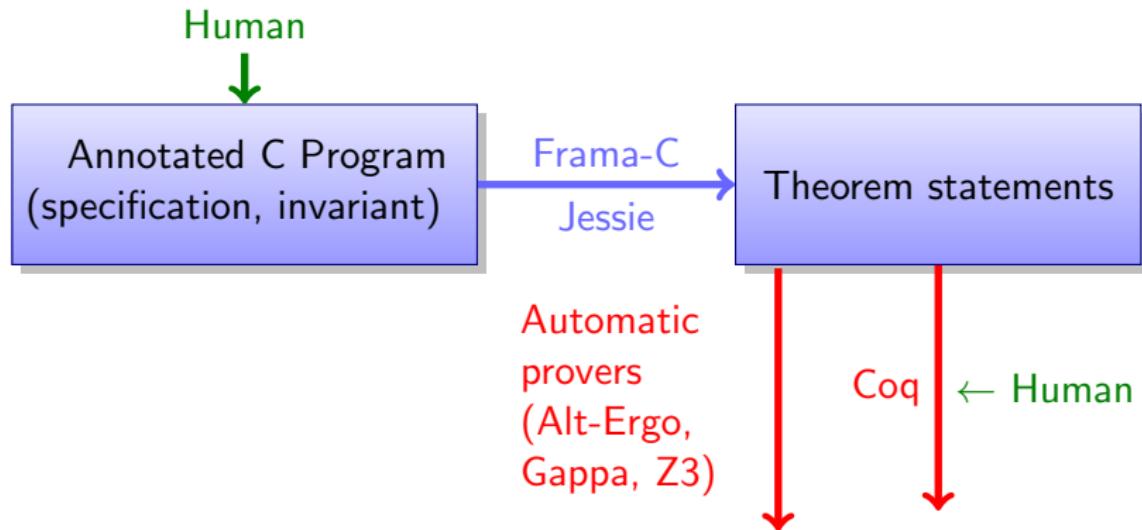

Methodology for the verification of C programs

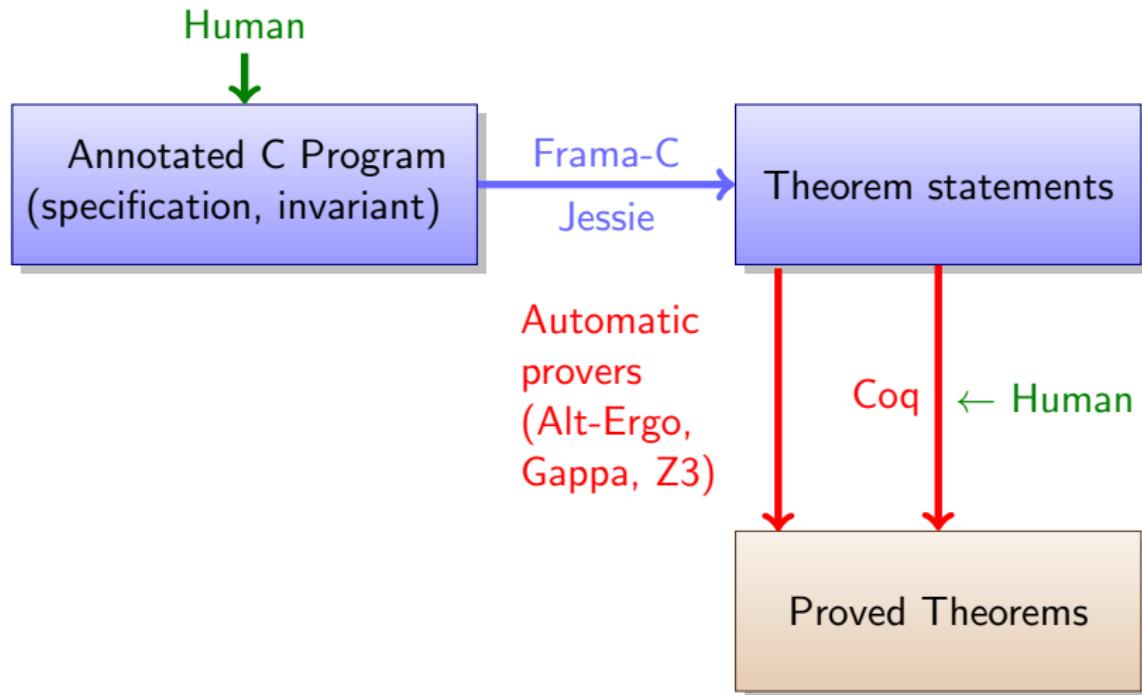

Methodology for the verification of C programs

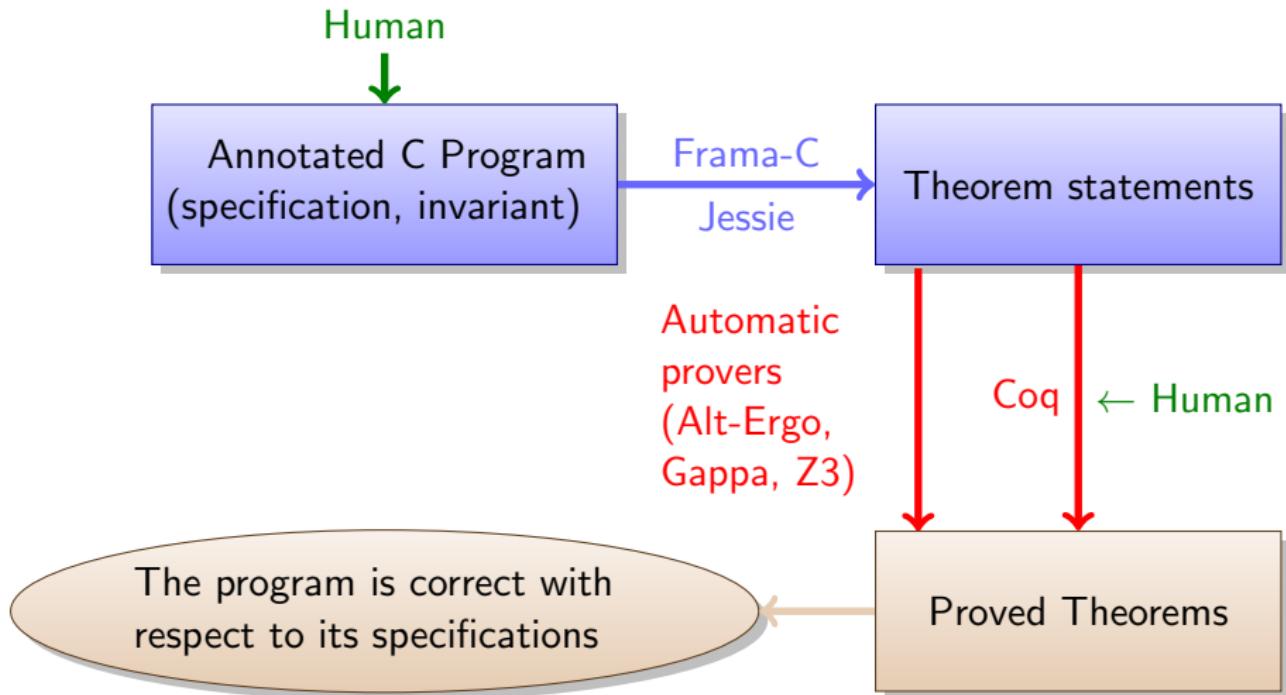

Methodology for the verification of C programs


Methodology for the verification of C programs


Methodology for the verification of C programs


Methodology for the verification of C programs


Methodology for the verification of C programs


Methodology for the verification of C programs

Methodology for the verification of C programs

Methodology for the verification of C programs

Outline

1 Introduction

2 Tools

- Frama-C/Jessie/Why
- ACSL
- Proof assistant: Coq

3 Examples

- Sterbenz
- Error of the multiplication
- Accurate discriminant
- Area of a triangle
- 1-D Wave equation discretization

4 Conclusion

Examples

- All examples use Frama-C Neon, Why 2.34 and Why3 0.83.

