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Zusammenfassung

In der Beweiskomplexitét ist bisher nicht geklért, ob auflerhalb von NP Sprachen mit
(p-)optimalem Beweissystem existieren. Diese Arbeit soll dazu beitragen zu verstehen,
wieso diese Existenzfragen schwierig sind. Wir erweitern dazu die {ibliche Definition von
Beweissystemen von Cook und Reckhow [CR79|, indem wir andere Berechnungskom-
plexitdten betrachten. Fiir diese modifizierte Definition kann dann das Verhalten der
Fragen untersucht werden. Speziell fiir auf logarithmischen Raum beschrankte Beweis-
systeme untersuchen wir diese Existenzfragen anhand einer Reihe von Uberlegungen,
die urspriinglich bei Messner [Mes01] fir die tbliche Definition erschienen sind. Wir
entwickeln auflerdem eine Technik, mit der wir FP-Beweissysteme in FL-Beweissysteme
iibersetzen kénnen. Das setzt die Existenzfragen fiir die beiden Definitionen in Verbin-
dung und er6ffnet neue Wege, die urspriinglichen offenen Fragen zu untersuchen.

Einen Uberblick iiber die wichtigsten Resultate liefert die folgende Auflistung:

e Jede Sprache in L hat ein l-optimales FL-Beweissystem. Jede Sprache in NP hat

ein optimales FL-Beweissystem (Satz 3.2]).

« Sprachen mit (I-)optimalem FL-Beweissystem sind unter <% N und x abgeschlos-
sen (Satz 3.4} [Satz 3.6)).

e Sprachen mit l-optimalem FL-Beweissystem haben einen raumoptimalen Akzeptor.
Fiir Sprachen mit padding-Eigenschaft gilt auch die Rickrichtung (Satz 3.7]).

o Fiir beliebig komplexe raumkonstruierbare s : N — N existieren Sprachen ¢
DSPACE(o(s)) mit raumoptimalem deterministischen Akzeptor (Satz 3.22)).

 Es existieren beliebig komplexe Sprachen ohne (I-)optimales FL-Beweissystem. Ins-
besondere haben <!%6-harte Mengen fiir DSPACE(s) 2 L kein l-optimales FL-

Beweissystem (Satz 3.16]).

e Das Standardbeweissystem fiir GAP ist genau dann l-optimal, wenn L. = NL

(Satz 4.2).

e« A C ¥* hat ein optimales FL-Beweissystem <= A hat ein optimales FP-

Beweissystem (Satz 4.4)).

e« A C ¥* hat ein l-optimales FL-Beweissystem = A hat ein p-optimales FP-

Beweissystem ([Satz 4.8]).
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1. Einfiihrung

Das Beweisen hat in der Mathematik einen zentralen Stellenwert. Indem man Beweise
liefert, will man sich von der Korrektheit von Behauptungen iiberzeugen und diese Kor-
rektheit mit anderen kommunizieren. Dabei ist es nicht immer einfach, fiir eine wahre
Aussage auch einen Beweis zu finden. Ein beriihmtes Beispiel ist der Beweis zum grofien
Fermatschen Satz. Dieser blieb trotz des grofien Interesses iiber Jahrhunderte unbewie-
sen und wurde erst 1994 von Andrew Wiles gefunden. Ein weiteres bemerkenswertes
Beispiel ist der Beweis fiir LIN = coLIN. Lange Zeit war unklar, ob diese Beziehung gilt.
Im Jahr 1987 wurde dieses Problem dann unabhéngig von Robert Szelepcsényi und Neil
Immerman gelost. Dieser Beweis ist deshalb bemerkenswert, da er iiberraschend einfach
ist. Obwohl die Antwort auf die Frage iiber Jahrzehnte unbekannt war, war ein knapper
und einfacher Beweis mdglich. Auch lange Zeit offene Probleme sind also nicht zwingend
nur mit sehr komplizierten Beweisen l6sbar.

Unabhéngig davon, wie schwierig ein Beweis auffindbar war, sollte er von anderen
leicht uberprift werden konnen. Mathematische Argumente sind dafir so aufgebaut,
dass feste Regeln auf bereits verifizierte Wahrheiten angewandt werden, um neue Aussa-
gen zu folgern. Dabei konnen die einzelnen Regelanwendungen sehr leicht nachvollzogen
werden, da jede Regel nur auf einer konstanten Anzahl an vorhergehenden Wahrheiten
aufbaut. Es ergibt sich eine Reihe an aufeinanderfolgenden Regelanwendungen, die se-
parat voneinander sehr lokal und ohne Schwierigkeit gepriift werden kénnen. Um dann
einen gesamten Beweis zu verstehen und zu priifen, kann ein Mathematiker den Referen-
zen auf vorhergehende Resultate folgen und auch deren Korrektheit leicht nachvollziehen.
So ergibt sich insgesamt die Korrektheit des gesamten Beweises.

Dieses Bild ist die grundlegende Motivation der vorliegenden Arbeit. Der tiblicherweise
in der Beweiskomplexitit verwendete Begriff von ,leichter® Uberpriifbarkeit beschrinkt
namlich nur die Zeit, die ein Priifer zum verstehen braucht. Dabei kann aber auch zulés-
sig sein, dass der Priifer in dieser Zeit weitere Notizen machen muss, um Liicken in den
Argumenten zu fiillen. Diese Notizen konnten demnach auch die Lange des gegebenen Be-
weises iibertreffen. Unsere Anschauung fiithrt uns jedoch zu Beweisen, fiir deren Priifung
wir uns nur Positionen im Beweis merken miissen, um kurzzeitig zu Zwischenresultaten
zuriickzuspringen. Der Priifer soll sich nicht signifikant mehr merken miissen. Das be-
deutet, dass der Beweis bereits so ausfithrlich geschrieben sein muss, sodass ausfiihrliche
Notizen eines Priifers nicht erforderlich sind.

Wir betrachten in dieser Arbeit nicht menschliche Priifer, sondern wollen die Verifika-
tion von Beweisen algorithmisch durchfiihren. Um den Wahrheitsbegriff fiir Algorithmen
greifbar zu machen, stellen wir alle moglichen Behauptungen als Folge von Zeichen dar.
Die Menge der Zeichenketten aller wahren Aussagen bilden dann eine Teilmenge die-
ser Zeichenfolgen, wir konnen die Menge der wahren Elemente daher als eine Sprache



auffassen. Unser Algorithmus muss dann nur Aussagen der Form ,x € A“ lberprifen,
denn eine Behauptung ist genau dann wahr, wenn das entsprechende Wort in A enthal-
ten ist. Wir brauchen auflerdem ein Verstdndnis davon, was Effizienz von Algorithmen
bedeutet. Dazu betrachten wir, wie in der Komplexitdtstheorie tiblich, den Bedarf an
Speicher und Zeit abhéngig von der Eingabeldnge. Fiir ein System, dessen Beweise noch
nicht ausreichend effizient geprift werden kénnen, kénnten wir die Beweise also kiinst-
lich verlangern. Dadurch stiinden dem Algorithmus mehr Ressourcen zur Verfiigung,
um auch die Beweissuche selbst durchzufiithren. Wir haben aber bereits eine Trennung
zwischen den Schwierigkeiten von Beweissuche und Verifikation beschrieben. Es kénnte
also sein, dass nach einem anderen Verfahren Beweise angegeben werden kénnen, in dem
diese kiinstliche Verldngerung nicht bendtigt wird und das so deutlich kiirzere Bewei-
se zuldsst. Im Langenunterschied der Beweise dieser Systeme konnen wir den eingangs
beobachteten Unterschied zwischen der Suche nach einem Beweis und dem Priifen von
Beweisen wiedererkennen.

Mochte man Beweissysteme vergleichen, so ist es naheliegend die Beweisldngen zu
vergleichen. Wir interessieren uns in dieser Arbeit insbesondere fiir beste Beweissysteme,
also Beweissysteme in denen alle wahren Aussagen kirzestmogliche Beweise besitzen.
Wir nennen solche Beweissysteme optimal. Es ist unklar, fiir welche Sprachen solche
Systeme existieren. Wir kénnen nun die Frage stellen, ob beliebig komplexe Sprachen
existieren, die ein solches optimales Beweissystem haben. Eine negative Antwort auf diese
Frage wiirde bedeuten, dass nur gewisse ,einfache“ Sprachen optimale Beweissysteme
aufweisen kénnen und wir fiir komplexere Sprachen nicht darauf hoffen kénnen, dass ein
einzelnes Beweissystem bereits die bestméglichen Ergebnisse erzielt. Umgekehrt kénnen
wir auch fragen, ob es iiberhaupt beliebig komplexe Sprachen gibt, die kein optimales
Beweissystem haben. Wiirde diese Frage negativ beantwortet, so hatten wir automatisch
auch die erste Frage positiv beantwortet. Wir wissen also, dass mindestens eine der
beiden Fragen eine positive Antwort haben muss.

Messner [MesO1] hat in seiner Doktorarbeit solche Fragen untersucht. Er findet be-
liebig komplexe Sprachen ohne optimale Beweissysteme, er kann jedoch nicht kléren,
ob auflerhalb von NP Sprachen mit optimalem Beweissystem existieren. Er betrachtet
auflerdem eine weitere Technik, mit der Beweissysteme nach schéirferen Kriterien ver-
glichen werden konnen. Hier wird nicht nur die Beweislénge verglichen, sondern es wird
sogar gefordert, dass der Beweis eines Systems effizient in den Beweis des anderen tiber-
setzt werden kann. Ein Beweissystem, welches in jedes andere iibersetzt werden kann,
heifit auch p-optimal. Hier stellen sich genauso die Fragen nach Existenz von Sprachen
aulerhalb von NP mit p-optimalem Beweissystem. Auch hier kann Messner zeigen, dass
beliebig komplexe Sprachen ohne p-optimales Beweissystem existieren, die zweite Fra-
ge bleibt jedoch erneut unklar. Messner kann diese Fragen nur unter Annahme von
Kollapsvermutungen beantworten. Da er nicht zeigen kann, dass diese Annahmen auch
notwendig sind, kdnnte es aber mdglich sein, diese Bedingungen zu verbessern.

Wir wollen in dieser Arbeit einen Beitrag zur Untersuchung solcher Grenzen liefern.
Wir dndern dafiir die iibliche Definition von Beweissystemen ab und schréinken die Be-
rechnungskomplexitit von Beweissystemen stérker ein. Da p-Simulation in diesem Kon-
text keine konstruktive Ubersetzung mehr liefert, die Ubersetzung kann also nicht selbst



als Teil eines Beweissystems durchgefithrt werden, fithren wir hierfiir den stiarkeren Be-
griff der l-Simulation ein. Fiir die neuen scheinbar schwécheren Beweissysteme unter-
suchen wir dann, ob beliebig komplexe Sprachen mit optimalem bzw. l-optimalem FL-
Beweissystem und analog beliebig komplexe Sprachen ohne optimales bzw. l-optimales
FL-Beweissystem existieren. Wir interessieren uns dabei besonders dafiir, ob diese Exis-
tenzfragen durch die stérkere Einschrdnkung der Beweissysteme leichter werden.
zeigt, dass ein solcher Effekt fiir eine ausreichend starke Finschriankungen tat-
sachlich auftritt. Wir werden jedoch auch zeigen, dass fiir weniger starke Einschrankun-
gen die Fragen noch eng mit den Varianten bei Messner zusammenhédngen und diese
teilweise sogar implizieren.

Im Rest dieses Kapitels widmen wir uns einer allgemeinversténdlichen Erklarung von
Beweissystemen. Im Sinne der Lesbarkeit verzichten wir dabei auf technische Details
und Definitionen. soll dann dazu dienen, diese Anschauungen mathematisch
prézise zu machen. In sind Beweise zu finden, die bereits bei Messner [Mes01]
gefithrt wurden und die durch kleine Modifikationen in den Kontext unserer schwéche-
ren Beweissysteme gebracht werden kénnen. Das ist nicht fiir alle Beweise moglich. In
versuchen wir dann die Besonderheiten unserer Beweissysteme auszunutzen
und folgern insbesondere einen engen Zusammenhang zwischen den Definitionen von
Beweissystemen. Diese Arbeit soll einen Beitrag leisten, die Schwierigkeiten der gestell-
ten Existenzfragen besser zu verstehen, indem das Verhalten dieser Fragen unter leichter
Modifikation der zugrundeliegenden Definitionen untersucht wird.

1.1. Beweissysteme

Beweise in der Mathematischen Logik Das Gebiet der Mathematischen Logik hat
den Begriff von Beweisen prézisiert. Ublicherweise leitet man hier eine Aussage nach fest
definierten Regeln aus anderen Aussagen (Axiomen) her. Welche Regeln und Axiome
genau verwendet werden, hingt vom verwendeten System ab. Ein Beispiel dafiir ist
das Kalkil des natiirlichen Schlieffens von Gerhard Gentzen. Der folgende Beweisbaurrﬂ
beweist einen Teil der De Morganschen Gesetze.

ug i e AN ug e NP
——(iv) (iv)
up P up 2 ¢ AP
(iii) (iii)
uz eV € 1L (v): w1,
N N y U1, U2
—_'90 Vo (iii); us

Coh =) o (v i

Hier steht die zu beweisende Behauptung in der Wurzel eines Baums. Die Wahrheit jedes
inneren Knotens geht aus seinen Vorgédngerknoten sowie einer festen Menge an Regeln

!Wir orientieren uns hier am Kalkiil des natiirlichen SchlieBens, wie es von Freund [Fre23] verwendet
wird. Romische Ziffern geben an, welche Schlussregel angewendet wird. Mit u; sind die verschiedenen
Annahmen gekennzeichnet. Kann eine Annahme nach Schlussregel entfernt werden, wird das neben
der Nummer der Schlussregel gekennzeichnet.



hervor. Im Kontext der Beweiskomplexitdt konnen wir zwei Beobachtungen machen.
Zunéchst ist es oft keine einfache Aufgabe, einen passenden Beweisbaum zu konstruieren.
Es ist nicht eindeutig klar, welche Vorgénger man wéahlen muss, um in einem Blatt
ein Axiom zu erhalten. Andererseits kann, gegeben einen Beweisbaum, die Korrektheit
leicht nachvollzogen werden, wenn man die Regeln des natiirlichen Schlieflens kennt.
Es ist ausreichend, von den Blattern ausgehend immer die Korrektheit einer einzelnen
Regelanwendung zu priifen. Ein Verifier kann so die globale Entscheidung auf eine Reihe
von lokalen zuriickfiihren, die leicht zu treffen sind. Eine priifende Maschine muss dafiir
nur den Beweis einlesen und seine Struktur erkennen kénnen.

Dieser Effekt ist auch nicht auf das natiirliche Schlieflen beschrinkt. Vielmehr ist das
eine Gemeinsamkeit vieler logischer Kalkiile. Das zeigt, dass der bereits beobachtete
Effekt nicht auf in der Praxis gefiihrte Beweise beschriankt ist und motiviert daher die
abstraktere Betrachtungsweise von Beweissystemen dieser Arbeit. Diese wollen wir nun
im Folgenden genauer untersuchen.

Formale Beweissysteme Wir nidhern uns dem Begriff von Beweissystemen zunéchst
iiber die beobachtete Verifizierbarkeit. Fin Beweissystem lésst sich dafiir als Maschine
auffassen, die als Eingabe zwei Worter ¢ und p (Behauptung und Beweis) aus einer forma-
len Sprache erhélt. Falls p tatsdchlich ein korrekter Beweis fiir ¢ ist, so gibt die Maschine
wahr aus, ansonsten falsch. Wir miissen natiirlich fordern, dass sich das Beweissystem
korrekt verhélt, dass also ausschliefflich fiir wahre Behauptungen c ein Beweis existiert,
mit dem ¢ akzeptiert wird. Fiir jede falsche Behauptung muss also das Beweissystem
mit jedem Beweis die Falschheit erkennen. Das heifit nicht, dass die Maschine bereits fiir
einen konkreten Beweis erkennt, dass die Behauptung allgemein falsch ist, sondern nur,
dass der gegebene Beweis fiir die Behauptung nicht korrekt ist.

