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Zusammenfassung

In der Beweiskomplexität ist bisher nicht geklärt, ob außerhalb von NP Sprachen mit
(p-)optimalem Beweissystem existieren. Diese Arbeit soll dazu beitragen zu verstehen,
wieso diese Existenzfragen schwierig sind. Wir erweitern dazu die übliche Definition von
Beweissystemen von Cook und Reckhow [CR79], indem wir andere Berechnungskom-
plexitäten betrachten. Für diese modifizierte Definition kann dann das Verhalten der
Fragen untersucht werden. Speziell für auf logarithmischen Raum beschränkte Beweis-
systeme untersuchen wir diese Existenzfragen anhand einer Reihe von Überlegungen,
die ursprünglich bei Messner [Mes01] für die übliche Definition erschienen sind. Wir
entwickeln außerdem eine Technik, mit der wir FP-Beweissysteme in FL-Beweissysteme
übersetzen können. Das setzt die Existenzfragen für die beiden Definitionen in Verbin-
dung und eröffnet neue Wege, die ursprünglichen offenen Fragen zu untersuchen.
Einen Überblick über die wichtigsten Resultate liefert die folgende Auflistung:

• Jede Sprache in L hat ein l-optimales FL-Beweissystem. Jede Sprache in NP hat
ein optimales FL-Beweissystem (Satz 3.2).

• Sprachen mit (l-)optimalem FL-Beweissystem sind unter ≤log
m ,∩ und × abgeschlos-

sen (Satz 3.4, Satz 3.6).

• Sprachen mit l-optimalem FL-Beweissystem haben einen raumoptimalen Akzeptor.
Für Sprachen mit padding-Eigenschaft gilt auch die Rückrichtung (Satz 3.7).

• Für beliebig komplexe raumkonstruierbare s : N → N existieren Sprachen /∈
DSPACE(O(s)) mit raumoptimalem deterministischen Akzeptor (Satz 3.22).

• Es existieren beliebig komplexe Sprachen ohne (l-)optimales FL-Beweissystem. Ins-
besondere haben ≤log

m -harte Mengen für DSPACE(s) ) L kein l-optimales FL-
Beweissystem (Satz 3.16).

• Das Standardbeweissystem für GAP ist genau dann l-optimal, wenn L = NL
(Satz 4.2).

• A ⊆ Σ∗ hat ein optimales FL-Beweissystem ⇐⇒ A hat ein optimales FP-
Beweissystem (Satz 4.4).

• A ⊆ Σ∗ hat ein l-optimales FL-Beweissystem =⇒ A hat ein p-optimales FP-
Beweissystem (Satz 4.8).
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1. Einführung

Das Beweisen hat in der Mathematik einen zentralen Stellenwert. Indem man Beweise
liefert, will man sich von der Korrektheit von Behauptungen überzeugen und diese Kor-
rektheit mit anderen kommunizieren. Dabei ist es nicht immer einfach, für eine wahre
Aussage auch einen Beweis zu finden. Ein berühmtes Beispiel ist der Beweis zum großen
Fermatschen Satz. Dieser blieb trotz des großen Interesses über Jahrhunderte unbewie-
sen und wurde erst 1994 von Andrew Wiles gefunden. Ein weiteres bemerkenswertes
Beispiel ist der Beweis für LIN = coLIN. Lange Zeit war unklar, ob diese Beziehung gilt.
Im Jahr 1987 wurde dieses Problem dann unabhängig von Robert Szelepcsényi und Neil
Immerman gelöst. Dieser Beweis ist deshalb bemerkenswert, da er überraschend einfach
ist. Obwohl die Antwort auf die Frage über Jahrzehnte unbekannt war, war ein knapper
und einfacher Beweis möglich. Auch lange Zeit offene Probleme sind also nicht zwingend
nur mit sehr komplizierten Beweisen lösbar.

Unabhängig davon, wie schwierig ein Beweis auffindbar war, sollte er von anderen
leicht überprüft werden können. Mathematische Argumente sind dafür so aufgebaut,
dass feste Regeln auf bereits verifizierte Wahrheiten angewandt werden, um neue Aussa-
gen zu folgern. Dabei können die einzelnen Regelanwendungen sehr leicht nachvollzogen
werden, da jede Regel nur auf einer konstanten Anzahl an vorhergehenden Wahrheiten
aufbaut. Es ergibt sich eine Reihe an aufeinanderfolgenden Regelanwendungen, die se-
parat voneinander sehr lokal und ohne Schwierigkeit geprüft werden können. Um dann
einen gesamten Beweis zu verstehen und zu prüfen, kann ein Mathematiker den Referen-
zen auf vorhergehende Resultate folgen und auch deren Korrektheit leicht nachvollziehen.
So ergibt sich insgesamt die Korrektheit des gesamten Beweises.

Dieses Bild ist die grundlegende Motivation der vorliegenden Arbeit. Der üblicherweise
in der Beweiskomplexität verwendete Begriff von ”leichter“ Überprüfbarkeit beschränkt
nämlich nur die Zeit, die ein Prüfer zum verstehen braucht. Dabei kann aber auch zuläs-
sig sein, dass der Prüfer in dieser Zeit weitere Notizen machen muss, um Lücken in den
Argumenten zu füllen. Diese Notizen könnten demnach auch die Länge des gegebenen Be-
weises übertreffen. Unsere Anschauung führt uns jedoch zu Beweisen, für deren Prüfung
wir uns nur Positionen im Beweis merken müssen, um kurzzeitig zu Zwischenresultaten
zurückzuspringen. Der Prüfer soll sich nicht signifikant mehr merken müssen. Das be-
deutet, dass der Beweis bereits so ausführlich geschrieben sein muss, sodass ausführliche
Notizen eines Prüfers nicht erforderlich sind.

Wir betrachten in dieser Arbeit nicht menschliche Prüfer, sondern wollen die Verifika-
tion von Beweisen algorithmisch durchführen. Um den Wahrheitsbegriff für Algorithmen
greifbar zu machen, stellen wir alle möglichen Behauptungen als Folge von Zeichen dar.
Die Menge der Zeichenketten aller wahren Aussagen bilden dann eine Teilmenge die-
ser Zeichenfolgen, wir können die Menge der wahren Elemente daher als eine Sprache
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auffassen. Unser Algorithmus muss dann nur Aussagen der Form ”x ∈ A“ überprüfen,
denn eine Behauptung ist genau dann wahr, wenn das entsprechende Wort in A enthal-
ten ist. Wir brauchen außerdem ein Verständnis davon, was Effizienz von Algorithmen
bedeutet. Dazu betrachten wir, wie in der Komplexitätstheorie üblich, den Bedarf an
Speicher und Zeit abhängig von der Eingabelänge. Für ein System, dessen Beweise noch
nicht ausreichend effizient geprüft werden können, könnten wir die Beweise also künst-
lich verlängern. Dadurch stünden dem Algorithmus mehr Ressourcen zur Verfügung,
um auch die Beweissuche selbst durchzuführen. Wir haben aber bereits eine Trennung
zwischen den Schwierigkeiten von Beweissuche und Verifikation beschrieben. Es könnte
also sein, dass nach einem anderen Verfahren Beweise angegeben werden können, in dem
diese künstliche Verlängerung nicht benötigt wird und das so deutlich kürzere Bewei-
se zulässt. Im Längenunterschied der Beweise dieser Systeme können wir den eingangs
beobachteten Unterschied zwischen der Suche nach einem Beweis und dem Prüfen von
Beweisen wiedererkennen.

Möchte man Beweissysteme vergleichen, so ist es naheliegend die Beweislängen zu
vergleichen. Wir interessieren uns in dieser Arbeit insbesondere für beste Beweissysteme,
also Beweissysteme in denen alle wahren Aussagen kürzestmögliche Beweise besitzen.
Wir nennen solche Beweissysteme optimal. Es ist unklar, für welche Sprachen solche
Systeme existieren. Wir können nun die Frage stellen, ob beliebig komplexe Sprachen
existieren, die ein solches optimales Beweissystem haben. Eine negative Antwort auf diese
Frage würde bedeuten, dass nur gewisse ”einfache“ Sprachen optimale Beweissysteme
aufweisen können und wir für komplexere Sprachen nicht darauf hoffen können, dass ein
einzelnes Beweissystem bereits die bestmöglichen Ergebnisse erzielt. Umgekehrt können
wir auch fragen, ob es überhaupt beliebig komplexe Sprachen gibt, die kein optimales
Beweissystem haben. Würde diese Frage negativ beantwortet, so hätten wir automatisch
auch die erste Frage positiv beantwortet. Wir wissen also, dass mindestens eine der
beiden Fragen eine positive Antwort haben muss.

Messner [Mes01] hat in seiner Doktorarbeit solche Fragen untersucht. Er findet be-
liebig komplexe Sprachen ohne optimale Beweissysteme, er kann jedoch nicht klären,
ob außerhalb von NP Sprachen mit optimalem Beweissystem existieren. Er betrachtet
außerdem eine weitere Technik, mit der Beweissysteme nach schärferen Kriterien ver-
glichen werden können. Hier wird nicht nur die Beweislänge verglichen, sondern es wird
sogar gefordert, dass der Beweis eines Systems effizient in den Beweis des anderen über-
setzt werden kann. Ein Beweissystem, welches in jedes andere übersetzt werden kann,
heißt auch p-optimal. Hier stellen sich genauso die Fragen nach Existenz von Sprachen
außerhalb von NP mit p-optimalem Beweissystem. Auch hier kann Messner zeigen, dass
beliebig komplexe Sprachen ohne p-optimales Beweissystem existieren, die zweite Fra-
ge bleibt jedoch erneut unklar. Messner kann diese Fragen nur unter Annahme von
Kollapsvermutungen beantworten. Da er nicht zeigen kann, dass diese Annahmen auch
notwendig sind, könnte es aber möglich sein, diese Bedingungen zu verbessern.

Wir wollen in dieser Arbeit einen Beitrag zur Untersuchung solcher Grenzen liefern.
Wir ändern dafür die übliche Definition von Beweissystemen ab und schränken die Be-
rechnungskomplexität von Beweissystemen stärker ein. Da p-Simulation in diesem Kon-
text keine konstruktive Übersetzung mehr liefert, die Übersetzung kann also nicht selbst
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als Teil eines Beweissystems durchgeführt werden, führen wir hierfür den stärkeren Be-
griff der l-Simulation ein. Für die neuen scheinbar schwächeren Beweissysteme unter-
suchen wir dann, ob beliebig komplexe Sprachen mit optimalem bzw. l-optimalem FL-
Beweissystem und analog beliebig komplexe Sprachen ohne optimales bzw. l-optimales
FL-Beweissystem existieren. Wir interessieren uns dabei besonders dafür, ob diese Exis-
tenzfragen durch die stärkere Einschränkung der Beweissysteme leichter werden. An-
hang A zeigt, dass ein solcher Effekt für eine ausreichend starke Einschränkungen tat-
sächlich auftritt. Wir werden jedoch auch zeigen, dass für weniger starke Einschränkun-
gen die Fragen noch eng mit den Varianten bei Messner zusammenhängen und diese
teilweise sogar implizieren.

