

Interval methods for solving
various kinds of quantified

nonlinear problems

Bartłomiej Jacek Kubica
Institute of Control and Computation Engineering

Warsaw University of Technology
Poland

SCAN 2014
Würzburg

What shall we consider?

● What (in particular) kind of problems can we
solve using interval methods?

● What is the algorithm to solve them?

● How to make this algorithm efficient?

● How to parallelize it successfully?

Why do we need interval analysis?

● Invented as a tool to bound/analyze numerical
errors:
➢ Ramon E. Moore, 1959 (1966).
➢ Mieczysław Warmus, 1956.

Why do we need interval analysis?

● Invented as a tool to bound/analyze numerical
errors:
➢ Ramon E. Moore, 1959 (1966).
➢ Mieczysław Warmus, 1956.

● Can be used for any other uncertainty, also:
➢ discretization error, truncation error,
➢ uncertain parameters,
➢ decisions of other decision-makers,
➢ ...

Why do we need interval analysis?

● Invented as a tool to bound/analyze numerical
errors:
➢ Ramon E. Moore, 1959 (1966).
➢ Mieczysław Warmus, 1956.

● Can be used for any other uncertainty, also:
➢ discretization error, truncation error,
➢ uncertain parameters,
➢ decisions of other decision-makers,
➢ ...

● My view: the interval analysis is an approach to
seek points, satisfying a certain logical condition.

Why do we need interval analysis?

Problem under solution

Find all , satisfying the condition , i.e.,
find the set .

x∈ℝn P (x)

where P (x) is a predicate formula with a free variable x,
i.e., free variables: .

It can contain bound variables, also (we shall call them
“parameters”).

x1 ,… , xn

{x∈ℝn
∣P (x)}

Previous papers

● Computability of the problem:
➢ V. Kreinovich, B. J. Kubica, From computing sets of

optima, Pareto sets and sets of Nash equilibria to
general decision-related set computations, Journal of
Universal Computer Science, Vol. 16, pp. 2657 – 2685
(2010).

● Early presentation:
➢ B. J. Kubica, A class of problems that can be solved

using interval algorithms, SCAN 2010, Computing,
Vol. 94 (2-4), pp. 271 – 280 (2012).

Explanation

● Several researchers investigated solving quantified
constraints using the interval approach.
➢ Papers of Ratschan, 2002; Benhamou & Goualard, 2000;

Shary, 2002; Goldsztejn & Jaulin, 2006 (not exclusively!)
are particularly notable.

{x∈X ∣(∀ t∈[t 0, t f]) (f (x , t)⩽0)}

Explanation

● Several researchers investigated solving quantified
constraints using the interval approach.
➢ Papers of Ratschan, 2002; Benhamou & Goualard, 2000;

Shary, 2002; Goldsztejn & Jaulin, 2006 (not exclusively!)
are particularly notable.

● Also, other problems, traditionally solved by
interval methods, can be formulated that way, e.g.:
➢ global optimization:

➢ Pareto sets seeking,

➢ ...

{x∈X ∣(∀ t∈[t 0, t f]) (f (x , t)⩽0)}

{x∈X ∣(∀ t∈X) (f (x)⩽ f (t))}

Example problems

{x∈X ∣ h(x)=0 }

{x∈X ∣ f (x)∈[y , y]}

{x∈X ∣(∀ t∈X) (f (x)⩽ f (t))}

{x∈X ∣(∀ t∈X) (∀ i=1,… , N f i (x)⩽ f i (t))∨(∃ i f i(x)< f i (t))}

where:

X⊆ℝn , h :ℝn
ℝ

m , f , f 1 , f N :ℝn
ℝ

{x∈X∣(∀ i=1,… , n) (∀ x ' i∈x i⊆ℝ
k i) (f i(x ∖ i , x ' i)⩾ f i(x))}

Proposed algorithm

● We shall use the name generalized branch-and-
bound method or branch-and-bound type
method.