Auflerdem soll ein Beweissystem wollstdndig sein, sodass auch fiir jede wahre Behaup-
tung ein passender Beweis existiert, mit dem das Beweissystem die Wahrheit erkennen
kann. Es ist zu beachten, dass eine wahre Behauptung nicht mit jedem Beweis akzeptiert
werden muss, bereits die Existenz eines einzigen Beweises geniigt uns.

Wir wollen schliellich noch fordern, dass die Maschine nur leichte Berechnungen durch-
fiihren kann. Dadurch ist sichergestellt, dass die Schwierigkeit der Verifikation unabhén-
gig von der Suche nach dem Beweis selbst ist. Fiir diese Schranke kann man sich einen
Computer vorstellen, der mit begrenzten Ressourcen die Funktion ausrechnen soll, die
zwischen wahr und falsch unterscheidet. Um den Beweis zu priifen kann er nur simp-
le Schliisse selbst ziehen, die wesentlichen Gedanken des Beweises miissen ihm explizit
gegeben sein. Wir belassen es an dieser Stelle bei dem unprézisen Begriff von ,leich-
ten“ Berechnungen, in definieren wir diesen Begriff aber exakt. Tatséichlich
werden wir dort Beweissysteme so einfiihren, dass wir Beweissysteme auf verschiedene
Berechnungskomplexitédten beschrdnken kénnen.

Wir wollen diese Anschauung nun an einem Beispiel betrachten. Wir betrachten dafiir
Aussagen der Form ,,x ist das Produkt von genau zwei Primzahlen“ mit natiirlichen Zah-
len x. Mit 2 bezeichnen wir genau die Zahlen, fir die diese Aussage wahr ist. Bekommen
wir nun eine Zahl x gegeben, so fillt es uns vermutlich schwer herauszufinden, ob diese



in € enthalten ist. Tatsdchlich basiert die Sicherheit einiger moderner kryptographischer
Verfahren wie beispielsweise RSA darauf, dass die Primfaktoren einer Zahl nicht effizient
berechenbar sind. Will uns jemand davon iiberzeugen, dass die Aussage fiir x wahr ist,
so koénnen wir zusétzlich zu x selbst noch die beiden Primfaktoren verlangen. Ist tat-
séchlich x € €, so existieren diese Primfaktoren. Wir miissen sie nur multiplizieren und
erkennen so leicht, dass x tatséchlich das Produkt von zwei Primzahlen ist. Ist x dagegen
kein Element von 2, so kann es kein Primzahlpaar geben, mit dem wir getduscht wer-
den konnen. Das Multiplizieren von zwei Zahlen ist ausreichend einfach, sodass unser
Beweissystem effizient von einer Maschine berechnet werden kann. Auflerdem konnen
Maschinen effizient priifen, ob eine gegebene Zahl eine Primzahl ist.

Interessieren wir uns fiir die Lange der Eingabe, so ist es haufig sinnvoll, die zu bewei-
sende Aussage vollstdndig vom Beweis zu trennen. Erhélt die Maschine nur den Beweis
als Eingabe, so entspricht die Beweisldnge genau der Lange der Eingabe. Statt wahr und
falsch soll die Maschine nun fiir ihre Eingaben Behauptungen ausgeben. Korrektheit
stellen wir nun sicher, indem ausschliefflich wahre Behauptungen ausgegeben werden,
Vollstandigkeit indem jede wahre Behauptung fiir mindestens eine Eingabe ausgegeben
wird. Auch diese Maschine soll effizient rechnen. Es mag zunéchst seltsam wirken, dass
das Beweissystem nicht explizit erfahrt, welche konkrete Behauptung bewiesen werden
soll. Diese Information muss aus dem Beweis selbst extrahiert werden. Im eben genann-
ten Beispiel wiirde das Beweissystem fiir 2 nun nur noch Zahlen erhalten. Falls genau
zwei Primzahlen p und ¢ eingegeben wurden, kann das Beweissystem ihr Produkt p - ¢
ausgeben. Wir konnen (p, ¢) insofern als Beweis fiir p - ¢ auffassen, da wir wissen, dass
unser Beweissystem ausschliellich Werte aus Q ausgibt.

1.2. Simulationen zwischen Beweissystemen

Um die Méchtigkeit von Beweissystemen miteinander vergleichen zu kénnen, fithren wir
nun ein paar Begriffe ein. Wir vergleichen Beweissysteme zunéchst rein auf Basis der
Lénge ihrer Beweise. Man spricht von Simulation, wenn Beweissystem A verglichen mit
Beweissystem B nur unerheblich lingere Beweise erfordert. Fiir jeden B-Beweis muss al-
so ein A-Beweis fiir die identische Behauptung existieren, der nur unerheblich ldnger ist.
Was genau mit ,nur unerheblich linger® gemeint ist, werden wir in mathema-
tisch prézisieren. Wollen wir ein Beweissystem mit jedem anderen System der gleichen
Sprache vergleichen, so konnen wir das Uber den Begriff von optimalen Beweissystemen
tun. Wir nennen ein Beweissystem optimal, wenn es jedes Beweissystem fiir die gleiche
Menge simuliert. In gewisser Hinsicht kann man optimale Beweissysteme also als best-
mogliche Systeme verstehen, da kein anderes Beweissystem signifikant kiirzere Beweise
zulésst. M6chte man also zeigen, dass kein Beweissystem einer Sprache iiberall kurze Be-
weise haben kann, so kann man ein optimales Beweissystem betrachten. Man muss dann
nur zeigen, dass dieses optimale Beweissystem nicht iiberall kurze Beweise hat. Dieses

Vorgehen im Bezug auf die NP Z coNP Frage ist auch als Cooks Programm [Busl2]
bzw. Cook-Reckhow Programm [Bey12| bekannt.



Es gibt noch einen weiteren Simulationsbegriff fiir Beweissysteme, den wir zur Ab-
grenzung zunéchst wie in der Literatur iiblich als p-Simulation bezeichnen werden (die
schérfere I-Simulation werden wir erst spater definieren). Fiir die p-Simulation ist es
nicht ausreichend, nur die Linge von Beweisen zu betrachten. Hier wollen wir zusétz-
lich fordern, dass aus Beweisen des simulierten Systems sogar effizient entsprechende
Beweise des simulierenden Systems berechnet werden konnen. Intuitiv kann man diese
Art der Simulation daher so verstehen, dass das simulierende System bereits mit gering-
fligig umformulierten Beweisen des simulierten Systems arbeiten kann. Man muss also
einen gegebenen Beweis hochstens leicht anpassen, damit er im simulierenden System
verstanden wird, man muss aber keinen grundlegend neuen Beweis finden.

Wie auch bei normaler Simulation wollen wir Systeme, die jedes Beweissystem fiir
die gleiche Sprache p-simulieren, als p-optimal bezeichnen. Solche Systeme kann man
als universelle Beweissysteme auffassen. In gewisser Weise existiert kein besseres Kalkiil,
da das p-optimale System bereits jedes andere Beweissystem bzw. eine Umformulierung
davon enthélt. Besonders interessant wirkt diese Variante der Simulation im Kontext
von konstruktiven und nicht-konstruktiven Beweisen. Ist nur nach der Existenz einer
Losung gefragt, so konnte es moglich sein, diese zu beweisen, ohne dabei eine konkre-
te Losung anzugeben. Ist aber ein Beweissystem, in welchem die Losung bereits Teil
des Beweises ist, p-optimal, so kénnen auch aus solchen nicht-konstruktiven Beweisen
effizient konkrete Losungen bestimmt werden.

1.3. Komplexitat

Berechnungskomplexitat FEin iibliches Maf fiir die Schwierigkeit einer Berechnung ist
die benotigte Laufzeit des Algorithmus. Diese wird abhéngig von der Lange der Eingabe
gemessen, fiir langere Eingaben bekommt ein Algorithmus also mehr Zeit fiir die Ver-
arbeitung. Deterministische Algorithmen, deren Laufzeit héchstens polynomiell in der
Lénge der Eingabe wéchst, erachtet man in der Regel als effizient. Es hat sich daher in der
Komplexitétstheorie etabliert, Beweissysteme auf polynomielle Laufzeit einzuschrinken.
Dagegen wird Speicher als Ressource in diesem Kontext eher selten beachtet. Eine Aus-
nahme ist Bonacina [Bonl§|, der fiir konkrete Beweissysteme den Speicher untersucht.
Sogar Bonacina macht die Effizienz von Beweissystemen aber nicht an einer Schranke fiir
den Speicherbedarf fest. Dabei haben wir zu Beginn des Kapitels bereits erkennen kon-
nen, dass es fiir Beweise im Sinne der mathematischen Praxis wiinschenswert wére, sich
fiir das Priifen nur Referenzen in den Beweis merken zu miissen. Fiir Algorithmen kann
man diese stiarkere Einschrankung dadurch ausdriicken, dass man sich auf logarithmi-
schen Speicher beschriankt. Auch wenn man tibliche Beweissysteme der mathematischen
Logik wie das bereits genannte Kalkiil des natiirlichen SchlieBens oder auch das Se-
quenzenkalkiil betrachtet, so scheint die Einschrankung auf logarithmischen Raum die
natiirlichere Wahl zu sein. Diese Kalkiile lassen sich namlich auch Uberpriifungen ohne
viel zusétzlichen Speicher zu, da die einzelnen angewandten Regeln sehr leicht priifbar
sind.



Wie auch Zeit, messen wir den Speicherbedarf abhéngig von der Eingabeldnge, wobei
wir aber den Speicher fiir Ein- und Ausgabe nicht mitzédhlen. In dieser Arbeit verwenden
wir vor allem eine Einschrankung der Speicherkomplexitdt unserer Beweissysteme, mit
der wir einen schérferen Effizienzbegriff erreichen. Eine Einschrénkung des Speichers
bedeutet gleichzeitig auch eine beschrinkte Laufzeit. Unsere Wahl von logarithmischem
Raum beschrankt die Beweissysteme auch weiterhin auf polynomielle Laufzeit, 1asst aber
keinen polynomiellen Raum mehr zu. Somit ist die in dieser Arbeit untersuchte Menge
an Beweissystemen eine Teilmenge der tiblichen.

Ein zentrales Konzept fiir unseren Effizienzbegriff ist das asymptotische Wachstum.
Ist ein Algorithmus fiir ein Problem gegeben, so ist es eine leichte Aufgabe fiir einzelne
Probleminstanzen den Ressourcenverbrauch zu minimieren. Dafiir kann man das Er-
gebnis des Algorithmus auf diesen Instanzen bereits vorher bestimmen und in einem
modifizierten Algorithmus nun abfragen, ob einer der bekannten Félle gefragt ist. Dieses
Vorgehen funktioniert aber nur fiir endlich viele Modifikationen, da sonst allein die Lis-
te der zu priifenden Sonderfélle unendlich wére. Wir betrachten daher vorwiegend den
asymptotischen Verbrauch von Ressourcen fiir geniigend grofie Eingaben.

Arbeitet ein Beweissystem mit begrenzten Ressourcen, so ist klar, dass fiir Aussagen,
die nur mit hohem Ressourcenaufwand beweisbar sind, der Beweis nicht vom Priifer
selbst gefunden werden kann. Um die Maschine dennoch von der Korrektheit der Eingabe
zu liberzeugen wird es daher nétig, bereits beim Auffinden des Beweises die Arbeit, die
der Priifer nicht selbst ausfiihren kann, vorwegzunehmen und so zu dokumentieren, dass
der Priifer sie nachvollziehen kann. Daraus resultieren langere Beweise.

Beweiskomplexitat Es ist naheliegend, auch die Lange von Beweisen als eine Art Res-
source zu betrachten. Die Beweisldnge wird dabei abhéngig von der Lange des Bewiese-
nen betrachtet. Intuitiv darf also fiir kompliziertere Behauptungen auch der Beweis ldn-
ger werden. Ist eine Menge gegeben, so kann man nun fragen, ob fiir beliebige Systeme
eine untere Schranke angegeben werden kann. Wie auch fiir Zeit und Raum betrachten
wir die Asymptotik der Beweisldnge, da jedes Beweissystem um kurze Beweise fiir eine
endliche Menge ergénzt werden kann.

Hat man eine feste Menge gegeben, so ist oft bereits eine untere Schranke fiir die
Beweisldnge interessant. Man untersucht also, ob jedes Beweissystem fiir diese Menge
asymptotisch mindestens eine gewisse Beweisldnge hat. Auf den ersten Blick scheint
diese Fragestellung unabhangig von den Fragen der Komplexititstheorie zu sein. Doch
versteht man Beweissysteme als Verifier, so wird klar, dass es Zusammenhénge geben
muss. Es wird beispielsweise der Zusammenhang mit nichtdeterministischen Berechnun-
gen offenbar. Kennt man ein Beweissystem mit beschriankter Beweisldnge, so kann man
die bewiesene Menge entscheiden, indem man nichtdeterministisch den Beweis rat und
schliefflich priift, ob ein korrekter Beweis fiir die Eingabe gefunden wurde. Da die Be-
weisldnge beschrankt ist, kann man auf die Laufzeit dieses Algorithmus schlieflen. Dieser
Zusammenhang ist der Kern des bereits genannten Cook-Reckhow Programms. Es ist
bekannt, dass genau dann NP = coNP gilt, wenn ein Beweissystem fiir TAUT mit
hochstens polynomiell langen Beweisen existiert [CR79]. Um dieses berithmte Problem



zu l6sen, kdnnte man also ein Beweissystem flir TAUT mit kurzen Beweisen suchen oder
nachweisen, dass ein optimales Beweissystem fiir TAUT nicht iiberall kurze Beweise hat.

Bei Fenner et al. [FENRO3] sowie bei Pudlédk [Pud17] zeigt sich auBerdem, dass auch
p-optimale Beweissysteme eine enge Beziehung mit Fragen aus der Komplexitéatstheorie
aufweisen. Es gelingt auch Messner [Mes01] eine Reihe von Kollapsvermutungen der
Komplexitéatstheorie mit Vermutungen der Beweiskomplexitdt in Verbindung zu setzen.
Fine tiefere Diskussion der hier genannten Resultate wiirde den Rahmen sprengen, daher
sei an dieser Stelle darauf verzichtet. Aus solchen Beziechungen kénnen wir jedoch die
Motivation ziehen, die Fragen dieser Arbeit zu untersuchen.



2. Vorbereitungen

Wir wollen nun zunéchst Berechnungen formalisieren. In unseren Berechnungen erhalten
wir immer eine Eingabe und wollen nach fest definierbaren Regeln eine Ausgabe tatigen.
Ein- und Ausgabe miissen dargestellt werden. Dafiir verwenden wir ein Alphabet ¥ mit
dessen Symbolen die Objekte codiert werden konnen. Als Standardalphabet werden wir
in dieser Arbeit ¥ = {0,1} verwenden. Sprachen iiber anderen Alphabeten lassen sich
gegebenenfalls effizient in {0, 1} umcodieren.

