Interval methods for solving
various kinds of quantified
nonlinear problems

Barttomiej Jacek Kubica

Institute of Control and Computation Engineering
Warsaw University of Technology
Poland

SCAN 2014
Wurzburg

What shall we consider?

 What (in particular) kind of problems can we
solve using interval methods?

 What 1s the algorithm to solve them?
* How to make this algorithm efficient?

* How to parallelize 1t successfully?

Why do we need interval analysis?

Why do we need interval analysis?

 Invented as a tool to bound/analyze numerical
€Irors:

> Ramon E. Moore, 1959 (1966).
> Mieczystaw Warmus, 1956.

Why do we need interval analysis?

 Invented as a tool to bound/analyze numerical
€Irors:

> Ramon E. Moore, 1959 (1966).
> Mieczystaw Warmus, 1956.

e Can be used for any other uncertainty, also:
> discretization error, truncation error,
> uncertain parameters,
> decisions of other decision-makers,

>

Why do we need interval analysis?

 Invented as a tool to bound/analyze numerical
€Irors:

> Ramon E. Moore, 1959 (1966).
> Mieczystaw Warmus, 1956.

e Can be used for any other uncertainty, also:
> discretization error, truncation error,
> uncertain parameters,
> decisions of other decision-makers,

>

e My view: the interval analysis 1s an approach to
seek points, satisfying a certain logical condition.

Problem under solution

Find all xeR", satisfying the condition P(x), i.e.,
find the set {xeR"|P(x)} .

where P (x) 1s a predicate formula with a free variable x,
1.e., free variables: x,,..., x .
It can contain bound variables, also (we shall call them
“parameters™).

Previous papers

e Computability of the problem:

> V. Kreinovich, B. J. Kubica, From computing sets of
optima, Pareto sets and sets of Nash equilibria to
general decision-related set computations, Journal of
Universal Computer Science, Vol. 16, pp. 2657 — 2685
(2010).

e Early presentation:

> B. J. Kubica, 4 class of problems that can be solved
using interval algorithms, SCAN 2010, Computing,
Vol. 94 (2-4), pp. 271 — 280 (2012).

Explanation

e Several researchers investigated solving quantified
constraints using the interval approach.

> Papers of Ratschan, 2002; Benhamou & Goualard, 2000;
Shary, 2002; Goldsztejn & Jaulin, 2006 (not exclusively!)
are particularly notable.

(xeX [(Veeltyt,]) (f(x,1)<0)]

Explanation

e Several researchers investigated solving quantified
constraints using the interval approach.

> Papers of Ratschan, 2002; Benhamou & Goualard, 2000;
Shary, 2002; Goldsztejn & Jaulin, 2006 (not exclusively!)
are particularly notable.

(xeX [(Veeltyt,]) (f(x,1)<0)]

e Also, other problems, traditionally solved by
interval methods, can be formulated that way, e.g.:

- global optimization: [x€X |(VieX) (f(x)<f(t))]

- Pareto sets seeking,

>

Example problems

(xeX | h(x)=0]
(xeX| f(x)ely, 7]l
eX|(Veex) (f(x)<f(1)]

xex|(Viex) (Vi=L..,N filx)<fi(t)v(3i filx)<file))
(xex|(Vi=1,...,n) (Vx'lExiEIRk") (filxys x")=filx))]
where:

X<SR", h:R"-R", f,f,,...f . R'>R

Proposed algorithm

e We shall use the name generalized branch-and-
bound method or branch-and-bound type
method.

e Several algorithms, described 1n the literature,
are 1ts specific istances:

> Branch-and-bound method.
> Branch-and-prune method.
> “Nested” b&b or b&p (for parameters).

> SIVIA — Set Inversion Via Interval Analysis (Jaulin,
1993).

> PPS — Partitioning Parameter Set (apo0Oiene
napameTpoB; Kanmeikos, 1982).