Examples

- All examples use Frama-C Neon, Why 2.34 and Why3 0.83.
- Non-automatic proof obligations are proved using Coq 8.4pl4.

Examples

- All examples use Frama-C Neon, Why 2.34 and Why3 0.83.
- Non-automatic proof obligations are proved using Coq 8.4pl4.
- Overflow is considered a runtime error.

Examples

- All examples use Frama-C Neon, Why 2.34 and Why3 0.83.
- Non-automatic proof obligations are proved using Coq 8.4pl4.
- Overflow is considered a runtime error.
- Code & proofs available on
<http://www.lri.fr/~sboldo/research.html>.

Theorem (Sterbenz)

If x and y are FP numbers in a given precision such that

$$\frac{y}{2} \leq x \leq 2y,$$

then $x - y$ fits in a FP number in the same precision and is therefore computed without error.

Sterbenz – program

```
/*@ requires y/2. <= x <= 2.*y;
@ ensures \result == x-y;
@*/
float Sterbenz(float x, float y) {
    return x-y;
}
```

Sterbenz – program

Exact subtraction

```
/*@ requires y/2. <= x <= 2*y;
@ ensures \result == x-y;
@*/
```

```
float Sterbenz( float x, float y) {
    return x-y;
}
```

Sterbenz – proofs

Proof obligations	CVC3	Coq	
			Nb lines
VC for behavior		2.34	6
VC for safety	0.23		

Outline

1 Introduction

2 Tools

- Frama-C/Jessie/Why
- ACSL
- Proof assistant: Coq

3 Examples

- Sterbenz
- **Error of the multiplication**
- Accurate discriminant
- Area of a triangle
- 1-D Wave equation discretization

4 Conclusion

Also known as Error-Free-Transformation for the multiplication.

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm computing the exact error of the multiplication using only FP operations.

Also known as Error-Free-Transformation for the multiplication.

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm computing the exact error of the multiplication using only FP operations.

Idea:

split your floats in 2, multiply all the parts, add them in the correct order.

Veltkamp/Dekker – program

```
/*@ requires xy == \round_double(\NearestEven,x*y) &&
@           \abs(x) <= 0x1.p995 &&
@           \abs(y) <= 0x1.p995 &&
@           \abs(x*y) <= 0x1.p1021;
@ ensures   ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
@           ==> x*y == xy+\result);
*/
double Dekker(double x, double y, double xy) {
    double C, px, qx, hx, py, qy, hy, tx, ty, r2;
    C=0x8000001p0;
    /*@ assert C == 0x1p27+1; */
    px=x*C; qx=x-px; hx=px+qx; tx=x-hx;
    py=y*C; qy=y-py; hy=py+qy; ty=y-hy;
    r2=-xy+hx*hy;
    r2+=hx*ty;
    r2+=hy*tx;
    r2+=tx*ty;
    return r2;
}
```

Veltkamp/Dekker – program

```
/*@ requires xy == \round_double(\NearestEven,x*y) && xy = o(xy)
@           \abs(x) <= 0x1.p995 &&
@           \abs(y) <= 0x1.p995 &&
@           \abs(x*y) <= 0x1.p1021;
@ ensures   ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
@           ==> x*y == xy+\result);
@*/
double Dekker(double x, double y, double xy) {
    double C,px,qx,hx,py,qy,hy,tx,ty,r2;
    C=0x8000001p0;
    /*@ assert C == 0x1p27+1; */
    px=x*C; qx=x-px; hx=px+qx; tx=x-hx;
    py=y*C; qy=y-py; hy=py+qy; ty=y-hy;
    r2=-xy+hx*hy;
    r2+=hx*ty;
    r2+=hy*tx;
    r2+=tx*ty;
    return r2;
}
```

Veltkamp/Dekker – program

```
/*@ requires xy == \round_double(\NearestEven,x*y) &&
@           \abs(x) <= 0x1.p995 &&
@           \abs(y) <= 0x1.p995 &&
@           \abs(x*y) <= 0x1.p1021;
@ ensures  ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
@           ==> x*y == xy+\result);
*/
double Dekker(double x, double y, double xy) {
    double C, px, qx, hx, py, qy, hy, tx, ty, r2;
    C=0x8000001p0;
    /*@ assert C == 0x1p27+1; */
    px=x*C; qx=x-px; hx=px+qx; tx=x-hx;
    py=y*C; qy=y-py; hy=py+qy; ty=y-hy;
    r2=-xy+hx*hy;
    r2+=hx*ty;
    r2+=hy*tx;
    r2+=tx*ty;
    return r2;
}
```

Overflow

Veltkamp/Dekker – program

```
/*@ requires xy == \round_double(\NearestEven,x*y) &&
@           \abs(x) <= 0x1.p995 &&
@           \abs(y) <= 0x1.p995 &&
@           \abs(x*y) <= 0x1.p1021;
@ ensures  ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
@           ==> x*y == xy+\result);
*/
double Dekker(double x, double y, double xy) {
    double C, px, qx, hx, py, qy, hy, tx, ty, r2;
    C=0x8000001p0;
    /*@ assert C == 0x1p27+1; */
    px=x*C; qx=x-px; hx=px+qx; tx=x-hx;
    py=y*C; qy=y-py; hy=py+qy; ty=y-hy;
    r2=-xy+hx*hy;
    r2+=hx*ty;
    r2+=hy*tx;
    r2+=tx*ty;
    return r2;
}
```

If no Underflow

Veltkamp/Dekker – program

```
/*@ requires xy == \round_double(\NearestEven,x*y) &&
@           \abs(x) <= 0x1.p995 &&
@           \abs(y) <= 0x1.p995 &&
@           \abs(x*y) <= 0x1.p1021;
@ ensures   ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
@           ==> x*y == xy+\result);
@*/
double Dekker(double x, double y, double xy) {
    double C, px, qx, hx, py, qy, hy, tx, ty, r2;
    C=0x8000001p0;
    /*@ assert C == 0x1p27+1; */
    px=x*C; qx=x-px; hx=px+qx; tx=x-hx;
    py=y*C; qy=y-py; hy=py+qy; ty=y-hy;
    r2=-xy+hx*hy;
    r2+=hx*ty;
    r2+=hy*tx;
    r2+=tx*ty;
    return r2;
}
```

Exact error of \otimes

Veltkamp/Dekker – program

```
/*@ requires xy == \round_double(\NearestEven,x*y) &&
@           \abs(x) <= 0x1.p995 &&
@           \abs(y) <= 0x1.p995 &&
@           \abs(x*y) <= 0x1.p1021;
@ ensures   ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
@           ==> x*y == xy+\result);
*/
double Dekker(double x, double y, double xy) {
    double C, px, qx, hx, py, qy, hy, tx, ty, r2;
    C=0x8000001p0;
    /*@ assert C == 0x1p27+1; */

    px=x*C; qx=x-px; hx=px+qx; tx=x-hx;
    py=y*C; qy=y-py; hy=py+qy; ty=y-hy;

    r2=-xy+hx*hy;
    r2+=hx*ty;
    r2+=hy*tx;
    r2+=tx*ty;
    return r2;
}
```

Split x and y

Veltkamp/Dekker – program

```
/*@ requires xy == \round_double(\NearestEven,x*y) &&
@           \abs(x) <= 0x1.p995 &&
@           \abs(y) <= 0x1.p995 &&
@           \abs(x*y) <= 0x1.p1021;
@ ensures   ((x*y == 0 || 0x1.p-969 <= \abs(x*y))
@           ==> x*y == xy+\result);
*/
double Dekker(double x, double y, double xy) {
    double C, px, qx, hx, py, qy, hy, tx, ty, r2;
    C=0x8000001p0;
    /*@ assert C == 0x1p27+1; */

    px=x*C; qx=x-px; hx=px+qx; tx=x-hx;
    py=y*C; qy=y-py; hy=py+qy; ty=y-hy;

    r2=-xy+hx*hy;
    r2+=hx*ty;
    r2+=hy*tx;
    r2+=tx*ty;
    return r2;
}
```

