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Polyhedral graphs

Steinitz’s theorem says that a graph G is isomorphic to the
1-skeleton of a three-dimensional convex polyhedron if and
only if G is planar and 3-connected. By this reason
3-connected planar graphs are called polyhedral.



Cutting planar graphs by lines

Let π be a drawing of a graph G and ` be a line. We say that
` crosses an edge or a face of π if ` intersects it at an inner
point.

Denote the number of edges (resp. faces) of π that ` crosses
by ē(π, `) (resp. f̄ (π, `)).

ē(G ) = max
π,`

ē(G ,π)

f̄ (G ) = max
π,`

f̄ (G ,π)

Denote the number of vertices of π on ` by v̄(π, `).

v̄(G ) = max
π,`

v̄(π, `)



Example

v̄(π, `) = 1 ē(π, `) = 2, f̄ (π, `) = 3.



Some Theorems

For every triangulation T , v̄(T ) ≤ f̄ (T ) = ē(T ) ≤ c(T ∗).

(The circumference c(G ) of a graph G is the length of a
longest cycle in G and G∗ is the dual of a polyhedral graph G ).

If G be a planar graph such that degree of each vertex of G is
at least k then ē(G ) ≥ (k/2− 1)v̄(G ). In particular,
ē(G ) ≥ (1/2)v̄(G ) for each polyhedral graph G .



Cutting convex polyhedra by planes

Let G be a polyhedral graph, π be a convex polyhedron whose

1-skeleton is isomorphic to G , and ` be a plane. Values
=
e (G ),

=

f (G ), and
=
v (G ) are defined similarly to ē(G ), f̄ (G ), and

v̄(G ) from the preceding section.



Cutting convex polyhedra by planes

Let G be a polyhedral graph, π be a convex polyhedron whose

1-skeleton is isomorphic to G , and ` be a plane. Values
=
e (G ),

=

f (G ), and
=
v (G ) are defined similarly to ē(G ), f̄ (G ), and

v̄(G ) from the preceding section.

=
v (π, `) = 2,

=
e (π, `) = 3,

=

f (π, `) = 3.



More Theorems

For every polyhedral graph G ,
=
v (G ) ≤

=

f (G ) =
=
e (G ) ≤ c(G∗).

If G be a planar graph such that degree of each vertex of G is

at least k then
=
e (G ) ≥ (k/2− 1)

=
v (G ).

The last inequality was used by Grünbaum to show that for

some G we have
=
e (G ) = O(nα) for some α < 1.
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Relations between 2-d and 3-d cases

For every polyhedral graph G ,
=

f (G ) ≤ f̄ (G ).

Is
=

f (G ) = f̄ (G )?

Is there any relation between
=
v (G ) and v̄(G )?

Is there any relation between
=

f (G ) and
=
v (G∗)?

There are polyhedral graphs G on n vertices with
=
v (G ) > (2/3)n − 2 and c(G ) = O(nlog3 2).



Polyhedra with small planar sets of vertices

The shortness exponent of a class of graphs G is the limit
inferior of quotients log c(G )/ log v(G ) over all G ∈ G. Let σ
denote the shortness exponent for the class of cubic polyhedral
graphs. It is known that

0.753 < σ ≤ log 22

log 23
= 0.985 . . .
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Polyhedra with small planar sets of vertices

The shortness exponent of a class of graphs G is the limit
inferior of quotients log c(G )/ log v(G ) over all G ∈ G. Let σ
denote the shortness exponent for the class of cubic polyhedral
graphs. It is known that

0.753 < σ ≤ log 22

log 23
= 0.985 . . .

For each α > σ there is a sequence of triangulations G with
v̄(G ) = O(nα).

For each α > σ there is a sequence of triangulations G with
=
v (G ) = O(nα).
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Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in
3-dimensional space.

Let π(G ) denote the minimum number of planes in the space
such that a graph G can be drawn with vertices lying on these
planes.

=
v (G ) ≥ n/π(G )

π(G ) ≤ χ(G )

Proof. Let V (G ) = {v1, . . . , vn}, χ : V (G )→ {1, . . . ,χ(G )}
be a coloring of G , and x1, . . . , xn be real numbers which are
linearly independent over the field Q. Then d(vi ) = (xi ,χ(vi ))
is the reqired drawing.



Drawing graphs on several planes

π(G ) is equal to the smallest size r of a partition
V (G ) = V1 ∪ . . . ∪ Vr such that every Vi induces a planar
subgraph of G . Therefore,

1

4
χ(G ) ≤ π(G ) ≤ χ(G )
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Drawing graphs on several planes

Let ρ(G ) denote the minimum number of planes in the space
such that a graph G can be drawn on these planes (that is,
every edge lies on one of the planes).

=
e (G ) ≥ m/ρ(G )

ρ(G ) is bounded from below by the smallest size r of a
partition E (G ) = E1 ∪ . . . ∪ Er such that every subgraph Ei is
planar.

Relate ρ(G ) to something, say, to the edge-chromatic number,
to the genus of G etc.

Compute ρ(Kn).
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