● Several algorithms, described in the literature,
are its specific instances:
➢ Branch-and-bound method.
➢ Branch-and-prune method.
➢ “Nested” b&b or b&p (for parameters).
➢ SIVIA – Set Inversion Via Interval Analysis (Jaulin,

1993).
➢ PPS – Partitioning Parameter Set (дроблене

параметров; Калмыҝов, 1982).

Generic algorithm
Lpos = {}; Lverif = {}; Lcheck = {};
// Phase I
while (there are boxes to consider) do

pop (x);
process (x); // using interval tools
if (x was verified to contain a solution/a point satisfying some necessary

 conditions) then push (Lverif, x);
else if (x is verified not to contain solutions) then

if (x may be necessary in phase II) then push (Lcheck, x);
else discard x;

end if
if (x was discarded or stored) then pop (x);
else if (diam (x) < ε) then push (Lpos, x);
else

bisect (x, x1, x2); push (x2); x = x1;
end if

end while
// Phase II – verification of P(x) for stored solution candidates
for each (x in Lverif Lpos) do

if (x does not contain a solution) then discard x;
end for each

What does the algorithm result in?

● Two lists:
➢ Lverif – the list of boxes verified (certified) to

contain a solution,
➢ Lpos – the list of boxes possibly containing a

solution.
● What conditions have to be verified so that the

solution was “verified”?
● There can be more than two lists, in general:
➢ Some conditions are verified, some are not.
➢ We classify points of the domain int more than two

classes.

Algorithm's other details

● In what order do we process boxes? Does the
order matter?

● How do we store boxes?
● What tools do we use to process a box?
● What information is needed to process a box in

phase I?
● What information is needed to verify a box in

phase II?
● In particular, what boxes do we store in Lcheck –

if any?

● All depends on the problem under solution.
● Does the presence of solution in one area have

influence on its presence elsewhere?
➢ For equations systems – not really.
➢ For optimization problems – it does (the optimum

occurs to be local, only, if we have found a better point
elsewhere).

➢ For seeking Pareto sets – also.
➢ ...

● Obviously, rejection/reduction tests rely on the
problem under solution, also.

Algorithm's other details

● The order of processing boxes does not matter.
➢ Equations systems, CSPs, etc.

● Then, we can use any structure – a stack, queue,
pool, etc.

● Parallelization is (relatively) easy.
● Some frameworks allow us to store the boxes

implicitly, using the task queue (e.g., Intel TBB).
● Sufficient (not necessary!) condition: no bound

occurrences of the variable x (i.e., no quantifiers
range over its domain).

How to store boxes?
The simplest case.

● For, e.g., global optimization, the order, in which
we process boxes, matters – and we know in
what way.

● A priority queue is suitable.
● Parallelization is more difficult (but TBB has a

class priority_queue).
● For some problems the order matters, but in a

complicated way, difficult to predict.
➢ E.g., Nash equilibria computing.
➢ In my implementations, I used ordinary queues.
➢ A potential for improvement, certainly.

How to store boxes?
More sophisticated cases.

Tools to process a box
● Order of function approximation:
➢ 0th order tools – comparing function values.
➢ 1st order tools – use of gradients.
➢ 2nd order tools – use of Hesse matrices.
➢ Higher order tools ?

● Operations:
➢ Simply, comparing function values.
➢ Several versions of the interval Newton operator

(componentwise, GS) – on various levels.
➢ Various constraint satisfaction methods (consistency

enforcing, SIVIA, etc.).
➢ ...

The information stored
● For equations systems, CSPs, etc. – no additional

info is needed – boxes only (i.e., only local
information).

● Global optimization – upper bound on the global
minimum; a single number; no Lcheck list needed.