Multiply all halves and
add all the results

Proof obligations		Coq Nb lines	Time
Previous Coq proof (spec + proof)			
VC for behavior	1. assertion	3	
VC for safety	2. postcondition	238	
	1-9. FP overflow	1 or 2	
	10. FP overflow	37	
	11. FP overflow	47	
	12. FP overflow	43	
	13. FP overflow	64	
	14. FP overflow	43	
	15. FP overflow	83	
	16. FP overflow	49	
	17. FP overflow	94	
Total (1,248 lines spec VC excluded)		3351	9 min 02

Outline

1 Introduction

2 Tools

- Frama-C/Jessie/Why
- ACSL
- Proof assistant: Coq

3 Examples

- Sterbenz
- Error of the multiplication
- Accurate discriminant**
- Area of a triangle
- 1-D Wave equation discretization

4 Conclusion

Accurate discriminant

It is pretty hard to compute $b^2 - ac$ accurately.

Accurate discriminant

It is pretty hard to compute $b^2 - ac$ accurately.

Theorem (Kahan)

*Provided no Overflow and no Underflow occur, there is an algorithm computing the $b^2 - a * c$ within 2 ulps.*

Accurate discriminant

It is pretty hard to compute $b^2 - ac$ accurately.

Theorem (Kahan)

*Provided no Overflow and no Underflow occur, there is an algorithm computing the $b^2 - a * c$ within 2 ulps.*

Idea:

Test whether there is cancellation. If not, then use the naive algorithm. Else, compute the errors of the multiplication, and add everything in the correct order.

Accurate discriminant – program

```
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p,q,d,dp,dq;
    p=b*b;
    q=a*c;

    if (p+q <= 3*fabs(p-q))
        d=p-q;
    else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```

Accurate discriminant – program

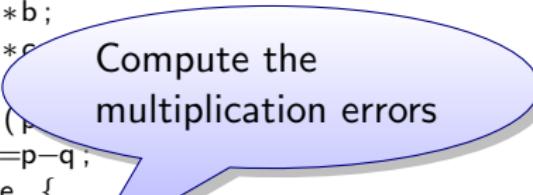
```
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p=b*b;
    double q=a*c;
    if (p+q <= 3*fabs(p-q))
        d=p-q;
    else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```

Test of cancellation

When $p \geq q$, it roughly corresponds to $p \geq 2q$

Accurate discriminant – program


```
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p,a_d,dq;
    p=b;
    q=a;
    Naive algorithm
    if (p+q <= 3*fabs(p-q))
        d=p-q;
    else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```

Accurate discriminant – program

```
/*@ requires
@      (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@      (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@      \abs(b) <= 0x1.p510 &&
@      \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@      \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@      || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p,q,d,dp,dq;
    p=b*b;
    q=a*c;
    if (p < q) {
        d=p-q;
    } else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```


Compute the multiplication errors

Accurate discriminant – program

```
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p,q,d,dp,dq;
    p=b*b;
    q=a*c;
    if (p+q < 0) {
        d=p+q;
    } else {
        dp=Dekker(...,p);
        dq=Dekker(...,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```

Add everything,
 $p - q$ being correct.

As $\frac{q}{2} \lesssim p \lesssim 2q$

Accurate discriminant – program

```
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p,q,d,dp,dq;
    p=b*b;
    q=a*c;

    if (p+q <= 3*fabs(p-q))
        d=p-q;
    else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```

Underflow

Accurate discriminant – program

```
/*@ requires
@      (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@      (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@      \abs(b) <= 0x1.p510 &&
@      \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@      \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@      || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
```

```
    double p,q,d,dp,dq;
    p=b*b;
    q=a*c;

    if (p+q <= 3*fabs(p-q))
        d=p-q;
    else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```

Overflow

Accurate discriminant – program

```
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result); 2 ulps
@ */

double discriminant(double a, double b, double c) {
    double p,q,d,dp,dq;
    p=b*b;
    q=a*c;

    if (p+q <= 3*fabs(p-q))
        d=p-q;
    else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```

Accurate discriminant – program

```
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */

double discriminant(double a, double b, double c) {
    double p,q,d,dp,dq;
    p=b*b;
    q=a*c;

    if (p+
        d=p-q;
    else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```

Function calls

⇒ pre-conditions to prove
⇒ post-conditions guaranteed

Accurate discriminant – program

```
/*@ requires
@   (b==0. || 0x1.p-916 <= \abs(b*b)) &&
@   (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&
@   \abs(b) <= 0x1.p510 &&
@   \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
@   \abs(a*c) <= 0x1.p1021;
@ ensures \result==0.
@   || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result);
@ */
double discriminant(double a, double b, double c) {
```

In initial proof,
test assumed correct