Generic algorithm

Lpos = {}; Lverif = {}; Lcheck = {};
// Phase I
while (there are boxes to consider) do
pop (x);
process (x); // using interval tools
if (x was verified to contain a solution/a point satisfying some necessary
conditions) then push (Lverif, x);
else if (x 1s verified not to contain solutions) then
if (x may be necessary in phase II) then push (Lcheck, x);
else discard x;
end if
if (x was discarded or stored) then pop (x);
else if (diam (x) < €) then push (Lpos, x);
else

bisect (x, x1, x2); push (x2); x=xI;
end if
end while
// Phase II — verification of P(x) for stored solution candidates
for each (x in Lverif Lpos) do
if (x does not contain a solution) then discard x;
end for each

What does the algorithm result in?

e Two lists:

- Lverif — the list of boxes verified (certified) to
contain a solution,

> Lpos — the list of boxes possibly containing a
solution.

e What conditions have to be verified so that the
solution was “verified”?

* There can be more than two lists, 1n general.:

> Some conditions are verified, some are not.

> We classity points of the domain int more than two
classes.

Algorithm's other details

* [n what order do we process boxes? Does the
order matter?

e How do we store boxes?

* What tools do we use to process a box?

 What information 1s needed to process a box in
phase I?

 What information 1s needed to verify a box in
phase 117

e [n particular, what boxes do we store 1n Lcheck —
if any?

Algorithm's other details

e All depends on the problem under solution.

e Does the presence of solution 1n one area have
influence on its presence elsewhere?

> For equations systems — not really.

> For optimization problems — 1t does (the optimum
occurs to be local, only, 1f we have found a better point
elsewhere).

> For seeking Pareto sets — also.

>

e Obviously, rejection/reduction tests rely on the
problem under solution, also.

How to store boxes?
The simplest case.

* The order of processing boxes does not matter.
> Equations systems, CSPs, etc.

e Then, we can use any structure — a stack, queue,
pool, etc.

e Parallelization 1s (relatively) easy.
e Some frameworks allow us to store the boxes
implicitly, using the task queue (e.g., Intel TBB).

e Sufficient (not necessary!) condition: no bound
occurrences of the variable x (1.e., no quantifiers
range over 1ts domain).

How to store boxes?
More sophisticated cases.

e For, €.g., global optimization, the order, in which
we process boxes, matters — and we know 1n
what way.

e A priority queue 1s suitable.

e Parallelization 1s more difficult (but TBB has a
class priority queue).

e For some problems the order matters, but 1n a
complicated way, difficult to predict.
> E.g., Nash equilibria computing.
> In my implementations, I used ordinary queues.
> A potential for improvement, certainly.

Tools to process a box

e Order of function approximation:

- 0" order tools — comparing function values.
- 1* order tools — use of gradients.

> 2" order tools — use of Hesse matrices.

> Higher order tools ?

e Operations:

~ Simply, comparing function values.

~ Several versions of the interval Newton operator
(componentwise, GS) — on various levels.

~ Various constraint satisfaction methods (consistency
enforcing, SIVIA, etc.).

>

The information stored

e For equations systems, CSPs, etc. — no additional
info 1s needed — boxes only (1.e., only local
information).

» Global optimization — upper bound on the global
minimum; a single number; no Lcheck list needed.

e Pareto sets seeking — we store the approximation of

the Pareto frontier; a set of several points, changing
frequently.

> Tricky — especially for parallel implementations.
> Simple 0" order tools are inefficient.

-~ Still, the list Lcheck 1s not needed (only a set of points 1n
the criteria space).

The information stored

e A difficult problem — seeking Nash points or strong
Nash points of a continuous game.

e To verify a solution, we need to compare players'
utilities for boxes located 1n proper places of the
search domain.

> For “plain” Nash points — in proper subspaces; for strong
ones — 1n the whole domain.

* An interval tree 1s an option (suggested in my earlier
papers).

 Storing the boxes on the Lcheck list seems a better
solution.

Three important example
problems

» Seeking Nash points and strong Nash points
of a continuous game.

e Seeking all local (including global) optima of
a function.

My papers on games solutions
seeking

* B. J. Kubica, A. Wozniak, An interval method for seeking

the Nash equilibria of non-cooperative games, PPAM
2009, LNCS, Vol. 6068, pp. 446 — 455 (2010).

e B. J. Kubica, A. Wozniak, Applying an interval method for
a four agent economy analysis, PPAM 2011, LNCS, Vol.
7204, pp. 477 — 483 (2012).

e B. J. Kubica, A. Wozniak, Interval methods for computing
various refinements of Nash equilibria, SCAN 2012,
unpublished.

e B. J. Kubica, A. Wozniak, Interval methods for computing
strong Nash equilibria of continuous games, SING10
(2014), submitted to Operations Research and Decisions.