● Pareto sets seeking – we store the approximation of
the Pareto frontier; a set of several points, changing
frequently.
➢ Tricky – especially for parallel implementations.
➢ Simple 0th order tools are inefficient.
➢ Still, the list Lcheck is not needed (only a set of points in

the criteria space).

● A difficult problem – seeking Nash points or strong
Nash points of a continuous game.

● To verify a solution, we need to compare players'
utilities for boxes located in proper places of the
search domain.
➢ For “plain” Nash points – in proper subspaces; for strong

ones – in the whole domain.
● An interval tree is an option (suggested in my earlier

papers).
● Storing the boxes on the Lcheck list seems a better

solution.

The information stored

●Seeking Nash points and strong Nash points
of a continuous game.

●Seeking all local (including global) optima of
a function.

Three important example
problems

My papers on games solutions
seeking

● B. J. Kubica, A. Woźniak, An interval method for seeking
the Nash equilibria of non-cooperative games, PPAM
2009, LNCS, Vol. 6068, pp. 446 – 455 (2010).

● B. J. Kubica, A. Woźniak, Applying an interval method for
a four agent economy analysis, PPAM 2011, LNCS, Vol.
7204, pp. 477 – 483 (2012).

● B. J. Kubica, A. Woźniak, Interval methods for computing
various refinements of Nash equilibria, SCAN 2012,
unpublished.

● B. J. Kubica, A. Woźniak, Interval methods for computing
strong Nash equilibria of continuous games, SING10
(2014), submitted to Operations Research and Decisions.

Solution concepts

John Forbes Nash Jr.
Nash equilibrium, 1950

Robert John (Yisrael) Aumann.
Strong Nash equilibrium, 1959

Picture from: http://commons.wikimedia.org/wiki/File:John_Forbes_Nash,_Jr._and_Robert_Aumann.jpg

http://commons.wikimedia.org/wiki/File:John_Forbes_Nash,_Jr._and_Robert_Aumann.jpg

Computing the solutions
● Nash points can use be defined by the following

system of conditions:

∀ i=1,… , n ∀ x i∈x i⊆ℝ
k i

q i(x1
∗ ,… , x i−1

∗ , x i , x i+1
∗ ,… , x n

∗
)⩾qi(x1

∗ ,… , x n
∗
)

● Hence, strong Nash points:

∀ I⊆{1,… , n } ∀ x I∈ xI⊆ℝ
k i

q i(x \ I
∗ , xI) does not dominate q i(x 1

∗ ,… , xn
∗
)

where denotes a subvector, consisting of
components of x with indexes from the set I.

x I

● Well determined (N = ∑
i
k

i
 equations and total N

variables).
● The Jacobi matrix is composed of rows of

Jacobi matrices of systems

∂ q1x 

∂ x1

=0,
∂ q1 x

∂ x2

=0, ⋯
∂ q1x 

∂ xn

=0,

∂ q2x 

∂ x1

=0,
∂ q2 x 

∂ x2

=0, ⋯
∂ q2x 

∂ xn

=0,

⋮ ⋮ ⋯ ⋮

∂ qnx 

∂ x1

=0,
∂qn x 

∂ x2

=0, ⋯
∂ qnx 

∂ xn

=0.

∇ q i(x 1,… , xn)=0

Necessary conditions for
Nash points

Necessary conditions for
Nash points

∂ q1x 

∂ x1

=0,
∂ q1 x

∂ x2

=0, ⋯
∂ q1x 

∂ xn

=0,

∂ q2x 

∂ x1

=0,
∂ q2 x 

∂ x2

=0, ⋯
∂ q2x 

∂ xn

=0,

⋮ ⋮ ⋯ ⋮

∂ qnx 

∂ x1

=0,
∂qn x 

∂ x2

=0, ⋯
∂ qnx 

∂ xn

=0.

● Well determined (N = ∑
i
k

i
 equations and total N

variables).
● The Jacobi matrix is composed of rows of

Jacobi matrices of systems ∇ q ix1, , xn=0

Necessary conditions for
strong Nash points

● Necessary conditions:
➢ All conditions for ordinary Nash points hold!
➢ And there are additional ones.