```
    double p, q, d;
    p=b*b;
    q=a*c;
    if (p+q <= 3*fabs(p-q))
        d=p-q;
    else {
        dp=Dekker(b,b,p);
        dq=Dekker(a,c,q);
        d=(p-q)+(dp-dq);
    }
    return d;
}
```

⇒ Additional proof
when test is incorrect

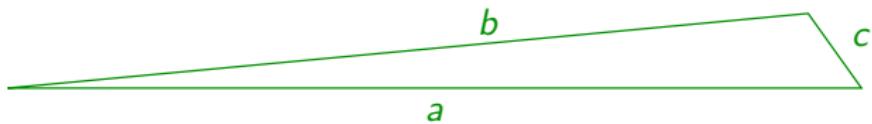
Accurate discriminant – proof

Proof obligations		Coq	Time
Previous Coq proof (spec + proof)		3390	
VC for theory realization		88	
Behavior	1. postcondition	61	
	2. postcondition	90	
Safety	1. floating-point overflow	2	
	2. floating-point overflow	2	
	3. floating-point overflow	3	
	4. floating-point overflow	4	
	5. floating-point overflow	4	
	6. precondition for call	2	
	7. precondition for call	9	
	8. precondition for call	1	
	9-13. precondition for call	2	
	14. floating-point overflow	44	
	15. floating-point overflow	45	
Total (1,146 lines spec VC excluded)		3655	5 min 47

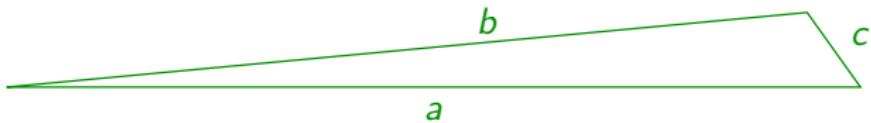
Outline

1 Introduction

2 Tools


- Frama-C/Jessie/Why
- ACSL
- Proof assistant: Coq

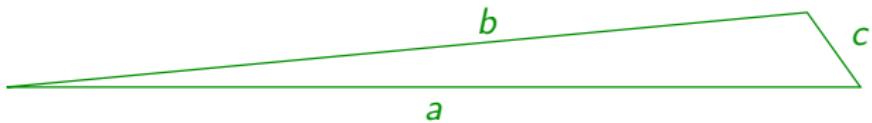
3 Examples


- Sterbenz
- Error of the multiplication
- Accurate discriminant
- Area of a triangle**
- 1-D Wave equation discretization

4 Conclusion

Triangle area

Triangle area



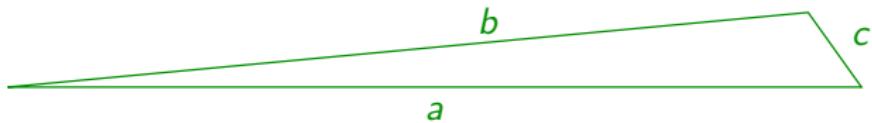
Heron's formula: $\Delta = \sqrt{s (s - a) (s - b) (s - c)}$ where $s = \frac{a+b+c}{2}$.

Kahan's formula, for $c \leq b \leq a$:

$$\Delta = \frac{1}{4} \sqrt{(a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))}.$$

Triangle area

Heron's formula: $\Delta = \sqrt{s (s - a) (s - b) (s - c)}$ where $s = \frac{a+b+c}{2}$.


Kahan's formula, for $c \leq b \leq a$:

$$\Delta = \frac{1}{4} \sqrt{(a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))}.$$

[Kahan, Miscalculating Area and Angles of a Needle-like Triangle]

Area Δ is accurate to within **a few** units in their last digits.

Triangle area

Heron's formula: $\Delta = \sqrt{s (s - a) (s - b) (s - c)}$ where $s = \frac{a+b+c}{2}$.

Kahan's formula, for $c \leq b \leq a$:

$$\Delta = \frac{1}{4} \sqrt{(a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))}.$$

[Kahan, Miscalculating Area and Angles of a Needle-like Triangle]

Area Δ is accurate to within **a few** units in their last digits.

[Goldberg, 1991]

The rounding error of area Δ is at most **11** ε , provided $\varepsilon < 0.005$ and subtraction and square roots are accurate.

Triangle area

Theorem (err_Δ_flx_radix2)

With an unbounded exponent range, $\beta = 2$, and $\varepsilon \leq \frac{1}{100}$, The rounding error of area Δ is at most $4.75\varepsilon + 33\varepsilon^2$.

Triangle area

Theorem (err_Δ_flx_radix2)

With an unbounded exponent range, $\beta = 2$, and $\varepsilon \leq \frac{1}{100}$, The rounding error of area Δ is at most $4.75\varepsilon + 33\varepsilon^2$.

For underflow:

- detect afterwards if a subnormal appeared in the computation
- order the intermediate variables, and multiply the biggest first:
$$0 \leq c \ominus (a \ominus b) \leq c \oplus (a \ominus b) \leq a \oplus (b \ominus c) \leq a \oplus (b \oplus c)$$

Triangle area

Theorem (err_Δ_flx_radix2)

With an unbounded exponent range, $\beta = 2$, and $\varepsilon \leq \frac{1}{100}$, The rounding error of area Δ is at most $4.75\varepsilon + 33\varepsilon^2$.

For underflow:

- detect afterwards if a subnormal appeared in the computation
- order the intermediate variables, and multiply the biggest first:
$$0 \leq c \ominus (a \ominus b) \leq c \oplus (a \ominus b) \leq a \oplus (b \ominus c) \leq a \oplus (b \oplus c)$$

Theorem (err_Δ_flt_radix2)

We assume that $\beta = 2$, that $\varepsilon \leq \frac{1}{100}$, and that $2^{\lceil \frac{E_i+p-1}{2} \rceil - 2} < \Delta$. The rounding error of area Δ (computed in the given order) is at most $4.75\varepsilon + 33\varepsilon^2$.

Triangle area

Theorem (err_Δ_flx_radix2)

With an unbounded exponent range, $\beta = 2$, and $\varepsilon \leq \frac{1}{100}$, The rounding error of area Δ is at most $4.75\varepsilon + 33\varepsilon^2$.

For underflow:

- detect afterwards if a subnormal appeared in the computation
- order the intermediate variables, and multiply the biggest first:
$$0 \leq c \ominus (a \ominus b) \leq c \oplus (a \ominus b) \leq a \oplus (b \ominus c) \leq a \oplus (b \oplus c)$$

Theorem (err_Δ_flt_radix2)

We assume that $\beta = 2$, that $\varepsilon \leq \frac{1}{100}$, and that $2^{\lceil \frac{E_i+p-1}{2} \rceil - 2} < \Delta$. The rounding error of area Δ (computed in the given order) is at most $4.75\varepsilon + 33\varepsilon^2$.

(and 5.75ε in radix 10 as multiplying by $\frac{1}{4}$ is not exact).

Triangle area – program

```
/*@ requires 0 <= x;
@ ensures \result==\round_double(\NearestEven,\sqrt(x));
@*/
double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*(s-c));
@ */

/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures 0x1p-513 < \result
@ ==> \abs(\result-S(a,b,c))
@ <= (4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);
@ */

double triangle (double a,double b, double c) {
    return (0x1p-2*sqrt((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))));
```

Triangle area – program

```
/*@ requires 0 <= x;
@ ensures \result==\round_double(\NearestEven,\sqrt(x));
@*/
double sqrt(double x);
```

Square root definition

```
/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@       \sqrt(s*(s-a)*(s-b)*(s-c));
@ */

/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures 0x1p-513 < \result
@ ==> \abs(\result-S(a,b,c))
@       <= (4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);
@ */

double triangle (double a,double b, double c) {
    return (0x1p-2*sqrt((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))));
```

Triangle area – program

```
/*@ requires 0 <= x;
 @ ensures \result==\round_double(\NearestEven,\sqrt(x));
 @*/
double sqrt(double x);
```

```
/*@ logic real S(real a, real b, real c) =
 @ \let s = (a+b+c)/2;
 @ \sqrt(s*(s-a)*(s-b)*(s-c));
 @ */
```

Heron's formula
(no rounding)

```
/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
 @ ensures 0x1p-513 < \result
 @ ==> \abs(\result-S(a,b,c))
 @ <= (4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);
 @ */

double triangle (double a,double b, double c) {
    return (0x1p-2*sqrt((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))));
```

Triangle area – program

```
/*@ requires 0 <= x;
@ ensures \result==\round_double(\NearestEven,\sqrt(x));
@*/
double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*(s-c));
@ */

/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures 0x1p-513 < \result
@ ==> \abs(\result-S(a,b,c))
@ <= (4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);
@ */
Kahan's algorithm
with properly ordered values

double triangle (double a, double b, double c) {
    return (0x1p-2*sqrt((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))));
```

Triangle area – program

```
/*@ requires 0 <= x;
@ ensures \result==\round_double(\NearestEven,\sqrt(x));
@*/
double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*(s-c));
@ */
double triangle (double a, double b, double c) {
    return (0x1p-2*sqrt((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))));
```

ordered side lengths

```
/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures 0x1p-513 < \result
@ ==> \abs(\result-S(a,b,c))
@ <= (4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);
@ */
```

Triangle area – program

```
/*@ requires 0 <= x;
@ ensures \result==\round_double(\NearestEven,\sqrt(x));
@*/
double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*(s-c));
@ */
double triangle (double a, double b, double c) {
    return (0x1p-2*sqrt((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))));
```

overflow condition

```
/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures 0x1p-513 < \result
@ ==> \abs(\result-S(a,b,c))
@ <= (4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);
@ */
}
```

Triangle area – program

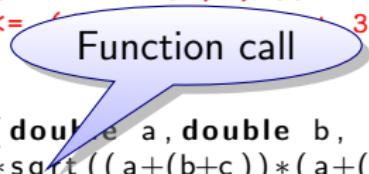
```
/*@ requires 0 <= x;
 @ ensures \result==\round_double(\NearestEven,\sqrt(x));
 @*/
double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
 @ \let s = (a+b+c)/2;
 @ \sqrt(s*(s-a)*(s-b)*(s-c));
 @ */
/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
 @ ensures 0x1p-513 < \result
 @ ==> \abs(\result-S(a,b,c))
 @ <= (4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);
 @ */
double triangle (double a,double b, double c) {
    return (0x1p-2*sqrt((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))));
```

Triangle area – program

```
/*@ requires 0 <= x;
 @ ensures \result==\round_double(\NearestEven,\sqrt(x));
 @*/
double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
 @ \let s = (a+b+c)/2;
 @ \sqrt(s*(s-a)*(s-b)*(s-c));
 @ */