Wir fithren nun zunéchst Notationen fiir Worte und Sprachen ein. Ein Wort w {iber
>} ist eine Zeichenkette wy,...,w, mit w; € 3. Die Linge von w ist die Lénge der
Zeichenkette und wird als |w| geschrieben. Die Menge der Worte iiber ¥ mit Lénge
n schreiben wir als ¥". Die Worte iiber ¥ der Lénge mindestens bzw. hoéchstens n
bezeichnen wir entsprechend mit ©=" bzw. £=". Die Menge aller Worte iiber ¥ wird
mit X* bezeichnet. Fiir eine kompaktere Darstellung schreiben wir ein Wort auch als
Konkatenation seiner Bestandteile. Das Wort der Sequenz wy, we, ws, . .., w, bezeichnen
wir also auch mit wiwows . .. wy,.

Wollen wir nun Objekte codieren, so kénnen wir eine invertierbare Abbildung dieser
Objekte in ¥* verwenden. Besonders interessant ist das, wenn wir mehrere Objekte co-
dieren wollen. Die resultierende Funktion nennen wir Listencodierung. Wir verwenden
dafiir in den folgenden Kapiteln eine Standardcodierung, in der man die Codierung der
einzelnen Objekte verwendet, ihre Symbole jeweils dupliziert und durch ein alternieren-
des Paar Trennungen einfiigt. Diese Codierung schreiben wir kurz durch (ay,...,a,).
Wir wéhlen diese Codierung, da die Codierung von Listen so ausreichend kurz ist und
andererseits die Liste effizient decodiert werden kann.

2.1. Turingmaschinen

Um nun {iber die Komplexitdt von Rechnungen auf codierten Objekten argumentieren
zu koénnen, definieren wir ein Maschinenmodell, welches unseren Berechnungsbegriff dar-
stellen soll. Wir orientieren uns dabei an Turingmaschinen (TM), wie sie von Homer und
Selman [HS11] verwendet werden.

Intuitiv besteht eine solche Maschine aus vier Bestandteilen. Die Maschine hat eine
Steuereinheit, die immer einen von endlich vielen Zustédnden speichert. Weiterhin hat die
Maschine eine endliche Anzahl von beidseitig unbegrenzten Bandern mit je einem Lese-
und Schreibkopf. Diese Bander sind in Zellen unterteilt, von denen jede genau ein Symbol
aus X oder ein Leersymbol O ¢ 3 enthalt. Auf den Arbeitsbdndern konnen sich die
Kopfe in jedem Takt nach links oder rechts bewegen. Sie kénnen aulerdem das Symbol
an ihrer aktuellen Position verdndern und abhéngig von den Regeln der Steuereinheit
tiberschreiben. Den Inhalt eines Bands kann man durch das kiirzeste b € ¥* U {00}



darstellen, fiir das der Bandinhalt genau ... JObOO . . . ist. Auf einem Eingabeband erhilt
die Maschine die Eingabe fiir die Rechnung. Dieses Band ist read-only. Auflerdem hat
die Maschine ein Ausgabeband, auf dem das Ergebnis der Rechnung ausgegeben wird.
Hier kann die Maschine weder lesen noch explizit die Position verdndern. Schreibt die
Maschine ein Symbol auf das Ausgabeband, so verschiebt sich stattdessen der Kopf auf
diesem Band automatisch um eine Position nach rechts. So ist sichergestellt, dass einmal
ausgegebene Symbole nicht wieder iiberschrieben werden.
Formal kénnen wir eine Turingmaschine mit k Arbeitsbandern wie folgt definieren.

Definition 2.1 (Turingmaschine). Fine k-Band Turingmaschine (k-TM) ist vollstindig
durch (X, 7,0, z9, F') beschrieben, wobei

o X ein Alphabet mit O ¢ X,
e Z eine endliche nichtleere Menge von Zustinden,

e §C(Zx (SU{OMH) x (Z x (Su{ONH*! x {L,0, R}*+1) eine Uberfiihrungs-

relation,
e zq der Startzustand und
o I'C Z die Menge an akzeptierenden Zustdnden ist.

Ist § sogar eine partielle Funktion, so nennen wir die Maschine auch deterministisch.
Um zu betonen, dass kein Determinismus gefordert ist, kénnen wir sonst auch von
nichtdeterministischen Maschinen sprechen. Diese schliefien die deterministischen mit
ein.

Definition 2.2 (Konfiguration einer TM). Die Konfiguration einer k-TM ist durch
thren Zustand sowie die vollstindigen Inhalte ihrer lesbaren Bdnder mit den jeweiligen
Kopfpositionen gegeben. Das Ausgabeband ist kein Bestandteil der Konfiguration.

Definition 2.3 (Rechenweg einer TM). Die Berechnung einer TM M auf einer Eingabe
x bezeichnen wir mit M (z). Ein Rechenweg einer solchen Berechnung ist eine Sequenz
Ky, Ky, ... von Konfigurationen, wobet sich M in Ky genau im Startzustand befindet, x
auf dem FEingabeband steht und alle anderen Bdnder leer sind. Eine Konfiguration K;
wird dann in einem Takt in K;y1 dberfihrt. Ist diese Sequenz endlich mit der letzten
Konfiguration K, so ist entweder der Zustand in K, akzeptierend (akzeptierender Re-
chenweg) oder es existiert in § keine auf K, anwendbare Regel (ablehnender Rechenweg).

Wir kénnen zwei Arten von Problemstellung unterscheiden. Haben wir eine Teilmenge
A C ¥* gegeben und sollen fir Worte x € ¥* entscheiden, ob x € A, so sprechen wir
von einem Entscheidungsproblem. Hier interessieren wir uns nicht fiir die Ausgabe der
Maschine, durch akzeptierende und ablehnende Rechenwege erhalten wir bereits die
gewiinschte Information. Eine Maschine fiir ein solches Problem heifit Akzeptor. Soll die
Maschine eine Relation (im deterministischen Fall eine partielle Funktion) berechnen,
so ist der Inhalt des Ausgabebands eine Ausgabe der Maschine, falls sie sich in einem
akzeptierenden Zustand befindet. Eine solche Maschine nennen wir Transduktor.
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In der Komplexitétstheorie interessieren wir uns fiir die Ressourcen, die ein Algorith-
mus benétigt. Ublicherweise betrachtet man dafiir Laufzeit und Speicherbedarf. Diese
Grofien konnen wir nun fiir unser Berechnungsmodell definieren.

Definition 2.4 ([Pap94]). Die Laufzeit von M(x), geschrieben als timeps(x), ist die
Anzahl an Ubergingen im lingsten Rechenweg von M (z). Der von einer Konfiguration
verbrauchte Speicher ist das Mazrimum der Ldnge der Arbeitsbandsbandinhalte in der
Konfiguration. Der verbrauchte Speicher von M (x), geschrieben als spacey;(x) ist das
Mazximum des Speicherverbrauchs der Konfigurationen, die auf einem Rechenweg von
M (z) eingenommen werden.

Definition 2.5. Die Komplexitit von Sprachen ergibt sich aus einer Schranke fiir den
Ressourcenverbrauch auf allen Eingaben. Fiir eine Sprache A C ¥* und eine Schranke

NN gilt:

o A € NTIME(f) <= es existiert eine TM M mit timeys(z) < f(|x|) fir alle
x € X, die genau A akzeptiert.

o A € DTIME(f) <= es existiert eine deterministische TM M mit timeps(x) <
f(z|) fir alle x € ¥*, die genau A akzeptiert.

o A € NSPACE(f) <= es existiert eine TM M mit spacey(z) < f(|z|) fir alle
x € X*, die genau A akzeptiert.

o A € DSPACE(f) <= es existiert eine deterministische TM M mit space,;(z) <
f(z|) fir alle x € ¥*, die genau A akzeptiert.

Definition 2.6. Mit FP bezeichnen wir die Funktionen, die von einer deterministischen
TM in Polynomialzeit berechnet werden.

Definition 2.7. Mit FL bezeichnen wir die Funktionen, die von einer deterministischen
TM in logarithmischem Raum berechnet werden.

Eine iibliche Technik um den Ressourcenverbrauch von Maschinen zu kontrollieren
ist, explizit die gewiinschten Schranken zu berechnen. Dazu ist es natiirlich nétig, die
Schranke bereits mit den begrenzten Ressourcen berechnen zu kénnen. Solche Funktio-
nen nennen wir zeit- bzw. raumkonstruierbar.

Definition 2.8. FEine totale Funktion f : N — N heif§it zeitkonstruierbar <= es existiert
eine deterministische TM, die auf Eingaben 0" in genau f(n) Takten akzeptierend hdlt.

Definition 2.9. FEine totale Funktion s : N — N heifst raumkonstruierbar <= es
existiert eine deterministische TM, die auf Eingaben 0" genau s(n) Speicher beschreibt
und dann akzeptierend hdlt.

Behauptung 2.10. Jede zeitkonstruierbare Funktion ist raumkonstruierbar.
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Beweis. Ist f raumkonstruierbar, so betrachtet man M, die auf 0" in f(n) Takten ak-
zeptiert. M kann hochstens f(n) Speicher beschreiben. Gleichzeitig kann eine Maschine
M’ genauso arbeiten und auf einem zusétzlichen Arbeitsband in jedem Takt ein Symbol
schreiben sowie eine Rechtsverschiebung ausfithren. Somit schreibt M’ auch mindestens
f(n) Symbole. O

Wir kénnen in der Definition von Turingmaschinen sehen, dass eine TM durch endliche
Objekte eindeutig definiert ist. Es ist daher moglich, die Maschine selbst als Wort in >*
zu codieren. Eine genaues Vorgehen liefern Homer und Selman [HS11]. Wahlen wir als
Alphabet {0, 1}, so erhalten wir iiber die Bindrdarstellung von Zahlen fiir jede TM eine
natiirliche Zahl, die wir als Code der Maschine bezeichnen. Eine TM mit Code ¢ schreiben
wir auch als M;. Umgekehrt kann auch jede natiirliche Zahl zu einer Maschine decodiert
werden. Zahlen, die zunéchst kein giiltiger Code einer TM sind, decodieren wir dabei zu
einer festen Maschine. Wir erhalten eine Aufzédhlung M7, Mo, ... aller Turingmaschinen.
Eine solche Aufzdhlung kénnen wir auch erhalten, wenn wir uns auf deterministische
Maschinen beschrinken, da man im Code einer Maschine bereits prifen kann, ob diese
deterministisch ist.

Es ist bekannt, dass universelle Turingmaschinen existieren. Eine solche Maschine
erhilt Eingaben der Form (i, z) und simuliert dann M; auf Eingabe xz. Wir verwenden in
dieser Arbeit eine Turingmaschine, die diese Simulation auch effizient durchfithren kann.

Definition 2.11. U ist eine von Neary und Woods [NW12] garantierte universelle
Turingmaschine, die auf Eingaben (i,x) die Rechnung M;(x) simuliert. Es gilt dabei
spacey; ((i,x)) < ¢; - spaceyy, (z) + ¢; fiir eine Konstante c;, die nur von i abhdngt.

Reduktionen Um in der Komplexitétstheorie die Schwierigkeiten von Problemen ver-
gleichen und die von Komplexitétsklassen charakterisieren zu kénnen, verwendet man
Reduktionen. Dafiir sind Funktionen nétig, die Instanzen eines Problems in die eines an-
deren tiibersetzt. Interessant sind solche Reduktionen vor allem dann, wenn die Berech-
nungskomplexitit der Reduktionsfunktion nicht ausreicht, um die eingegebene Instanz
selbst zu entscheiden. Wir werden in zeigen, dass durch Reduktionen auch

Beweissysteme iibertragen werden koénnen.

Definition 2.12. Fir A,B C ¥* ist A <P B <= es euistiert eine totale Funktion
f € FP, sodass fir alle Worte x € ¥* gilt x € A< f(z) € B.

Definition 2.13. Fir A,B C X* ist A S}%g B <= es existiert eine totale Funktion
f € FL, sodass fir alle Worte v € ¥* gilt v € A & f(z) € B.

Fiir manche Beweise benotigen wir eine zuséitzliche Bedingung in der Reduktion. Hier
fordern wir zusétzlich, dass leichte Teilmengen des Ursprungsproblems auch auf leichte
Instanzen abgebildet werden.

Definition 2.14. Fiir zwei Sprachen A, B C X*, Komplezitdtsklassen C und D sowie
o € {plog} gilt A <} o p <= A<, B via einem f, sodass fir jedes S C A mit
S €C auch f(S) € D gilt.
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2.2. Optimale Algorithmen

Definition 2.15 ([Mes01]). Sei M eine Menge an Turingmaschinen und S C ¥*. Eine
Maschine M € M ist zeitoptimal fiir M auf S <= fir jede Maschine M' € M
existiert ein Polynom p mit timeps(z) < p(timepy (z) + |z|) fir alle x € S.

Definition 2.16. Sei M eine Menge an Turingmaschinen und S C ¥*. Fine Maschine
M € M ist raumoptimal fiir M auf S <= fiir jede Maschine M' € M existiert eine
Konstante ¢ mit spacey,(x) < c- (spaceyy (x) + |z|) fir alle z € S.

FL-Funktionen sind raumoptimal invertierbar

Bekanntes Resultat 1 (Messner Korollar 2.18). Fiir jede partielle Funktion h €
FP existiert ein zeitoptimaler Transduktor I; zur Berechnung des Inversen von h.
Dabei hélt I, auf Eingaben auflerhalb von W}, nicht, es gilt also Ij,(y) # L <=
y € Wp.

Der Beweis bei Messner basiert auf einem Algorithmus von Levin [Lev73], mit dem
jedes NP-Problem bis auf polynomielle Unschérfe in optimaler Zeit gelost werden kann.
Die Idee dieses Algorithmus ist, nach und nach die Arbeit aller Turingmaschinen zu
simulieren, wobei jede betrachtete Maschine zu gleichen Teilen Arbeitszeit erhélt. Ab
einem gewissen Punkt wird dann auch eine Maschine simuliert, die die korrekte Losung
liefert. Diese Technik lésst sich auch verwenden, um raumbeschriankte Probleme zu 16sen.

Lemma 2.17. Fir jede partielle Funktion h € FL ezistiert ein raumoptimaler Trans-
duktor Iy, zur Berechnung des Inversen von h. Dabei hdlt I, auf Eingaben auflerhalb von
Wy, nicht, es gilt also In(y) # L <— y € W,

Beweis. Sei M1, Mo, ... eine Aufzdhlung aller Turing Maschinen. Sei T ein Algorithmus,
der auf Eingaben (i, y, n) die Ausgabe von M;(y) bestimmt und priift, ob M; ein Inverses
zu y berechnet. Der Parameter n dient dabei als Raumschranke.

Algorithmus 1 : T
Eingabe : i,y
1 wenn M;(y) eine Ausgabe tétigt dann
x = M;(y)
wenn h(x) = y dann
L gib x aus

B W N

Behauptung 2.18. Es gilt spacey ((i,y)) € O(spacey, (y)).
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Beweis. In Zeile 2 muss nicht zwingend die ganze Ausgabe gespeichert werden. Da der
Speicher aus Zeile 1 wiederverwendet werden kann, um die Berechnung erneut durchzu-
flihren, ist in Zeile 3 nur ein Zeiger auf das betrachtete Symbol von x notig. Da x héchs-
tens exponentiell im Speicherverbrauch von M; auf y liegt, gilt log |z| € O(space,, (v)).
Da auflerdem h € FL liegt, kann h(z) im gleichen Raum ausgewertet werden. Der Ver-
gleich mit y lasst sich analog durch Programmierung mit Zeigern 16sen. Nach Neary und
Woods [NW12] ist schlieBlich auch die Simulation von M; in Raum O(space,,,) moglich,
insgesamt gilt daher spacey ((i,y)) € O(spacey,, (y)). [ |

Einen raumoptimalen Transduktor erhélt man nun, indem man die Arbeit aller Tu-
ringmaschinen mit einer inkrementell wachsenden Raumschranke simuliert. Damit fiir
einen Wert der Raumschranke nur endlich viele Simulationen durchgefithrt werden miis-
sen, erweitert man auflerdem die Menge der simulierten Maschinen erst nach und nach.
So ist trotzdem sichergestellt, dass jede Maschine zumindest fiir eine ausreichend grofe
Raumschranke simuliert werden kann.