● So, the system is overdetermined.
➢ That is the reason (at least one of them) why SNEs exist so

rarely.
➢ It will not be possible to compute verified results using the

interval Newton operator.
● What are these necessary conditions, specifically?

● We assume i-th player controls the variable

;

extension to the general case is straightforward.

x i∈X i⊆ℝ

Consider the case with two players and x1, x 2∈ℝ

x1

x2

∀ x1∈x1 q1(x 1, x2
∗
) ⩾ q1(x1

∗ , x 2
∗
) ,

∀ x2∈ x2 q2(x1
∗ , x 2) ⩾ q2(x1

∗ , x2
∗
) ,

x1

x2

What do we check in phase II?

Consider the case with two players and x1, x2∈ℝ

x1

x2

∀ x1∈x1, x2∈ x2 q1(x1, x2) ⩾ q1(x1
∗ , x2

∗
) or x1≠x1

∗ ,

q2 (x1, x 2) ⩾ q2(x1
∗ , x2

∗
) or x 2≠ x2

∗

x 1

x 2

What do we check in phase II?

Third important example:
seeking local optima

● Find all local (and global) minima (or maxima).
● Should not be confused, e.g., with seeking an ε-

optimal solution!
● The problem was rarely considered, up to now (and

usually for very specific cases):
➢ K. Villaverde, V. Kreinovich, A linear-time algorithm that locates

local extrema of a function of one variable from interval measurement
results, Interval Computations 4, pp. 176 – 194 (1993).

➢ E. Lyager, Finding local extremal points by using parallel interval
methods, Interval Computations, Vol. 3, pp. 63 – 80 (1994).

➢ Ch. Eick, K. Villaverde, Robust algorithms that locate local extrema
of a function of one variable from interval measurement results: A
remark, Reliable Computing, Vol 2(3), pp. 213 – 218 (1996).

{x∈X ∣(∃δ >0)∧(∀ t∈X ∧ d (x , t)<δ) (f (x)⩽ f (t))}

{x∈X ∣(∀ t∈X) (f (x)⩽ f (t)+ε)}

Third important example:
seeking local optima

● Important potential applications:
➢ Potential games (no pun intended) – local optima of the

potential function are Nash equilibira.
➢ NMR spectroscopy – local maxima of the spectrum show,

for which frequency the nucleus resonates.
➢ Radio-astronomy – local maxima of the ray show where

astronomical objects are located.
➢ …

● How is the problem related to global optimization?

{x∈X ∣(∃δ >0)∧(∀ t∈X ∧ d (x , t)<δ) (f (x)⩽ f (t))}

Comparison
Seeking global optima
● Efficient 0th order tools

(comparing function
values).

● Global information on the
minimum's upper bound.

● Boxes with smaller lower
bound should be
processed earlier.

● Phase II simple, but
necessary.

Seeking local optima
● No 0th order tools

(function values are
irrelevant).

● No global information.

● Order of boxes
processing –
irrelevant.

● No phase II.

● 1st and higher order tools – very similar.

How to make the branch-and-
bound-type method efficient?

How to make the branch-and-
bound-type method efficient?

● There is a great deal of interval tools.
● All of them give guaranteed (verified) results.
● None of them are intelligent per se!

How to make the branch-and-
bound-type method efficient?

● There is a great deal of interval tools.
● All of them give guaranteed (verified) results.
● None of them are intelligent per se!
● It is crucial to develop a heuristic to:
➢ choose the interval tools adequate for a specific box,
➢ arrange them,
➢ parameterize them.

● The author devoted several papers to design
heuristics for two problems:
➢ Nonlinear equations systems – especially seeking all

solutions of underdetermined systems.
➢ Seeking Pareto sets of a multicrietia problem.