/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
 @ ensures 0x1p-513 < \result
 @ ==> \abs(\result-S(a,b,c))
 @ <= (4.75*0x1p-53 + 33*0x1p-106)*S(a,b,c);
 @ */
                                         Error bound

double triangle (double a,double b, double c) {
    return (0x1p-2*sqrt((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))));
```

Triangle area – program

```
/*@ requires 0 <= x;
@ ensures \result==\round_double(\NearestEven,\sqrt(x));
@*/
double sqrt(double x);

/*@ logic real S(real a, real b, real c) =
@ \let s = (a+b+c)/2;
@ \sqrt(s*(s-a)*(s-b)*(s-c));
@ */
/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;
@ ensures 0x1p-513 < \result
@ ==> \abs(\result-S(a,b,c))
@ <= \sqrt(33*0x1p-106)*S(a,b,c);
@ */
double triangle (double a, double b, double c) {
    return (0x1p-2*sqrt((a+(b+c))*(a+(b-c))*(c+(a-b))*(c-(a-b))));
```


Function call

Triangle area – proof

Proof obligations		Gappa	Coq	
Previous Coq proof			18.89	2091
Behavior	1. postcondition		16.00	82
Safety	1. FP overflow	0.02		
	2. FP overflow	0.03		
	3. FP overflow	0.03		
	4. FP overflow	0.03		
	5. FP overflow	0.03		
	6. FP overflow	0.00		
	7. FP overflow	0.02		
	8. FP overflow	0.01		
	9. FP overflow	0.00		
	10. FP overflow	0.02		
	11. FP overflow	0.02		
	12. precondition for call		13.22	13
	13. FP overflow	0.03		
	14. FP overflow	0.04		

Triangle area – proof

	Theories/Goals	Status	Time
Alt-Ergo (0.95.1 models)			
CVC3 (2.4.1)	triangle.mlw	✓	
Coq (8.4pl2)	Jessie_model	✓	
Eprover (1.7)			
Gappa (0.17.1)			
Simplify (1.5.4)			
Spass (3.7)			
Z3 (4.3.2)			
veriT (dev)			
Transformations			
Split			
Inline			
Tools			
Edit			
Replay			
Cleaning			
Remove			
Clean			
	VC for triangle_ensures_default	✓	
	Coq (8.4pl2)	✓	15.43
	VC for triangle_safety	✓	
	split_goal_wp	✓	
	1. floating-point overflow	✓	
	2. floating-point overflow	✓	
	3. floating-point overflow	✓	
	4. floating-point overflow	✓	
	5. floating-point overflow	✓	
	6. floating-point overflow	✓	
	7. floating-point overflow	✓	
	8. floating-point overflow	✓	
	9. floating-point overflow	✓	
	10. floating-point overflow	✓	
	11. floating-point overflow	✓	
	12. precondition for call	✓	
	Coq (8.4pl2)	✓	14.18
	13. floating-point overflow	✓	
	Gappa (0.17.1)	✓	0.03
	14. floating-point overflow	✓	
	Gappa (0.17.1)	✓	0.04
			388 (* Why3 goal *) 390 Theorem WP_parameter_triangle_ensures_default : forall (a_0:floating_point.Double) 391 (b_0:floating_point.DoubleFormat.double) 392 (c_0:floating_point.DoubleFormat.double), 393 ((0%R <= (floating_point.Double.value c_0))%R /\ 394 ((floating_point.Double.value c_0) <= (floating_point.Double.value b_0))%R /\ 395 ((floating_point.Double.value b_0) <= (floating_point.Double.value a_0))%R /\ 396 ((floating_point.Double.value a_0) <= ((floating_point.Double.value b_0) + (floating_p 397 ((floating_point.Double.value a_0) <= (1 * 5789604461865809771178549250434395392 398 forall (a:floating_point.DoubleFormat.double), 399 (floating_point.Double.sub_post floating_point.Rounding.NearestTiesToEven 400 a_0 b_0) -> forall (a_1:floating_point.DoubleFormat.double), 401 (floating_point.Double.sub_post floating_point.Rounding.NearestTiesToEven 402 c_0 o o) -> forall (a_2:floating_point.DoubleFormat.double), 403 (floating_point.Double.sub_post floating_point.Rounding.NearestTiesToEven 404 a_0 b_0 o) -> forall (a_3:floating_point.DoubleFormat.double), 405 (floating_point.Double.add_post floating_point.Rounding.NearestTiesToEven 406 a_0 b_0 c_0) -> forall (a_4:floating_point.DoubleFormat.double), 407 (floating_point.Double.sub_post floating_point.Rounding.NearestTiesToEven 408 a_0 b_0 c_0) -> forall (a_5:floating_point.DoubleFormat.double), 409 (floating_point.Double.add_post floating_point.Rounding.NearestTiesToEven 410 a_0 b_0 c_0) -> forall (a_6:floating_point.DoubleFormat.double), 411 (floating_point.Double.sub_post floating_point.Rounding.NearestTiesToEven 412 a_0 b_0 c_0) -> forall (a_7:floating_point.DoubleFormat.double), 413 (*@ requires 0 <= c <= b <= a && a <= b <= c && a <= 0x1p255; 414 @ ensures 0x1p-513 < result 415 @ -> abs(result-5(a,b,c)) <= (4.75*0x1p-53 + 33*0x1p-106)*5(a,b,c); 416 @ */ 417 418 double triangle(double a,double b,double c) { 419 return (0x1p-5*sqrt((a+b+c)*(a+b)*(c+a-b)*(c-a-b))); 420 }
			file:/users/toccata/sboldo/Desktop/NewGallery/triangle.c

Outline

1 Introduction

2 Tools

- Frama-C/Jessie/Why
- ACSL
- Proof assistant: Coq

3 Examples

- Sterbenz
- Error of the multiplication
- Accurate discriminant
- Area of a triangle
- 1-D Wave equation discretization

4 Conclusion

The wave equation

Looking for $u : \mathbb{R}^2 \rightarrow \mathbb{R}$ regular enough such that:

$$\frac{\partial^2 u(x, t)}{\partial t^2} - c^2 \frac{\partial^2 u(x, t)}{\partial x^2} = s(x, t)$$

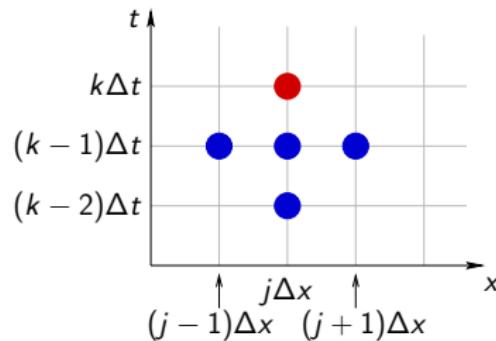
with given values for the initial position $u_0(x)$ and the initial velocity $u_1(x)$.

⇒ rope oscillation, sound, radar, oil prospection...

Scheme?

We want $u_j^k \approx u(j\Delta x, k\Delta t)$.

$$\frac{u_j^k - 2u_j^{k-1} + u_j^{k-2}}{\Delta t^2} - c^2 \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{\Delta x^2} = s_j^{k-1}$$

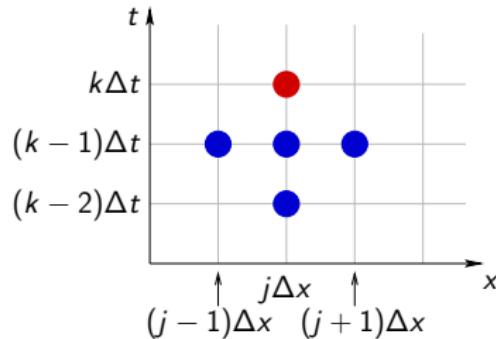

And other horrible formulas to initialize u_j^0 and u_j^1 .

Scheme?

We want $u_j^k \approx u(j\Delta x, k\Delta t)$.

$$\frac{u_j^k - 2u_j^{k-1} + u_j^{k-2}}{\Delta t^2} - c^2 \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{\Delta x^2} = s_j^{k-1}$$

And other horrible formulas to initialize u_j^0 and u_j^1 .


Three-point scheme: u_j^k depends on u_{j-1}^{k-1} , u_j^{k-1} , u_{j+1}^{k-1} and u_j^{k-2} .

Scheme?

We want $u_j^k \approx u(j\Delta x, k\Delta t)$.

$$\frac{u_j^k - 2u_j^{k-1} + u_j^{k-2}}{\Delta t^2} - c^2 \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{\Delta x^2} = s_j^{k-1}$$

And other horrible formulas to initialize u_j^0 and u_j^1 .

Three-point scheme: u_j^k depends on u_{j-1}^{k-1} , u_j^{k-1} , u_{j+1}^{k-1} and u_j^{k-2} .

Not really tricky computer arithmetic!

Program