Algorithmus 2 : UE
Eingabe : y
1 fiir n = 0 bis oo tue
fiir ¢ = 1 bis oo tue
L wenn 7'(i,y) in Raum n eine Ausgabe titigt dann

AW N

L gib T'(i,y) aus

Behauptung 2.19. UFE arbeitet korrekt.

Beweis. Nach einem Resultat von Sipser [Sip80] kénnen wir ohne Beschrankung der
Allgemeinheit annehmen, dass T" ohne in Endlosschleifen zu geraten in der Raumschran-
ke n arbeitet. Das kann man in 7" durch einen Schrittzdhler umsetzen. Daher ist die
Bedingung in Zeile 3 immer priifbar.

UFE imitiert die Ausgaben von U. Dort kénnen nur solche z ausgegeben werden, fiir
die in Zeile 3 h(z) = y gilt. Fiir Eingaben y ¢ W}, kann UFE also nicht terminieren.
Ansonsten existiert ein « mit h(z) = y und somit auch eine Maschine M, die konstant
x ausgibt. Fiir ein ausreichend grofies n wird daher M; simuliert, wonach der Algorithmus
terminieren muss. n

Behauptung 2.20. UFE ist ein raumoptimaler Algorithmus fir das Invertieren von
FL-Funktionen.

Beweis. Sei M; nun eine beliebige TM, die h invertiert. Sobald in UE n > j gilt,
wird die Arbeit von M; simuliert. Die vollstdndige Simulation von Mj; gelingt somit
in Raum O(max {j, ¢; - spacey; (y)}). Da j und ¢; jeweils Konstanten fiir M; sind, ist
O(spaceyy, (y)) Raum ausreichend, damit UE die Ausgabe von M; imitiert. Falls UE
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bereits vor der vollstindigen Simulation von M; terminiert, so miissen die Ausgaben
nicht tibereinstimmen. Trotzdem sind beide korrekte Inverse. |

Durch eine Turingmaschine, die U E berechnet, erhalt man den Transduktor Ij,. U

2.3. Beweissysteme

Ein Beweissystem fiir eine Menge A koénnen wir als surjektive Funktion f : ¥* — A
auffassen. Fiir f(x) = y hei8t  dann f-Beweis fir y. Da wir wissen, dass f nur Werte
aus A ausgeben kann, folgt aus der Existenz eines f-Beweises fiir y bereits y € A. Erhélt
ein Verifier einen passenden Beweis fiir y, so kann er f(x) auswerten und sich so von
y € A iberzeugen. Umgekehrt wissen wir durch die Surjektivitdt von f, dass fiir jedes
Element von A auch ein passender f-Beweis existiert.

Es mag ungewohnt erscheinen, nur Beweise fiir die Zugehorigkeit zu einer Menge zu
betrachten. Allerdings kann man durch Mengen wie TAUT einsehen, dass sich dadurch
auch allgemeinere Aussagen codieren lassen. TAUT entspricht ndmlich genau den giil-
tigen Sédtzen der Aussagenlogik. Ein Beweissystem fiir TAUT kann also die Giiltigkeit
von solchen Sétzen beweisen.

Erweiterung von Cook und Reckhow Durch die Definition iiber surjektive Funktio-
nen sind bereits Korrektheit und Vollstdndigkeit abgedeckt. Wir haben jedoch bereits
beobachtet, dass Beweissysteme auch leicht priifbar sein sollen. Mithilfe der formalen
Definitionen zur Berechnung von Funktionen kann nun auch dieser Forderung Rechnung
getragen werden.

Definition 2.21 (Cook und Reckhow [CRT79]). Fir A C ¥* ist eine Funktion f : ¥* — A
genau dann ein FP-Beweissystem fiir A, wenn f € FP und f surjektiv ist.

In der Literatur sind solche FP-Beweissysteme iiblich, sodass dort nur von Beweissys-
temen gesprochen wird. In dieser Arbeit sollen Beweissysteme aber abhéngig von ihrer
Berechnungskomplexitit untersucht werden. Dafiir erweitern wir nun den Begriff von
Beweissystemen. Die neue Definition enthélt die gezeigte von Cook und Reckhow als
Spezialfall.

Definition 2.22. Fiir A C ¥* und eine Menge F an Funktionen ist f : ¥X* — A genau
dann ein F-Beweissystem fiir A, wenn f € F und f surjektiv ist.

Von besonderem Interesse wird in dieser Arbeit F = FL sein. Grundsétzlich ist dabei
bereits unklar, ob FL = FP gilt. Gleichheit wiirde jedoch auch L = P implizieren,
was liblichen Annahmen widerspricht. Gerade weil diese beiden Klassen aber schwer zu
trennen sind, ist eine separate Betrachtung von Interesse, um eventuelle Unterschiede
besser verstehen zu koénnen.
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Optimale Beweissysteme Um Beweissysteme miteinander vergleichen zu kénnen, wol-
len wir nun die Simulationsbegriffe definieren. Diese héngen stark mit den bereits vor-
gestellten Reduktionen zusammen.

Definition 2.23. Ein Beweissystem f simuliert ein Beweissystem g <= es existiert
eine hichstens polynomiell verlingernde Funktion t mit g = fot. Wir schreiben g <; f.

Diese Simulation stellt sicher, dass zu jedem g-Beweis ein héchstens polynomiell linge-
rer f-Beweis gefunden werden kann. Ublicherweise werden FP-Beweissysteme betrachtet.
Hier kann man die polynomielle Unschérfe der Beweisldnge dadurch motivieren, dass die
Laufzeit fiir das Verifizieren von Beweisen dadurch nur unerheblich beeinflusst wird (FP
selbst erlaubt eine polynomielle Unschéarfe). Aber auch fiir FL-Beweissysteme ist die-
se Definition passend, da hier eine polynomiell ldngere Eingabe nur einen konstanten
Faktor im Speicherbedarf bedeutet.

Allerdings ist nicht garantiert, dass ein f-Beweis effizient aus einem g-Beweis berechnet
werden kann. Da wir fiir diesen nur die Lange beschrinkt haben, kann eine Maschine nur
nichtdeterministisch raten, was die korrekte Ubersetzung wére. Soll die Ubersetzung aber
auch deterministisch moglich sein, so brauchen wir einen scharferen Simulationsbegriff.
Tatséchlich definieren wir hierfiir verschiedene Varianten, um den Unterschieden der
betrachteten Berechnungskomplexititen gerecht zu werden.

Definition 2.24. Fin Beweissystem f p-simuliert ein Beweissystem g <= es existiert
eint € FP mit g = fot. Wir schreiben auch kurz g < f. Ist sogart € FL, so l-simuliert
f g. Wir schreiben dann auch g <'¢ f.

Bekanntes Resultat 2 (Messner, Kapitel 2.5). Die Simulationshierarchie zwischen
FP-Beweissystemen ist ein algebraischer Verband. Folglich sind <; und <? transitive
Relation auf FP.

Satz 2.25. Die Relationen <g, <! und glsog sind transitiv.

Beweis. Fir f = got; und g = hoty erhalten wir f = got] = (hotg)oty = ho(taoty).
Daher ist nur zu zeigen, dass die fiir die Simulationen verwendeten Funktionsklassen
unter Verkettung abgeschlossen sind. Fiir FP und FL gilt das bereits nach Balcazar et
al. [BDJ11].

Fiir <; seien p, ¢ Polynome mit positiven Koeffizienten, sodass fiir beliebige Eingaben
z gilt [t1(z)| < p(lz|) und [t2(x)] < q(Jz|). Sei 2/ € L=PI2D) nun so gewihlt, dass die
Léange von to(z') maximal wird. Es folgt |(t2 o t1)(z)| < [t2(2)| < ¢(]2'|). Da ¢ monoton
steigend ist, gilt wegen |z'| < p(|z|) auch ¢(|2'|) < q(p(|x|)). Folglich ist t3 o t; eine
hochstens polynomiell verlangernde Funktion. Somit gilt f <g h. O

Fiir eine Sprache A C ¥* und eine Menge von Funktionen kénnen wir nun die Optima-
litdtsbegriffe definieren. Wir haben die Simulationsbegriffe unabhéngig von F definiert,
damit wir auch zu Funktionen mit héherer Komplexitdt eine Simulationsrelation zei-
gen kénnen. Fiir die Optimalitdtsbegriffe ist aber natiirlich eine Einschrénkung auf eine
konkrete Funktionenklasse notig.
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Definition 2.26. Ein F-Beweissystem f ist optimal < g < f fiir alle g € F mit
Wy =W,.

Definition 2.27. Ein F-Beweissystem f ist p-optimal < ¢ <P f fiir alle g € F mit
Wy =W,.

Definition 2.28. Fin F-Beweissystem f ist l-optimal <— g §150g f fiir alle g € F
mit Wf = Wj.
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3. Ubertragbare Beweistechniken

3.1. Existenz von Beweissystemen

Bekanntes Resultat 3 (Messner Lemma 2.1). Eine Sprache A C ¥* hat genau
dann ein FP-Beweissystem, wenn A € RE.

Satz 3.1. Eine Sprache A C X* hat genau dann ein FL-Beweissystem, wenn A € RE.

Beweis. Hat A ein FL-Beweissystem, so ist A der Wertebereich einer surjektiven bere-
chenbaren Funktion f : ¥* — A. Durch Codierung von Worten iiber ¥ erhélt man eine
entsprechende Funktion f’: N — A. Damit ist A rekursiv aufzidhlbar.

Ist umgekehrt A € RE, so ist A der Wertebereich einer surjektiven berechenbaren
Funktion f : N — A. Es existiert also eine Turingmaschine M, die f berechnet. Man
kann nun f’ € FL definieren, indem M fiir eine Raumschranke simuliert wird:

y falls M(x) =y in Raum <logn
s =

1 sonst
Es gilt Wy C Wy = A. AuBlerdem beobachtet man fiir a € A, dass ein z mit f(z) = a
gilt. Dann gilt auch M (x) = a. Sei s der von der Rechnung M (x) bendtigte Speicher.
Dann gilt f({z,0%")) = a. Folglich ist Wy = A und f’ ein FL-Beweissystem fiir A. [

3.2. Triviale Beweissysteme

Auch wenn die Suche nach (1)-optimalen Beweissystemen im Allgemeinen nicht leicht
losbar ist, konnen fiir manche Sprachen sehr simple Beweissysteme (1)-optimal sein.
Das ist insbesondere der Fall, wenn das Entscheidungsproblem der bewiesenen Sprache
sehr einfach ist. Hier muss der Beweis nur die Information enthalten, welches Element
bewiesen werden soll. Von der Korrektheit kann sich ein Verifier dann im Grunde selbst
iiberzeugen, indem er entscheidet, ob das eingegebene Element in der Sprache liegt.

Bekanntes Resultat 4 (Messner, Theorem 3.1). Jedes A € NP hat ein optimales
FP-Beweissystem. Jedes A € P hat sogar ein p-optimales FP-Beweissystem.

Satz 3.2. Jedes A € NL hat ein optimales FL-Beweissystem. Jedes A € L hat sogar ein
l-optimales FL-Beweissystem.
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Beweis.

Behauptung 3.3. Jedes FL-Beweissystem mit polynomiell langen Beweisen ist optimal.

Beweis. Sei f € FL mit |x| < p(|f(z)]) fiir ein monoton steigendes Polynom p. Fiir jede
Funktion g € FL gilt auflerdem |g(x)| < ¢(|z|) fur ein Polynom ¢, da ¢ nur in logarith-
mischem Raum arbeiten kann. Fiir ein festes y € W; N W, erhalten wir daher einen
f-Beweis x¢ mit |x¢| < p(|f(zf)]) < p(|yl). Fir jeden g-Beweis z4 fiir y gilt auBerdem
lyl = lg(zg)| < q(|z4]). Durch Kombinationen der beiden Ungleichungen erhalten wir
wegen der Monotonie von p

5] < p(lyl) < pla(lzl))

und es folgt somit die Behauptung, da Polynome unter o abgeschlossen sind. [ |
Sei A € L. Dann ist

fla) = {x falls x € A

1 sonst

in FL berechenbar. Fiir jedes FL-Beweissystem ¢ fiir A gilt g(z) = f(g(z)) fiir beliebige
x € A, g iibersetzt also selbst g-Beweise in f-Beweise. Folglich gilt g <!°¢ f und f ist
ein l-optimales FL-Beweissystem fiir A.

Sei nun A € NL und M eine NLTM mit L(M) = A. Eine Rechnung M (z) kann
nicht direkt von einer deterministischen Maschine in L simuliert werden, da die Nachfol-
gekonfiguration nicht eindeutig festgelegt sein muss. Es kann dabei sein, dass nur eine
davon zu einer akzeptierenden Konfiguration fiithrt. Um die Rechnung selbst simulieren
zu konnen, miisste ein deterministischer Verifier also wissen, welche Ubergénge erfolgen.
Mit M’ sei die LTM bezeichnet, die fir Eingaben (z, w) den Berechnungspfad von M (x)
simuliert, der durch die in w codierten Uberginge festgelegt wird. Eine solche Codierung
erhilt man beispielsweise, indem man die Uberginge nummeriert. Fiir jeden Ubergang
sind dann nur konstant viele Bits notig. Nun lésst sich analog zu f ein Beweissystem h
wie folgt definieren:

h((z,w)) =

x  falls M'({(x,w)) akzeptiert
1 sonst

Da nur die Arbeit von M’ auf der Eingabe simuliert und ein Teil der Eingabe auf das
Ausgabeband kopiert werden muss, ist h € FL. Da auflerdem jedes £ € A von min-
destens einem Rechenweg von M (z) akzeptiert werden muss, existiert fiir x auch ein
h-Beweis. Umgekehrt erkennt man, dass ein h-Beweis fiir ein y bereits einen akzeptie-
renden Rechenweg von M (y) definiert. Wegen L(M) = A gilt folglich y € A. Also ist h
ein FL-Beweissystem fiir A.

Weiterhin sind h-Beweise héchstens polynomiell lang. Dafiir geniigt es, die Lénge von
w zu betrachten. Da zu jedem Zeitpunkt nur konstant viele Uberginge méglich sind, kann
die Ubergangssequenz mit hochstens linearem Overhead in der Linge des Rechenwegs
codiert werden. Es ist also |w| < p(|z|) fiir ein Polynom p.

O
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Aus[Satz 4.4 wird folgen, dass sogar jede Sprache in NP ein optimales FL-Beweissystem
hat. Dafiir ist allerdings noch eine zusétzliche Einsicht notig, da das im Beweis genannte
h die Rechenwege eines Akzeptors simuliert. Soll eine NLTM eine NPTM simulieren,
so ist unklar, wie das in logarithmischem Raum geschehen kann, da die NPTM bis zu
polynomiellem Raum verwenden kann.

3.3. Abgeschlossenheit

Wir werden im Folgenden Methoden erhalten, mit denen die Existenz bzw. die Nicht-
existenz von FL-Beweissystemen fiir Sprachen auf andere iibertragen werden kénnen.
Das kann als Abgeschlossenheit der Menge der Sprachen mit (I-)optimalem Beweissyste-
men unter den Operationen N, x und <! aufgefasst werden. Wir betrachten dazu zwei
Mengen A, B C X*.

Es seien A, B C ¥* zwei Sprachen.