Im Rest dieses Kapitels widmen wir uns einer allgemeinverständlichen Erklärung von
Beweissystemen. Im Sinne der Lesbarkeit verzichten wir dabei auf technische Details
und Definitionen. Kapitel 2 soll dann dazu dienen, diese Anschauungen mathematisch
präzise zu machen. In Kapitel 3 sind Beweise zu finden, die bereits bei Messner [Mes01]
geführt wurden und die durch kleine Modifikationen in den Kontext unserer schwäche-
ren Beweissysteme gebracht werden können. Das ist nicht für alle Beweise möglich. In
Kapitel 4 versuchen wir dann die Besonderheiten unserer Beweissysteme auszunutzen
und folgern insbesondere einen engen Zusammenhang zwischen den Definitionen von
Beweissystemen. Diese Arbeit soll einen Beitrag leisten, die Schwierigkeiten der gestell-
ten Existenzfragen besser zu verstehen, indem das Verhalten dieser Fragen unter leichter
Modifikation der zugrundeliegenden Definitionen untersucht wird.

1.1. Beweissysteme
Beweise in der Mathematischen Logik Das Gebiet der Mathematischen Logik hat
den Begriff von Beweisen präzisiert. Üblicherweise leitet man hier eine Aussage nach fest
definierten Regeln aus anderen Aussagen (Axiomen) her. Welche Regeln und Axiome
genau verwendet werden, hängt vom verwendeten System ab. Ein Beispiel dafür ist
das Kalkül des natürlichen Schließens von Gerhard Gentzen. Der folgende Beweisbaum1

beweist einen Teil der De Morganschen Gesetze.

u3 : ϕ ∨ ψ

u1 : ϕ
u0 : ¬ϕ ∧ ¬ψ

(iv)
¬ϕ

(iii)
⊥

u2 : ψ
u0 : ¬ϕ ∧ ¬ψ

(iv)
¬ψ

(iii)
⊥

(v); u1, u2⊥
(iii); u3¬ϕ ∨ ψ

(ii); u0(¬ϕ ∧ ¬ψ) → ¬(ϕ ∨ ψ)

Hier steht die zu beweisende Behauptung in der Wurzel eines Baums. Die Wahrheit jedes
inneren Knotens geht aus seinen Vorgängerknoten sowie einer festen Menge an Regeln

1Wir orientieren uns hier am Kalkül des natürlichen Schließens, wie es von Freund [Fre23] verwendet
wird. Römische Ziffern geben an, welche Schlussregel angewendet wird. Mit ui sind die verschiedenen
Annahmen gekennzeichnet. Kann eine Annahme nach Schlussregel entfernt werden, wird das neben
der Nummer der Schlussregel gekennzeichnet.
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hervor. Im Kontext der Beweiskomplexität können wir zwei Beobachtungen machen.
Zunächst ist es oft keine einfache Aufgabe, einen passenden Beweisbaum zu konstruieren.
Es ist nicht eindeutig klar, welche Vorgänger man wählen muss, um in einem Blatt
ein Axiom zu erhalten. Andererseits kann, gegeben einen Beweisbaum, die Korrektheit
leicht nachvollzogen werden, wenn man die Regeln des natürlichen Schließens kennt.
Es ist ausreichend, von den Blättern ausgehend immer die Korrektheit einer einzelnen
Regelanwendung zu prüfen. Ein Verifier kann so die globale Entscheidung auf eine Reihe
von lokalen zurückführen, die leicht zu treffen sind. Eine prüfende Maschine muss dafür
nur den Beweis einlesen und seine Struktur erkennen können.

Dieser Effekt ist auch nicht auf das natürliche Schließen beschränkt. Vielmehr ist das
eine Gemeinsamkeit vieler logischer Kalküle. Das zeigt, dass der bereits beobachtete
Effekt nicht auf in der Praxis geführte Beweise beschränkt ist und motiviert daher die
abstraktere Betrachtungsweise von Beweissystemen dieser Arbeit. Diese wollen wir nun
im Folgenden genauer untersuchen.

Formale Beweissysteme Wir nähern uns dem Begriff von Beweissystemen zunächst
über die beobachtete Verifizierbarkeit. Ein Beweissystem lässt sich dafür als Maschine
auffassen, die als Eingabe zwei Wörter c und p (Behauptung und Beweis) aus einer forma-
len Sprache erhält. Falls p tatsächlich ein korrekter Beweis für c ist, so gibt die Maschine
wahr aus, ansonsten falsch. Wir müssen natürlich fordern, dass sich das Beweissystem
korrekt verhält, dass also ausschließlich für wahre Behauptungen c ein Beweis existiert,
mit dem c akzeptiert wird. Für jede falsche Behauptung muss also das Beweissystem
mit jedem Beweis die Falschheit erkennen. Das heißt nicht, dass die Maschine bereits für
einen konkreten Beweis erkennt, dass die Behauptung allgemein falsch ist, sondern nur,
dass der gegebene Beweis für die Behauptung nicht korrekt ist.

Außerdem soll ein Beweissystem vollständig sein, sodass auch für jede wahre Behaup-
tung ein passender Beweis existiert, mit dem das Beweissystem die Wahrheit erkennen
kann. Es ist zu beachten, dass eine wahre Behauptung nicht mit jedem Beweis akzeptiert
werden muss, bereits die Existenz eines einzigen Beweises genügt uns.

Wir wollen schließlich noch fordern, dass die Maschine nur leichte Berechnungen durch-
führen kann. Dadurch ist sichergestellt, dass die Schwierigkeit der Verifikation unabhän-
gig von der Suche nach dem Beweis selbst ist. Für diese Schranke kann man sich einen
Computer vorstellen, der mit begrenzten Ressourcen die Funktion ausrechnen soll, die
zwischen wahr und falsch unterscheidet. Um den Beweis zu prüfen kann er nur simp-
le Schlüsse selbst ziehen, die wesentlichen Gedanken des Beweises müssen ihm explizit
gegeben sein. Wir belassen es an dieser Stelle bei dem unpräzisen Begriff von ”leich-
ten“ Berechnungen, in Kapitel 2 definieren wir diesen Begriff aber exakt. Tatsächlich
werden wir dort Beweissysteme so einführen, dass wir Beweissysteme auf verschiedene
Berechnungskomplexitäten beschränken können.

Wir wollen diese Anschauung nun an einem Beispiel betrachten. Wir betrachten dafür
Aussagen der Form ”x ist das Produkt von genau zwei Primzahlen“ mit natürlichen Zah-
len x. Mit Ω bezeichnen wir genau die Zahlen, für die diese Aussage wahr ist. Bekommen
wir nun eine Zahl x gegeben, so fällt es uns vermutlich schwer herauszufinden, ob diese
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in Ω enthalten ist. Tatsächlich basiert die Sicherheit einiger moderner kryptographischer
Verfahren wie beispielsweise RSA darauf, dass die Primfaktoren einer Zahl nicht effizient
berechenbar sind. Will uns jemand davon überzeugen, dass die Aussage für x wahr ist,
so können wir zusätzlich zu x selbst noch die beiden Primfaktoren verlangen. Ist tat-
sächlich x ∈ Ω, so existieren diese Primfaktoren. Wir müssen sie nur multiplizieren und
erkennen so leicht, dass x tatsächlich das Produkt von zwei Primzahlen ist. Ist x dagegen
kein Element von Ω, so kann es kein Primzahlpaar geben, mit dem wir getäuscht wer-
den können. Das Multiplizieren von zwei Zahlen ist ausreichend einfach, sodass unser
Beweissystem effizient von einer Maschine berechnet werden kann. Außerdem können
Maschinen effizient prüfen, ob eine gegebene Zahl eine Primzahl ist.

Interessieren wir uns für die Länge der Eingabe, so ist es häufig sinnvoll, die zu bewei-
sende Aussage vollständig vom Beweis zu trennen. Erhält die Maschine nur den Beweis
als Eingabe, so entspricht die Beweislänge genau der Länge der Eingabe. Statt wahr und
falsch soll die Maschine nun für ihre Eingaben Behauptungen ausgeben. Korrektheit
stellen wir nun sicher, indem ausschließlich wahre Behauptungen ausgegeben werden,
Vollständigkeit indem jede wahre Behauptung für mindestens eine Eingabe ausgegeben
wird. Auch diese Maschine soll effizient rechnen. Es mag zunächst seltsam wirken, dass
das Beweissystem nicht explizit erfährt, welche konkrete Behauptung bewiesen werden
soll. Diese Information muss aus dem Beweis selbst extrahiert werden. Im eben genann-
ten Beispiel würde das Beweissystem für Ω nun nur noch Zahlen erhalten. Falls genau
zwei Primzahlen p und q eingegeben wurden, kann das Beweissystem ihr Produkt p · q
ausgeben. Wir können (p, q) insofern als Beweis für p · q auffassen, da wir wissen, dass
unser Beweissystem ausschließlich Werte aus Ω ausgibt.

1.2. Simulationen zwischen Beweissystemen
Um die Mächtigkeit von Beweissystemen miteinander vergleichen zu können, führen wir
nun ein paar Begriffe ein. Wir vergleichen Beweissysteme zunächst rein auf Basis der
Länge ihrer Beweise. Man spricht von Simulation, wenn Beweissystem A verglichen mit
Beweissystem B nur unerheblich längere Beweise erfordert. Für jeden B-Beweis muss al-
so ein A-Beweis für die identische Behauptung existieren, der nur unerheblich länger ist.
Was genau mit ”nur unerheblich länger“ gemeint ist, werden wir in Kapitel 2 mathema-
tisch präzisieren. Wollen wir ein Beweissystem mit jedem anderen System der gleichen
Sprache vergleichen, so können wir das über den Begriff von optimalen Beweissystemen
tun. Wir nennen ein Beweissystem optimal, wenn es jedes Beweissystem für die gleiche
Menge simuliert. In gewisser Hinsicht kann man optimale Beweissysteme also als best-
mögliche Systeme verstehen, da kein anderes Beweissystem signifikant kürzere Beweise
zulässt. Möchte man also zeigen, dass kein Beweissystem einer Sprache überall kurze Be-
weise haben kann, so kann man ein optimales Beweissystem betrachten. Man muss dann
nur zeigen, dass dieses optimale Beweissystem nicht überall kurze Beweise hat. Dieses
Vorgehen im Bezug auf die NP ?= coNP Frage ist auch als Cooks Programm [Bus12]
bzw. Cook-Reckhow Programm [Bey12] bekannt.
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Es gibt noch einen weiteren Simulationsbegriff für Beweissysteme, den wir zur Ab-
grenzung zunächst wie in der Literatur üblich als p-Simulation bezeichnen werden (die
schärfere l-Simulation werden wir erst später definieren). Für die p-Simulation ist es
nicht ausreichend, nur die Länge von Beweisen zu betrachten. Hier wollen wir zusätz-
lich fordern, dass aus Beweisen des simulierten Systems sogar effizient entsprechende
Beweise des simulierenden Systems berechnet werden können. Intuitiv kann man diese
Art der Simulation daher so verstehen, dass das simulierende System bereits mit gering-
fügig umformulierten Beweisen des simulierten Systems arbeiten kann. Man muss also
einen gegebenen Beweis höchstens leicht anpassen, damit er im simulierenden System
verstanden wird, man muss aber keinen grundlegend neuen Beweis finden.