● Many tools & versions; several papers.
● We present two topics:
➢ Choosing the coordinate for bisection.
➢ Initial exclusion phase – for nonlinear systems.

How to make the branch-and-
bound-type method efficient?

Underdetermined systems
● B. J. Kubica, Interval methods for solving underdetermined nonlinear equations

systems, SCAN 2008, Reliable Computing, Vol. 15, pp. 207 – 217 (2011).
● B. J. Kubica, Performance inversion of interval Newton narrowing operators,

KAEiOG 2009, Zeszyty Naukowe PW. Elektronika, Vol. 169, pp. 111 – 119 (2009).
● B. J. Kubica, Shared-memory parallelization of an interval equations systems

solver – comparison of tools, KAEiOG 2009, ibidem, pp. 121 – 128.
● B. J. Kubica, Intel TBB as a tool for parallelization of an interval solver of

nonlinear equations systems, ICCE internal report, 09-02, 2010.
● B. J. Kubica, Tuning the multithreaded interval method for solving

underdetermined systems of nonlinear equations, PPAM 2011, LNCS, Vol. 7204,
pp. 467 – 476 (2012).

● B. J. Kubica, Excluding regions using Sobol sequences in an interval branch-and-
prune method for nonlinear systems, SCAN 2012, Reliable Computing, Vol. 19 (4),
pp. 385 – 397 (2014).

● B. J. Kubica, Using quadratic approximations in an interval method of solving
underdetermined and well-determined nonlinear systems, PPAM 2013, LNCS
8385, pp. 623 – 633 (2014).

● B. J. Kubica, Presentation of a highly tuned multithreaded interval solver for
underdetermined and well-determined nonlinear systems. Empirical evaluation of
innovations, Numerical Algorithms, submitted.

● B. J. Kubica, A. Woźniak, Interval methods for computing the Pareto-
front of a multicriterial problem, PPAM 2007, LNCS, Vol. 4967, pp.
1382 – 1391 (2008).

● B. J. Kubica, A. Woźniak, A multi-threaded interval algorithm for the
Pareto-front computation in a multi-core environment, PARA 2008
Proceedings, LNCS, Vol. 6126 (not published, yet???).

● B. J. Kubica, A. Woźniak, Optimization of the multi-threaded interval
algorithm for the Pareto-set computation, Journal of
Telecommunications and Information Technology, Vol. 1, pp. 70 – 75
(2010).

● B. J. Kubica, A. Woźniak, Using the second-order information in Pareto-
set computations of a multi-criteria problem, PARA 2010 Proceedings,
LNCS, Vol. 7134, pp. 137 – 148 (2012).

● B. J. Kubica, A. Woźniak, Computing Pareto-sets of multicriteria
problems using interval methods, presented at SCAN 2010, unpublished.

● B. J. Kubica, A. Woźniak, Tuning the interval algorithm for seeking
Pareto sets of multi-criteria problems, PARA 2012, LNCS, Vol. 7782, pp.
504 – 517 (2013).

Pareto sets computing

● Interval Newton operators – we switch between
the componentwise and Gauss-Seidel operators; a
proper heuristic to choose.

➢ BC3 for large (a heuristic to tell, which are large!)
boxes.

● Using a quadratic approximation for boxes likely
to contain singular points or otherwise hard for the
Newton operator; a heuristic to decide.

● Initial exclusion phase, using 0th order information,
only.

● Two advanced policies to choose the bisection
direction.

Underdetermined systems –
tools used in my solver

● Often, it is assumed that bisection should minimize
the diameter of the objective function on resulting
boxes.

Bisection

● Often, it is assumed that bisection should minimize
the diameter of the objective function on resulting
boxes.

● An example of such heuristic is MaxSmear (Shary,
1992; Ratz, 1992; Ratz & Csendes, 1995).
➢ Works very well for optimization problems.
➢ Works reasonably well for well-determined equations

systems.
➢ Fails miserably for underdetermined systems.