Bekanntes Resultat 5 (Messner Theorem 3.2). Hat A ein (p-)optimales Beweis-
system und ist B <P A, so hat auch B ein (p-)optimales Beweissystem.

Satz 3.4. Hat A ein (1)-optimales FL-Beweissystem und ist B <1 A, so hat auch B
ein (1)-optimales FL-Beweissystem.

Beweis. Sei h ein l-optimales FL-Beweissystem fiir A und B <!°8 A via f. Sei weiterhin

W (., w)) = {x falls h(w) = f(x)

1 sonst
Sei nun ¢’ ein FL-Beweissystem fiir B. Sei g ein FL-Beweissystem fiir A mit g(lw) =
f(¢' (w)) und g(0w) = h(w). Wegen der Optimalitiat von h existiert ein ¢ € FL, sodass
h(t(lw)) = g(lw) = f(¢'(w)). Nach Definition von A’ gilt dann h/({¢'(w),t(1w))) =
¢ (w). Da ¢',t sowie die Listencodierung zweier Werte in FL berechnet werden konnen,
wird ¢ folglich von A’ l-simuliert.

Falls A nur ein optimales FL-Beweissystem fiir A ist, so ist ¢ nicht zwingend in FL,
es muss aber dennoch fiir beliebige Eingaben |t(x)| < p(|z|) fiir ein Polynom p gelten.
Dann ist auch (¢'(w), t(1w)) hochstens polynomiell ldnger als w. Folglich wird ¢’ von A’
simuliert. O

Uber die Kontraposition dieser Aussage erhilt man auch eine Methode, um Nichtexis-
tenz von (1l-)optimalen FL-Beweissystemen zu iibertragen.

Korollar 3.5. Ist B <! A und hat B kein (I-)optimales FL-Beweissystem, so hat auch
A kein (I-)optimales FL-Beweissystem.
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Bekanntes Resultat 6 (Messner Theorem 3.3). Haben A und B (p-)optimale
Beweissysteme, so auch AN B, A x B.

Satz 3.6. Haben A und B (l)-optimale Beweissysteme, so auch AN B, A x B.

Beweis. Wir betrachten zundchst AN B. Seien h4 und hp l-optimale FL-Beweissysteme
fiir A und B. Dann kann h definiert werden als
{x falls w = (u,v) und z = ha(u) = hp(v)
h(w) =
1 sonst
Sei nun f ein FL-Beweissystem fiir A N B. Durch Kombination erhélt man fiir i €
{A, B} je ein FL-Beweissystem fiir A und fir B mit f;(lw) = f(w) und f;(0w) =
hi(w). f-Beweise sind dabei leicht in f;-Beweise iibertragbar. Nach Annahme existieren
Funktionen t; € FL mit f;(z) = h;(t;(z)). Sei nun ¢ definiert als t(w) = (ta(1w), tp(1w)).
Um ¢ zu berechnen, miissen nur zwei FL-Funktionen ausgewertet und ihre Ausgaben in
ein Tupel codiert werden. Also ist ¢ selbst in FL. Wegen

f(w) = ha(ta(lw)) = hp(ts(1w))

gilt f(w) = h(t(w)). Somit ist h l-optimal. Falls die Beweissysteme fir A und B nur
optimal sind, erhdlt man durch die gleiche Konstruktion ein optimales Beweissystem fiir
ANB, da (ta(1w),tp(lw)) dann auch nur polynomiell langer als w ist.

Weiterhin ist zu beobachten, dass A x ¥* <19 A und ¥* x B <! B. Wegen A x B =
(A x ¥*) N (¥* x B) hat dann mit den bereits gezeigten Abschlusseigenschaften auch
A x B ein (1)-optimales FL-Beweissystem. O

3.4. Zusammenhang mit Akzeptoren

Wir haben bereits gesehen, dass man Beweissysteme auch als Verifier auffassen kann.
Daher ist es naheliegend, fiir unsere Optimalitédtsbegriffe einen Zusammenhang zu opti-
malen Akzeptoren zu suchen. Auf diese sind iibliche Techniken der Komplexitéatstheorie
anwendbar.

Bekanntes Resultat 7 (Messner Theorem 3.4). Falls A x ¥* <P ., A so sind
folgende Aussagen dquivalent:

(i) Es existiert ein p-optimales FP-Beweissystem fir A.

(ii) Es existiert ein FP-Beweissystem fiir A, welches auf allen P-Teilmengen von
A in FP invertiert werden kann.

(iii) Es existiert ein zeitoptimaler deterministischer Akzeptor fiir A.

(iv) Es existiert ein Akzeptor fiir A, welcher polynomielle Laufzeit auf jeder P-
Teilmenge hat.
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Zusétzlich gelten die Implikationen (i) = (¢i7), (i4i) = (iv) und (ii) < (iv) fur
beliebige Sprachen.

Satz 3.7. Fualls A x ¥* gi;’fL_L A, so sind folgende Aussagen dquivalent:
(i) Es existiert ein l-optimales FL-Beweissystem fir A.

(ii) Es existiert ein FL-Beweissystem fir A, welches auf allen L-Teilmengen von A in
FL invertiert werden kann.

(iii) Es ezistiert ein raumoptimaler deterministischer Akzeptor fiir A.

(iv) Es existiert ein Akzeptor fiir A, welcher auf jeder L-Teilmenge eine logarithmische
Raumbeschrinkung hat.

Zusdtzlich gelten die Implikationen (i) = (iii), (iii) = (iv) und (i1) <= (iv) fir
beliebige Sprachen.

Beweis. Zu einem gegebenen FL-Beweissystem h sei Ij, der von garantierte
raumoptimale Transduktor zur Invertierung von h. Wegen y € W), <= I;(y) # L kann
daraus auch ein Akzeptor A;, fiir Wj, abgeleitet werden, der I, simuliert und akzeptiert,
sobald I, einen Wert ausgeben wiirde. Fiir einen Akzeptor M sei zudem ein Beweissystem
has fir L(M) definiert als

falls y € L(M) mit spacey,(y) < log s

1 sonst

har((y,0%)) = {y

Behauptung 3.8. (i) = (iii)

Beweis. Angenommen h ist ein l-optimales FL-Beweissystem fiir A. Es kann nun gezeigt
werden, dass A, ein optimaler deterministischer Akzeptor von A ist. Sei dafir M ein
beliebiger Akzeptor mit L(M) = A und hy; das entsprechende Beweissystem. Da h 1-
optimal ist, existiert ein ¢ € FL mit hp(x) = h(g(x)) fiir z € A. Mit einer Funktion
fry—(y, OQSpaceM(w) gilt somit fiir beliebige y € A:

y =hau(f(y) = h(g(f(y)))

Die Verkettung go f invertiert also h. Weiterhin ist f in O(space,;(y)) Raum berechenbar
und g € FL. Also wird h von g o f sogar in O(space,;(y)) Raum invertiert. Da Iy
ein optimaler Algorithmus ist, um h zu invertieren, benétigt I also nur O(log|y| +
spacey,(y)) Raum. Da Aj, den gleichen Raumbedarf wie I;, hat, ist Aj ein optimaler
deterministischer Akzeptor von A. |
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Behauptung 3.9. (iii) = (iv)

Beweis. Sei O ein raumoptimaler deterministischer Akzeptor fiir A und S € L eine
Teilmenge von A. Man kann eine L-Maschine O’ fiir S mit O zu einer neuen Maschine
O* kombinieren, sodass beide Maschinen gleichzeitig simuliert werden. Dafiir miissen nur
die Kopfpositionen sowie die bisherigen Bandinhalte der beiden Maschinen gespeichert
werden. Auflerdem wird in einem Takt immer nur die Maschine simuliert, die dafiir
weniger Speicher benétigt. Dadurch gilt:

spacep- () = min{spacey (z), spaceq (x)} + log |z|

Auf S hat O* folglich héchstens logarithmischen Raumbedarf. Damit O wie angenommen
raumoptimal ist, muss spacey € O(log |z| + log |z|) = O(log |z|) gelten. [ |

Behauptung 3.10. (ii) = (iv)

Beweis. Sei h ein FL-Beweissystem, welches auf jeder L-Teilmenge FL-invertierbar ist,
und S € L eine beliebige Teilmenge von Wj,. Es existiert ein Transduktor, der h invertiert
und auf Eingaben aus S nur logarithmischen Raum benétigt. Da I, raumoptimal ist,
muss I, auf S das Inverse auch in logarithmischem Raum finden. Folglich hat A; auf S
auch nur logarithmischen Raumbedarf. Da S beliebig gewéhlt war, akzeptiert Ay jede
L-Teilmenge von W}, in logarithmischem Raum. |

Behauptung 3.11. (iv) = (ii)

Beweis. Sei M ein Akzeptor fir A mit logarithmischer Raumschranke auf allen L-
Teilmengen von A und S € L eine beliebige Teilmenge von A. Das FL-Beweissystem
hyr fiir A kann auf S invertiert werden, indem der Speicherbedarf von M notiert wird.
Fiir ein s € S wird M (s) simuliert, wobei zwei zusétzliche Zéhler den aktuell verwende-
ten Speicher sowie das bisherige Maximum m speichern. Am Ende der Simulation kann
(5,02™) ausgegeben werden. Da dann hps((s,0%")) = s gilt, ist ein Inverses von hjs so
berechenbar.

Um m zu berechnen, ist O(space,;(s)) Speicher notig. Um 0%" zu berechnen, ist ein
m-Bit Zahler ausreichend. Zusammengenommen erhélt man also einen Algorithmus, der
har-Beweise in O(space);) Raum berechnet. Da M auf S logarithmisch raumbeschrénkt
ist, ist hps also in FL invertierbar. |

Behauptung 3.12. (ii) = (1)

Beweis. Sei Ax>* §:701gL7L A mit einer Funktion pad € FL und sei h ein FL-Beweissystem
fiir A. Damit ldsst sich nun eine Funktion f wie folgt konstruieren:

_ Jy falls h(z) = pad(y, v)
fy2,2) = {J_ sonst
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Den Vergleich zur Fallunterscheidung kann man im gleichen Raum berechnen, wie die
verglichenen Funktionen, da diese héchstens logarithmischen Raum in ihrer Ausgabelén-
ge bendtigen. Somit kann ihre Ausgabe nur polynomiell lang werden, ein Zeiger auf die
aktuell zu vergleichende Stelle hat also nur logarithmisch viele Bits. Folglich ist f € FL.

Weiterhin ldsst sich zeigen, dass Wy = A gilt, dass also f ein FL-Beweissystem fiir A
ist: Fiir beliebige y € A existiert ein h-Beweis z fiir pad(y,e) € A. Daher gilt W; O A.
Fir y € Wy existieren aulerdem z,z € ¥* mit pad(y,z) = h(z). Wegen W), = A gilt
daher pad(y,z) € A. Da pad die Menge A x ¥* auf A reduziert, folgt (y,z) € A x ¥*
und somit y € A. Also gilt auch W; C A.

Es bleibt zu zeigen, dass f l-optimal ist, wenn h auf L-Teilmengen in FL invertiert
werden kann. Sei dazu g ein beliebiges FL-Beweissystem fiir A. Eine Menge H, soll nun
die Paare an Ein- und Ausgaben von g enthalten:

Hy ={{9(z),z) |z € Dy}

Da g in FL auf der im Tupel definierte Eingabe berechnet werden kann, gilt H, € L. Da
pad L-Teilmengen wieder auf Teilmengen abbildet, ist dann auch H, 5’] =pad(H,) C Ain
L und somit ist h nach Annahme auf H, ; mit einer Funktion ¢ € FL invertierbar. Dann
gilt

h(t(pad(g(x),z))) = pad(g(x),z)

und nach Definition von f folgt

9(x) = f({g(x), 2, t(pad(g(x), x))))

X

Da x die Verkettung von FL-Funktionen ist, ist x € FL. Somit wird g von f simuliert,
folglich wird g von f l-simuliert. |

Ein Ringschluss liefert nun die behauptete Aquivalenz. ]

Bekanntes Resultat 8 (Messner, Theorem 3.19). Sei A x ¥* gﬁL p_p A. Dann
sind die folgenden Aussagen dquivalent.

(i) Es existiert ein optimales FP-Beweissystem fiir A.

(ii) Es existiert ein FP-Beweissystem fiir A, welches kurze Beweise auf jeder NP-
Teilmenge von A hat.

(iii) Es existiert ein FP-Beweissystem fiir A, welches kurze Beweise auf jeder P-
Teilmenge von A hat.

Die Implikationen (i) = (4i) und (i1) = (iii) gelten auBerdem fiir beliebige
Sprachen.
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Satz 3.13. Sei A x ¥* SE%L_L A. Dann sind die folgenden Aussagen dquivalent.

(i) Es existiert ein optimales FL-Beweissystem fiir A.

(ii) Es existiert ein FL-Beweissystem fir A, welches kurze Beweise auf jeder NL-
Teilmenge von A hat.

(iii) Es existiert ein FL-Beweissystem fir A, welches kurze Beweise auf jeder L-Teilmenge
von A hat.

Die Implikationen (i) = (i1) und (ii) = (iii) gelten auferdem fir beliebige Sprachen.
Beweis.
Behauptung 3.14. (i) = (i)

Beweis. Sei h ein optimales FL-Beweissystem fiir A und S C A beliebig in NL. Sei M
eine NL-Maschine, die S akzeptiert.
h(w) falls x = 1w
h(z) =<z falls z = 0 (w, z) und w ist akzeptierender Pfad von M (z)
1 sonst
h' ist ein FL-Beweissystem fiir A. Zusétzlich kann fir jedes y € S ein polynomiell
langer Beweis x mit h'(z) = y gefunden werden, da Rechenwege von M nur polynomiell

lang sein kénnen. Da h nach Annahme optimal ist, hat auch h auf S polynomiell lange
Beweise. u

Behauptung 3.15. (iii) = (i)

Beweis. Sei A x ¥* SﬁgL_L A mit einer Reduktionsfunktion pad € FL und sei h
ein FL-Beweissystem fiir A mit hochstens polynomiell langen Beweisen fiir beliebige
L-Teilmengen von A. Sei erneut

y falls h(z) = pad(y, x
f<<y,:c,z>>={ (%) = padlun )
1 sonst
Fiir jedes beliebige FL-Beweissystem ¢ fiir A gilt nun:

Hy ={{g(z),z) |z € Dy} € L

Nach Annahme ist somit auch H, ; = pad(H,) in L, es existieren also Beweise von hochs-
tens polynomieller Lange auf Hé. Sei ¢ eine Funktion, die solche polynomiell langen
Beweise angibt. Fiir y € Hy gilt folglich y = h(i(y)). Man erhalt

g(a?) - f((g(x),x,i(pad(g(x),:c))>)

X

Da x die Verkettung von hochstens polynomiell Verlingernden Funktionen ist, ist x
selbst hochstens polynomiell linger als x. Somit wird g von f simuliert, f ist also ein
optimales FL-Beweissystem fur A. [ |

Da mit L C NL bereits (i) = (i) gilt, folgt die behauptete Aquivalenz. O
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3.5. Beliebig komplexe Sprachen ohne l-optimales
Beweissystem

Im Folgenden werden wir zunéchst Mengen konstruieren, fiir die kein l-optimales Beweis-
system existiert. Dazu kénnen die Implikationen aus[Satz 3.7 verwendet werden. Wir dia-
gonalisieren gegen alle deterministischen Turingmaschinen und erreichen so, dass fiir die
konstruierte Sprache kein raumoptimaler Akzeptor existieren kann. Dann erhalten wir
aus der Kontraposition von Implikation (i) = (iii), dass kein l-optimales Beweissystem
fiir die Sprache existieren kann.