Wie auch bei normaler Simulation wollen wir Systeme, die jedes Beweissystem für
die gleiche Sprache p-simulieren, als p-optimal bezeichnen. Solche Systeme kann man
als universelle Beweissysteme auffassen. In gewisser Weise existiert kein besseres Kalkül,
da das p-optimale System bereits jedes andere Beweissystem bzw. eine Umformulierung
davon enthält. Besonders interessant wirkt diese Variante der Simulation im Kontext
von konstruktiven und nicht-konstruktiven Beweisen. Ist nur nach der Existenz einer
Lösung gefragt, so könnte es möglich sein, diese zu beweisen, ohne dabei eine konkre-
te Lösung anzugeben. Ist aber ein Beweissystem, in welchem die Lösung bereits Teil
des Beweises ist, p-optimal, so können auch aus solchen nicht-konstruktiven Beweisen
effizient konkrete Lösungen bestimmt werden.

1.3. Komplexität
Berechnungskomplexität Ein übliches Maß für die Schwierigkeit einer Berechnung ist
die benötigte Laufzeit des Algorithmus. Diese wird abhängig von der Länge der Eingabe
gemessen, für längere Eingaben bekommt ein Algorithmus also mehr Zeit für die Ver-
arbeitung. Deterministische Algorithmen, deren Laufzeit höchstens polynomiell in der
Länge der Eingabe wächst, erachtet man in der Regel als effizient. Es hat sich daher in der
Komplexitätstheorie etabliert, Beweissysteme auf polynomielle Laufzeit einzuschränken.
Dagegen wird Speicher als Ressource in diesem Kontext eher selten beachtet. Eine Aus-
nahme ist Bonacina [Bon18], der für konkrete Beweissysteme den Speicher untersucht.
Sogar Bonacina macht die Effizienz von Beweissystemen aber nicht an einer Schranke für
den Speicherbedarf fest. Dabei haben wir zu Beginn des Kapitels bereits erkennen kön-
nen, dass es für Beweise im Sinne der mathematischen Praxis wünschenswert wäre, sich
für das Prüfen nur Referenzen in den Beweis merken zu müssen. Für Algorithmen kann
man diese stärkere Einschränkung dadurch ausdrücken, dass man sich auf logarithmi-
schen Speicher beschränkt. Auch wenn man übliche Beweissysteme der mathematischen
Logik wie das bereits genannte Kalkül des natürlichen Schließens oder auch das Se-
quenzenkalkül betrachtet, so scheint die Einschränkung auf logarithmischen Raum die
natürlichere Wahl zu sein. Diese Kalküle lassen sich nämlich auch Überprüfungen ohne
viel zusätzlichen Speicher zu, da die einzelnen angewandten Regeln sehr leicht prüfbar
sind.
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Wie auch Zeit, messen wir den Speicherbedarf abhängig von der Eingabelänge, wobei
wir aber den Speicher für Ein- und Ausgabe nicht mitzählen. In dieser Arbeit verwenden
wir vor allem eine Einschränkung der Speicherkomplexität unserer Beweissysteme, mit
der wir einen schärferen Effizienzbegriff erreichen. Eine Einschränkung des Speichers
bedeutet gleichzeitig auch eine beschränkte Laufzeit. Unsere Wahl von logarithmischem
Raum beschränkt die Beweissysteme auch weiterhin auf polynomielle Laufzeit, lässt aber
keinen polynomiellen Raum mehr zu. Somit ist die in dieser Arbeit untersuchte Menge
an Beweissystemen eine Teilmenge der üblichen.

Ein zentrales Konzept für unseren Effizienzbegriff ist das asymptotische Wachstum.
Ist ein Algorithmus für ein Problem gegeben, so ist es eine leichte Aufgabe für einzelne
Probleminstanzen den Ressourcenverbrauch zu minimieren. Dafür kann man das Er-
gebnis des Algorithmus auf diesen Instanzen bereits vorher bestimmen und in einem
modifizierten Algorithmus nun abfragen, ob einer der bekannten Fälle gefragt ist. Dieses
Vorgehen funktioniert aber nur für endlich viele Modifikationen, da sonst allein die Lis-
te der zu prüfenden Sonderfälle unendlich wäre. Wir betrachten daher vorwiegend den
asymptotischen Verbrauch von Ressourcen für genügend große Eingaben.

Arbeitet ein Beweissystem mit begrenzten Ressourcen, so ist klar, dass für Aussagen,
die nur mit hohem Ressourcenaufwand beweisbar sind, der Beweis nicht vom Prüfer
selbst gefunden werden kann. Um die Maschine dennoch von der Korrektheit der Eingabe
zu überzeugen wird es daher nötig, bereits beim Auffinden des Beweises die Arbeit, die
der Prüfer nicht selbst ausführen kann, vorwegzunehmen und so zu dokumentieren, dass
der Prüfer sie nachvollziehen kann. Daraus resultieren längere Beweise.

Beweiskomplexität Es ist naheliegend, auch die Länge von Beweisen als eine Art Res-
source zu betrachten. Die Beweislänge wird dabei abhängig von der Länge des Bewiese-
nen betrachtet. Intuitiv darf also für kompliziertere Behauptungen auch der Beweis län-
ger werden. Ist eine Menge gegeben, so kann man nun fragen, ob für beliebige Systeme
eine untere Schranke angegeben werden kann. Wie auch für Zeit und Raum betrachten
wir die Asymptotik der Beweislänge, da jedes Beweissystem um kurze Beweise für eine
endliche Menge ergänzt werden kann.

Hat man eine feste Menge gegeben, so ist oft bereits eine untere Schranke für die
Beweislänge interessant. Man untersucht also, ob jedes Beweissystem für diese Menge
asymptotisch mindestens eine gewisse Beweislänge hat. Auf den ersten Blick scheint
diese Fragestellung unabhängig von den Fragen der Komplexitätstheorie zu sein. Doch
versteht man Beweissysteme als Verifier, so wird klar, dass es Zusammenhänge geben
muss. Es wird beispielsweise der Zusammenhang mit nichtdeterministischen Berechnun-
gen offenbar. Kennt man ein Beweissystem mit beschränkter Beweislänge, so kann man
die bewiesene Menge entscheiden, indem man nichtdeterministisch den Beweis rät und
schließlich prüft, ob ein korrekter Beweis für die Eingabe gefunden wurde. Da die Be-
weislänge beschränkt ist, kann man auf die Laufzeit dieses Algorithmus schließen. Dieser
Zusammenhang ist der Kern des bereits genannten Cook-Reckhow Programms. Es ist
bekannt, dass genau dann NP = coNP gilt, wenn ein Beweissystem für TAUT mit
höchstens polynomiell langen Beweisen existiert [CR79]. Um dieses berühmte Problem
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zu lösen, könnte man also ein Beweissystem für TAUT mit kurzen Beweisen suchen oder
nachweisen, dass ein optimales Beweissystem für TAUT nicht überall kurze Beweise hat.

Bei Fenner et al. [FFNR03] sowie bei Pudlák [Pud17] zeigt sich außerdem, dass auch
p-optimale Beweissysteme eine enge Beziehung mit Fragen aus der Komplexitätstheorie
aufweisen. Es gelingt auch Messner [Mes01] eine Reihe von Kollapsvermutungen der
Komplexitätstheorie mit Vermutungen der Beweiskomplexität in Verbindung zu setzen.
Eine tiefere Diskussion der hier genannten Resultate würde den Rahmen sprengen, daher
sei an dieser Stelle darauf verzichtet. Aus solchen Beziehungen können wir jedoch die
Motivation ziehen, die Fragen dieser Arbeit zu untersuchen.
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2. Vorbereitungen
Wir wollen nun zunächst Berechnungen formalisieren. In unseren Berechnungen erhalten
wir immer eine Eingabe und wollen nach fest definierbaren Regeln eine Ausgabe tätigen.
Ein- und Ausgabe müssen dargestellt werden. Dafür verwenden wir ein Alphabet Σ mit
dessen Symbolen die Objekte codiert werden können. Als Standardalphabet werden wir
in dieser Arbeit Σ = {0, 1} verwenden. Sprachen über anderen Alphabeten lassen sich
gegebenenfalls effizient in {0, 1} umcodieren.

Wir führen nun zunächst Notationen für Worte und Sprachen ein. Ein Wort w über
Σ ist eine Zeichenkette w1, . . . , wn mit wi ∈ Σ. Die Länge von w ist die Länge der
Zeichenkette und wird als |w| geschrieben. Die Menge der Worte über Σ mit Länge
n schreiben wir als Σn. Die Worte über Σ der Länge mindestens bzw. höchstens n
bezeichnen wir entsprechend mit Σ≥n bzw. Σ≤n. Die Menge aller Worte über Σ wird
mit Σ∗ bezeichnet. Für eine kompaktere Darstellung schreiben wir ein Wort auch als
Konkatenation seiner Bestandteile. Das Wort der Sequenz w1, w2, w3, . . . , wn bezeichnen
wir also auch mit w1w2w3 . . . wn.

Wollen wir nun Objekte codieren, so können wir eine invertierbare Abbildung dieser
Objekte in Σ∗ verwenden. Besonders interessant ist das, wenn wir mehrere Objekte co-
dieren wollen. Die resultierende Funktion nennen wir Listencodierung. Wir verwenden
dafür in den folgenden Kapiteln eine Standardcodierung, in der man die Codierung der
einzelnen Objekte verwendet, ihre Symbole jeweils dupliziert und durch ein alternieren-
des Paar Trennungen einfügt. Diese Codierung schreiben wir kurz durch 〈a1, . . . , an〉.
Wir wählen diese Codierung, da die Codierung von Listen so ausreichend kurz ist und
andererseits die Liste effizient decodiert werden kann.

2.1. Turingmaschinen
Um nun über die Komplexität von Rechnungen auf codierten Objekten argumentieren
zu können, definieren wir ein Maschinenmodell, welches unseren Berechnungsbegriff dar-
stellen soll. Wir orientieren uns dabei an Turingmaschinen (TM), wie sie von Homer und
Selman [HS11] verwendet werden.

Intuitiv besteht eine solche Maschine aus vier Bestandteilen. Die Maschine hat eine
Steuereinheit, die immer einen von endlich vielen Zuständen speichert. Weiterhin hat die
Maschine eine endliche Anzahl von beidseitig unbegrenzten Bändern mit je einem Lese-
und Schreibkopf. Diese Bänder sind in Zellen unterteilt, von denen jede genau ein Symbol
aus Σ oder ein Leersymbol � /∈ Σ enthält. Auf den Arbeitsbändern können sich die
Köpfe in jedem Takt nach links oder rechts bewegen. Sie können außerdem das Symbol
an ihrer aktuellen Position verändern und abhängig von den Regeln der Steuereinheit
überschreiben. Den Inhalt eines Bands kann man durch das kürzeste b ∈ Σ∗ ∪ {�}
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darstellen, für das der Bandinhalt genau . . .��b�� . . . ist. Auf einem Eingabeband erhält
die Maschine die Eingabe für die Rechnung. Dieses Band ist read-only. Außerdem hat
die Maschine ein Ausgabeband, auf dem das Ergebnis der Rechnung ausgegeben wird.
Hier kann die Maschine weder lesen noch explizit die Position verändern. Schreibt die
Maschine ein Symbol auf das Ausgabeband, so verschiebt sich stattdessen der Kopf auf
diesem Band automatisch um eine Position nach rechts. So ist sichergestellt, dass einmal
ausgegebene Symbole nicht wieder überschrieben werden.

Formal können wir eine Turingmaschine mit k Arbeitsbändern wie folgt definieren.

