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Motivations

Scientific Computing, Computer Arithmetic and Validated Numerics

My personal challenge:

CORRECTNESS

consider small critical programs, where complex properties about
floating-point arithmetic are involved

How can we get a high guarantee?

↪→ formal verification

Convince people of what is formally verified!
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Outline

1 Introduction

2 Tools
Frama-C/Jessie/Why
ACSL
Proof assistant: Coq

3 Examples
Sterbenz
Error of the multiplication
Accurate discriminant
Area of a triangle
1-D Wave equation discretization

4 Conclusion
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The used toolchain: Frama-C/Jessie/Why

Annotated C program

Frama-C/Jessie plug-in

WHY verification condition generator

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)
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Annotation language: ACSL

(how a bug differs from a rounding error)

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

⇒ For the programmer, the specification is easy to understand.
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ACSL and floating-point numbers

A floating-point number is a triple:

the floating-point number, really computed by the program,
x → xf floating-point part

the value that would have been obtained with exact computations,
x → xe exact part

the value that we ideally wanted to compute
x → xm model part
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Formal proof

The proof is checked in its deep details until the computer agrees with it.

We often use formal proof checkers, meaning programs that only check a
proof (they may also generate easy demonstrations).

Therefore the checker is a very short program (de Bruijn criteria: the
correctness of the system as a whole depends on the correctness of a very
small ”kernel”).
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The Coq proof assistant (http://coq.inria.fr)

Based on the Curry-Howard isomorphism.
(equivalence between proofs and λ-terms)

Few automations.

Comprehensive libraries, including on Z and R.

Coq kernel mechanically checks each step of each proof.

The method is to apply successively tactics (theorem application,
rewriting, simplifications. . . ) to transform or reduce the goal down to
the hypotheses.

The proof is handled starting from the conclusion.
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A Coq formalization of FP arithmetic : Flocq

A FP format is only characterized by a function ϕ : Z→ Z.

For x ∈ R, we compute e such that βe−1 ≤ |x | < βe .
Then x is in the format iff

x =
⌊

xβ−ϕ(e)
⌋
βϕ(e)

In other words: if it can be written with exponent ϕ(e).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 11 / 52



A Coq formalization of FP arithmetic : Flocq

A FP format is only characterized by a function ϕ : Z→ Z.

For x ∈ R, we compute e such that βe−1 ≤ |x | < βe .
Then x is in the format iff

x =
⌊

xβ−ϕ(e)
⌋
βϕ(e)

In other words: if it can be written with exponent ϕ(e).

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 11 / 52



Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ϕ(e) = emin.

Definition (FL*)

Floating-point format with precision p:

unbounded (FLX): ϕ(e) = e − p,

bounded with subnormal numbers (FLT): ϕ(e) = max(e − p, emin),

bounded without subnormal numbers (FTZ).

A random ϕ may not allow to define a rounding: we have a valid

predicate for being a reasonable ϕ.
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Usual Floating-Point Formats

FLX
FLT

FTZFTZ

FLT

FLX

ϕ(e)

emin emin + p − 1 e

emin

p − 1
emin +

p
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Example of Coq theorem

Theorem (round NE abs)

Let ϕ be a format, such that the rounding to nearest, ties to even (◦) can
be defined. For all x ∈ R, ◦(|x |) = |◦(x)|.

Lemma round NE abs: forall x : R,

round beta fexp ZnearestE (Rabs x) = Rabs (round beta fexp ZnearestE x).

Proof with auto with typeclass instances.

intros x; apply sym eq.

unfold Rabs at 2.

destruct (Rcase abs x) as [Hx|Hx].

rewrite round NE opp.

apply Rabs left1.

rewrite <- (round 0 beta fexp ZnearestE).

apply round le...

now apply Rlt le.

apply Rabs pos eq.

rewrite <- (round 0 beta fexp ZnearestE).

apply round le...

now apply Rge le.

Qed.

