

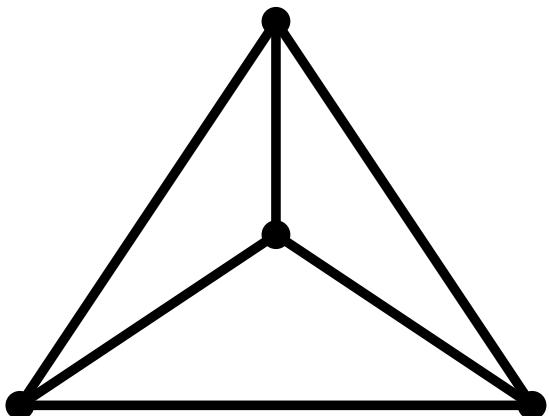
Cutting Convex Polyhedra by Planes

Alexander Ravsky and Oleg Verbitsky

19 February 2016

Polyhedral graphs

Steinitz's theorem says that a graph G is isomorphic to the 1-skeleton of a three-dimensional convex polyhedron if and only if G is planar and 3-connected. By this reason 3-connected planar graphs are called *polyhedral*.



Cutting planar graphs by lines

Let π be a drawing of a graph G and ℓ be a line. We say that ℓ crosses an edge or a face of π if ℓ intersects it at an inner point.

Denote the number of edges (resp. faces) of π that ℓ crosses by $\bar{e}(\pi, \ell)$ (resp. $\bar{f}(\pi, \ell)$).

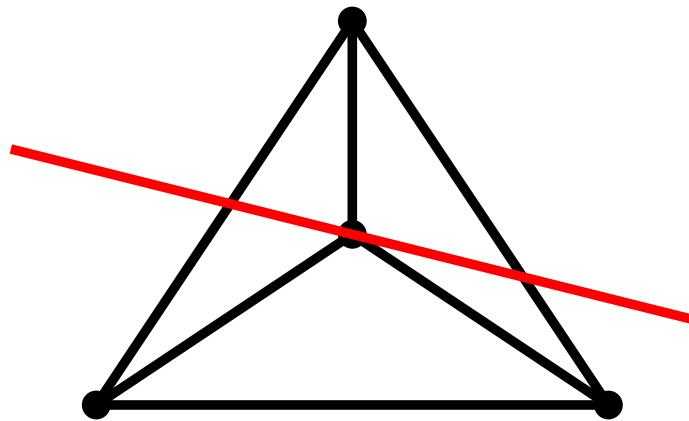
$$\bar{e}(G) = \max_{\pi, \ell} \bar{e}(G, \pi)$$

$$\bar{f}(G) = \max_{\pi, \ell} \bar{f}(G, \pi)$$

Denote the number of vertices of π on ℓ by $\bar{v}(\pi, \ell)$.

$$\bar{v}(G) = \max_{\pi, \ell} \bar{v}(\pi, \ell)$$

Example



$$\bar{v}(\pi, \ell) = 1, \bar{e}(\pi, \ell) = 2, \bar{f}(\pi, \ell) = 3.$$

Some Theorems

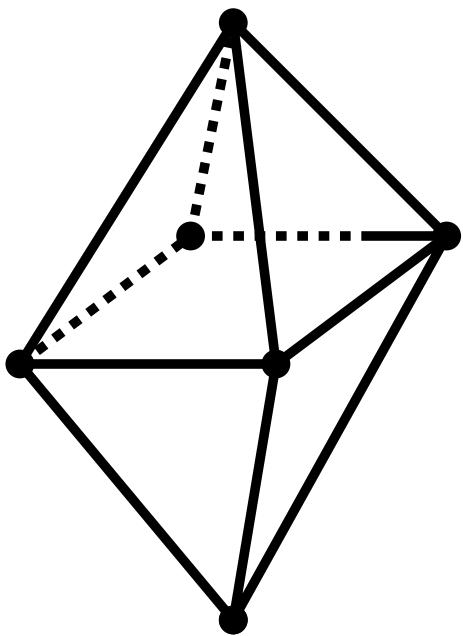
For every triangulation T , $\bar{v}(T) \leq \bar{f}(T) = \bar{e}(T) \leq c(T^*)$.

(The *circumference* $c(G)$ of a graph G is the length of a longest cycle in G and G^* is the dual of a polyhedral graph G).

If G be a planar graph such that degree of each vertex of G is at least k then $\bar{e}(G) \geq (k/2 - 1)\bar{v}(G)$. In particular, $\bar{e}(G) \geq (1/2)\bar{v}(G)$ for each polyhedral graph G .