Definition 2.1 (Turingmaschine). Eine k-Band Turingmaschine (k-TM) ist vollständig
durch (Σ, Z, δ, z0, F ) beschrieben, wobei

• Σ ein Alphabet mit � /∈ Σ,

• Z eine endliche nichtleere Menge von Zuständen,

• δ ⊆ (Z × (Σ ∪ {�})k+1) × (Z × (Σ ∪ {�})k+1 × {L,O,R}k+1) eine Überführungs-
relation,

• z0 der Startzustand und

• F ⊆ Z die Menge an akzeptierenden Zuständen ist.

Ist δ sogar eine partielle Funktion, so nennen wir die Maschine auch deterministisch.
Um zu betonen, dass kein Determinismus gefordert ist, können wir sonst auch von
nichtdeterministischen Maschinen sprechen. Diese schließen die deterministischen mit
ein.

Definition 2.2 (Konfiguration einer TM). Die Konfiguration einer k-TM ist durch
ihren Zustand sowie die vollständigen Inhalte ihrer lesbaren Bänder mit den jeweiligen
Kopfpositionen gegeben. Das Ausgabeband ist kein Bestandteil der Konfiguration.

Definition 2.3 (Rechenweg einer TM). Die Berechnung einer TM M auf einer Eingabe
x bezeichnen wir mit M(x). Ein Rechenweg einer solchen Berechnung ist eine Sequenz
K1,K2, . . . von Konfigurationen, wobei sich M in K1 genau im Startzustand befindet, x
auf dem Eingabeband steht und alle anderen Bänder leer sind. Eine Konfiguration Ki

wird dann in einem Takt in Ki+1 überführt. Ist diese Sequenz endlich mit der letzten
Konfiguration Kn, so ist entweder der Zustand in Kn akzeptierend (akzeptierender Re-
chenweg) oder es existiert in δ keine auf Kn anwendbare Regel (ablehnender Rechenweg).

Wir können zwei Arten von Problemstellung unterscheiden. Haben wir eine Teilmenge
A ⊆ Σ∗ gegeben und sollen für Worte x ∈ Σ∗ entscheiden, ob x ∈ A, so sprechen wir
von einem Entscheidungsproblem. Hier interessieren wir uns nicht für die Ausgabe der
Maschine, durch akzeptierende und ablehnende Rechenwege erhalten wir bereits die
gewünschte Information. Eine Maschine für ein solches Problem heißt Akzeptor. Soll die
Maschine eine Relation (im deterministischen Fall eine partielle Funktion) berechnen,
so ist der Inhalt des Ausgabebands eine Ausgabe der Maschine, falls sie sich in einem
akzeptierenden Zustand befindet. Eine solche Maschine nennen wir Transduktor.
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In der Komplexitätstheorie interessieren wir uns für die Ressourcen, die ein Algorith-
mus benötigt. Üblicherweise betrachtet man dafür Laufzeit und Speicherbedarf. Diese
Größen können wir nun für unser Berechnungsmodell definieren.

Definition 2.4 ([Pap94]). Die Laufzeit von M(x), geschrieben als timeM (x), ist die
Anzahl an Übergängen im längsten Rechenweg von M(x). Der von einer Konfiguration
verbrauchte Speicher ist das Maximum der Länge der Arbeitsbandsbandinhalte in der
Konfiguration. Der verbrauchte Speicher von M(x), geschrieben als spaceM (x) ist das
Maximum des Speicherverbrauchs der Konfigurationen, die auf einem Rechenweg von
M(x) eingenommen werden.

Definition 2.5. Die Komplexität von Sprachen ergibt sich aus einer Schranke für den
Ressourcenverbrauch auf allen Eingaben. Für eine Sprache A ⊆ Σ∗ und eine Schranke
f : N → N gilt:

• A ∈ NTIME(f) ⇐⇒ es existiert eine TM M mit timeM (x) ≤ f(|x|) für alle
x ∈ Σ∗, die genau A akzeptiert.

• A ∈ DTIME(f) ⇐⇒ es existiert eine deterministische TM M mit timeM (x) ≤
f(|x|) für alle x ∈ Σ∗, die genau A akzeptiert.

• A ∈ NSPACE(f) ⇐⇒ es existiert eine TM M mit spaceM (x) ≤ f(|x|) für alle
x ∈ Σ∗, die genau A akzeptiert.

• A ∈ DSPACE(f) ⇐⇒ es existiert eine deterministische TM M mit spaceM (x) ≤
f(|x|) für alle x ∈ Σ∗, die genau A akzeptiert.

Definition 2.6. Mit FP bezeichnen wir die Funktionen, die von einer deterministischen
TM in Polynomialzeit berechnet werden.

Definition 2.7. Mit FL bezeichnen wir die Funktionen, die von einer deterministischen
TM in logarithmischem Raum berechnet werden.

Eine übliche Technik um den Ressourcenverbrauch von Maschinen zu kontrollieren
ist, explizit die gewünschten Schranken zu berechnen. Dazu ist es natürlich nötig, die
Schranke bereits mit den begrenzten Ressourcen berechnen zu können. Solche Funktio-
nen nennen wir zeit- bzw. raumkonstruierbar.

Definition 2.8. Eine totale Funktion f : N → N heißt zeitkonstruierbar ⇐⇒ es existiert
eine deterministische TM, die auf Eingaben 0n in genau f(n) Takten akzeptierend hält.

Definition 2.9. Eine totale Funktion s : N → N heißt raumkonstruierbar ⇐⇒ es
existiert eine deterministische TM, die auf Eingaben 0n genau s(n) Speicher beschreibt
und dann akzeptierend hält.

Behauptung 2.10. Jede zeitkonstruierbare Funktion ist raumkonstruierbar.
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Beweis. Ist f raumkonstruierbar, so betrachtet man M , die auf 0n in f(n) Takten ak-
zeptiert. M kann höchstens f(n) Speicher beschreiben. Gleichzeitig kann eine Maschine
M ′ genauso arbeiten und auf einem zusätzlichen Arbeitsband in jedem Takt ein Symbol
schreiben sowie eine Rechtsverschiebung ausführen. Somit schreibt M ′ auch mindestens
f(n) Symbole.

Wir können in der Definition von Turingmaschinen sehen, dass eine TM durch endliche
Objekte eindeutig definiert ist. Es ist daher möglich, die Maschine selbst als Wort in Σ∗

zu codieren. Eine genaues Vorgehen liefern Homer und Selman [HS11]. Wählen wir als
Alphabet {0, 1}, so erhalten wir über die Binärdarstellung von Zahlen für jede TM eine
natürliche Zahl, die wir als Code der Maschine bezeichnen. Eine TM mit Code i schreiben
wir auch als Mi. Umgekehrt kann auch jede natürliche Zahl zu einer Maschine decodiert
werden. Zahlen, die zunächst kein gültiger Code einer TM sind, decodieren wir dabei zu
einer festen Maschine. Wir erhalten eine Aufzählung M1,M2, . . . aller Turingmaschinen.
Eine solche Aufzählung können wir auch erhalten, wenn wir uns auf deterministische
Maschinen beschränken, da man im Code einer Maschine bereits prüfen kann, ob diese
deterministisch ist.

Es ist bekannt, dass universelle Turingmaschinen existieren. Eine solche Maschine
erhält Eingaben der Form 〈i, x〉 und simuliert dann Mi auf Eingabe x. Wir verwenden in
dieser Arbeit eine Turingmaschine, die diese Simulation auch effizient durchführen kann.

Definition 2.11. U ist eine von Neary und Woods [NW12] garantierte universelle
Turingmaschine, die auf Eingaben 〈i, x〉 die Rechnung Mi(x) simuliert. Es gilt dabei
spaceU (〈i, x〉) ≤ ci · spaceMi

(x) + ci für eine Konstante ci, die nur von i abhängt.

Reduktionen Um in der Komplexitätstheorie die Schwierigkeiten von Problemen ver-
gleichen und die von Komplexitätsklassen charakterisieren zu können, verwendet man
Reduktionen. Dafür sind Funktionen nötig, die Instanzen eines Problems in die eines an-
deren übersetzt. Interessant sind solche Reduktionen vor allem dann, wenn die Berech-
nungskomplexität der Reduktionsfunktion nicht ausreicht, um die eingegebene Instanz
selbst zu entscheiden. Wir werden in Kapitel 3 zeigen, dass durch Reduktionen auch
Beweissysteme übertragen werden können.

Definition 2.12. Für A,B ⊆ Σ∗ ist A ≤p
m B ⇐⇒ es existiert eine totale Funktion

f ∈ FP, sodass für alle Worte x ∈ Σ∗ gilt x ∈ A ⇔ f(x) ∈ B.

Definition 2.13. Für A,B ⊆ Σ∗ ist A ≤log
m B ⇐⇒ es existiert eine totale Funktion

f ∈ FL, sodass für alle Worte x ∈ Σ∗ gilt x ∈ A ⇔ f(x) ∈ B.

Für manche Beweise benötigen wir eine zusätzliche Bedingung in der Reduktion. Hier
fordern wir zusätzlich, dass leichte Teilmengen des Ursprungsproblems auch auf leichte
Instanzen abgebildet werden.

Definition 2.14. Für zwei Sprachen A,B ⊆ Σ∗, Komplexitätsklassen C und D sowie
◦ ∈ {p, log} gilt A ≤◦

m,C−D ⇐⇒ A ≤◦
m B via einem f , sodass für jedes S ⊆ A mit

S ∈ C auch f(S) ∈ D gilt.
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2.2. Optimale Algorithmen
Definition 2.15 ([Mes01]). Sei M eine Menge an Turingmaschinen und S ⊆ Σ∗. Eine
Maschine M ∈ M ist zeitoptimal für M auf S ⇐⇒ für jede Maschine M ′ ∈ M
existiert ein Polynom p mit timeM (x) ≤ p(timeM ′(x) + |x|) für alle x ∈ S.

Definition 2.16. Sei M eine Menge an Turingmaschinen und S ⊆ Σ∗. Eine Maschine
M ∈ M ist raumoptimal für M auf S ⇐⇒ für jede Maschine M ′ ∈ M existiert eine
Konstante c mit spaceM (x) ≤ c · (spaceM ′(x) + |x|) für alle x ∈ S.

FL-Funktionen sind raumoptimal invertierbar

Bekanntes Resultat 1 (Messner Korollar 2.18). Für jede partielle Funktion h ∈
FP existiert ein zeitoptimaler Transduktor Ih zur Berechnung des Inversen von h.
Dabei hält Ih auf Eingaben außerhalb von Wh nicht, es gilt also Ih(y) 6= ⊥ ⇐⇒
y ∈ Wh.

Der Beweis bei Messner basiert auf einem Algorithmus von Levin [Lev73], mit dem
jedes NP-Problem bis auf polynomielle Unschärfe in optimaler Zeit gelöst werden kann.
Die Idee dieses Algorithmus ist, nach und nach die Arbeit aller Turingmaschinen zu
simulieren, wobei jede betrachtete Maschine zu gleichen Teilen Arbeitszeit erhält. Ab
einem gewissen Punkt wird dann auch eine Maschine simuliert, die die korrekte Lösung
liefert. Diese Technik lässt sich auch verwenden, um raumbeschränkte Probleme zu lösen.