Bekanntes Resultat 9 (Messner, Theorem 3.20). Sei t : N — N superpolynomiell
und zeitkonstruierbar. Dann existiert eine Menge A € DTIME(?) ohne zeitoptimalen
deterministischen Akzeptor.

Satz 3.16. Sei s : N — N € w(logn) raumkonstruierbar. Dann existiert eine Menge
A € DSPACE(s) ohne raumoptimalen deterministischen Akzeptor.

Beweis. Sei My, Mo, ... eine Aufzdhlung aller deterministischen Turingmaschinen und
sei U eine TM, die fiir Eingaben der Form 0’1z die Arbeit von M; auf 0'1z simuliert.
Nach Neary und Woods [NW12] existiert eine solche universelle Maschine, sodass die
Simulation mit linearem Overhead im benétigten Raum moglich ist. Daher gilt:

space (071z) < ¢; - space,y, (0'1z) + ¢;

Fiir jede Maschine M; definieren wir nun eine Menge A;, wobei wir die Sprache zum
reguldren Ausdruck 0°10* mit L(0°10*) bezeichnen.

A; = {ZL‘ € L(0°10%) | U akzeptiert = nicht in Raum s(|a:|)}

Wir erhalten nun mit A = (J;c 4; die gewiinschte Sprache. Um A zu entscheiden, kann
eine Maschine zunéchst die Form der Eingabe priifen. Mit einem endlichen Automaten
geht das in konstantem Raum. Fiir die Simulation von U ist zusétzlich ein Schrittzdhler
notig, um Endlosschleifen zu erkennen, in denen die Raumschranke nie verletzt wird. Die-
ser Zahler kann, genau wie die Simulation selbst, in O(s) Raum implementiert werden.
Daher liegt A in DSPACE(s).

Behauptung 3.17. Fir jeden Akzeptor M; von A kann Aj; in konstantem Raum ent-
schieden werden.

Beweis. Es muss A; = L(0710%) gelten. Nach Definition gilt bereits die Inklusion A; C
L(0710%). Wiren die beiden Mengen verschieden, so hiitten wir also einen Zeugen w €
L(0710%), der von M; nicht akzeptiert wird. Da U auf w die Arbeit von M; simuliert,
kann w von U nicht akzeptiert werden. Dann akzeptiert U auch nicht innerhalb der
Raumschranke s und wir erhalten w € A; im Widerspruch zur Bedingung L(M;) = A.
Fiir den reguliren Ausdruck 0°10* existiert ein endlicher Automat [HU79] D, der in
konstantem Raum L(0710*) entscheidet. Kombiniert man nun M; mit D, so erhilt man
einen Akzeptor von A, der auf A; nur konstanten Raumbedarf hat. |
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Ein Akzeptor M; von A benétigt auf A; mindestens Q(s) Speicher, denn fiir w € A;
gilt s(|w|) < spacey(w) < ¢; - spaceys, (w) + ¢;. Ein raumoptimaler Akzeptor kann

wegen [Behauptung 3.17 fiir Eingaben aus A; nur O(logn) Raum verwenden. Da nach
Annahme s € w(logn) ist, kann M; kein optimaler Akzeptor sein. O

Bekanntes Resultat 10 (Messner, Korollar 3.22). Sei ¢t : N — N superpolynomiell
und zeitkonstruierbar. Dann hat keine Sprache, die <P -hart fir DTIME(t) ist, ein
p-optimales Beweissystem.

Korollar 3.18. Sei s : N — N € w(logn) raumkonstruierbar. Dann hat keine Sprache,
die <!98-hart fiir DSPACE(s) ist, ein l-optimales Beweissystem.

Beweis. Wir erhalten diese Aussage direkt aus den Abschlusseigenschaften, da die eben
konstruierte Sprache auf jede fiir DSPACE(s) <!%8-harte Sprache reduziert werden kann.
O

Bekanntes Resultat 11 (Messner, Korollar 3.23). Keine <P -harte Sprache fur E
hat ein p-optimales Beweissystem.

Korollar 3.19. Keine <1%-harte Sprache fiir DSPACE(log® n) hat ein l-optimales Be-
weissystem. Insbesondere hat auch QBF kein l-optimales Beweissystem.

Beweis. Der erste Teil der Aussage ist ein Spezialfall von |[Korollar 3.18} da log? € w(log).
AuBerdem ist QBF eine bekannte <!%¢-vollstindige Menge fiir PSPACE. Beweise dafiir

liefern unter anderem Stockmeyer [Sto76] sowie Arora und Barak [AB09]. QBF ist folglich
auch <!98-hart fiir DSPACE(log?). O

In leicht abgewandelter Form kénnen wir die Technik aus dem Beweis zu [Satz 3.16
sogar dafiir verwenden, beliebig komplexe tally-Sprachen ohne l-optimales Beweissystem
zu konstruieren.

Bekanntes Resultat 12 (Messner, Theorem 3.26). Seien ¢, f : N — N zeitkon-
struierbar, f injektiv und ¢ superpolynomiell. Dann existiert eine f-tally Menge
A € DTIME(t) ohne zeitoptimalen Akzeptor.

Satz 3.20. Seien s : N — N € w(n) raumkonstruierbar und f : N — N injektiv und zeit-
konstruierbar. Dann existiert eine f-tally Menge A € DSPACE(s) ohne raumoptimalen
Akzeptor.

Beweis.

Behauptung 3.21. Fir injektive zeitkonstruierbare f ist auch g : 0" — 0/ injektiv.
Auferdem kann g in linearem Raum invertiert werden.
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Beweis. Da f nach Annahme zeitkonstruierbar ist, existiert eine Maschine, die auf Ein-
gaben 1™ den Funktionswert f(n) in genau f(n) Schritten berechnet. Da f injektiv ist,
muss die Maschine die gesamte Eingabe einlesen. Dazu sind bereits n Schritte nétig. Wir
erhalten daher f(n) > n und konnen so einschrénken, welche Werte als Inverses in Frage
kommen. Auf diesen kann dann eine inkrementelle Suche ausgefiihrt werden.

Algorithmus 3 : f~!
Eingabe : 0™

1 fiir ¢ = 0 bis m tue

2 L wenn f(i) =m dann

3 L gib i aus

In Schritten 1 und 3 ist je logm Raum ausreichend, um 7 und einen Zeiger auf die
Ausgabe von f zu speichern. Aulerdem muss in Schritt 2 f berechnet werden. Da f
zeitkonstruierbar ist, ist das in O(m) Raum méglich, denn der Speicherbedarf ist durch
den berechneten Funktionswert beschrankt. Falls die Berechnung von f(i) mehr als m
Speicher benétigt, so auch mehr als m Takte. Da f zeitkonstruierbar ist, kann also nicht
f(i) = m gelten, weshalb die Berechnung friihzeitig abgebrochen werden kann. Insgesamt
findet man das Inverse in O(m) Raum. Falls m ¢ Wy, so braucht die Suche auch nur
O(m) Raum und terminiert erfolglos. [ |

Sei U eine universelle TM, die auf Eingaben (i,z) die Arbeit von M;(x) simuliert.
Dabei soll space; ((i,z)) < ¢; - spacey, (x) + ¢; fiir eine Konstante ¢; gelten. Sei nun A;
definiert als

A; = {x = 0/(") | p € N, U akzeptiert (i,2) nicht in Raum s(|ac|)}

(4; ist wohldefiniert, da f injektiv ist und somit fiir jedes Wort das Priadikat von nur ei-
ner Maschinennummer abhéngt). Zunéchst beobachten wir, dass A = (J;cn Ai tatsichlich
f-tally ist. AuBerdem kénnen wir fir ein 07(¢™) in O(f((i,z))) Raum die Maschinen-
nummer i berechnen und danach M; auf der Eingabe mit Raumschranke s simulieren.
Da s asymptotisch superlinear wéchst, erhalten wir insgesamt A € DSPACE(s).

Wie im Beweis zu [Satz 3.16|gilt fiir jeden Akzeptor M; von A die Ungleichung s(|z|) <
spacey ((J,2)) < ¢; - spacey, () + ¢; fiir beliebige Eingaben z. Damit erhalten wir A; =

{0f(Gm) | n € N}. A; kann daher in linearem Raum entschieden werden, indem fiir
Eingaben 0™ das eindeutige n mit m = f((j,n)) berechnet wird. Da f in linearem
Raum invertiert werden kann, ist dafir O(n) Speicher ausreichend. Falls ein solches
n existiert, so gilt bereits 0" € A;. Es existiert also ein Akzeptor fiir A, der auf A;
hochstens linearen Speicher bendtigt. Es gilt jedoch auch s(z) < ¢; - spacey, (z) + ¢,
unter der Annahme s € w(n) hat also M; einen superlinearen Raumbedarf auf A; .
Somit kann M; kein optimaler Akzeptor sein. O
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Sprachen ohne optimales Beweissystem Es ist zunéchst unklar, ob auch beliebig kom-
plexe Sprachen ohne optimales FL-Beweissystem existieren. Messner [Mes01] zeigt, dass
die Existenz von optimalen FP-Beweissystemen dquivalent zur Existenz eines nichtdeter-
ministischen zeitoptimalen Akzeptors ist. Fiir optimale FL-Beweissysteme ist ein Zusam-
menhang mit nichtdeterministischen raumoptimalen Akzeptoren jedoch nicht so leicht
moglich. Obwohl wir die gezeigte Konstruktion auch fiir den nichtdeterministischen Fall
anpassen konnten, weist das also nicht die Existenz von beliebig komplexen Sprachen
ohne optimales Beweissystem nach. Tatsdchlich werden wir aber aus dennoch
solche Sprachen erhalten, da wir die Nichtexistenz von optimalen FP-Beweissystemen
fir die von Messner konstruierten Sprachen direkt auf die Nichtexistenz von optimalen
FL-Beweissystem iibertragen kénnen.

3.6. Beliebig komplexe Sprachen mit raumoptimalem Akzeptor

Wir versuchen nun im Folgenden ein Indiz fiir die Existenz beliebig komplexer Spra-
chen mit l-optimalem FL-Beweissystem zu finden. Es ist unklar, ob die hier konstruierte
Sprache den Anforderungen aus geniigt, daher ist dieses Resultat fiir sich nicht
ausreichend, um eine definitive Antwort zu erhalten.

Bekanntes Resultat 13 (Messner, Theorem 3.32). Seit¢ : N — N monoton steigend
und raumkonstruierbar. Es existiert eine Menge A € DTIME(n? - t(n)logt(n)) \
DTIME(t(n)), sodass fiir jede TM M mit L(M) = A mit hochstens endlich vielen
Ausnahmen fir x € A gilt: timeys(x) > t(|z]).

Satz 3.22. Sei s : N - N € Q(nlogn) raumkonstruierbar und monoton steigend.
Dann ezistiert eine Menge A € DSPACE(s(n)) mit raumoptimalem deterministischem
Akzeptor.

Beweis. Sei My, M, ... eine Aufzdhlung aller Turingmaschinen, wobei eine universelle
Turingmaschine U ((i,x)) die Arbeit von M; auf der Eingabe x mit spacey((i,z)) <
¢; - spaceg; (z) + ¢; simulieren kann. Wir definieren auflerdem eine Menge S als

S ={(:,0") | U akzeptiert (i,0") in Raum hochstens s(n)} € DSPACE(s)

und verwenden S als ,,Ausschlusskriterium®, um nun die Menge A stufenweise zu kon-
struieren. Dabei entscheiden wir in jeder Stufe n, ob das Wort 0™ zu A gehort, sodass
0" € A, < 0" € A. Damit jeder Akzeptor von A fiir hochstens endlich viele Worte
unterhalb der Raumschranke arbeiten kann, betrachten wir wahrend der Konstruktion
eine endliche Menge B,, von solchen Maschinen, die noch als Akzeptor in Frage kommen.
Akzeptiert eine Maschine aus B,, ein Wort 0" unterhalb der Raumschranke, so kann sie
als Akzeptor ausgeschlossen werden, indem 0" ¢ A,, gesetzt wird.
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Zu Beginn der Konstruktion setzen wir Ay = By := () sowie ig = 0. Weiterhin unter-
scheiden wir fir n € N zwei Félle. Falls ein i € B, mit (i,0") € S existiert, so setzen
wir

An+1 = An
Bpi1 =B, \{i€ B, | (i,0") € S}
in—&—l = in

und setzen sonst

Anir = A, U {07
Bpi1 = By U {in +1}
Z.n—‘rl =in+1

Wir erhalten nun A durch A = (J;cy 4i-
Behauptung 3.23. A ist eine unendliche Menge und es gilt {i, | n € N} = N.

Beweis. Fiir einen beliebigen Schritt n € Nist B,, eine endliche Menge. Im ersten Fall gilt
|Br+1| < |Bp|. Daher kann hochstens fiir endlich viele m aufeinanderfolgende Schritte
der erste Fall eintreten, bevor B,, ., = 0 gilt. Spitestens dann wird ein weiteres Element
720 Apimy1 hinzugefiigt. Mit 0"+ ¢ A, .1 = 0"l ¢ A folgt, dass auch
nach keinem endlichen Konstruktionsschritt A; = A gelten kann, da nach endlich vielen
Schritten ein weiteres Element hinzugefiigt wird. Mit dem gleichen Argument erhalten
wir auch {i, | n € N} =N. [ |

Behauptung 3.24. A ist DSPACE(0(s))-immun.

Beweis. Sei M; eine TM mit space,;, € 0(s), sodass L(M;) unendlich ist. Es existiert ein
minimaler Schritt n, fiir den 7, = i gilt. Wir erhalten zudem ¢; -space,, (0™) +¢; < s(m)
fiir gentigend grofle m, da M; einen asymptotischen Raumbedarf kleiner s hat. Da M; eine
unendliche Menge akzeptiert, akzeptiert M; auch 0™ fir geniigend grofie m. Sei m > n
nun minimal, sodass beides gilt. Dann gilt insbesondere auch spaceg;(i,0™) < s(m) und
wir wéhlen in der Konstruktion daher 0™ ¢ A. Folglich akzeptiert M; keine Teilmenge
von A. |

Behauptung 3.25. A kann in DSPACE(s) entschieden werden.

?
Beweis. Um 0" € A zu entscheiden, ist es ausreichend die Konstruktionsschritte bis A,
durchzufiihren. A,, hingt dabei nicht von A,,_1 ab, daher muss ANYX.<" nicht gespeichert
werden. Der Raumbedarf ist dann gegeben durch

n
logn + Z logi+  s(n) + logn
— i=1 ~~~ . Ty
aktuelle Stufe _  Anfragen an S  Zeiger in Mengen

Bn
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Wegen > (logi = logn! < logn™ = nlogn ist A, folglich in O(s(n) + nlogn) Raum
berechenbar. Nach Annahme gilt s € Q(nlogn). [ |

Den DSPACE(s)-Akzeptor fir A nennen wir O. Fiir jede Maschine M mit L(M) =
A existiert eine Konstante ¢ mit ¢ - spacey;(xz) > s(|z|) fir fast alle x € A, da A
DSPACE(o(s))-immun ist. W&hlt man ¢ ausreichend grof, so gilt sogar c- (space,,(z) +
|z]) > s(|z|) fir alle z € A. Gleichzeitig benétigt O nur spacep(z) < s(|z]) <
cc' - (spacey;(z) + |z|) Raum. Somit ist O ein optimaler Akzeptor von A. O

Die so konstruierten Sprachen haben zwar einen raumoptimalen deterministischen
Akzeptor aber dennoch ist unklar, ob anwendbar ist. Denn die konstruierte
Sprache lédsst kein padding zu, da sie keine unendliche in L entscheidbare Teilmenge hat.
Das ist aber fiir padding notig, da jede L-Teilmenge von A x ¥* injektiv auf A abgebildet
werden miisste. Es fehlt daher ein Beweis ob dennoch A x ¥* SITZ%L_L A. Daher geben
wir noch eine hinreichende Bedingung fiir die Existenz l-optimaler FL-Beweissysteme

an.