Solution concepts

John Forbes Nash Jr. Robert John (Yisrael) Aumann.
Nash equilibrium, 1950 Strong Nash equilibrium, 1959

Picture from: http://commons.wikimedia.org/wiki/File:John_Forbes Nash, Jr. and_Robert Aumann.jpg

http://commons.wikimedia.org/wiki/File:John_Forbes_Nash,_Jr._and_Robert_Aumann.jpg

Computing the solutions

e Nash points can use be defined by the following
system of conditions:

Vi=1,.,n Vxecx,cR"

X * X

B kL x)2 g x
* Hence, strong Nash points:
YIc(l,...,n] Vx,ex,cR"

X

g.(x:,,x,) does not dominate ¢ (x ..., x)

where x; denotes a subvector, consisting of
components of x with indexes from the set /.

Necessary conditions for
Nash points

e Well determined (N =) £ equations and total N
variables).

e The Jacobi matrix 1s composed of rows of
Jacobi matrices of systems Vg.(x,...,x)=0

a611(36):0, aql(X):O, 56]1<X)ZO’
O X, O X, Ox,

aQ2(x):O, aQQ<x):O, GQ2<X):O,
O X, O0Xx, OXx,

9, 9, 9,
qn(X):O qn(X):O qn(X):O.

O X, ’ O0Xx, : 0Xx,

Necessary conditions for
Nash points

e Well determined (N =) & equations and total N
variables).

* The Jacobi matrix 1s composed of rows of
Jacobi matrices of systems V ¢q.(x

0q,(x) N (x
O X, X,
aQ2
X, ’ 8x2
(x o, %{, :().
X, » Gxn

Necessary conditions for
strong Nash points

» Necessary conditions:

> All conditions for ordinary Nash points hold!
> And there are additional ones.

* So, the system 1s overdetermined.

-~ That 1s the reason (at least one of them) why SNEs exist so
rarely.

> It will not be possible to compute verified results using the
interval Newton operator.

 What are these necessary conditions, specifically?
« We assume i-th player controls the variable x,€ X, SIR;

extension to the general case 1s straightforward.

What do we check in phase II?

Consider the case with two players and x, x,€R

x2T

What do we check in phase II?

Consider the case with two players and x, x,€R

X2T

s

X X1

V

Vx €x, x,€x, %(xl,xz) q,(x; , x;) or X ZH8

Q2(x1,x2) = 42()6196»)5;) Or xz;éxz*

Third important example:
seeking local optima

(XEX[(FO>0)A(VieX Ad(x,t)<d) (flx)<f(t))
e Find all local (and global) minima (or maxima).
e Should not be confused, e.g., with seeking an &-

optimal solution! (xeX|(VieX) (f(x)< f(e)+e)]
* The problem was rarely considered, up to now (and

usually for very specific cases):

> K. Villaverde, V. Kreinovich, A4 linear-time algorithm that locates
local extrema of a function of one variable from interval measurement
results, Interval Computations 4, pp. 176 — 194 (1993).

~ E. Lyager, Finding local extremal points by using parallel interval
methods, Interval Computations, Vol. 3, pp. 63 — 80 (1994).

> Ch. Eick, K. Villaverde, Robust algorithms that locate local extrema

of a function of one variable from interval measurement results: A
remark. Reliable Computing. Vol 2(3). pp. 213 — 218 (1996).

Third important example:
seeking local optima

xeX [(F0>0)A(VieX Ad(x,t)<d) (f(x)<f(t))]
» Important potential applications:

> Potential games (no pun intended) — local optima of the
potential function are Nash equilibira.

> NMR spectroscopy — local maxima of the spectrum show,
for which frequency the nucleus resonates.

> Radio-astronomy — local maxima of the ray show where
astronomical objects are located.

>

* How 1s the problem related to global optimization?

Comparison

Seeking local optima

* No 0™ order tools
(function values are
irrelevant).