With the stating of the theorem, the tactics, and the name of theorems.
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More about Flocq

Flocq: 16 000 lines of Coq, 700 theorems,

any radix, any format,

both axiomatic and computable definitions of rounding,

effective arithmetic operators,

numerous theorems.

Applications:

CompCert certified C compiler

http://flocq.gforge.inria.fr/
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Methodology for the verification of C programs

C Program

Annotated C Program
(specification, invariant)

Human

Theorem statements
Frama-C

Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved Theorems

Coq ← Human

The program is correct with
respect to its specifications
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Examples

All examples use Frama-C Neon, Why 2.34 and Why3 0.83.

Non-automatic proof obligations are proved using Coq 8.4pl4.

Overflow is considered a runtime error.

Code & proofs available on
http://www.lri.fr/~sboldo/research.html.
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Sterbenz

Theorem (Sterbenz)

If x and y are FP numbers in a given precision such that

y

2
≤ x ≤ 2y ,

then x − y fits in a FP number in the same precision and is therefore
computed without error.
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Sterbenz – program

/*@ requires y/2. <= x <= 2.*y;

@ ensures \result == x-y;

@*/

f l o a t S t e r b e n z ( f l o a t x , f l o a t y ) {
return x−y ;

}

Exact subtraction
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Sterbenz – proofs

Proof obligations CVC3 Coq
Nb lines

VC for behavior 2.34 6

VC for safety 0.23
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Veltkamp/Dekker

Also known as Error-Free-Transformation for the multiplication.

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the exact error of the multiplication using only FP operations.

Idea:
split your floats in 2, multiply all the parts, add them in the correct order.
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Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result );

@*/

double Dekker ( double x , double y , double xy ) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
C=0x8000001p0 ;
/*@ assert C == 0x1p27 +1; */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}
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Veltkamp/Dekker – proof

Proof obligations Coq Time
Nb lines

Previous Coq proof (spec + proof) 2639

VC for behavior 1. assertion 3
2. postcondition 238

VC for safety 1-9. FP overflow 1 or 2
10. FP overflow 37
11. FP overflow 47
12. FP overflow 43
13. FP overflow 64
14. FP overflow 43
15. FP overflow 83
16. FP overflow 49
17. FP overflow 94

Total (1,248 lines spec VC excluded) 3351 9 min 02
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Accurate discriminant

It is pretty hard to compute b2 − ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b2 − a ∗ c within 2 ulps.

Idea:
Test whether there is cancellation. If not, then use the naive algorithm.
Else, compute the errors of the multiplication, and add everything in the
correct order.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 27 / 52



Accurate discriminant

It is pretty hard to compute b2 − ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b2 − a ∗ c within 2 ulps.

Idea:
Test whether there is cancellation. If not, then use the naive algorithm.
Else, compute the errors of the multiplication, and add everything in the
correct order.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 27 / 52



Accurate discriminant

It is pretty hard to compute b2 − ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b2 − a ∗ c within 2 ulps.

Idea:
Test whether there is cancellation. If not, then use the naive algorithm.
Else, compute the errors of the multiplication, and add everything in the
correct order.

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 27 / 52



Accurate discriminant – program

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result );

@ */

double d i s c r i m i n a n t ( double a , double b , double c ) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f ( p+q <= 3∗ f a b s ( p−q ) )
d=p−q ;

e l s e {
dp=Dekker ( b , b , p ) ;
dq=Dekker ( a , c , q ) ;
d=(p−q)+(dp−dq ) ;

}
r e t u r n d ;

}

Test of cancellation

When p ≥ q, it roughly
corresponds to p ≥ 2 q

Naive algorithm
Compute the
multiplication errorsAdd everything,

p−q being correct.

As q
2 . p . 2 q

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect
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Test of cancellation

When p ≥ q, it roughly
corresponds to p ≥ 2 q

Naive algorithm
Compute the
multiplication errorsAdd everything,

p−q being correct.