Satz 3.26. Aus L = NP folgt die Existenz beliebig komplexer Sprachen mit l-optimalem
Beweissystem.

Beweis. Aus L = P erhalten wir nach [Wra76] zunéchst FL. = FP und konnen daher die
Behauptung auf die Existenz beliebig komplexer FP-Beweissysteme zuriickfithren. Mit
P = NP folgt dann nach Messner [Mes01] die Behauptung. O

3.7. Ein natiirliches Beweissystem fiir GAP

Wir wissen nach dass ein l-optimales FL-Beweissystem fiir eine vollstandige Spra-
che einer Komplexitdtsklasse bereits impliziert, dass jede Sprache dieser Klasse ein I-
optimales Beweissystem hat. Daher sind solche Sprachen besonders spannend. Eine sehr
natiirliche Komplexitétsklasse fiir solche Betrachtungen ist NL. Wir wissen bereits, dass
fiir deterministische Raumklassen oberhalb von L keine <!°%-vollstindigen Sprachen mit
l-optimalem FL-Beweissystem existieren. Fiir nichtdeterministische Raumklassen ist je-
doch kein solches Resultat bekannt. Wir definieren daher im Folgenden ein natiirli-
ches Beweissystem fiir das NL-vollstidndige Problem GAP und untersuchen, ob dieses
l-optimal ist.

(G,s,t) falls p ein s-t-Pfad im gerichteten Graphen G ist

gap((G, s,t,p)) = {L const

Offensichtlich ist Wgap, = GAP. Weiterhin kann ein gegebener Pfad in logarithmischem
Raum durchlaufen werden, da nur der aktuell besuchte Knoten durch Zeiger in die
Eingabe gespeichert werden muss. Dann kann im Pfad fiir jede Kante gepriift werden,
ob eine entsprechende Kante auch im Graphen existiert. Zusétzlich miissen nur Start-
und Endknoten verifiziert werden. Daher folgt auch gap € FL.
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Wir kénnen eine Gemeinsamkeit mit sat beobachten. Die Schwierigkeit von GAP und
SAT liegt jeweils in einer existenziellen Quantifizierung fiir eine effizient verifizierbare
Loésung. Dieser Existenzquantor wird in der Definition von gap sowie von sat umgangen,
indem Losungen explizit angegeben werden miissen. Ist ein solches Beweissystem 1- bzw.
p-optimal, so kann jeder beliebige Beweis in einen konstruktiven umgewandelt werden.
Kann man also ausrechnen, ob eine Losung existiert, so kann man auch mit geringem
Mehraufwand die Losung explizit berechnen. Diesen Zusammenhang zeigen wir nun fiir
gap formal.

Bekanntes Resultat 14 (Messner, Theorem 5.2). Die folgenden Aussagen sind
dquivalent:

1. Fiir jede nichtdeterministische Polynomialzeitturingmaschine M mit L(M) =
SAT existiert eine Funktion f € FP, sodass fiir jede Codierung w eines ak-
zeptierenden Rechenwegs von M () die Auswertung von f(w) eine erfiillende
Belegung von ¢ berechnet.

2. Fir jede nichtdeterministische Turingmaschine M mit L(M) = SAT existiert
eine Funktion f € FP, sodass fiir jede Codierung w eines akzeptierenden
Rechenwegs von M (p) die Auswertung von f(w) eine erfiillende Belegung von
© berechnet.

3. sat ist ein p-optimales FP-Beweissystem.

Satz 3.27. Die folgenden Aussagen sind dquivalent:

(i) Fiir jede NPTM M mit L(M) = GAP existiert f € FL, sodass fiir jede Codierung
w eines akzeptierenden Rechenwegs von M ((G,s,t)) ein s-t-Pfad in G durch f(w)
gegeben ist.

(7i) Fir jede nichtdeterministische TM M mit L(M) = GAP existiert f € FL, sodass
fiir jede Codierung w eines akzeptierenden Rechenwegs von M({G,s,t)) ein s-t-
Pfad in G durch f(w) gegeben ist.

(iii) gap ist l-optimal.
Bewess.
Behauptung 3.28. (iii) = (1)

Beweis. Sei M eine nichtdeterministische TM, die GAP akzeptiert. Man erhélt ein FL-
Beweissystem fiir GAP wie folgt:

h(w) (G,s,t) falls w ein akzeptierender RW von M ((G, s,t)) ist
w) =
L sonst

Da nach Annahme gap ein l-optimales Beweissystem ist, existiert ein f/ € FL, mit
welchem gap(f/(w)) = h(w) gilt. Dann ist f'(w) = (G, s,t,p). Durch anschlieBende
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Projektion auf das letzte Listenelement erhélt man die geforderte Ubersetzung von ak-
zeptierenden Rechenwegen in s-t-Pfade. |

Behauptung 3.29. (ii) = (ii7)

Beweis. Sei h ein FL-Beweissystem fiir GAP. Dann kann eine nichtdeterministische TM
M einen moglichen h-Beweis x fiir ein gegebenes y raten und danach deterministisch
priifen, ob h(x) = y gilt. M akzeptiert so GAP. Nach Annahme existiert also ein f € FL,
sodass fiir Codierungen w von akzeptierenden Rechenwegen von M f(w) einen s-t-Pfad
liefert. Da aus einem h-Beweis auch direkt ein akzeptierender Rechenweg von M folgt,
existiert auch ein f’ € FL, welches aus h-Beweisen einen s-t-Pfad liefert. Dann gilt

h(z) = gap(c(h(x), f'(z)))
wobei ¢ die Konkatenation zweier Listen leistet. |

Behauptung 3.30. (i) = (i)

Beweis. Der Beweis von [Behauptung 3.29| ist fiir diese Implikation noch zu schwach,
da h keine kurzen Beweise garantiert. Somit kann M h-Beweise nicht unbedingt in
Polynomialzeit raten. Dieses Problem kann umgangen werden, indem in einem weiteren
Beweissystem einige ausgegebene Instanzen vergrofiert werden. Dazu sei g((G, 1)) eine
Kopie von G, in die |i| zusétzliche isolierte Knoten eingefiigt wurden. Da dazu nur G
kopiert und ein Zéhler der Lange log |¢| nétig sind, ist g € FL. Es gilt |g(G, )| > |4| fiir
beliebige G, i. Sei nun A’ ein Beweissystem wie folgt:

(9(G,w), s, t) falls z = 1w und h(w) = (G, s, t)
B (z) =< (G, s,t) falls z = Ow und gap(w) = (G, s, t)

1 sonst

Ausgaben von h' sind mindestens so lang wie die Eingabe. Folglich arbeitet M aus
dem Beweis zu (74) = (ii1) in nichtdeterministischer Polynomialzeit. Aus dem gleichen
Beweis erhdlt man dann auch unter Annahme von (i) ein solches f’ € FL, welches aus
h'-Beweisen s-t-Pfade berechnet. Da ein korrekter Pfad fiir A'(1x) auch ein korrekter
Pfad fiir h(z) ist, gilt schlielich

h(z) = gap(c(h(z), f'(1z)))
]

Da nach Definition bereits (i4) = (i) gilt, folgt mit einem Ringschluss die behauptete
Aquivalenz. O
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4. Besonderheiten von FL-Beweissystemen

4.1. L-Optimalitat von gap impliziert den Kollaps L. = NL

Ein Beweis von Pudldk [Pudl7] zeigt, dass das Faktorisieren von Zahlen in determi-
nistischer Polynomialzeit gelost werden kann, falls das Standardbeweissystem von SAT
p-optimal ist. Fiir den Beweis werden aussagenlogische Formeln genutzt, um auszudrii-
cken, dass eine Zahl n entweder prim ist oder einen echten Teiler besitzt. Da eine solche
Formel immer wahr ist, erhilt man ein Beweissystem fiir SAT mit kurzen Beweisen fiir
diese Formeln. Ist sat aber p-optimal, so lassen sich diese kurzen Beweise in sat-Beweise
iibersetzen, woraus ein echter Faktor fiir die betrachtete Zahl berechnet werden konnte.

Das gleiche Prinzip soll nun auf gap erweitert werden. Dazu wird zunéchst eine Funk-
tion definiert, durch welche die Rechnung einer Turing-Maschine als Graph dargestellt
werden kann. Diese Konstruktion wird tiblicherweise dazu verwendet, zu zeigen, dass
GAP NL-vollstandig ist.

Definition 4.1 ([Pap94]). Fir eine NL-Rechnung M (x) wird der entsprechende Konfi-
gurationsgraph G (z) genannt. Die Knoten dieses Graphen stellen die moglichen Konfi-
gurationen der Maschine dar. Auf einem Arbeitsband sind |2|¢1°8 121 verschiedene Inhalte
und log|z| Kopfpositionen maoglich. Weiterhin sind auf dem FEingabeband |x| verschie-
dene Kopfpositionen maoglich. Zusdtzlich hat die Maschine konstant viele Zustinde und
Arbeitsbinder. Insgesamt erhdlt man daher p(|x|) mdgliche Konfigurationen fir ein Poly-
nom p. Diese sind daher jeweils durch c-log |x| Bits codierbar, folglich ist die Codierung
der Knotenmenge von Gyr(z) nur polynomiell lang. Wegen |E| < |V|? hat damit die
Codierung des gesamten Konfigurationsgraphen nur polynomielle Grdifse.

Die Kanten des Graphen beschreiben, ob ein Ubergang zwischen zwei Konfigurationen
existiert. Fir zwei Konfigurationen ci,co existiert also die Kante (c1,c2) genau dann,
wenn c1 in einem Schritt in cy tbergehen kann. Diese Kantenmenge kann man in log-
arithmischem Raum berechnen, da man je zwei Konfigurationen gleichzeitig im Speicher
halten kann. Fir jede Konfiguration gibt es nur konstant viele Folgekonfigurationen, die-
se miissen mit der zweiten Konfiguration verglichen werden. Iteriert man so tiber alle
maglichen Konfigurationen, so erhdlt man die Kantenmenge. Da jede Konfiguration nur
logarithmischen Raum bendtigt, gilt folglich Gas € FL.

Satz 4.2. gap ist genau dann l-optimal, wenn L = NL gilt.

Beweis. Sei A € NL beliebig. Nach Immerman und Szelepcsényi [Imm88] erhalten wir
mit NL = coNL die Existenz von zwei NLTMs My und M5 mit L(My) = A und
L(My) = A. Ohne Beschrinkung der Allgemeinheit kann angenommen werden, dass
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M4 und M auf dem gleichen Arbeitsalphabet arbeiten, gleich viele Arbeitsbander ver-
wenden und jeweils nur eine akzeptierende Konfiguration haben. Durch Anpassen der
Zustandsmengen kann zusatzlich sichergestellt werden, dass beide Maschinen die gleiche
akzeptierende Konfiguration Acc einnehmen, sonst aber disjunkte Konfigurationsmengen
aufweisen.

Eine dritte NLTM M kann nun aus ihrer Startkonfiguration S nichtdeterministisch
in die Startkonfigurationen von M4 und M- tibergehen. Dadurch ist garantiert, dass
M auf jeder Eingabe akzeptiert, da A U A = ¥*. Weiterhin sind A und A disjunkt,
daher kann in M immer nur eine der beiden simulierten Maschinen akzeptieren. Aus der
zweiten Konfiguration eines akzeptierenden Rechenwegs von M kann abgelesen werden,
ob ein Pfad der Rechnung von M4 oder von M vorliegt. Auf keinem Rechenweg von M
wird die Simulierte Maschine nach dem ersten Takt gedndert. Daher kann bereits aus
der zweiten Konfiguration eines akzeptierenden Rechenweges entschieden werden, ob die
Eingabe in A liegt.

Wegen L(M) = X* ist in Ga(x) Acc immer von S aus erreichbar. Daher gilt Wer  C
GAP, wobei G,(z) = (Gum(x), S, Acc). Sei nun g ein FL-Beweissystem fiir GAP wie
folgt:

() gap(w) falls z = 1w
xTr) =
G(w) falls z = 0w

Da gap l-optimal ist, existiert ¢ € FL, welches g-Beweise in gap-Beweise iibersetzt. Da
G'\;(w) nach Konstruktion in GAP liegt, ist Ow bereits ein g-Beweis fir G;(w). Aus
t(Ow) erhélt man folglich einen gap-Beweis fiir G, (w). Nach Definition von gap enthélt
t(Ow) einen S-Acc-Pfad in Gjr(w). Eine L-Maschine kann nun wie folgt A entscheiden:

Algorithmus 4 : Entscheidungsalgorithmus fiir A

Eingabe : =
1 Berechne y := t(0x)
2 Setze p auf den in y codierten S-Acc-Pfad
3 wenn der Nachfolgeknoten von S in p die Startkonfiguration von M4 ist dann

4 ‘ akzeptiere
5 sonst
6 L lehne ab

Es ist ausreichend, nur eine Konfiguration des Pfades im Speicher zu halten. Daher
muss y nie vollstdndig auf ein Arbeitsband geschrieben werden. Die Codierung einzelner
Konfigurationen kann in logarithmischem Raum abgespeichert werden. Da auch ¢ und
das Inverse der Listencodierung in FL berechenbar sind, arbeitet der gegebene Algorith-
mus in logarithmischem Raum. Folglich ist A € L.

Angenommen, es gilt L = NL. Sei GAP’ definiert als

GAP' = {(G, s,t,k) | in gerichtetem Graph G existiert ein s-t-Pfad der Lénge k}

Da ein Pfad der Lénge k in einem gerichteten Graphen von einer NLTM geraten und
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dann gepriift werden kann, ist GAP’ € NL = L. Fiir ein gegebenes (G, s,t) € GAP kann
eine L TM nun wie folgt arbeiten:

Algorithmus 5 : GAPSuche
Eingabe : G, s,t
1 (V,E)=G
2 Bestimme mittels binédrer Suche das kleinste k mit (G, s,t, k) € GAP’
3 Knoten v = s
4 solange k > 0 tue
5 fiir v mit (v,u) € E tue

6 wenn (G,v,t, k —1) € GAP' dann
7 Schreibe v auf das Ausgabeband
8 v=1u

9 k=k—-1

Fiir diesen Algorithmus miissen nur Anfragen an GAP’ beantwortet und zwei Konfi-
gurationen sowie die Restpfadlinge gespeichert werden. Das ist insgesamt moglich, da
GAP’ nach Annahme in L entscheidbar ist und da der kiirzeste Pfad jeden Knoten héchs-
tens einmal durchlduft, also in seiner Lénge polynomiell beschréankt ist. Sollte kein Pfad
existieren, so erkennen wir das bereits in Zeile 2. Hier wird dann kein geeignetes k < |V|
gefunden, auch hierfiir ist nur logarithmischer Raum nétig. Folglich kénnen Pfade in G
iiber ein g € FL berechnet werden. Sei nun f ein FL-Beweissystem fiir GAP. Aus einem
f-Beweis x erhélt man einen gap-Beweis, indem man den Pfad g(f(z)) berechnet und
mit der Instanz f(z) konkateniert. Es folgt f <\ gap. Also ist gap l-optimal. O

4.2. Zusammenhang zwischen FL- und FP-Beweissystemen

Unsere Definition von FL-Beweissystemen scheint stiarkere Anforderungen zu stellen, als
die iibliche, da FL C FP gilt und die umgekehrte Inklusion nicht bekannt ist. Ublicher-
weise wird FL. # FP angenommen. Gleichzeitig ist dadurch aber der Optimalitdtsbegriff
auf FL-Beweissystemen scheinbar schwécher, da ein optimales FP-Beweissystem auch
jedes FL-Beweissystem simulieren muss, umgekehrt aber nicht. Es ist daher zunéchst
unklar, ob zwischen den Optimalitdtsbegriffen fiir FL- und FP-Beweissysteme iiber-
haupt Beziehungen gelten. Wir werden in diesem Abschnitt eine Technik zeigen, mit der
viele dieser Beziehungen gezeigt werden kénnen. Hierfiir zeigen wir, dass zu beliebigen
FP-Beweissystemenen ein FL-Beweissystem konstruiert werden kann, welches die gleiche
Sprache beweist. Es ist sogar eine Ubersetzung der Beweise in FP moglich.