Seeking global optima

e Efficient 0" order tools
(comparing function
values).

e Global information on the = ¢ No global information.
minimum's upper bound.

e Boxes with smaller lower e Order of boxes

bound should be processing —
processed earlier. - 1rrelevant.

* No phase II.

e Phase II simple, but |

necessary. /
e 1* and higher order tools — very similar.

How to make the branch-and-
bound-type method efficient?

How to make the branch-and-
bound-type method efficient?

* There 1s a great deal of interval tools.
* All of them give guaranteed (verified) results.

* None of them are intelligent per se!

How to make the branch-and-
bound-type method efficient?

* There 1s a great deal of interval tools.
* All of them give guaranteed (verified) results.
* None of them are intelligent per se!

e [t 1s crucial to develop a heuristic to:

-~ choose the interval tools adequate for a specific box,
> arrange them,

> parameterize them.

How to make the branch-and-
bound-type method efficient?

* The author devoted several papers to design
heuristics for two problems:

> Nonlinear equations systems — especially seeking all
solutions of underdetermined systems.

~ Seeking Pareto sets of a multicrietia problem.
 Many tools & versions; several papers.
* We present two topics:

> Choosing the coordinate for bisection.

~ Initial exclusion phase — for nonlinear systems.

Underdetermined systems

B. J. Kubica, Interval methods for solving underdetermined nonlinear equations
systems, SCAN 2008, Reliable Computing, Vol. 15, pp. 207 — 217 (2011).

B. J. Kubica, Performance inversion of interval Newton narrowing operators,
KAEi10G 2009, Zeszyty Naukowe PW. Elektronika, Vol. 169, pp. 111 — 119 (2009).

B. J. Kubica, Shared-memory parallelization of an interval equations systems
solver — comparison of tools, KAE10G 2009, ibidem, pp. 121 — 128.

B. J. Kubica, Intel TBB as a tool for parallelization of an interval solver of
nonlinear equations systems, ICCE internal report, 09-02, 2010.

B. J. Kubica, Tuning the multithreaded interval method for solving
underdetermined systems of nonlinear equations, PPAM 2011, LNCS, Vol. 7204,
pp. 467 — 476 (2012).

B. J. Kubica, Excluding regions using Sobol sequences in an interval branch-and-
prune method for nonlinear systems, SCAN 2012, Reliable Computing, Vol. 19 (4),
pp- 385 — 397 (2014).

B. J. Kubica, Using quadratic approximations in an interval method of solving
underdetermined and well-determined nonlinear systems, PPAM 2013, LNCS
8385, pp. 623 — 633 (2014).

B. J. Kubica, Presentation of a highly tuned multithreaded interval solver for
underdetermined and well-determined nonlinear systems. Empirical evaluation of
innovations, Numerical Algorithms, submitted.

Pareto sets computing

e B. J. Kubica, A. Wozniak, Interval methods for computing the Pareto-
front of a multicriterial problem, PPAM 2007, LNCS, Vol. 4967, pp.
1382 — 1391 (2008).

* B. J. Kubica, A. Wozniak, A multi-threaded interval algorithm for the
Pareto-front computation in a multi-core environment, PARA 2008
Proceedings, LNCS, Vol. 6126 (not published, yet???).

e B. J. Kubica, A. Wozniak, Optimization of the multi-threaded interval
algorithm for the Pareto-set computation, Journal of
Telecommunications and Information Technology, Vol. 1, pp. 70 — 75
(2010).

e B. J. Kubica, A. Wozniak, Using the second-order information in Pareto-
set computations of a multi-criteria problem, PARA 2010 Proceedings,
LNCS, Vol. 7134, pp. 137 — 148 (2012).

e B. J. Kubica, A. Wozniak, Computing Pareto-sets of multicriteria
problems using interval methods, presented at SCAN 2010, unpublished.

e B. J. Kubica, A. Wozniak, Tuning the interval algorithm for seeking
Pareto sets of multi-criteria problems, PARA 2012, LNCS, Vol. 7782, pp.
504 — 517 (2013).

Underdetermined systems -
tools used in my solver

e [nterval Newton operators — we switch between
the componentwise and Gauss-Seidel operators; a
proper heuristic to choose.