Lemma 2.17. Für jede partielle Funktion h ∈ FL existiert ein raumoptimaler Trans-
duktor Ih zur Berechnung des Inversen von h. Dabei hält Ih auf Eingaben außerhalb von
Wh nicht, es gilt also Ih(y) 6= ⊥ ⇐⇒ y ∈ Wh.

Beweis. Sei M1,M2, . . . eine Aufzählung aller Turing Maschinen. Sei T ein Algorithmus,
der auf Eingaben 〈i, y, n〉 die Ausgabe von Mi(y) bestimmt und prüft, ob Mi ein Inverses
zu y berechnet. Der Parameter n dient dabei als Raumschranke.

Algorithmus 1 : T
Eingabe : i, y

1 wenn Mi(y) eine Ausgabe tätigt dann
2 x := Mi(y)
3 wenn h(x) = y dann
4 gib x aus

Behauptung 2.18. Es gilt spaceU (〈i, y〉) ∈ O(spaceMi
(y)).
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Beweis. In Zeile 2 muss nicht zwingend die ganze Ausgabe gespeichert werden. Da der
Speicher aus Zeile 1 wiederverwendet werden kann, um die Berechnung erneut durchzu-
führen, ist in Zeile 3 nur ein Zeiger auf das betrachtete Symbol von x nötig. Da x höchs-
tens exponentiell im Speicherverbrauch von Mi auf y liegt, gilt log |x| ∈ O(spaceMi

(y)).
Da außerdem h ∈ FL liegt, kann h(x) im gleichen Raum ausgewertet werden. Der Ver-
gleich mit y lässt sich analog durch Programmierung mit Zeigern lösen. Nach Neary und
Woods [NW12] ist schließlich auch die Simulation von Mi in Raum O(spaceMi

) möglich,
insgesamt gilt daher spaceU (〈i, y〉) ∈ O(spaceMi

(y)). �

Einen raumoptimalen Transduktor erhält man nun, indem man die Arbeit aller Tu-
ringmaschinen mit einer inkrementell wachsenden Raumschranke simuliert. Damit für
einen Wert der Raumschranke nur endlich viele Simulationen durchgeführt werden müs-
sen, erweitert man außerdem die Menge der simulierten Maschinen erst nach und nach.
So ist trotzdem sichergestellt, dass jede Maschine zumindest für eine ausreichend große
Raumschranke simuliert werden kann.

Algorithmus 2 : UE
Eingabe : y

1 für n = 0 bis ∞ tue
2 für i = 1 bis ∞ tue
3 wenn T (i, y) in Raum n eine Ausgabe tätigt dann
4 gib T (i, y) aus

Behauptung 2.19. UE arbeitet korrekt.

Beweis. Nach einem Resultat von Sipser [Sip80] können wir ohne Beschränkung der
Allgemeinheit annehmen, dass T ohne in Endlosschleifen zu geraten in der Raumschran-
ke n arbeitet. Das kann man in T durch einen Schrittzähler umsetzen. Daher ist die
Bedingung in Zeile 3 immer prüfbar.
UE imitiert die Ausgaben von U . Dort können nur solche x ausgegeben werden, für

die in Zeile 3 h(x) = y gilt. Für Eingaben y /∈ Wh kann UE also nicht terminieren.
Ansonsten existiert ein x mit h(x) = y und somit auch eine Maschine Mj , die konstant
x ausgibt. Für ein ausreichend großes n wird daher Mj simuliert, wonach der Algorithmus
terminieren muss. �

Behauptung 2.20. UE ist ein raumoptimaler Algorithmus für das Invertieren von
FL-Funktionen.

Beweis. Sei Mj nun eine beliebige TM, die h invertiert. Sobald in UE n ≥ j gilt,
wird die Arbeit von Mj simuliert. Die vollständige Simulation von Mj gelingt somit
in Raum O(max {j, cj · spaceMj

(y)}). Da j und cj jeweils Konstanten für Mj sind, ist
O(spaceMj

(y)) Raum ausreichend, damit UE die Ausgabe von Mj imitiert. Falls UE
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bereits vor der vollständigen Simulation von Mj terminiert, so müssen die Ausgaben
nicht übereinstimmen. Trotzdem sind beide korrekte Inverse. �

Durch eine Turingmaschine, die UE berechnet, erhält man den Transduktor Ih.

2.3. Beweissysteme
Ein Beweissystem für eine Menge A können wir als surjektive Funktion f : Σ∗ → A
auffassen. Für f(x) = y heißt x dann f -Beweis für y. Da wir wissen, dass f nur Werte
aus A ausgeben kann, folgt aus der Existenz eines f -Beweises für y bereits y ∈ A. Erhält
ein Verifier einen passenden Beweis für y, so kann er f(x) auswerten und sich so von
y ∈ A überzeugen. Umgekehrt wissen wir durch die Surjektivität von f , dass für jedes
Element von A auch ein passender f -Beweis existiert.

Es mag ungewohnt erscheinen, nur Beweise für die Zugehörigkeit zu einer Menge zu
betrachten. Allerdings kann man durch Mengen wie TAUT einsehen, dass sich dadurch
auch allgemeinere Aussagen codieren lassen. TAUT entspricht nämlich genau den gül-
tigen Sätzen der Aussagenlogik. Ein Beweissystem für TAUT kann also die Gültigkeit
von solchen Sätzen beweisen.

Erweiterung von Cook und Reckhow Durch die Definition über surjektive Funktio-
nen sind bereits Korrektheit und Vollständigkeit abgedeckt. Wir haben jedoch bereits
beobachtet, dass Beweissysteme auch leicht prüfbar sein sollen. Mithilfe der formalen
Definitionen zur Berechnung von Funktionen kann nun auch dieser Forderung Rechnung
getragen werden.

Definition 2.21 (Cook und Reckhow [CR79]). Für A ⊆ Σ∗ ist eine Funktion f : Σ∗ → A
genau dann ein FP-Beweissystem für A, wenn f ∈ FP und f surjektiv ist.

In der Literatur sind solche FP-Beweissysteme üblich, sodass dort nur von Beweissys-
temen gesprochen wird. In dieser Arbeit sollen Beweissysteme aber abhängig von ihrer
Berechnungskomplexität untersucht werden. Dafür erweitern wir nun den Begriff von
Beweissystemen. Die neue Definition enthält die gezeigte von Cook und Reckhow als
Spezialfall.

Definition 2.22. Für A ⊆ Σ∗ und eine Menge F an Funktionen ist f : Σ∗ → A genau
dann ein F-Beweissystem für A, wenn f ∈ F und f surjektiv ist.

Von besonderem Interesse wird in dieser Arbeit F = FL sein. Grundsätzlich ist dabei
bereits unklar, ob FL = FP gilt. Gleichheit würde jedoch auch L = P implizieren,
was üblichen Annahmen widerspricht. Gerade weil diese beiden Klassen aber schwer zu
trennen sind, ist eine separate Betrachtung von Interesse, um eventuelle Unterschiede
besser verstehen zu können.
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Optimale Beweissysteme Um Beweissysteme miteinander vergleichen zu können, wol-
len wir nun die Simulationsbegriffe definieren. Diese hängen stark mit den bereits vor-
gestellten Reduktionen zusammen.

Definition 2.23. Ein Beweissystem f simuliert ein Beweissystem g ⇐⇒ es existiert
eine höchstens polynomiell verlängernde Funktion t mit g = f ◦ t. Wir schreiben g ≤s f .

Diese Simulation stellt sicher, dass zu jedem g-Beweis ein höchstens polynomiell länge-
rer f -Beweis gefunden werden kann. Üblicherweise werden FP-Beweissysteme betrachtet.
Hier kann man die polynomielle Unschärfe der Beweislänge dadurch motivieren, dass die
Laufzeit für das Verifizieren von Beweisen dadurch nur unerheblich beeinflusst wird (FP
selbst erlaubt eine polynomielle Unschärfe). Aber auch für FL-Beweissysteme ist die-
se Definition passend, da hier eine polynomiell längere Eingabe nur einen konstanten
Faktor im Speicherbedarf bedeutet.

Allerdings ist nicht garantiert, dass ein f -Beweis effizient aus einem g-Beweis berechnet
werden kann. Da wir für diesen nur die Länge beschränkt haben, kann eine Maschine nur
nichtdeterministisch raten, was die korrekte Übersetzung wäre. Soll die Übersetzung aber
auch deterministisch möglich sein, so brauchen wir einen schärferen Simulationsbegriff.
Tatsächlich definieren wir hierfür verschiedene Varianten, um den Unterschieden der
betrachteten Berechnungskomplexitäten gerecht zu werden.

Definition 2.24. Ein Beweissystem f p-simuliert ein Beweissystem g ⇐⇒ es existiert
ein t ∈ FP mit g = f ◦ t. Wir schreiben auch kurz g ≤p

s f . Ist sogar t ∈ FL, so l-simuliert
f g. Wir schreiben dann auch g ≤log

s f .

Bekanntes Resultat 2 (Messner, Kapitel 2.5). Die Simulationshierarchie zwischen
FP-Beweissystemen ist ein algebraischer Verband. Folglich sind ≤s und ≤p

s transitive
Relation auf FP.

Satz 2.25. Die Relationen ≤s,≤p
s und ≤log

s sind transitiv.

Beweis. Für f = g ◦ t1 und g = h ◦ t2 erhalten wir f = g ◦ t1 = (h ◦ t2) ◦ t1 = h ◦ (t2 ◦ t1).
Daher ist nur zu zeigen, dass die für die Simulationen verwendeten Funktionsklassen
unter Verkettung abgeschlossen sind. Für FP und FL gilt das bereits nach Balcázar et
al. [BDJ11].

Für ≤s seien p, q Polynome mit positiven Koeffizienten, sodass für beliebige Eingaben
x gilt |t1(x)| ≤ p(|x|) und |t2(x)| ≤ q(|x|). Sei x′ ∈ Σ≤p(|x|) nun so gewählt, dass die
Länge von t2(x′) maximal wird. Es folgt |(t2 ◦ t1)(x)| ≤ |t2(x′)| ≤ q(|x′|). Da q monoton
steigend ist, gilt wegen |x′| ≤ p(|x|) auch q(|x′|) ≤ q(p(|x|)). Folglich ist t2 ◦ t1 eine
höchstens polynomiell verlängernde Funktion. Somit gilt f ≤s h.

Für eine Sprache A ⊆ Σ∗ und eine Menge von Funktionen können wir nun die Optima-
litätsbegriffe definieren. Wir haben die Simulationsbegriffe unabhängig von F definiert,
damit wir auch zu Funktionen mit höherer Komplexität eine Simulationsrelation zei-
gen können. Für die Optimalitätsbegriffe ist aber natürlich eine Einschränkung auf eine
konkrete Funktionenklasse nötig.
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Definition 2.26. Ein F-Beweissystem f ist optimal ⇐⇒ g ≤s f für alle g ∈ F mit
Wf = Wg.

Definition 2.27. Ein F-Beweissystem f ist p-optimal ⇐⇒ g ≤p
s f für alle g ∈ F mit

Wf = Wg.

Definition 2.28. Ein F-Beweissystem f ist l-optimal ⇐⇒ g ≤log
s f für alle g ∈ F

mit Wf = Wg.
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3. Übertragbare Beweistechniken

3.1. Existenz von Beweissystemen

Bekanntes Resultat 3 (Messner Lemma 2.1). Eine Sprache A ⊆ Σ∗ hat genau
dann ein FP-Beweissystem, wenn A ∈ RE.