Bisection

● Often, it is assumed that bisection should minimize
the diameter of the objective function on resulting
boxes.

● An example of such heuristic is MaxSmear (Shary,
1992; Ratz, 1992; Ratz & Csendes, 1995).
➢ Works very well for optimization problems.
➢ Works reasonably well for well-determined equations

systems.
➢ Fails miserably for underdetermined systems.

● In my opinion, the objective of bisection should be
defined in a different way: give boxes that are easy
to process by the used interval tools.

Bisection

● For equations solving, the main tool is some kind
of the interval Newton operator.

● So, for a single equation in two variables, it might
seem reasonable to choose the minimal smear.

● But the convergence...

● A proper policy should take into account several
criteria.

● For several, advanced tools, such a policy cannot
be too simple...

Bisection

● For example, the heuristic of Kubica, 2012:

find index j_max and diameter w_max of the longest component;
find index j_min and diameter w_min of the shortest component;
find index j_max_nonred and diameter w_max_nonred of the
 longest component not reduced by the latest use of the Newton;
if ((Newton operator reduced no component) or (w_max > 1.5 *
 w_max_nonred)) then return j_max;
else if (w_max_nonred > 8 * w_min) then return j_max_nonred;
find index j and diameter w of the component with the smallest
 maximal absolute value in all rows of the Jacobi matrix;
if (w > 0.1) then return j;
else return j_max_noned;

● My new paper proposes a new, yet different
heuristic...

Bisection

● For Pareto sets seeking, the proper heuristic is quite
different:

find the index i of the criterion with maximal distance
from the set in the criteria space;
find the index j and diameter w of the component with
 maximal smear with respect to criterion i;
find the index j_max and diameter w_max of the
 component with maximal diameter;
if (w_max < 8 * w) then return j;
else return j_max;

● Reasons: different interval tools, used in the
algorithm.

Bisection

● Initial exclusion phase – motivation:
➢ Interval Newton operators are powerful, but relatively

expensive.
➢ Large boxes, encountered in the early stages of the b&p

algorithm can rarely be reduced by the Newton operator.
➢ We should apply these operators only for boxes close to

the solution set.
➢ Large regions of the domain can be discarded using

function values, only.

Underdetermined systems

● Initial exclusion phase – motivation:
➢ Interval Newton operators are powerful, but relatively

expensive.
➢ Large boxes, encountered in the early stages of the b&p

algorithm can rarely be reduced by the Newton operator.
➢ We should apply these operators only for boxes close to

the solution set.
➢ Large regions of the domain can be discarded using

function values, only.

Underdetermined systems

● Initial exclusion phase – essence:
➢ Before starting the actual branch-and-prune method, we

generate a given number (n2 ; n or 2n in earlier versions) of
points, using the Sobol sequence.

➢ Around the points we generate boxes, not containing
solutions (procedure of Сергей П. Шарый for the
linearized equation + ε-inflation; if , the point
is ignored).

➢ We exclude the boxes from the domain and start the b&p
algorithm on their completion.

➢ The procedure does not require using derivatives (global
values are used for the Shary's procedure), so it is not
computationally intensive.

➢ Sobol sequences can be generated simply and efficiently
(there are open libraries!).

f (x)∈[−ε ,ε]

Underdetermined systems

● Issue – proper implementation of the
procedure computing the completion.

● There is the procedure of R.B. Kearfott for a
single box; it generates at most 2 n boxes.

● It can be applied several times subsequently,
but...

Underdetermined systems

● Issue – proper implementation of the
procedure computing the completion.

● There is the procedure of R.B. Kearfott for a
single box; it generates at most 2 n boxes.

● It can be applied several times subsequently,
but:
➢ It would not be parallel.
➢ The result would depend on the order of boxes

exclusion.
➢ The generated box set could be very large.
➢ Often, boxes have peculiar shapes (long and flat),

their shapes are unrelated to function values.
➢ Hence, actually, sometimes expanding the

exclusion boxes decreases the performance.