```
// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
    p[0][k+1] = 0.;
    for (i=1; i<ni; i++) {
        dp = p[i+1][k] - 2.*p[i][k] + p[i-1][k];
        p[i][k+1] = 2.*p[i][k] - p[i][k-1] + a*dp;
    }
    p[ni][k+1] = 0.;
}
```

Program

```
// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
    p[0][k+1] = 0.;
    for (i=1; i<ni; i++) {
        dp = p[i+1][k] - 2.*p[i][k] + p[i-1][k];
        p[i][k+1] = 2.*p[i][k] - p[i][k-1] + a*dp;
    }
    p[ni][k+1] = 0.;
}
```

Two different errors:

- **round-off errors**
due to floating-point roundings
- **method errors**
the scheme only approximates the exact solution

Rounding error

Remainder:

$$\begin{aligned} dp &= p[i+1][k] - 2.*p[i][k] + p[i-1][k]; \\ p[i][k+1] &= 2.*p[i][k] - p[i][k-1] + a*dp; \end{aligned}$$

If we use a naive technique to bound the rounding errors, we get

Rounding error

Reminder:

$$\begin{aligned} dp &= p[i+1][k] - 2.*p[i][k] + p[i-1][k]; \\ p[i][k+1] &= 2.*p[i][k] - p[i][k-1] + a*dp; \end{aligned}$$

If we use a naive technique to bound the rounding errors, we get

$$|p_i^k - \text{exact}(p_i^k)| \leq O\left(2^k 2^{-53}\right)$$

Rounding error

Remainder:

$$\begin{aligned} dp &= p[i+1][k] - 2.*p[i][k] + p[i-1][k]; \\ p[i][k+1] &= 2.*p[i][k] - p[i][k-1] + a*dp; \end{aligned}$$

If we use a naive technique to bound the rounding errors, we get

$$|p_i^k - \text{exact}(p_i^k)| \leq O\left(2^k 2^{-53}\right)$$

This is too much because the **errors do compensate**.

Definition of ε_i^k

Remainder:

$$\begin{aligned} dp &= p[i+1][k] - 2.*p[i][k] + p[i-1][k]; \\ p[i][k+1] &= 2.*p[i][k] - p[i][k-1] + a*dp; \end{aligned}$$

Let ε_i^{k+1} be the rounding error made during these two lines of computations.

We assume a , p_{i-1}^k , p_i^k , p_{i+1}^k and p_i^{k-1} are exact and we look into the rounding error of these two lines. It is called ε_i^{k+1} .

Definition of ε_i^k

Remainder:

$$\begin{aligned} dp &= p[i+1][k] - 2.*p[i][k] + p[i-1][k]; \\ p[i][k+1] &= 2.*p[i][k] - p[i][k-1] + a*dp; \end{aligned}$$

Let ε_i^{k+1} be the rounding error made during these two lines of computations.

We assume a , p_{i-1}^k , p_i^k , p_{i+1}^k and p_i^{k-1} are exact and we look into the rounding error of these two lines. It is called ε_i^{k+1} .

We know (from initializations) that the model values of the $|p_n^m|$ are bounded by 1. We assume that the floating-point values of the $|p_n^m|$ are bounded by 2.

Definition of ε_i^k

Remainder:

$$\begin{aligned} dp &= p[i+1][k] - 2.*p[i][k] + p[i-1][k]; \\ p[i][k+1] &= 2.*p[i][k] - p[i][k-1] + a*dp; \end{aligned}$$

Let ε_i^{k+1} be the rounding error made during these two lines of computations.

We assume a , p_{i-1}^k , p_i^k , p_{i+1}^k and p_i^{k-1} are exact and we look into the rounding error of these two lines. It is called ε_i^{k+1} .

We know (from initializations) that the model values of the $|p_n^m|$ are bounded by 1. We assume that the floating-point values of the $|p_n^m|$ are bounded by 2.

$$|\varepsilon_n^m| \leq 78 \times 2^{-52}$$

Rounding error

$$p_i^k - \text{exact}(p_i^k) = \sum_{l=0}^k \sum_{j=-l}^l \alpha_j^l \varepsilon_{i+j}^{k-l}$$

- ① We have an **analytical expression** of the rounding error with known constants α_i^k .

Rounding error

$$p_i^k - \text{exact}(p_i^k) = \sum_{l=0}^k \sum_{j=-l}^l \alpha_j^l \varepsilon_{i+j}^{k-l}$$

- ① We have an **analytical expression** of the rounding error with known constants α_i^k .
- ② It is not that complicated!
(we cannot get rid of the pyramidal double summation)

Rounding error

$$p_i^k - \text{exact}(p_i^k) = \sum_{l=0}^k \sum_{j=-l}^l \alpha_j^l \varepsilon_{i+j}^{k-l}$$

- ① We have an **analytical expression** of the rounding error with known constants α_i^k .
- ② It is not that complicated!
(we cannot get rid of the pyramidal double summation)
- ③ The rounding error is bounded by $\mathcal{O}(k^2 2^{-53})$:

$$\left| p_i^k - \text{exact}(p_i^k) \right| \leq 78 \times 2^{-53} \times (k+1) \times (k+2)$$

Method error

We measure that u and u_j^k are close when $(\Delta x, \Delta t) \rightarrow 0$.

We define $e_j^k \stackrel{\text{def}}{=} \bar{u}_j^k - u_j^k$: **convergence error**

where \bar{u}_j^k is the value of u at the (j, k) point of the grid.

Method error

We measure that u and u_j^k are close when $(\Delta x, \Delta t) \rightarrow 0$.

We define $e_j^k \stackrel{\text{def}}{=} \bar{u}_j^k - u_j^k$: **convergence error**

where \bar{u}_j^k is the value of u at the (j, k) point of the grid.

We want to bound $\left\| e_h^{k_{\Delta t}(t)} \right\|_{\Delta x}$: the **average of the convergence error** on all points of the grid at a given time $k_{\Delta t}(t) = \left\lfloor \frac{t}{\Delta t} \right\rfloor \Delta t$.

Method error

We measure that u and u_j^k are close when $(\Delta x, \Delta t) \rightarrow 0$.

We define $e_j^k \stackrel{\text{def}}{=} \bar{u}_j^k - u_j^k$: **convergence error**

where \bar{u}_j^k is the value of u at the (j, k) point of the grid.

We want to bound $\left\| e_h^{k_{\Delta t}(t)} \right\|_{\Delta x}$: the **average of the convergence error** on all points of the grid at a given time $k_{\Delta t}(t) = \left\lfloor \frac{t}{\Delta t} \right\rfloor \Delta t$.

We want to prove:

$$\left\| e_h^{k_{\Delta t}(t)} \right\|_{\Delta x} = O_{[0, t_{\max}]}(\Delta x^2 + \Delta t^2)$$

Convergence

We proved that:

$$\left\| e_h^{k_{\Delta t}(t)} \right\|_{\Delta x} = O \begin{cases} t \in [0, t_{\max}] \\ (\Delta x, \Delta t) \rightarrow 0 \\ 0 < \Delta x \wedge 0 < \Delta t \wedge \\ \zeta \leq c \frac{\Delta t}{\Delta x} \leq 1 - \xi \end{cases} (\Delta x^2 + \Delta t^2).$$

(This is out of the scope of this talk.)

Extraction of the big O constants

The preceding result is a uniform big O defined by:

$$\exists \alpha, C > 0, \quad \forall \mathbf{x}, \Delta \mathbf{x}, \quad \|\Delta \mathbf{x}\| \leq \alpha \Rightarrow |f(\mathbf{x}, \Delta \mathbf{x})| \leq C \cdot |g(\Delta \mathbf{x})|.$$

Extraction of the big O constants

The preceding result is a uniform big O defined by:

$$\exists \alpha, C > 0, \quad \forall \mathbf{x}, \Delta \mathbf{x}, \quad \|\Delta \mathbf{x}\| \leq \alpha \Rightarrow |f(\mathbf{x}, \Delta \mathbf{x})| \leq C \cdot |g(\Delta \mathbf{x})|.$$

Let (α_3, C_3) be the constants for the order-3 Taylor development of the exact solution and (α_4, C_4) for order-4. The initial support is $[\chi_1; \chi_2]$.