Satz 3.1. Eine Sprache A ⊆ Σ∗ hat genau dann ein FL-Beweissystem, wenn A ∈ RE.

Beweis. Hat A ein FL-Beweissystem, so ist A der Wertebereich einer surjektiven bere-
chenbaren Funktion f : Σ∗ → A. Durch Codierung von Worten über Σ erhält man eine
entsprechende Funktion f ′ : N → A. Damit ist A rekursiv aufzählbar.

Ist umgekehrt A ∈ RE, so ist A der Wertebereich einer surjektiven berechenbaren
Funktion f : N → A. Es existiert also eine Turingmaschine M , die f berechnet. Man
kann nun f ′ ∈ FL definieren, indem M für eine Raumschranke simuliert wird:

f ′(〈x, 0n〉) =
{
y falls M(x) = y in Raum ≤ logn
⊥ sonst

Es gilt Wf ′ ⊆ Wf = A. Außerdem beobachtet man für a ∈ A, dass ein x mit f(x) = a
gilt. Dann gilt auch M(x) = a. Sei s der von der Rechnung M(x) benötigte Speicher.
Dann gilt f ′(〈x, 02s〉) = a. Folglich ist Wf ′ = A und f ′ ein FL-Beweissystem für A.

3.2. Triviale Beweissysteme
Auch wenn die Suche nach (l)-optimalen Beweissystemen im Allgemeinen nicht leicht
lösbar ist, können für manche Sprachen sehr simple Beweissysteme (l)-optimal sein.
Das ist insbesondere der Fall, wenn das Entscheidungsproblem der bewiesenen Sprache
sehr einfach ist. Hier muss der Beweis nur die Information enthalten, welches Element
bewiesen werden soll. Von der Korrektheit kann sich ein Verifier dann im Grunde selbst
überzeugen, indem er entscheidet, ob das eingegebene Element in der Sprache liegt.

Bekanntes Resultat 4 (Messner, Theorem 3.1). Jedes A ∈ NP hat ein optimales
FP-Beweissystem. Jedes A ∈ P hat sogar ein p-optimales FP-Beweissystem.

Satz 3.2. Jedes A ∈ NL hat ein optimales FL-Beweissystem. Jedes A ∈ L hat sogar ein
l-optimales FL-Beweissystem.
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Beweis.

Behauptung 3.3. Jedes FL-Beweissystem mit polynomiell langen Beweisen ist optimal.

Beweis. Sei f ∈ FL mit |x| ≤ p(|f(x)|) für ein monoton steigendes Polynom p. Für jede
Funktion g ∈ FL gilt außerdem |g(x)| ≤ q(|x|) für ein Polynom q, da g nur in logarith-
mischem Raum arbeiten kann. Für ein festes y ∈ Wf ∩ Wg erhalten wir daher einen
f -Beweis xf mit |xf | ≤ p(|f(xf )|) ≤ p(|y|). Für jeden g-Beweis xg für y gilt außerdem
|y| = |g(xg)| ≤ q(|xg|). Durch Kombinationen der beiden Ungleichungen erhalten wir
wegen der Monotonie von p

|xf | ≤ p(|y|) ≤ p(q(|xg|))

und es folgt somit die Behauptung, da Polynome unter ◦ abgeschlossen sind. �

Sei A ∈ L. Dann ist

f(x) =
{
x falls x ∈ A

⊥ sonst

in FL berechenbar. Für jedes FL-Beweissystem g für A gilt g(x) = f(g(x)) für beliebige
x ∈ A, g übersetzt also selbst g-Beweise in f -Beweise. Folglich gilt g ≤log

s f und f ist
ein l-optimales FL-Beweissystem für A.

Sei nun A ∈ NL und M eine NLTM mit L(M) = A. Eine Rechnung M(x) kann
nicht direkt von einer deterministischen Maschine in L simuliert werden, da die Nachfol-
gekonfiguration nicht eindeutig festgelegt sein muss. Es kann dabei sein, dass nur eine
davon zu einer akzeptierenden Konfiguration führt. Um die Rechnung selbst simulieren
zu können, müsste ein deterministischer Verifier also wissen, welche Übergänge erfolgen.
Mit M ′ sei die LTM bezeichnet, die für Eingaben 〈x,w〉 den Berechnungspfad von M(x)
simuliert, der durch die in w codierten Übergänge festgelegt wird. Eine solche Codierung
erhält man beispielsweise, indem man die Übergänge nummeriert. Für jeden Übergang
sind dann nur konstant viele Bits nötig. Nun lässt sich analog zu f ein Beweissystem h
wie folgt definieren:

h(〈x,w〉) =
{
x falls M ′(〈x,w〉) akzeptiert
⊥ sonst

Da nur die Arbeit von M ′ auf der Eingabe simuliert und ein Teil der Eingabe auf das
Ausgabeband kopiert werden muss, ist h ∈ FL. Da außerdem jedes x ∈ A von min-
destens einem Rechenweg von M(x) akzeptiert werden muss, existiert für x auch ein
h-Beweis. Umgekehrt erkennt man, dass ein h-Beweis für ein y bereits einen akzeptie-
renden Rechenweg von M(y) definiert. Wegen L(M) = A gilt folglich y ∈ A. Also ist h
ein FL-Beweissystem für A.

Weiterhin sind h-Beweise höchstens polynomiell lang. Dafür genügt es, die Länge von
w zu betrachten. Da zu jedem Zeitpunkt nur konstant viele Übergänge möglich sind, kann
die Übergangssequenz mit höchstens linearem Overhead in der Länge des Rechenwegs
codiert werden. Es ist also |w| ≤ p(|x|) für ein Polynom p.
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Aus Satz 4.4 wird folgen, dass sogar jede Sprache in NP ein optimales FL-Beweissystem
hat. Dafür ist allerdings noch eine zusätzliche Einsicht nötig, da das im Beweis genannte
h die Rechenwege eines Akzeptors simuliert. Soll eine NLTM eine NPTM simulieren,
so ist unklar, wie das in logarithmischem Raum geschehen kann, da die NPTM bis zu
polynomiellem Raum verwenden kann.

3.3. Abgeschlossenheit
Wir werden im Folgenden Methoden erhalten, mit denen die Existenz bzw. die Nicht-
existenz von FL-Beweissystemen für Sprachen auf andere übertragen werden können.
Das kann als Abgeschlossenheit der Menge der Sprachen mit (l-)optimalem Beweissyste-
men unter den Operationen ∩,× und ≤l

m aufgefasst werden. Wir betrachten dazu zwei
Mengen A,B ⊆ Σ∗.

Es seien A,B ⊆ Σ∗ zwei Sprachen.

Bekanntes Resultat 5 (Messner Theorem 3.2). Hat A ein (p-)optimales Beweis-
system und ist B ≤p

m A, so hat auch B ein (p-)optimales Beweissystem.

Satz 3.4. Hat A ein (l)-optimales FL-Beweissystem und ist B ≤log
m A, so hat auch B

ein (l)-optimales FL-Beweissystem.

Beweis. Sei h ein l-optimales FL-Beweissystem für A und B ≤log
m A via f . Sei weiterhin

h′(〈x,w〉) =
{
x falls h(w) = f(x)
⊥ sonst

Sei nun g′ ein FL-Beweissystem für B. Sei g ein FL-Beweissystem für A mit g(1w) =
f(g′(w)) und g(0w) = h(w). Wegen der Optimalität von h existiert ein t ∈ FL, sodass
h(t(1w)) = g(1w) = f(g′(w)). Nach Definition von h′ gilt dann h′(〈g′(w), t(1w)〉) =
g′(w). Da g′, t sowie die Listencodierung zweier Werte in FL berechnet werden können,
wird g′ folglich von h′ l-simuliert.

Falls h nur ein optimales FL-Beweissystem für A ist, so ist t nicht zwingend in FL,
es muss aber dennoch für beliebige Eingaben |t(x)| ≤ p(|x|) für ein Polynom p gelten.
Dann ist auch 〈g′(w), t(1w)〉 höchstens polynomiell länger als w. Folglich wird g′ von h′

simuliert.

Über die Kontraposition dieser Aussage erhält man auch eine Methode, um Nichtexis-
tenz von (l-)optimalen FL-Beweissystemen zu übertragen.

Korollar 3.5. Ist B ≤log
m A und hat B kein (l-)optimales FL-Beweissystem, so hat auch

A kein (l-)optimales FL-Beweissystem.
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Bekanntes Resultat 6 (Messner Theorem 3.3). Haben A und B (p-)optimale
Beweissysteme, so auch A ∩B, A×B.

Satz 3.6. Haben A und B (l)-optimale Beweissysteme, so auch A ∩B, A×B.

Beweis. Wir betrachten zunächst A∩B. Seien hA und hB l-optimale FL-Beweissysteme
für A und B. Dann kann h definiert werden als

h(w) =
{
x falls w = 〈u, v〉 und x = hA(u) = hB(v)
⊥ sonst

Sei nun f ein FL-Beweissystem für A ∩ B. Durch Kombination erhält man für i ∈
{A,B} je ein FL-Beweissystem für A und für B mit fi(1w) = f(w) und fi(0w) =
hi(w). f -Beweise sind dabei leicht in fi-Beweise übertragbar. Nach Annahme existieren
Funktionen ti ∈ FL mit fi(x) = hi(ti(x)). Sei nun t definiert als t(w) = 〈tA(1w), tB(1w)〉.
Um t zu berechnen, müssen nur zwei FL-Funktionen ausgewertet und ihre Ausgaben in
ein Tupel codiert werden. Also ist t selbst in FL. Wegen

f(w) = hA(tA(1w)) = hB(tB(1w))

gilt f(w) = h(t(w)). Somit ist h l-optimal. Falls die Beweissysteme für A und B nur
optimal sind, erhält man durch die gleiche Konstruktion ein optimales Beweissystem für
A ∩B, da 〈tA(1w), tB(1w)〉 dann auch nur polynomiell länger als w ist.

Weiterhin ist zu beobachten, dass A× Σ∗ ≤log
m A und Σ∗ ×B ≤log

m B. Wegen A×B =
(A × Σ∗) ∩ (Σ∗ × B) hat dann mit den bereits gezeigten Abschlusseigenschaften auch
A×B ein (l)-optimales FL-Beweissystem.

3.4. Zusammenhang mit Akzeptoren
Wir haben bereits gesehen, dass man Beweissysteme auch als Verifier auffassen kann.
Daher ist es naheliegend, für unsere Optimalitätsbegriffe einen Zusammenhang zu opti-
malen Akzeptoren zu suchen. Auf diese sind übliche Techniken der Komplexitätstheorie
anwendbar.

Bekanntes Resultat 7 (Messner Theorem 3.4). Falls A × Σ∗ ≤p
m,P−P A, so sind

folgende Aussagen äquivalent:

(i) Es existiert ein p-optimales FP-Beweissystem für A.

(ii) Es existiert ein FP-Beweissystem für A, welches auf allen P-Teilmengen von
A in FP invertiert werden kann.

(iii) Es existiert ein zeitoptimaler deterministischer Akzeptor für A.

(iv) Es existiert ein Akzeptor für A, welcher polynomielle Laufzeit auf jeder P-
Teilmenge hat.
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Zusätzlich gelten die Implikationen (i) =⇒ (iii), (iii) =⇒ (iv) und (ii) ⇐⇒ (iv) für
beliebige Sprachen.

