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Polyhedral graphs

Steinitz's theorem says that a graph G is isomorphic to the
1-skeleton of a three-dimensional convex polyhedron if and
only if G is planar and 3-connected. By this reason
3-connected planar graphs are called polyhedral.



Cutting planar graphs by lines

Let m be a drawing of a graph G and ¢ be a line. We say that
¢ crosses an edge or a face of 7 if £ intersects it at an inner
point.

Denote the number of edges (resp. faces) of 7 that £ crosses
by é(m, ) (resp. f(m,{)).

(G) = max&(G, )

f(G) = max (G, )

Denote the number of vertices of m on ¢ by V(m, £).

v(G) = max v(m,{)



Example

v(m ) =1 8&(m 0) =2, f(m, l) =3



Some Theorems
For every triangulation T, ¥(T) < f(T) = &(T) < c(T%).

(The circumference c(G) of a graph G is the length of a
longest cycle in G and G* is the dual of a polyhedral graph G).

If G be a planar graph such that degree of each vertex of G is
at least k then &(G) > (k/2 —1)V(G). In particular,
e(G) > (1/2)V(G) for each polyhedral graph G.



Cutting convex polyhedra by planes

Let G be a polyhedral graph, 7 be a convex polyhedron whose
1-skeleton is isomorphic to G, and ¢ be a plane. Values e (G),

f (G), and v (G) are defined similarly to &(G), f(G), and
v(G) from the preceding section.
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Let G be a polyhedral graph, 7 be a convex polyhedron whose
1-skeleton is isomorphic to G, and ¢ be a plane. Values e (G),
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More T heorems

For every polyhedral graph G, v (G) §?(G) —e (G) < ¢(G*).

The last inequality was used by Grunbaum to show that for
some G we have e (G) = O(n®) for some a < 1.

If G be a planar graph such that degree of each vertex of G is
at least k then e (G) > (k/2—1) v (G).



Relations between 2-d and 3-d cases

For every polyhedral graph G, F(G) < f(G).
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Relations between 2-d and 3-d cases

-or every polyhedral graph G, F(G) < f(G).
s £ (G) = f(G)?
s there any relation between v (G) and v(G)?

s there any relation between F(G) and v (G*)?

There are polyhedral graphs G on n vertices with
v (G) > (2/3)n— 2 and ¢(G) = O(n'8:2).



Polyhedra with small planar sets of vertices

The shortness exponent of a class of graphs G is the limit
inferior of quotients logc(G)/logv(G) over all G € G. Let o
denote the shortness exponent for the class of cubic polyhedral
graphs. It is known that

log 22
0.7b3 < o < 08

= 0.985...
~— log 23
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Polyhedra with small planar sets of vertices

The shortness exponent of a class of graphs G is the limit
inferior of quotients logc(G)/logv(G) over all G € G. Let o
denote the shortness exponent for the class of cubic polyhedral
graphs. It is known that

log 22
0.753 <o < 08
log 23

For each o > o there is a sequence of triangulations G with

v(G) = O(n®).

= 0.965...

For each @ > o there is a sequence of triangulations G with

v (G) = O(n%).
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Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in
3-dimensional space.

Let 7(G) denote the minimum number of planes in the space
such that a graph G can be drawn with vertices lying on these

planes.
v (G) > n/n(G)
m(G) < x(G)

Proof. Let V(G) = {wvy,..., vot, x 1 V(G) = {1, ..., x(G)}
be a coloring of G, and xq, ..., x, be real numbers which are
linearly independent over the field Q. Then d(v;) = (x;, x(v;))
Is the reqired drawing.



Drawing graphs on several planes

7(G) is equal to the smallest size r of a partition
V(G) = Vi U...U YV, such that every V; induces a planar
subgraph of G. Therefore,

X(G) < m(G) < x(6)



Drawing graphs on several planes

Let p(G) denote the minimum number of planes in the space
such that a graph G can be drawn on these planes (that is,

every edge lies on one of the planes).
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Drawing graphs on several planes

Let p(G) denote the minimum number of planes in the space
such that a graph G can be drawn on these planes (that is,
every edge lies on one of the planes).

e (G) = m/p(G)

p(G) is bounded from below by the smallest size r of a
partition E(G) = E; U...U E, such that every subgraph E; is
planar.

Relate p(G) to something, say, to the edge-chromatic number,
to the genus of G etc.

Compute p(K,).
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