As q
2 . p . 2 q

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect
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Accurate discriminant – proof
Proof obligations Coq Time

Previous Coq proof (spec + proof) 3390

VC for theory realization 88

Behavior 1. postcondition 61
2. postcondition 90

Safety 1. floating-point overflow 2
2. floating-point overflow 2
3. floating-point overflow 3
4. floating-point overflow 4
5. floating-point overflow 4
6. precondition for call 2
7. precondition for call 9
8. precondition for call 1
9-13. precondition for call 2
14. floating-point overflow 44
15. floating-point overflow 45

Total (1,146 lines spec VC excluded) 3655 5 min 47
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Outline

1 Introduction

2 Tools
Frama-C/Jessie/Why
ACSL
Proof assistant: Coq

3 Examples
Sterbenz
Error of the multiplication
Accurate discriminant
Area of a triangle
1-D Wave equation discretization

4 Conclusion
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Triangle area

b c

a

Heron’s formula: ∆ =
√

s (s − a) (s − b) (s − c) where s = a+b+c
2 .

Kahan’s formula, for c ≤ b ≤ a:

∆ =
1

4

√
(a + (b + c)) (c − (a− b)) (c + (a− b)) (a + (b − c)).

[Kahan, Miscalculating Area and Angles of a Needle-like Triangle]

Area ∆ is accurate to within a few units in their last digits.

[Goldberg, 1991]

The rounding error of area ∆ is at most 11 ε, provided ε < 0.005 and
subtraction and square roots are accurate.
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Triangle area

Theorem (err ∆ flx radix2)

With an unbounded exponent range, β = 2, and ε ≤ 1
100 , The rounding

error of area ∆ is at most 4.75ε+ 33ε2.

For underflow:

detect afterwards if a subnormal appeared in the computation

order the intermediate variables, and multiply the biggest first:
0 ≤ c 	 (a	 b) ≤ c ⊕ (a	 b) ≤ a⊕ (b 	 c) ≤ a⊕ (b ⊕ c)

Theorem (err ∆ flt radix2)

We assume that β = 2, that ε ≤ 1
100 , and that 2

⌈
Ei+p−1

2

⌉
−2

< ∆. The
rounding error of area ∆ (computed in the given order) is at most
4.75ε+ 33ε2.

(and 5.75ε in radix 10 as multiplying by 1
4 is not exact).
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Triangle area – program

Square root definition

Heron’s formula

(no rounding)

Kahan’s algorithm
with properly ordered values

ordered side lengthsoverflow condition

If no underflow

Error bound

/*@ requires 0 <= x;

@ ensures \result ==\ round_double (\ NearestEven ,\sqrt(x));

@*/

double s q r t ( double x ) ;

/*@ logic real S(real a, real b, real c) =

@ \let s = (a+b+c)/2;

@ \sqrt(s*(s-a)*(s-b)*(s-c));

@ */

/*@ requires 0 <= c <= b <= a && a <= b + c && a <= 0x1p255;

@ ensures 0x1p -513 < \result

@ ==> \abs(\result -S(a,b,c))

@ <= (4.75*0x1p -53 + 33*0x1p -106)*S(a,b,c);

@ */

double t r i a n g l e ( double a , double b , double c ) {
r e t u r n (0 x1p−2∗ s q r t ( ( a+(b+c ) )∗ ( a+(b−c ) )∗ ( c+(a−b ) )∗ ( c−(a−b ) ) ) ) ;

}

Function call
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Triangle area – proof

Proof obligations Gappa Coq
Previous Coq proof 18.89 2091

Behavior 1. postcondition 16.00 82

Safety 1. FP overflow 0.02
2. FP overflow 0.03
3. FP overflow 0.03
4. FP overflow 0.03
5. FP overflow 0.03
6. FP overflow 0.00
7. FP overflow 0.02
8. FP overflow 0.01
9. FP overflow 0.00
10. FP overflow 0.02
11. FP overflow 0.02
12. precondition for call 13.22 13
13. FP overflow 0.03
14. FP overflow 0.04
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Triangle area – proof
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Outline