Extraction of the big O constants

The preceding result is a uniform big O defined by:

$$\exists \alpha, C > 0, \quad \forall \mathbf{x}, \Delta \mathbf{x}, \quad \|\Delta \mathbf{x}\| \leq \alpha \Rightarrow |f(\mathbf{x}, \Delta \mathbf{x})| \leq C \cdot |g(\Delta \mathbf{x})|.$$

Let (α_3, C_3) be the constants for the order-3 Taylor development of the exact solution and (α_4, C_4) for order-4. The initial support is $[\chi_1; \chi_2]$.

$$\begin{aligned}\alpha &= \min(\alpha_3, \alpha_4, 1, t_{\max}) \\ s_1 &= \max(1, 2 \cdot C_4 \cdot (c^2 + 1), C_3 \cdot (1 + c^2/2) + 1) \\ s_2 &= s_1^2 \left(\lfloor \chi_2 \rfloor - \lfloor \chi_1 \rfloor + 2 \cdot c \cdot t_{\max} \cdot \left(1 + \frac{1}{\zeta} \right) + 3 \right) \\ s_3 &= \frac{1}{\sqrt{2}} (C_3 \cdot (1 + c^2/2) + 1) \cdot (\chi_2 - \chi_1 + 1 + (2 \cdot c + 4)) \\ &\quad + \frac{\sqrt{2}}{2\sqrt{2\xi - \xi^2}} (2 \cdot t_{\max} \cdot s_2 + 2s_2) \\ C &= \frac{\sqrt{2}}{\sqrt{2\xi - \xi^2}} \cdot 2 \cdot t_{\max} \cdot s_3\end{aligned}$$

Program verification

- 154 lines of annotations for 32 lines of C
- **150 verification conditions:**
 - 44 about the behavior
 - 106 about the safety (runtime errors)

Program verification

- 154 lines of annotations for 32 lines of C
- **150 verification conditions:**
 - 44 about the behavior
 - 106 about the safety (runtime errors)

Prover	Behavior VC	Safety VC	Total
Alt-Ergo	18	80	98
CVC3	18	89	107
Gappa	2	20	22
Z3	21	63	84
Automatically proved	23	94	117
Coq	21	12	33
Total	44	106	150

Program verification

- About 90 % of the safety goals (matrix access, Overflow, and so on) are proved automatically.
- 33 theorems are interactively proved using Coq for a total of about 15,000 lines of Coq and 30 minutes of compilation.

Type of proofs	Nb spec lines	Nb lines	Compilation time
Convergence	991	5 275	42 s
Round-off + runtime errors	7 737	13 175	32 min

Outline

1 Introduction

2 Tools

- Frama-C/Jessie/Why
- ACSL
- Proof assistant: Coq

3 Examples

- Sterbenz
- Error of the multiplication
- Accurate discriminant
- Area of a triangle
- 1-D Wave equation discretization

4 Conclusion

Conclusion

- always a Coq proof, generic wrt precision and minimal exponent (and often radix)

Conclusion

- always a Coq proof, generic wrt precision and minimal exponent (and often radix)
- but also an annotated C program that handles exceptional behavior (e. g. Overflow, division by zero)

Conclusion

- always a Coq proof, generic wrt precision and minimal exponent (and often radix)
- but also an annotated C program that handles exceptional behavior (e. g. Overflow, division by zero)
- formal proofs are **required** because algorithms are **tricky**

Conclusion

- always a Coq proof, generic wrt precision and minimal exponent (and often radix)
- but also an annotated C program that handles exceptional behavior (e. g. Overflow, division by zero)
- formal proofs are **required** because algorithms are **tricky**
- formal proofs are **possible** because algorithms are **small**

Conclusion

- always a Coq proof, generic wrt precision and minimal exponent (and often radix)
- but also an annotated C program that handles exceptional behavior (e. g. Overflow, division by zero)
- formal proofs are **required** because algorithms are **tricky**
- formal proofs are **possible** because algorithms are **small**
- (Have you seen long tricky algorithms?)

Conclusion

- always a Coq proof, generic wrt precision and minimal exponent (and often radix)
- but also an annotated C program that handles exceptional behavior (e. g. Overflow, division by zero)
- formal proofs are **required** because algorithms are **tricky**
- formal proofs are **possible** because algorithms are **small**
- (Have you seen long tricky algorithms?)
- not applicable on big (naive) industrial algorithms

Conclusion

- Very high guarantee

Conclusion

- Very high guarantee
- not only rounding errors:

Conclusion

- Very high guarantee
- not only rounding errors:
 - all other errors such as pointer dereferencing or division by zero

Conclusion

- Very high guarantee
- not only rounding errors:
 - all other errors such as pointer dereferencing or division by zero
 - link with mathematical properties

Conclusion

- Very high guarantee
- not only rounding errors:
 - all other errors such as pointer dereferencing or division by zero
 - link with mathematical properties
 - any property can be checked

Conclusion

- Very high guarantee
- not only rounding errors:
 - all other errors such as pointer dereferencing or division by zero
 - link with mathematical properties
 - any property can be checked
- expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want

Limits: compilation

- We assume all double operations are direct 64-bits roundings.

Limits: compilation

- We assume all double operations are direct 64-bits roundings.
- On recent processors, we have x86 extended registers (80-bits long) and FMA ($\circ(ax + b)$ with one single rounding).

Limits: compilation

- We assume all double operations are direct 64-bits roundings.
- On recent processors, we have x86 extended registers (80-bits long) and FMA ($\circ(ax + b)$ with one single rounding).

⇒ several possible results!

Limits: compilation

- We assume all double operations are direct 64-bits roundings.
- On recent processors, we have x86 extended registers (80-bits long) and FMA ($\circ(ax + b)$ with one single rounding).

⇒ several possible results!

- Solution 1: **cover all cases**.

Limits: compilation

- We assume all double operations are direct 64-bits roundings.
- On recent processors, we have x86 extended registers (80-bits long) and FMA ($\circ(ax + b)$ with one single rounding).

⇒ several possible results!

- Solution 1: **cover all cases**.
only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)

Limits: compilation

- We assume all double operations are direct 64-bits roundings.
- On recent processors, we have x86 extended registers (80-bits long) and FMA ($\circ(ax + b)$ with one single rounding).

⇒ several possible results!

- Solution 1: **cover all cases**.
only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)
- Solution 2: **look into the assembly**, and prove what is compiled.

Limits: compilation

- We assume all double operations are direct 64-bits roundings.