> BC3 for large (a heuristic to tell, which are large!)
boxes.

e Using a quadratic approximation for boxes likely
to contain singular points or otherwise hard for the
Newton operator; a heuristic to decide.

e Initial exclusion phase, using 0" order information,
only.

* Two advanced policies to choose the bisection
direction.

Bisection

e Often, 1t 18 assumed that bisection should minimize
the diameter of the objective function on resulting
boxes.

Bisection

e Often, 1t 18 assumed that bisection should minimize
the diameter of the objective function on resulting
boxes.

* An example of such heuristic 1s MaxSmear (Shary,
1992; Ratz, 1992; Ratz & Csendes, 1995).
> Works very well for optimization problems.

> Works reasonably well for well-determined equations
systems.

-~ Fails miserably for underdetermined systems.

Bisection

e Often, 1t 18 assumed that bisection should minimize
the diameter of the objective function on resulting
boxes.

* An example of such heuristic 1s MaxSmear (Shary,
1992; Ratz, 1992; Ratz & Csendes, 1995).

> Works very well for optimization problems.

> Works reasonably well for well-determined equations
systems.

-~ Fails miserably for underdetermined systems.

* [n my opinion, the objective of bisection should be
defined 1n a different way: give boxes that are easy
to process by the used interval tools.

Bisection

* For equations solving, the main tool 1s some kind
of the interval Newton operator.

* So, for a single equation in two variables, 1t might
seem reasonable to choose the minimal smear.

e But the convergence...

e A proper policy should take into account several
criteria.

e For several, advanced tools, such a policy cannot
be too simple...

Bisection

e For example, the heuristic of Kubica, 2012:

find index | _max and diameter w_max of the longest component;
find index j_min and diameter w_min of the shortest component;

find index | _max_nonred and diameter w_max_nonred of the
longest component not reduced by the latest use of the Newton;

If ((Newton operator reduced no component) or (w_max> 1.5 *
W_max_nonred)) then return | max;

else if (w_max _nonred > 8 * w_min) then return | max_nonred,

find index j and diameter w of the component with the smallest
maximal absolute value in all rows of the Jacobi matrix;

if (w> 0.1) then return j;
else return | max_noned,

* My new paper proposes a new, yet different
heuristic...

Bisection

e For Pareto sets seeking, the proper heuristic 1s quite
different:

find the index /1 of the criterion with maximal distance

from the set in the criteria space;

find the index j and diameter w of the component with
maximal smear with respect to criterion j;

find the index | max and diameter w_max of the
component with maximal diameter;

If (w_max <8 * w) then return j;

else return | max;

e Reasons: different interval tools, used in the
algorithm.

Underdetermined systems

e [nitial exclusion phase — motivation:

- Interval Newton operators are powertul, but relatively
expensive.

> Large boxes, encountered 1n the early stages of the b&p
algorithm can rarely be reduced by the Newton operator.

> We should apply these operators only for boxes close to
the solution set.

> Large regions of the domain can be discarded using
function values, only.

——

/

R/

Underdetermined systems

e [nitial exclusion phase — motivation:

- Interval Newton operators are powertul, but relatively
expensive.

> Large boxes, encountered 1n the early stages of the b&p
algorithm can rarely be reduced by the Newton operator.

> We should apply these operators only for boxes close to
the solution set.

> Large regions of the domain can be discarded using
function values, only.

——

/

vl

Underdetermined systems

e [nitial exclusion phase — essence:

- Before starting the actual branch-and-prune method, we
generate a given number (n° ; n or 2n in earlier versions) of
points, using the Sobol sequence.

> Around the points we generate boxes, not containing
solutions (procedure of Cepreti 11. [lapelit for the
linearized equation + e-inflation; if f(x)€[-¢,¢] the point
1s 1ignored).

> We exclude the boxes from the domain and start the b&p
algorithm on their completion.

> The procedure does not require using derivatives (global
values are used for the Shary's procedure), so it 1s not
computationally intensive.

> Sobol sequences can be generated simply and efficiently
(there are open libraries!).

Underdetermined systems

e [ssue — proper implementation of the
procedure computing the completion. H

* There 1s the procedure of R.B. Kearfott for a
single box; 1t generates at most 2 n boxes.

e [t can be applied several times subsequently,
but...