1 Introduction

2 Tools
Frama-C/Jessie/Why
ACSL
Proof assistant: Coq

3 Examples
Sterbenz
Error of the multiplication
Accurate discriminant
Area of a triangle
1-D Wave equation discretization

4 Conclusion
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The wave equation

Looking for u : R2 → R regular enough such that:

∂2u(x , t)

∂t2
− c2∂

2u(x , t)

∂x2
= s(x , t)

with given values for the initial position u0(x) and the initial velocity u1(x).

⇒ rope oscillation, sound, radar, oil prospection. . .
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Scheme?

We want uk
j ≈ u(j∆x , k∆t).

uk
j − 2uk−1

j + uk−2
j

∆t2
− c2

uk−1
j+1 − 2uk−1

j + uk−1
j−1

∆x2
= sk−1

j

And other horrible formulas to initialize u0
j and u1

j .

t

k∆t

(k − 1)∆t

(k − 2)∆t

xj∆x
(j − 1)∆x (j + 1)∆x

Three-point scheme: uk
j depends on uk−1

j−1 , uk−1
j , uk−1

j+1 and uk−2
j .

Not really tricky computer arithmetic!
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Program

// i n i t i a l i z a t i o n o f p [ i ] [ 0 ] and p [ i ] [ 1 ]
f o r ( k=1; k<nk ; k++) {

p [ 0 ] [ k+1] = 0 . ;
f o r ( i =1; i<n i ; i ++) {

dp = p [ i +1] [ k ] − 2 .∗ p [ i ] [ k ] + p [ i −1] [ k ] ;
p [ i ] [ k+1] = 2 .∗ p [ i ] [ k ] − p [ i ] [ k−1] + a∗dp ;
}

p [ n i ] [ k+1] = 0 . ;
}

Two different errors:

round-off errors
due to floating-point roundings

method errors
the scheme only approximates the exact solution
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Rounding error

Remainder:

dp = p [ i +1] [ k ] − 2 .∗ p [ i ] [ k ] + p [ i −1] [ k ] ;
p [ i ] [ k+1] = 2 .∗ p [ i ] [ k ] − p [ i ] [ k−1] + a∗dp ;

If we use a naive technique to bound the rounding errors, we get

|pk
i − exact(pk

i )| ≤ O
(

2k2−53
)

This is too much because the errors do compensate.
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Definition of εk
i

Remainder:

dp = p [ i +1] [ k ] − 2 .∗ p [ i ] [ k ] + p [ i −1] [ k ] ;
p [ i ] [ k+1] = 2 .∗ p [ i ] [ k ] − p [ i ] [ k−1] + a∗dp ;

Let εk+1
i be the rounding error made during these two lines of computations.

We assume a, pk
i−1, pk

i , pk
i+1 and pk−1

i are exact and we look into the

rounding error of these two lines. It is called εk+1
i .

We know (from initializations) that the model values of the |pm
n | are

bounded by 1. We assume that the floating-point values of the |pm
n | are

bounded by 2.

|εmn | ≤ 78× 2−52

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 41 / 52



Definition of εk
i

Remainder:

dp = p [ i +1] [ k ] − 2 .∗ p [ i ] [ k ] + p [ i −1] [ k ] ;
p [ i ] [ k+1] = 2 .∗ p [ i ] [ k ] − p [ i ] [ k−1] + a∗dp ;

Let εk+1
i be the rounding error made during these two lines of computations.

We assume a, pk
i−1, pk

i , pk
i+1 and pk−1

i are exact and we look into the

rounding error of these two lines. It is called εk+1
i .