Lemma 4.3. Fir jedes FP-Beweissystem f existiert ein FL-Beweissystem £, sodass
Wf :Wg undf Sgﬁ

Beweis. Es existiert eine TM My, welche zu beliebigen f-Beweisen z in polynomieller
Zeit ein y = f(z) berechnet. Folglich existiert ein Polynom ¢, sodass die Rechenzeit von
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M durch t beschrénkt ist. Ein Rechenweg von Mj(x) kann daher héchstens ¢(|x|) Kon-
figurationen durchlaufen. Jede dieser Konfigurationen kann dabei hochstens ¢(|x|) Raum
verwenden. Daher existiert ein Polynom ¢, sodass Rechenwege von M auf x inklusive der
vollstéandigen Bandinhalte mit ¢(|x|) Bits codiert werden kénnen. Fiir einen so codierten
Rechenweg muss ein Verifier nur iiberpriifen, ob die einzelnen Uberginge korrekt sind.
Dazu sind zwei Zeiger in die Eingabe ausreichend, die in aufeinanderfolgende Konfigura-
tionen zeigen. Ausgehend von einem Fixpunkt kann der Verifier die Unterschiede in den
Konfigurationen priifen und testen, ob die Anderung durch eine korrekte Regelanwen-
dung entstehen konnte. Fiir diese Priifung miissen nur Zeiger in die Eingabe gespeichert
werden, daher kann ein Verifier die Rechenwege in logarithmischem Raum priifen. Sei ¢
nun definiert als

t(w) y falls w einen Rechenweg von My (x) mit Ausgabe y codiert
w) =
1 sonst

Da nur der Rechenweg gepriift und die Ausgabe imitiert werden muss, ist £ € FL. Da
auflerdem fiir jeden f-Beweis x ein Rechenweg von M auf x existiert, der hochstens
polynomiell langer ist, gilt f <g £.

Um schlieBlich einen f-Beweis = in einen ¢-Beweis zu tiberfithren ist es ausreichend,
M/ auf diesem z zu simulieren und nach jedem Takt seine Konfiguration inklusive der
Bandinhalte auszugeben. Das ist in FP moglich. Durch den Rechenweg ist dann ein
{-Beweis gegeben. O

Die Aussage kann sogar noch verschirft werden. Die Konstruktion in
fordert nur, dass Rechenzeit sowie Speicher polynomiell beschrankt sind und dass ein
codierter Rechenweg in Logspace auf Korrektheit gepriift werden kann. Beides ist fiir
NPSV-Beweissysteme der Fall. Fiir die Ubersetzungsfunktion ¢ ist es daher ausreichend,
einen akzeptierenden Rechenweg zu suchen. Falls ein solcher existiert, so ist die Ausgabe
von f bereits eindeutig, ¢ kann also einen beliebigen akzeptierenden Rechenweg wéhlen.
Falls kein Rechenweg eine Ausgabe macht, so ist f an dieser Stelle nicht definiert. Es ist
daher ausreichend, dass t einen festen Wert ausgibt, der keine korrekte Codierung eines
Rechenwegs ist. Nur die gefolgerte P-Simulation funktioniert nicht fir alle f € NPSV.

Auch fiir Relationen f € NPMV existiert ein FL-Beweissystem /¢, sodass fir alle z,y
mit y € f{x} ein 2’ existiert, sodass ' hochstens polynomiell langer als z ist und
0(z") = y. Allerdings existiert in diesem Kontext keine Funktion ¢, die f-Beweise in
{-Beweise iibersetzt, da ein f-Beweis nicht eindeutig charakterisiert, welches Element
bewiesen werden soll. Dadurch ist die Ubersetzung t nicht wohldefiniert.

Im Kontext von noch schwicheren Berechnungsmodellen ist die gezeigte Technik nicht
anwendbar. Um einen codierten Rechenweg zu priifen, ist es notwendig, die urspriing-
liche Eingabe vollstdindig in der Eingabe codiert zu haben. Solange fiir das Priifen des
Rechenwegs Zeiger in die Eingabe gespeichert werden miissen, benétigt die Priifung eines
Rechenwegs w daher Q(log |w|) Speicher. Da die Codierung eines Rechenwegs von M (x)
bereits eine Linge von p(|xz|) haben kann, ist die Priifung der codierten Rechenwege
folglich nicht unterhalb von L moglich.
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Optimale Beweissysteme Aus folgt nun direkt, dass die Existenz optimaler
FL-Beweissysteme genau durch die von optimalen FP-Beweissystemen charakterisiert
werden kann.

Satz 4.4. FEine Menge A C ¥* hat genau dann ein optimales FL-Beweissystem, wenn
ste ein optimales FP-Beweissystem hat.

Beweis. Seien g ein optimales FL-Beweissystem und f ein beliebiges FP-Beweissystem
fiir A. garantiert ein FL-Beweissystem / fiir A mit f <, ¢. Da ¢ optimal ist,
gilt weiterhin ¢ <; g. Aus der Transitivitdt der Simulation folgt f <5 g.

Sei nun f ein optimales FP-Beweissystem fiir A. Mit ¢ sei das in[Lemma 4.3|garantierte
FL-Beweissystem bezeichnet. Sei g ein FL-Beweissystem fiir A. Wegen FL C FP gilt
g <s f.Da £ wiederum f simuliert, gilt nach der Transitivitdt der Simulation
auch g <, /. O

Dieser Satz ermoglicht es uns, die Resultate von Messner [Mes01] zur Existenz von
optimalen FP-Beweissystemen in den Kontext von FL-Beweissystemen zu {ibertragen.

Korollar 4.5 (Verbesserung von ). Jedes A € NP hat ein optimales FL-

Beweissystem.

Beweis. Nach Messner [Mes01] ist bekannt, dass beliebige Sprachen aus NP optimale
FP-Beweissysteme haben. O

Korollar 4.6. Es existieren beliebig komplexe Sprachen ohne optimales FL-Beweissystem.

Beweis. Fiir superpolynomielle zeitkonstruierbare ¢t : N — N konstruiert Messner [Mes01]
Sprachen in coNTIME(¢) ohne optimales FP-Beweissystem. O

Korollar 4.7. Der Kollaps NP = coNP impliziert die Existenz beliebig komplexer Spra-
chen mit optimalem FL-Beweissystem.

Beweis. Messner zeigt diese Implikation fiir optimale FP-Beweissysteme. ]

l-optimale Beweissysteme sind mindestens so schwer zu finden wie p-optimale

Satz 4.8. Ist f ein l-optimales FL-Beweissystem fiir eine Sprache A, so ist f auch ein
p-optimales FP-Beweissystem fiir A.

Beweis. Sei f ein l-optimales FL-Beweissystem und g ein beliebiges FP-Beweissystem.
Nach gilt bereits g <, f. Weiterhin kann beobachtet werden, dass g von dem
in konstruierte FL-Beweissystem ¢ sogar p-simuliert wird. Die Ubersetzung
kann berechnet werden, indem ein Rechenweg von g auf der Eingabe simuliert und
die dabei durchlaufenen Konfigurationen ausgegeben werden. Die Simulation an sich
ist in Polynomialzeit moglich, da nach Wahl g € FP. Fiir die Ausgabe der einzelnen
Konfigurationen ist dann nur noch polynomieller Overhead nétig. Da weiterhin ¢ <. f
gilt und FP unter Verkettung abgeschlossen ist, folgt nun g <P f. O
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Es ist unklar, ob auch die Umkehrung dieser Aussage gilt. Die reine Verwendung von
ist hier allerdings nicht ausreichend, da dafiir beliebige FP-Berechnungen
in FL simuliert und die durchlaufenen Konfigurationen berechnet werden miissten. Ein
hinreichendes Kriterium wére L. = P, da dann nach einem Resultat von Jenner und
Toran [JT95] FP C FL folgt.

Wir erhalten auch ein Indiz fiir eine untere Schranke. Wegen GAP € P koénnen
s-t-Pfade in FP berechnet werden. Daher ist klar, dass GAP bereits ein p-optimales
Beweissystem hat. Implizieren p-optimale FP-Beweissysteme nun auch l-optimale FL-
Beweissysteme, so erhalten wir ein l-optimales FL-Beweissystem ¢ fiir GAP. Grund-
sétzlich wissen wir nicht, wie dieses Beweissystem funktioniert. Insbesondere ist unklar,
ob das Standardbeweissystem gap dann l-optimal ist. Lassen sich aber aus g-Beweisen
Riickschliisse auf mindestens einen inneren Knoten eines s-t-Pfades ziehen, so kénnen wir
bereits durch den Konfigurationsgraphen wie im Beweis zu [Satz 4.2] L = NL folgern. Um
diesen Kollaps zu umgehen wére eine Beweistechnik erforderlich, durch die man keine
Informationen iiber die inneren Knoten eines verbindenden Pfades erhélt. Im Gegensatz
zu den anderen Richtungen kénnte man dann nicht das l-optimale FL-Beweissystem
direkt aus einem p-optimalen ausrechnen.
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5. Offene Fragen

Wir haben eine enge Verbindung zwischen FL-Beweissystemen und FP-Beweissystemen
beobachtet, insbesondere implizieren positive Antworten auf die Existenzfragen fiir FL-
Beweissysteme jeweils auch positive Antworten auf die Existenzfragen bei FP-Beweis-
systemen. Diese Implikationen kénnten dabei helfen, die hinreichenden Kollapsbedingun-
gen von Messner abzuschwachen, da fiir raumbeschrankte Komplexitdtsklassen manche
Resultate wie die Abgeschlossenheit unter Komplement bereits bekannt sind. Dadurch
stehen im Kontext von FL-Beweissystemen mehr Techniken zur Verfiigung, iiber die eine
Verbesserung erzielt werden kann.

Speziell fiir die Existenz optimaler FL-Beweissysteme wére eine zusétzliche Charakte-
risierung {iber einen raumoptimalen Akzeptor wiinschenswert. Der analoge Beweis von
Messner lésst sich nicht direkt {ibertragen, aber ein solcher Zusammenhang ist dennoch
nicht ausgeschlossen. Da wir zumindest wissen, dass Funktionen in FL raumoptimal in-
vertiert werden kénnen, scheint ein solcher Zusammenhang nicht ausgeschlossen. Kénnte
man die Existenz optimaler FL-Beweissysteme so charakterisieren, so wiirden auflerdem
die Sprachen mit raumoptimalem Akzeptor mit den Sprachen mit zeitoptimalem Akzep-
tor zusammenfallen. )

Mit Blick auf die L = P Frage ist schlieffilich die Umkehrung der Implikation aus
interessant. Man konnte zeigen, dass diese Implikation nicht gilt, indem eine
Sprache mit p-optimalem FP-Beweissystem und ohne l-optimales FL-Beweissystem kon-
struiert wird. Da unklar ist, fiir welche Komplexitdten noch Sprachen mit p-optimalem
FP-Beweissystem existieren, ist diese Suche vermutlich sehr schwer. Man kénnte aber
explizit nach einer Sprache in P suchen, die kein l-optimales FL-Beweissystem hat. Fin-
det man eine solche Sprache, so zeigt man damit, dass L. # P. Auch daher ist davon
auszugehen, dass dieser Ansatz sehr schwierig ist. Kénnte man stattdessen zeigen, dass
diese Implikation tatsdchlich auch gilt, so konnte man dariiber einen Hinweis erhalten,
ob gap oder ein dhnliches FL-Beweissystem bereits l-optimal ist. Dass daraus L = P

folgt, haben wir bereits in gezeigt.
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A. Beweissysteme mit konstantem
Speicherbedarf

Bisher haben wir beobachtet, dass die Frage nach universellen Beweissystemen auch im
schwécheren Berechnungsmodell nicht leichter als mit der {iblichen Definition von Cook
und Reckhow zu beantworten ist. Daher schwéchen wir die betrachteten Beweissysteme
im Folgenden noch weiter ab und beschrianken uns auf solche Funktionen, die mit dem
Berechnungsmodell der endlichen Automaten berechnet werden kénnen.

Im Berechnungsmodell von endlichen Automaten wird im Gegensatz zu Turing-Maschinen
auf Arbeitsbénder verzichtet. Aulerdem ist das Eingabeband ein read-once Band, sodass
die Eingabe nicht mehrfach durchlaufen werden kann. Eine genaue Definition von end-
lichen Automaten kann bei Hopcroft und Ullman [HU79] gefunden werden. Endliche
Automaten konnen auch Funktionen berechnen, indem in jedem Ubergang zusitzlich
eine Ausgabe getéitigt wird. Die Konkatenation der Ausgaben ergibt dann einen Funk-
tionswert. Die Menge der Funktionen, die von einem endlichen Automaten berechnet
werden kénnen, nennen wir FDEA.

Satz A.1. Fiir eine Sprache A C X* sind die folgenden Aussagen dquivalent:
(i) A € REG
(ii) A hat ein FDEA-Beweissystem

(7ii) A hat ein l-optimales FDEA-Beweissystem

Beweis.
Behauptung A.2. (ii) = (7)

Beweis. Gegeben sei ein FDEA-Beweissystem f fiir A. Sei F' ein deterministischer end-
licher Automat (DEA), der f berechnet. Ohne Beschrankung der Allgemeinheit konnen
wir annehmen, dass in jedem Ubergang von F nur ein Symbol ausgegeben wird. Dazu
sind technisch e-Transitionen nétig, die ldngere Eingaben iiber Blockierzustande aufbre-
chen. Wir erhalten dann einen nichtdeterministischen endlichen Automaten N, der den
Wertebereich der von F berechneten Funktion entscheidet, indem fiir jeden Ubergang
der Form z,5, — 25, von F ein Ubergang z,s, — 2, in N angelegt wird. Durch dieses
Vorgehen priift N, ob eine Eingabe existiert, fiir die F' das bisher gelesene Wort ausge-
ben kann. Nach einem Satz von Rabin und Scott [RS59] kann N in einen dquivalenten
DEA tiberfiihrt werden. Folglich ist der Wertebereich durch einen endlichen Automaten
entscheidbar und daher eine regulére Sprache [HU79). [ |
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Behauptung A.3. (i) = (i)

Beweis. Sei A € REG. Folglich existiert ein DEA D mit L(D) = A [HU79]. Wir erhalten
einen DEA F, der genau wie D arbeitet und in jedem Ubergang das gerade eingelesene
Symbol ausgibt. Offenbar berechnet F' das FDEA-Beweissystem

h(w) = {w falls w € A
1 sonst

Der Wertebereich von h entspricht nach Definition genau A, da h(w) = w fir w € A.
Gleichzeitig gilt dann fiir jedes FDEA-Beweissystem ¢ fir A, dass g(z) = h(g(w)) fir
jedes beliebige x € 3. Wegen g € FDEA C FL ist h also l-optimal. |

Da (7ii) = (ii) bereits per Definition gilt, folgt nach einem Ringschluss die behauptete
Aquivalenz. O
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