Satz 3.7. Falls A× Σ∗ ≤log
m,L−L A, so sind folgende Aussagen äquivalent:

(i) Es existiert ein l-optimales FL-Beweissystem für A.

(ii) Es existiert ein FL-Beweissystem für A, welches auf allen L-Teilmengen von A in
FL invertiert werden kann.

(iii) Es existiert ein raumoptimaler deterministischer Akzeptor für A.

(iv) Es existiert ein Akzeptor für A, welcher auf jeder L-Teilmenge eine logarithmische
Raumbeschränkung hat.

Zusätzlich gelten die Implikationen (i) =⇒ (iii), (iii) =⇒ (iv) und (ii) ⇐⇒ (iv) für
beliebige Sprachen.

Beweis. Zu einem gegebenen FL-Beweissystem h sei Ih der von Lemma 2.17 garantierte
raumoptimale Transduktor zur Invertierung von h. Wegen y ∈ Wh ⇐⇒ Ih(y) 6= ⊥ kann
daraus auch ein Akzeptor Ah für Wh abgeleitet werden, der Ih simuliert und akzeptiert,
sobald Ih einen Wert ausgeben würde. Für einen AkzeptorM sei zudem ein Beweissystem
hM für L(M) definiert als

hM (〈y, 0s〉) =
{
y falls y ∈ L(M) mit spaceM (y) ≤ log s
⊥ sonst

Behauptung 3.8. (i) =⇒ (iii)

Beweis. Angenommen h ist ein l-optimales FL-Beweissystem für A. Es kann nun gezeigt
werden, dass Ah ein optimaler deterministischer Akzeptor von A ist. Sei dafür M ein
beliebiger Akzeptor mit L(M) = A und hM das entsprechende Beweissystem. Da h l-
optimal ist, existiert ein g ∈ FL mit hM (x) = h(g(x)) für x ∈ A. Mit einer Funktion
f : y → 〈y, 02spaceM (y)〉 gilt somit für beliebige y ∈ A:

y = hM (f(y)) = h(g(f(y)))

Die Verkettung g◦f invertiert also h. Weiterhin ist f in O(spaceM (y)) Raum berechenbar
und g ∈ FL. Also wird h von g ◦ f sogar in O(spaceM (y)) Raum invertiert. Da Ih

ein optimaler Algorithmus ist, um h zu invertieren, benötigt Ih also nur O(log |y| +
spaceM (y)) Raum. Da Ah den gleichen Raumbedarf wie Ih hat, ist Ah ein optimaler
deterministischer Akzeptor von A. �
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Behauptung 3.9. (iii) =⇒ (iv)

Beweis. Sei O ein raumoptimaler deterministischer Akzeptor für A und S ∈ L eine
Teilmenge von A. Man kann eine L-Maschine O′ für S mit O zu einer neuen Maschine
O∗ kombinieren, sodass beide Maschinen gleichzeitig simuliert werden. Dafür müssen nur
die Kopfpositionen sowie die bisherigen Bandinhalte der beiden Maschinen gespeichert
werden. Außerdem wird in einem Takt immer nur die Maschine simuliert, die dafür
weniger Speicher benötigt. Dadurch gilt:

spaceO∗(x) = min{spaceO(x), spaceO′(x)} + log |x|

Auf S hat O∗ folglich höchstens logarithmischen Raumbedarf. Damit O wie angenommen
raumoptimal ist, muss spaceO ∈ O(log |x| + log |x|) = O(log |x|) gelten. �

Behauptung 3.10. (ii) =⇒ (iv)

Beweis. Sei h ein FL-Beweissystem, welches auf jeder L-Teilmenge FL-invertierbar ist,
und S ∈ L eine beliebige Teilmenge von Wh. Es existiert ein Transduktor, der h invertiert
und auf Eingaben aus S nur logarithmischen Raum benötigt. Da Ih raumoptimal ist,
muss Ih auf S das Inverse auch in logarithmischem Raum finden. Folglich hat Ah auf S
auch nur logarithmischen Raumbedarf. Da S beliebig gewählt war, akzeptiert Ah jede
L-Teilmenge von Wh in logarithmischem Raum. �

Behauptung 3.11. (iv) =⇒ (ii)

Beweis. Sei M ein Akzeptor für A mit logarithmischer Raumschranke auf allen L-
Teilmengen von A und S ∈ L eine beliebige Teilmenge von A. Das FL-Beweissystem
hM für A kann auf S invertiert werden, indem der Speicherbedarf von M notiert wird.
Für ein s ∈ S wird M(s) simuliert, wobei zwei zusätzliche Zähler den aktuell verwende-
ten Speicher sowie das bisherige Maximum m speichern. Am Ende der Simulation kann
〈s, 02m〉 ausgegeben werden. Da dann hM (〈s, 02m〉) = s gilt, ist ein Inverses von hM so
berechenbar.

Um m zu berechnen, ist O(spaceM (s)) Speicher nötig. Um 02m zu berechnen, ist ein
m-Bit Zähler ausreichend. Zusammengenommen erhält man also einen Algorithmus, der
hM -Beweise in O(spaceM ) Raum berechnet. Da M auf S logarithmisch raumbeschränkt
ist, ist hM also in FL invertierbar. �

Behauptung 3.12. (ii) =⇒ (i)

Beweis. SeiA×Σ∗ ≤log
m,L−L Amit einer Funktion pad ∈ FL und sei h ein FL-Beweissystem

für A. Damit lässt sich nun eine Funktion f wie folgt konstruieren:

f(〈y, x, z〉) =
{
y falls h(z) = pad(y, x)
⊥ sonst
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Den Vergleich zur Fallunterscheidung kann man im gleichen Raum berechnen, wie die
verglichenen Funktionen, da diese höchstens logarithmischen Raum in ihrer Ausgabelän-
ge benötigen. Somit kann ihre Ausgabe nur polynomiell lang werden, ein Zeiger auf die
aktuell zu vergleichende Stelle hat also nur logarithmisch viele Bits. Folglich ist f ∈ FL.

Weiterhin lässt sich zeigen, dass Wf = A gilt, dass also f ein FL-Beweissystem für A
ist: Für beliebige y ∈ A existiert ein h-Beweis z für pad(y, ε) ∈ A. Daher gilt Wf ⊇ A.
Für y ∈ Wf existieren außerdem x, z ∈ Σ∗ mit pad(y, x) = h(z). Wegen Wh = A gilt
daher pad(y, x) ∈ A. Da pad die Menge A × Σ∗ auf A reduziert, folgt (y, x) ∈ A × Σ∗

und somit y ∈ A. Also gilt auch Wf ⊆ A.
Es bleibt zu zeigen, dass f l-optimal ist, wenn h auf L-Teilmengen in FL invertiert

werden kann. Sei dazu g ein beliebiges FL-Beweissystem für A. Eine Menge Hg soll nun
die Paare an Ein- und Ausgaben von g enthalten:

Hg = {〈g(x), x〉 | x ∈ Dg}

Da g in FL auf der im Tupel definierte Eingabe berechnet werden kann, gilt Hg ∈ L. Da
pad L-Teilmengen wieder auf Teilmengen abbildet, ist dann auch H ′

g = pad(Hg) ⊆ A in
L und somit ist h nach Annahme auf H ′

g mit einer Funktion t ∈ FL invertierbar. Dann
gilt

h(t(pad(g(x), x))) = pad(g(x), x)

und nach Definition von f folgt

g(x) = f(〈g(x), x, t(pad(g(x), x))〉︸ ︷︷ ︸
χ

)

Da χ die Verkettung von FL-Funktionen ist, ist χ ∈ FL. Somit wird g von f simuliert,
folglich wird g von f l-simuliert. �

Ein Ringschluss liefert nun die behauptete Äquivalenz.

Bekanntes Resultat 8 (Messner, Theorem 3.19). Sei A × Σ∗ ≤p
m,P−P A. Dann

sind die folgenden Aussagen äquivalent.

(i) Es existiert ein optimales FP-Beweissystem für A.

(ii) Es existiert ein FP-Beweissystem für A, welches kurze Beweise auf jeder NP-
Teilmenge von A hat.

(iii) Es existiert ein FP-Beweissystem für A, welches kurze Beweise auf jeder P-
Teilmenge von A hat.

Die Implikationen (i) =⇒ (ii) und (ii) =⇒ (iii) gelten außerdem für beliebige
Sprachen.
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Satz 3.13. Sei A× Σ∗ ≤log
m,L−L A. Dann sind die folgenden Aussagen äquivalent.

(i) Es existiert ein optimales FL-Beweissystem für A.

(ii) Es existiert ein FL-Beweissystem für A, welches kurze Beweise auf jeder NL-
Teilmenge von A hat.

(iii) Es existiert ein FL-Beweissystem für A, welches kurze Beweise auf jeder L-Teilmenge
von A hat.

Die Implikationen (i) =⇒ (ii) und (ii) =⇒ (iii) gelten außerdem für beliebige Sprachen.
Beweis.

Behauptung 3.14. (i) =⇒ (ii)

Beweis. Sei h ein optimales FL-Beweissystem für A und S ⊆ A beliebig in NL. Sei M
eine NL-Maschine, die S akzeptiert.

h′(x) =


h(w) falls x = 1w
z falls x = 0 〈w, z〉 und w ist akzeptierender Pfad von M(z)
⊥ sonst

h′ ist ein FL-Beweissystem für A. Zusätzlich kann für jedes y ∈ S ein polynomiell
langer Beweis x mit h′(x) = y gefunden werden, da Rechenwege von M nur polynomiell
lang sein können. Da h nach Annahme optimal ist, hat auch h auf S polynomiell lange
Beweise. �

Behauptung 3.15. (iii) =⇒ (i)

Beweis. Sei A × Σ∗ ≤log
m,L−L A mit einer Reduktionsfunktion pad ∈ FL und sei h

ein FL-Beweissystem für A mit höchstens polynomiell langen Beweisen für beliebige
L-Teilmengen von A. Sei erneut

f(〈y, x, z〉) =
{
y falls h(z) = pad(y, x)
⊥ sonst

Für jedes beliebige FL-Beweissystem g für A gilt nun:

Hg = {〈g(x), x〉 | x ∈ Dg} ∈ L
Nach Annahme ist somit auch H ′

g = pad(Hg) in L, es existieren also Beweise von höchs-
tens polynomieller Länge auf H ′

g. Sei i eine Funktion, die solche polynomiell langen
Beweise angibt. Für y ∈ H ′

g gilt folglich y = h(i(y)). Man erhält

g(x) = f(〈g(x), x, i(pad(g(x), x))〉︸ ︷︷ ︸
χ

)

Da χ die Verkettung von höchstens polynomiell Verlängernden Funktionen ist, ist χ
selbst höchstens polynomiell länger als x. Somit wird g von f simuliert, f ist also ein
optimales FL-Beweissystem für A. �

Da mit L ⊆ NL bereits (ii) =⇒ (iii) gilt, folgt die behauptete Äquivalenz.
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3.5. Beliebig komplexe Sprachen ohne l-optimales
Beweissystem

Im Folgenden werden wir zunächst Mengen konstruieren, für die kein l-optimales Beweis-
system existiert. Dazu können die Implikationen aus Satz 3.7 verwendet werden. Wir dia-
gonalisieren gegen alle deterministischen Turingmaschinen und erreichen so, dass für die
konstruierte Sprache kein raumoptimaler Akzeptor existieren kann. Dann erhalten wir
aus der Kontraposition von Implikation (i) ⇒ (iii), dass kein l-optimales Beweissystem
für die Sprache existieren kann.