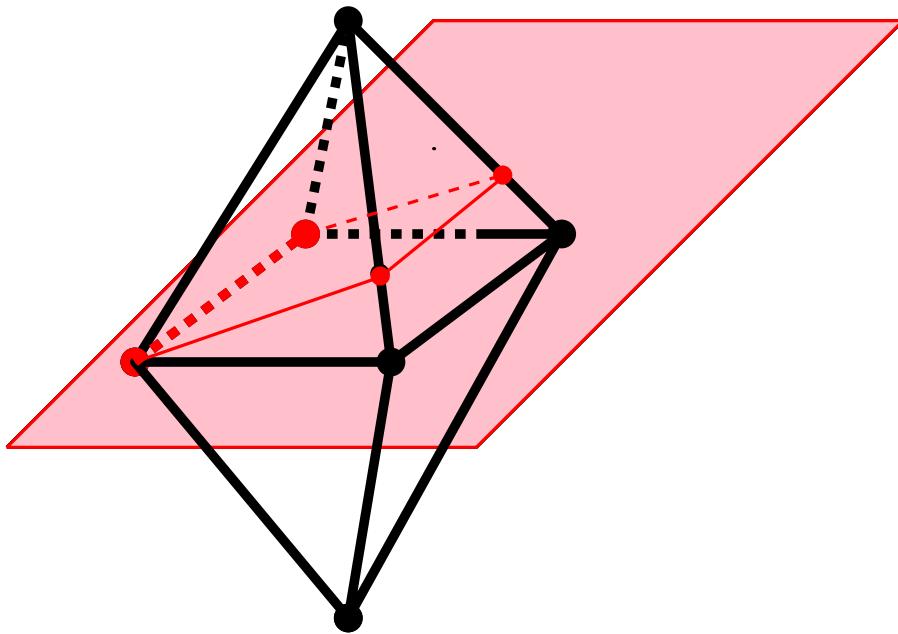
Cutting convex polyhedra by planes

Let G be a polyhedral graph, π be a convex polyhedron whose 1-skeleton is isomorphic to G , and ℓ be a plane. Values $\bar{e}(G)$, $\bar{f}(G)$, and $\bar{v}(G)$ are defined similarly to $e(G)$, $f(G)$, and $v(G)$ from the preceding section.



Cutting convex polyhedra by planes

Let G be a polyhedral graph, π be a convex polyhedron whose 1-skeleton is isomorphic to G , and ℓ be a plane. Values $\bar{\bar{e}}(G)$, $\bar{\bar{f}}(G)$, and $\bar{\bar{v}}(G)$ are defined similarly to $\bar{e}(G)$, $\bar{f}(G)$, and $\bar{v}(G)$ from the preceding section.



$$\bar{\bar{v}}(\pi, \ell) = 2, \bar{\bar{e}}(\pi, \ell) = 3, \bar{\bar{f}}(\pi, \ell) = 3.$$

More Theorems

For every polyhedral graph G , $\bar{\bar{v}}(G) \leq \bar{\bar{f}}(G) = \bar{\bar{e}}(G) \leq c(G^*)$.

The last inequality was used by Grünbaum to show that for some G we have $\bar{\bar{e}}(G) = O(n^\alpha)$ for some $\alpha < 1$.

If G be a planar graph such that degree of each vertex of G is at least k then $\bar{\bar{e}}(G) \geq (k/2 - 1) \bar{\bar{v}}(G)$.

Relations between 2-d and 3-d cases

For every polyhedral graph G , $\bar{\bar{f}}(G) \leq \bar{f}(G)$.

Relations between 2-d and 3-d cases

For every polyhedral graph G , $\bar{f}^{\equiv}(G) \leq \bar{f}(G)$.

Is $\bar{f}^{\equiv}(G) = \bar{f}(G)$?

Relations between 2-d and 3-d cases

For every polyhedral graph G , $\bar{\bar{f}}(G) \leq \bar{f}(G)$.

Is $\bar{\bar{f}}(G) = \bar{f}(G)$?

Is there any relation between $\bar{\bar{v}}(G)$ and $\bar{v}(G)$?

Relations between 2-d and 3-d cases

For every polyhedral graph G , $\bar{\bar{f}}(G) \leq \bar{f}(G)$.

Is $\bar{\bar{f}}(G) = \bar{f}(G)$?

Is there any relation between $\bar{\bar{v}}(G)$ and $\bar{v}(G)$?

Is there any relation between $\bar{\bar{f}}(G)$ and $\bar{\bar{v}}(G^*)$?

Relations between 2-d and 3-d cases

For every polyhedral graph G , $\bar{\bar{f}}(G) \leq \bar{f}(G)$.

Is $\bar{\bar{f}}(G) = \bar{f}(G)$?

Is there any relation between $\bar{\bar{v}}(G)$ and $\bar{v}(G)$?

Is there any relation between $\bar{\bar{f}}(G)$ and $\bar{\bar{v}}(G^*)$?

There are polyhedral graphs G on n vertices with $\bar{\bar{v}}(G) > (2/3)n - 2$ and $c(G) = O(n^{\log_3 2})$.