Underdetermined systems

e [ssue — proper implementation of the
procedure computing the completion. H

* There 1s the procedure of R.B. Kearfott for a
single box; 1t generates at most 2 n boxes.

but:

- It would not be parallel.

> The result would depend on the order of boxes
exclusion.

> The generated box set could be very large.

> Often, boxes have peculiar shapes (long and flat), “
their shapes are unrelated to function values.

- Hence, actually, sometimes expanding the
exclusion boxes decreases the performance.

e [t can be applied several times subsequently, +

Underdetermined systems

e Boxes might be sorted with respect to decreasing
[Lebesgue measure, but 1t solves the problem rarely.

* The satisfying solution:

- We use task parallelism. Each task 1s to cut from a specific
box a list of excluded boxes.

> From this list we choose the box with the largest (wrt the
Lebesgue measure) intersection with the box from which
we do the exclusion.

- Boxes, created 1n the exclusion process, become basis for
new tasks (obviously, their lists of excluded boxes are
shorter by one than for the parent task).

> Far fewer boxes are created and the parallelism 1s natural.
- All functions f;(-) are used for exclusion.

Underdetermined systems

> For each function, after the ¢-inflation, variables, not
occurring 1n its formula, are set to their whole domain.

> We exclude the box for /") , for which we obtained the
largest Lebesgue measure.

> There 1s a threshold value not to exclude to many boxes
(128 worked well, but 1t 1s a magical constant, obviously).

e [ntel TBB allows an elegant implementation:
- We use the concept of tbb: :parallel do.

- Boxes, created in the exclusion process, become basis for
new tasks — using tbb: :parallel do feeder.

- Lists of boxes are represented as std: : vector
(tbb: :concurrent vector does not have the method
pop back).

> Counter of excluded boxes it represented as tbb: :atomic.

computational times

Underdetermined systems -

Problem GS only PPAM 2011 PPAM 2011 +
BC3
Broyden 16 21 851s 6112 s 644 s
(6h 4min 11s) (101min 52s) (10min 44s)
Bratu 30 broken > 7h broken > 7h 3s
Brent 10 2604 s 97 s 43 s
(43min 24s) (1min 37s)
Hippopede 21s 2Ss under 1s

9R planar 81s 65 s 63 s

Full algorithm

70s
(1 min 10 s)

4s
18 s

1s
59 s

Parallelization

e We already discussed that, but — to sum up.
e Parallelization 1s sitmplest, when:

- the order of boxes processing 1s irrelevant and
> no global information 1s needed.
e Such problems are, 1.a.:

~ equations systems,
> CPSs,
- seeking all local optima.

* The box list can be stored implicitly — e.g., Intel TBB.

e Parallelization with OpenMP simple, also —
particularly for OpenMP 3 (the task directive), but
not only.

Shared memory

 For global optimization:
> The order of boxes matters — a priority queue 1s needed.

> Global information on the upper bound on the global
minimum (a single floating-point number).

e Parallelization 1s more difficult, but the difference 1s
minor:

> Applying TBB not that natural (the class
tbb: :priority queue might be useful!).

> The global minimum upper bound should be protected by a
mutex (or something similar).

e Pareto sets seeking:
> We have to store the Pareto frontier — sounds scary...
~ Difficult choice of a box to process.

Shared memory

e Parallel Nash points seeking:
> Several shared lists.

> In my resent implementation the boxes are stored 1n a
queue — can we do better?

> Second phase 1s very important...

> ... and difficult — it requires a nested branch-and-bound
procedure for each solution to (verify it).

e [ocal memory:
> Box migration.
> Termination detection.

> Much more difficult if we need shared information.

Summary

e [nterval methods can be applied for a wide class of
problems, described by predicate formulae.

e Various kinds of these problems can be solved by
some 1nstances of the generalized branch-and-bound
method.

e Details depend on the specific problem. They are
difficult (or impossible) to determine automatically — a
human 1s needed.

e For the efficiency, it is crucial to develop a proper
heuristic to choose and parameterize the interval tools.

e The branch-and-bound-type methods parallelize well,
but not trivially; some knowledge 1s needed to do it

properly.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