Underdetermined systems

● Boxes might be sorted with respect to decreasing
Lebesgue measure, but it solves the problem rarely.

● The satisfying solution:
➢ We use task parallelism. Each task is to cut from a specific

box a list of excluded boxes.
➢ From this list we choose the box with the largest (wrt the

Lebesgue measure) intersection with the box from which
we do the exclusion.

➢ Boxes, created in the exclusion process, become basis for
new tasks (obviously, their lists of excluded boxes are
shorter by one than for the parent task).

➢ Far fewer boxes are created and the parallelism is natural.
➢ All functions are used for exclusion.

Underdetermined systems

f i(⋅)

➢ For each function, after the ε-inflation, variables, not
occurring in its formula, are set to their whole domain.

➢ We exclude the box for , for which we obtained the
largest Lebesgue measure.

➢ There is a threshold value not to exclude to many boxes
(128 worked well, but it is a magical constant, obviously).

● Intel TBB allows an elegant implementation:
➢ We use the concept of tbb::parallel_do.
➢ Boxes, created in the exclusion process, become basis for

new tasks – using tbb::parallel_do_feeder.
➢ Lists of boxes are represented as std::vector

(tbb::concurrent_vector does not have the method
pop_back).

➢ Counter of excluded boxes it represented as tbb::atomic.

Underdetermined systems

f i(⋅)

Underdetermined systems –
computational times

Problem GS only PPAM 2011 PPAM 2011 +
BC3

Full algorithm

Broyden 16 21 851s
(6h 4min 11s)

6112 s
(101min 52s)

644 s
(10min 44s)

70 s
(1 min 10 s)

Bratu 30 broken > 7h broken > 7h 3 s 4 s

Brent 10 2604 s
(43min 24s)

97 s
(1min 37s)

43 s 18 s

Hippopede 21 s 2 s under 1 s 1 s

5R planar 81 s 65 s 63 s 59 s

● We already discussed that, but – to sum up.
● Parallelization is simplest, when:
➢ the order of boxes processing is irrelevant and
➢ no global information is needed.

● Such problems are, i.a.:
➢ equations systems,
➢ CPSs,
➢ seeking all local optima.

● The box list can be stored implicitly – e.g., Intel TBB.
● Parallelization with OpenMP simple, also –

particularly for OpenMP 3 (the task directive), but
not only.

Parallelization

● For global optimization:
➢ The order of boxes matters – a priority queue is needed.
➢ Global information on the upper bound on the global

minimum (a single floating-point number).
● Parallelization is more difficult, but the difference is

minor:
➢ Applying TBB not that natural (the class
tbb::priority_queue might be useful!).

➢ The global minimum upper bound should be protected by a
mutex (or something similar).

● Pareto sets seeking:
➢ We have to store the Pareto frontier – sounds scary...
➢ Difficult choice of a box to process.

Shared memory

● Parallel Nash points seeking:
➢ Several shared lists.
➢ In my resent implementation the boxes are stored in a

queue – can we do better?
➢ Second phase is very important...
➢ … and difficult – it requires a nested branch-and-bound

procedure for each solution to (verify it).

● Local memory:
➢ Box migration.
➢ Termination detection.
➢ Much more difficult if we need shared information.

Shared memory

● Interval methods can be applied for a wide class of
problems, described by predicate formulae.

● Various kinds of these problems can be solved by
some instances of the generalized branch-and-bound
method.

● Details depend on the specific problem. They are
difficult (or impossible) to determine automatically – a
human is needed.

● For the efficiency, it is crucial to develop a proper
heuristic to choose and parameterize the interval tools.

● The branch-and-bound-type methods parallelize well,
but not trivially; some knowledge is needed to do it
properly.

Summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