Polyhedra with small planar sets of vertices

The *shortness exponent* of a class of graphs \mathcal{G} is the limit inferior of quotients $\log c(G)/\log v(G)$ over all $G \in \mathcal{G}$. Let σ denote the shortness exponent for the class of cubic polyhedral graphs. It is known that

$$0.753 < \sigma \leq \frac{\log 22}{\log 23} = 0.985\dots$$

Polyhedra with small planar sets of vertices

The *shortness exponent* of a class of graphs \mathcal{G} is the limit inferior of quotients $\log c(G)/\log v(G)$ over all $G \in \mathcal{G}$. Let σ denote the shortness exponent for the class of cubic polyhedral graphs. It is known that

$$0.753 < \sigma \leq \frac{\log 22}{\log 23} = 0.985\dots$$

For each $\alpha > \sigma$ there is a sequence of triangulations G with $\bar{v}(G) = O(n^\alpha)$.

Polyhedra with small planar sets of vertices

The *shortness exponent* of a class of graphs \mathcal{G} is the limit inferior of quotients $\log c(G)/\log v(G)$ over all $G \in \mathcal{G}$. Let σ denote the shortness exponent for the class of cubic polyhedral graphs. It is known that

$$0.753 < \sigma \leq \frac{\log 22}{\log 23} = 0.985\dots$$

For each $\alpha > \sigma$ there is a sequence of triangulations G with $\bar{v}(G) = O(n^\alpha)$.

For each $\alpha > \sigma$ there is a sequence of triangulations G with $\bar{\bar{v}}(G) = O(n^\alpha)$.

Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.

Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.

Let $\pi(G)$ denote the minimum number of planes in the space such that a graph G can be drawn with vertices lying on these planes.

Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.

Let $\pi(G)$ denote the minimum number of planes in the space such that a graph G can be drawn with vertices lying on these planes.

$$\bar{v}(G) \geq n/\pi(G)$$

Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.

Let $\pi(G)$ denote the minimum number of planes in the space such that a graph G can be drawn with vertices lying on these planes.

$$\bar{\bar{v}}(G) \geq n/\pi(G)$$

$$\pi(G) \leq \chi(G)$$

Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.

Let $\pi(G)$ denote the minimum number of planes in the space such that a graph G can be drawn with vertices lying on these planes.

$$\bar{v}(G) \geq n/\pi(G)$$

$$\pi(G) \leq \chi(G)$$

Proof. Let $V(G) = \{v_1, \dots, v_n\}$, $\chi : V(G) \rightarrow \{1, \dots, \chi(G)\}$ be a coloring of G , and x_1, \dots, x_n be real numbers which are linearly independent over the field \mathbb{Q} . Then $d(v_i) = (x_i, \chi(v_i))$ is the required drawing.

Drawing graphs on several planes

$\pi(G)$ is equal to the smallest size r of a partition $V(G) = V_1 \cup \dots \cup V_r$ such that every V_i induces a planar subgraph of G . Therefore,

$$\frac{1}{4}\chi(G) \leq \pi(G) \leq \chi(G)$$

Drawing graphs on several planes

Let $\rho(G)$ denote the minimum number of planes in the space such that a graph G can be drawn on these planes (that is, every edge lies on one of the planes).

Drawing graphs on several planes

Let $\rho(G)$ denote the minimum number of planes in the space such that a graph G can be drawn on these planes (that is, every edge lies on one of the planes).

$$\bar{\bar{e}}(G) \geq m/\rho(G)$$

Drawing graphs on several planes

Let $\rho(G)$ denote the minimum number of planes in the space such that a graph G can be drawn on these planes (that is, every edge lies on one of the planes).

$$\bar{\bar{e}}(G) \geq m/\rho(G)$$

$\rho(G)$ is bounded from below by the smallest size r of a partition $E(G) = E_1 \cup \dots \cup E_r$ such that every subgraph E_i is planar.

Drawing graphs on several planes

Let $\rho(G)$ denote the minimum number of planes in the space such that a graph G can be drawn on these planes (that is, every edge lies on one of the planes).

$$\bar{\bar{e}}(G) \geq m/\rho(G)$$

$\rho(G)$ is bounded from below by the smallest size r of a partition $E(G) = E_1 \cup \dots \cup E_r$ such that every subgraph E_i is planar.

Relate $\rho(G)$ to something, say, to the edge-chromatic number, to the genus of G etc.

Drawing graphs on several planes

Let $\rho(G)$ denote the minimum number of planes in the space such that a graph G can be drawn on these planes (that is, every edge lies on one of the planes).

$$\bar{\bar{e}}(G) \geq m/\rho(G)$$

$\rho(G)$ is bounded from below by the smallest size r of a partition $E(G) = E_1 \cup \dots \cup E_r$ such that every subgraph E_i is planar.

Relate $\rho(G)$ to something, say, to the edge-chromatic number, to the genus of G etc.

Compute $\rho(K_n)$.