We know (from initializations) that the model values of the |pm
n | are

bounded by 1. We assume that the floating-point values of the |pm
n | are

bounded by 2.

|εmn | ≤ 78× 2−52

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 41 / 52



Definition of εk
i

Remainder:

dp = p [ i +1] [ k ] − 2 .∗ p [ i ] [ k ] + p [ i −1] [ k ] ;
p [ i ] [ k+1] = 2 .∗ p [ i ] [ k ] − p [ i ] [ k−1] + a∗dp ;

Let εk+1
i be the rounding error made during these two lines of computations.

We assume a, pk
i−1, pk

i , pk
i+1 and pk−1

i are exact and we look into the

rounding error of these two lines. It is called εk+1
i .

We know (from initializations) that the model values of the |pm
n | are

bounded by 1. We assume that the floating-point values of the |pm
n | are

bounded by 2.

|εmn | ≤ 78× 2−52

Sylvie Boldo (Inria) Formal verification of numerical computations September 25th, 2014 41 / 52



Rounding error

pki − exact(pki ) =
k∑

l=0

l∑
j=−l

αl
j ε

k−l
i+j

1 We have an analytical expression of the rounding error with known
constants αk

i .

2 It is not that complicated!
(we cannot get rid of the pyramidal double summation)

3 The rounding error is bounded by ©(k2 2−53):∣∣∣pk
i − exact

(
pk

i

)∣∣∣ ≤ 78× 2−53 × (k + 1)× (k + 2)
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Method error

We measure that u and uk
j are close when (∆x ,∆t)→ 0.

We define ekj
def
= ūk

j − uk
j : convergence error

where ūk
j is the value of u at the (j , k) point of the grid.

We want to bound
∥∥∥e

k∆t(t)
h

∥∥∥
∆x

: the average of the convergence error on

all points of the grid at a given time k∆t(t) =
⌊

t
∆t

⌋
∆t.

We want to prove: ∥∥∥e
k∆t(t)
h

∥∥∥
∆x

= O[0,tmax](∆x2 + ∆t2)
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Convergence

We proved that:∥∥∥e
k∆t(t)
h

∥∥∥
∆x

= O t ∈ [0, tmax]

(∆x ,∆t)→ 0
0 < ∆x ∧ 0 < ∆t ∧
ζ ≤ c ∆t

∆x
≤ 1− ξ

(∆x2 + ∆t2).

(This is out of the scope of this talk.)
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Extraction of the big O constants

The preceding result is a uniform big O defined by:

∃α,C > 0, ∀x,∆x, ‖∆x‖ ≤ α⇒ |f (x,∆x)| ≤ C · |g(∆x)|.

Let (α3,C3) be the constants for the order-3 Taylor development of the
exact solution and (α4,C4) for order-4. The initial support is [χ1;χ2].

α = min(α3, α4, 1, tmax)

s1 = max(1, 2 · C4 · (c2 + 1),C3 · (1 + c2/2) + 1)

s2 = s2
1

(
bχ2c − bχ1c+ 2 · c · tmax ·

(
1 +

1

ζ

)
+ 3

)
s3 =

1
√

2

(
C3 · (1 + c2/2) + 1

)
· (χ2 − χ1 + 1 + (2 · c + 4))

+

√
2

2
√

2ξ − ξ2
(2 · tmax · s2 + 2s2)

C =

√
2√

2ξ − ξ2
· 2 · tmax · s3
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Program verification

154 lines of annotations for 32 lines of C

150 verification conditions:

44 about the behavior
106 about the safety (runtime errors)

Prover Behavior VC Safety VC Total

Alt-Ergo 18 80 98

CVC3 18 89 107

Gappa 2 20 22

Z3 21 63 84

Automatically proved 23 94 117
Coq 21 12 33

Total 44 106 150
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Program verification

About 90 % of the safety goals (matrix access, Overflow, and so on)
are proved automatically.

33 theorems are interactively proved using Coq for a total of about
15,000 lines of Coq and 30 minutes of compilation.