- On recent processors, we have x86 extended registers (80-bits long) and FMA ($\circ(ax + b)$ with one single rounding).

⇒ several possible results!

- Solution 1: **cover all cases**.
only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)
- Solution 2: **look into the assembly**, and prove what is compiled.
- Solution 3: use a **certified compiler**, then compilation is specified.

Perspectives

- a better handling of exceptional behaviors

Perspectives

- a better handling of exceptional behaviors
- prove and generalize **well-known** facts/algorithms/programs from the computer arithmetic community

Perspectives

- a better handling of exceptional behaviors
- prove and generalize **well-known** facts/algorithms/programs from the computer arithmetic community

⇒ **basic blocks to build upon**

Perspectives

- a better handling of exceptional behaviors
- prove and generalize **well-known** facts/algorithms/programs from the computer arithmetic community

⇒ **basic blocks to build upon**

- prove libraries with computational contents
(e.g. computational geometry)

Perspectives

- a better handling of exceptional behaviors
- prove and generalize **well-known** facts/algorithms/programs from the computer arithmetic community

⇒ **basic blocks to build upon**

- prove libraries with computational contents
(e.g. computational geometry)
- go deeper into **numerical analysis**

Perspectives

- a better handling of exceptional behaviors
- prove and generalize **well-known** facts/algorithms/programs from the computer arithmetic community

⇒ **basic blocks to build upon**

- prove libraries with computational contents
(e.g. computational geometry)
- go deeper into **numerical analysis**

⇒ e.g. finite elements

Perspectives

- a better handling of exceptional behaviors
- prove and generalize **well-known** facts/algorithms/programs from the computer arithmetic community

⇒ **basic blocks to build upon**

- prove libraries with computational contents
(e.g. computational geometry)
- go deeper into **numerical analysis**

⇒ e.g. finite elements

⇒ e.g. stability

This is not a slide.

Big O = big pain

Usually, the big O uses one variable and $f(\mathbf{x}) = O_{\|\mathbf{x}\| \rightarrow 0}(g(\mathbf{x}))$ means

$$\exists \alpha, C > 0, \quad \forall \mathbf{x} \in \mathbb{R}^n, \quad \|\mathbf{x}\| \leq \alpha \Rightarrow |f(\mathbf{x})| \leq C \cdot |g(\mathbf{x})|.$$

Big O = big pain

Usually, the big O uses one variable and $f(\mathbf{x}) = O_{\|\mathbf{x}\| \rightarrow 0}(g(\mathbf{x}))$ means

$$\exists \alpha, C > 0, \quad \forall \mathbf{x} \in \mathbb{R}^n, \quad \|\mathbf{x}\| \leq \alpha \Rightarrow |f(\mathbf{x})| \leq C \cdot |g(\mathbf{x})|.$$

Here 2 variables: $\Delta \mathbf{x}$ (grid sizes, tends to 0), and \mathbf{x} (time and space).
(Think about Taylor expansions)

Big O = big pain

Usually, the big O uses one variable and $f(\mathbf{x}) = O_{\|\mathbf{x}\| \rightarrow 0}(g(\mathbf{x}))$ means

$$\exists \alpha, C > 0, \quad \forall \mathbf{x} \in \mathbb{R}^n, \quad \|\mathbf{x}\| \leq \alpha \Rightarrow |f(\mathbf{x})| \leq C \cdot |g(\mathbf{x})|.$$

Here 2 variables: $\Delta \mathbf{x}$ (grid sizes, tends to 0), and \mathbf{x} (time and space).
(Think about Taylor expansions)

$$\forall \mathbf{x}, \exists \alpha, C > 0, \quad \forall \Delta \mathbf{x} \in \mathbb{R}^2, \quad \|\Delta \mathbf{x}\| \leq \alpha \Rightarrow |f(\mathbf{x}, \Delta \mathbf{x})| \leq C \cdot |g(\Delta \mathbf{x})|$$

does not work.

Uniform big O

We used a uniform big O:

$$\exists \alpha, C > 0, \quad \forall \mathbf{x}, \Delta \mathbf{x}, \quad \|\Delta \mathbf{x}\| \leq \alpha \Rightarrow |f(\mathbf{x}, \Delta \mathbf{x})| \leq C \cdot |g(\Delta \mathbf{x})|.$$

where variables \mathbf{x} and $\Delta \mathbf{x}$ are restricted to subsets of \mathbb{R}^2 .

(for example such that $\Delta t > 0$)

\Rightarrow Taylor expansions

Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the numerical scheme:

$$\varepsilon_j^{k-1} = \frac{\bar{u}_j^k - 2\bar{u}_j^{k-1} + \bar{u}_j^{k-2}}{\Delta t^2} - c^2 \frac{\bar{u}_{j+1}^{k-1} - 2\bar{u}_j^{k-1} + \bar{u}_{j-1}^{k-1}}{\Delta x^2} - s_j^{k-1}$$

Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the numerical scheme:

$$\varepsilon_j^{k-1} = \frac{\bar{u}_j^k - 2\bar{u}_j^{k-1} + \bar{u}_j^{k-2}}{\Delta t^2} - c^2 \frac{\bar{u}_{j+1}^{k-1} - 2\bar{u}_j^{k-1} + \bar{u}_{j-1}^{k-1}}{\Delta x^2} - s_j^{k-1}$$

The consistency is the boundedness of the truncation error:

$$\left\| \varepsilon_h^{k_{\Delta t}(t)} \right\|_{\Delta x} = O_{[0, t_{\max}]}(\Delta x^2 + \Delta t^2)$$

By Taylor series and many computations.

Proof idea 2/3: stability

We define a discrete energy by

$$E_h(c)(u_h)^{k+\frac{1}{2}} \stackrel{\text{def}}{=} \frac{1}{2} \left\| \frac{u_h^{k+1} - u_h^k}{\Delta t} \right\|_{\Delta x}^2 + \frac{1}{2} \langle u_h^k, u_h^{k+1} \rangle_{A_h(c)}$$

kinetic energy potential energy

$$\langle v_h, w_h \rangle_{A_h(c)} \stackrel{\text{def}}{=} \langle A_h(c) v_h, w_h \rangle_{\Delta x} \text{ and } (A_h(c) v_h)_j \stackrel{\text{def}}{=} -c^2 \frac{v_{j+1} - 2v_j + v_{j-1}}{\Delta x^2}.$$

Proof idea 2/3: stability

We define a discrete energy by

$$E_h(c)(u_h)^{k+\frac{1}{2}} \stackrel{\text{def}}{=} \frac{1}{2} \left\| \frac{u_h^{k+1} - u_h^k}{\Delta t} \right\|_{\Delta x}^2 + \frac{1}{2} \left\langle u_h^k, u_h^{k+1} \right\rangle_{A_h(c)}$$

kinetic energy potential energy

$$\langle v_h, w_h \rangle_{A_h(c)} \stackrel{\text{def}}{=} \langle A_h(c) v_h, w_h \rangle_{\Delta x} \text{ and } (A_h(c) v_h)_j \stackrel{\text{def}}{=} -c^2 \frac{v_{j+1} - 2v_j + v_{j-1}}{\Delta x^2}.$$

Note that this energy is constant if $f = 0$.

We prove an overestimation and an underestimation of this energy.
 $\Rightarrow u_h$ does not diverge.

Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

$$u_{0,j} = 0, \quad u_{1,j} = \frac{e_j^1}{\Delta t}, \quad \text{and} \quad s_j^k = \varepsilon_j^{k+1}.$$

+ proofs about the initializations.

Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

$$u_{0,j} = 0, \quad u_{1,j} = \frac{e_j^1}{\Delta t}, \quad \text{and} \quad s_j^k = \varepsilon_j^{k+1}.$$

+ proofs about the initializations.

All these proofs require the existence of ζ and ξ in $]0, 1[$ with $\zeta \leq 1 - \xi$ and we require that $\zeta \leq \frac{c\Delta t}{\Delta x} \leq 1 - \xi$ (CFL conditions).