Type of proofs Nb spec lines Nb lines Compilation time

Convergence 991 5 275 42 s

Round-off + runtime errors 7 737 13 175 32 min
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Outline

1 Introduction

2 Tools
Frama-C/Jessie/Why
ACSL
Proof assistant: Coq

3 Examples
Sterbenz
Error of the multiplication
Accurate discriminant
Area of a triangle
1-D Wave equation discretization

4 Conclusion
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Conclusion

always a Coq proof, generic wrt precision and minimal exponent
(and often radix)

but also an annotated C program that handles exceptional behavior
(e. g. Overflow, division by zero)

formal proofs are required because algorithms are tricky

formal proofs are possible because algorithms are small

(Have you seen long tricky algorithms?)

not applicable on big (naive) industrial algorithms
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Conclusion

Very high guarantee

not only rounding errors:

all other errors such as pointer dereferencing or division by zero
link with mathematical properties
any property can be checked

expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want
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Limits: compilation

We assume all double operations are direct 64-bits roundings.

On recent processors, we have x86 extended registers (80-bits long)
and FMA (◦(ax + b) with one single rounding).

⇒ several possible results!

Solution 1: cover all cases.

only use forward analysis with a slightly larger bound
(it covers, 64-bit, 80-bit, double roundings and all uses of FMA)

Solution 2: look into the assembly, and prove what is compiled.

Solution 3: use a certified compiler, then compilation is specified.
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Perspectives

a better handling of exceptional behaviors

prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

⇒ basic blocks to build upon

prove libraries with computational contents
(e.g. computational geometry)

go deeper into numerical analysis

⇒ e.g. finite elements

⇒ e.g. stability
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This is not a slide.



Big O = big pain

Usually, the big O uses one variable and f (x) = O‖x‖→0(g(x)) means

∃α,C > 0, ∀x ∈ Rn, ‖x‖ ≤ α⇒ |f (x)| ≤ C · |g(x)|.

Here 2 variables: ∆x (grid sizes, tends to 0), and x (time and space).
(Think about Taylor expansions)

∀x, ∃α,C > 0, ∀∆x ∈ R2, ‖∆x‖ ≤ α⇒ |f (x,∆x)| ≤ C · |g(∆x)|

does not work.
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Uniform big O

We used a uniform big O:

∃α,C > 0, ∀x,∆x, ‖∆x‖ ≤ α⇒ |f (x,∆x)| ≤ C · |g(∆x)|.

where variables x and ∆x are restricted to subsets of R2.
(for example such that ∆t > 0)
⇒ Taylor expansions
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Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the
numerical scheme:

εk−1
j =

ūk
j − 2ūk−1

j + ūk−2
j

∆t2
− c2

ūk−1
j+1 − 2ūk−1

j + ūk−1
j−1

∆x2
− sk−1

j

The consistency is the boundedness of the truncation error:∥∥∥εk∆t(t)
h

∥∥∥
∆x

= O[0,tmax](∆x2 + ∆t2)

By Taylor series and many computations.
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j + ūk−2
j

∆t2
− c2
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Proof idea 2/3: stability

We define a discrete energy by

Eh(c)(uh)k+ 1
2

def
=

1

2

∥∥∥∥∥uk+1
h − uk

h

∆t

∥∥∥∥∥
2

∆x

+
1

2

〈
uk
h , u

k+1
h

〉
Ah(c)

kinetic energy potential energy

〈vh,wh〉Ah(c)
def
= 〈Ah(c) vh,wh〉∆x and (Ah(c) vh)j

def
= − c2 vj+1−2vj+vj−1

∆x2 .

Note that this energy is constant if f = 0.
We prove an overestimation and an underestimation of this energy.
⇒ uh does not diverge.
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Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

u0,j = 0, u1,j =
e1
j

∆t
, and skj = εk+1

j .

+ proofs about the initializations.

All these proofs require the existence of ζ and ξ in ]0, 1[ with ζ ≤ 1− ξ
and we require that ζ ≤ c∆t

∆x ≤ 1− ξ (CFL conditions).
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