Bekanntes Resultat 9 (Messner, Theorem 3.20). Sei t : N → N superpolynomiell
und zeitkonstruierbar. Dann existiert eine Menge A ∈ DTIME(t) ohne zeitoptimalen
deterministischen Akzeptor.

Satz 3.16. Sei s : N → N ∈ ω(logn) raumkonstruierbar. Dann existiert eine Menge
A ∈ DSPACE(s) ohne raumoptimalen deterministischen Akzeptor.

Beweis. Sei M1,M2, . . . eine Aufzählung aller deterministischen Turingmaschinen und
sei U eine TM, die für Eingaben der Form 0i1x die Arbeit von Mi auf 0i1x simuliert.
Nach Neary und Woods [NW12] existiert eine solche universelle Maschine, sodass die
Simulation mit linearem Overhead im benötigten Raum möglich ist. Daher gilt:

spaceU (0i1x) ≤ ci · spaceMi
(0i1x) + ci

Für jede Maschine Mi definieren wir nun eine Menge Ai, wobei wir die Sprache zum
regulären Ausdruck 0i10∗ mit L(0i10∗) bezeichnen.

Ai =
{
x ∈ L(0i10∗) | U akzeptiert x nicht in Raum s(|x|)

}
Wir erhalten nun mit A = ⋃

i∈NAi die gewünschte Sprache. Um A zu entscheiden, kann
eine Maschine zunächst die Form der Eingabe prüfen. Mit einem endlichen Automaten
geht das in konstantem Raum. Für die Simulation von U ist zusätzlich ein Schrittzähler
nötig, um Endlosschleifen zu erkennen, in denen die Raumschranke nie verletzt wird. Die-
ser Zähler kann, genau wie die Simulation selbst, in O(s) Raum implementiert werden.
Daher liegt A in DSPACE(s).

Behauptung 3.17. Für jeden Akzeptor Mj von A kann Aj in konstantem Raum ent-
schieden werden.

Beweis. Es muss Aj = L(0j10∗) gelten. Nach Definition gilt bereits die Inklusion Aj ⊆
L(0j10∗). Wären die beiden Mengen verschieden, so hätten wir also einen Zeugen w ∈
L(0j10∗), der von Mj nicht akzeptiert wird. Da U auf w die Arbeit von Mj simuliert,
kann w von U nicht akzeptiert werden. Dann akzeptiert U auch nicht innerhalb der
Raumschranke s und wir erhalten w ∈ Aj im Widerspruch zur Bedingung L(Mj) = A.
Für den regulären Ausdruck 0j10∗ existiert ein endlicher Automat [HU79] D, der in
konstantem Raum L(0j10∗) entscheidet. Kombiniert man nun Mj mit D, so erhält man
einen Akzeptor von A, der auf Aj nur konstanten Raumbedarf hat. �
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Ein Akzeptor Mj von A benötigt auf Aj mindestens Ω(s) Speicher, denn für w ∈ Aj

gilt s(|w|) < spaceU (w) ≤ cj · spaceMj
(w) + cj . Ein raumoptimaler Akzeptor kann

wegen Behauptung 3.17 für Eingaben aus Aj nur O(logn) Raum verwenden. Da nach
Annahme s ∈ ω(logn) ist, kann Mj kein optimaler Akzeptor sein.

Bekanntes Resultat 10 (Messner, Korollar 3.22). Sei t : N → N superpolynomiell
und zeitkonstruierbar. Dann hat keine Sprache, die ≤p

m-hart für DTIME(t) ist, ein
p-optimales Beweissystem.

Korollar 3.18. Sei s : N → N ∈ ω(logn) raumkonstruierbar. Dann hat keine Sprache,
die ≤log

m -hart für DSPACE(s) ist, ein l-optimales Beweissystem.

Beweis. Wir erhalten diese Aussage direkt aus den Abschlusseigenschaften, da die eben
konstruierte Sprache auf jede für DSPACE(s) ≤log

m -harte Sprache reduziert werden kann.

Bekanntes Resultat 11 (Messner, Korollar 3.23). Keine ≤p
m-harte Sprache für E

hat ein p-optimales Beweissystem.

Korollar 3.19. Keine ≤log
m -harte Sprache für DSPACE(log2 n) hat ein l-optimales Be-

weissystem. Insbesondere hat auch QBF kein l-optimales Beweissystem.

Beweis. Der erste Teil der Aussage ist ein Spezialfall von Korollar 3.18, da log2 ∈ ω(log).
Außerdem ist QBF eine bekannte ≤log

m -vollständige Menge für PSPACE. Beweise dafür
liefern unter anderem Stockmeyer [Sto76] sowie Arora und Barak [AB09]. QBF ist folglich
auch ≤log

m -hart für DSPACE(log2).

In leicht abgewandelter Form können wir die Technik aus dem Beweis zu Satz 3.16
sogar dafür verwenden, beliebig komplexe tally-Sprachen ohne l-optimales Beweissystem
zu konstruieren.

Bekanntes Resultat 12 (Messner, Theorem 3.26). Seien t, f : N → N zeitkon-
struierbar, f injektiv und t superpolynomiell. Dann existiert eine f -tally Menge
A ∈ DTIME(t) ohne zeitoptimalen Akzeptor.

Satz 3.20. Seien s : N → N ∈ ω(n) raumkonstruierbar und f : N → N injektiv und zeit-
konstruierbar. Dann existiert eine f -tally Menge A ∈ DSPACE(s) ohne raumoptimalen
Akzeptor.

Beweis.

Behauptung 3.21. Für injektive zeitkonstruierbare f ist auch g : 0n → 0f(n) injektiv.
Außerdem kann g in linearem Raum invertiert werden.
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Beweis. Da f nach Annahme zeitkonstruierbar ist, existiert eine Maschine, die auf Ein-
gaben 1n den Funktionswert f(n) in genau f(n) Schritten berechnet. Da f injektiv ist,
muss die Maschine die gesamte Eingabe einlesen. Dazu sind bereits n Schritte nötig. Wir
erhalten daher f(n) ≥ n und können so einschränken, welche Werte als Inverses in Frage
kommen. Auf diesen kann dann eine inkrementelle Suche ausgeführt werden.

Algorithmus 3 : f−1

Eingabe : 0m

1 für i = 0 bis m tue
2 wenn f(i) = m dann
3 gib i aus

In Schritten 1 und 3 ist je logm Raum ausreichend, um i und einen Zeiger auf die
Ausgabe von f zu speichern. Außerdem muss in Schritt 2 f berechnet werden. Da f
zeitkonstruierbar ist, ist das in O(m) Raum möglich, denn der Speicherbedarf ist durch
den berechneten Funktionswert beschränkt. Falls die Berechnung von f(i) mehr als m
Speicher benötigt, so auch mehr als m Takte. Da f zeitkonstruierbar ist, kann also nicht
f(i) = m gelten, weshalb die Berechnung frühzeitig abgebrochen werden kann. Insgesamt
findet man das Inverse in O(m) Raum. Falls m /∈ Wf , so braucht die Suche auch nur
O(m) Raum und terminiert erfolglos. �

Sei U eine universelle TM, die auf Eingaben 〈i, x〉 die Arbeit von Mi(x) simuliert.
Dabei soll spaceU (〈i, x〉) ≤ ci · spaceMi

(x) + ci für eine Konstante ci gelten. Sei nun Ai

definiert als

Ai =
{
x = 0f(〈i,n〉) | n ∈ N, U akzeptiert 〈i, x〉 nicht in Raum s(|x|)

}
(Ai ist wohldefiniert, da f injektiv ist und somit für jedes Wort das Prädikat von nur ei-
ner Maschinennummer abhängt). Zunächst beobachten wir, dass A = ⋃

i∈NAi tatsächlich
f -tally ist. Außerdem können wir für ein 0f(〈i,n〉) in O(f(〈i, x〉)) Raum die Maschinen-
nummer i berechnen und danach Mi auf der Eingabe mit Raumschranke s simulieren.
Da s asymptotisch superlinear wächst, erhalten wir insgesamt A ∈ DSPACE(s).

Wie im Beweis zu Satz 3.16 gilt für jeden Akzeptor Mj von A die Ungleichung s(|x|) ≤
spaceU (〈j, x〉) ≤ cj · spaceMj

(x) + cj für beliebige Eingaben x. Damit erhalten wir Aj =
{0f(〈j,n〉) | n ∈ N}. Aj kann daher in linearem Raum entschieden werden, indem für
Eingaben 0m das eindeutige n mit m = f(〈j, n〉) berechnet wird. Da f in linearem
Raum invertiert werden kann, ist dafür O(n) Speicher ausreichend. Falls ein solches
n existiert, so gilt bereits 0m ∈ Aj . Es existiert also ein Akzeptor für A, der auf Aj

höchstens linearen Speicher benötigt. Es gilt jedoch auch s(x) ≤ cj · spaceMj
(x) + cj ,

unter der Annahme s ∈ ω(n) hat also Mj einen superlinearen Raumbedarf auf Aj .
Somit kann Mj kein optimaler Akzeptor sein.

28



Sprachen ohne optimales Beweissystem Es ist zunächst unklar, ob auch beliebig kom-
plexe Sprachen ohne optimales FL-Beweissystem existieren. Messner [Mes01] zeigt, dass
die Existenz von optimalen FP-Beweissystemen äquivalent zur Existenz eines nichtdeter-
ministischen zeitoptimalen Akzeptors ist. Für optimale FL-Beweissysteme ist ein Zusam-
menhang mit nichtdeterministischen raumoptimalen Akzeptoren jedoch nicht so leicht
möglich. Obwohl wir die gezeigte Konstruktion auch für den nichtdeterministischen Fall
anpassen könnten, weist das also nicht die Existenz von beliebig komplexen Sprachen
ohne optimales Beweissystem nach. Tatsächlich werden wir aber aus Satz 4.4 dennoch
solche Sprachen erhalten, da wir die Nichtexistenz von optimalen FP-Beweissystemen
für die von Messner konstruierten Sprachen direkt auf die Nichtexistenz von optimalen
FL-Beweissystem übertragen können.

3.6. Beliebig komplexe Sprachen mit raumoptimalem Akzeptor
Wir versuchen nun im Folgenden ein Indiz für die Existenz beliebig komplexer Spra-
chen mit l-optimalem FL-Beweissystem zu finden. Es ist unklar, ob die hier konstruierte
Sprache den Anforderungen aus Satz 3.13 genügt, daher ist dieses Resultat für sich nicht
ausreichend, um eine definitive Antwort zu erhalten.

Bekanntes Resultat 13 (Messner, Theorem 3.32). Sei t : N → N monoton steigend
und raumkonstruierbar. Es existiert eine Menge A ∈ DTIME(n3 · t(n) log t(n)) \
DTIME(t(n)), sodass für jede TM M mit L(M) = A mit höchstens endlich vielen
Ausnahmen für x ∈ A gilt: timeM (x) > t(|x|).

Satz 3.22. Sei s : N → N ∈ Ω(n logn) raumkonstruierbar und monoton steigend.
Dann existiert eine Menge A ∈ DSPACE(s(n)) mit raumoptimalem deterministischem
Akzeptor.

Beweis. Sei M1,M2, . . . eine Aufzählung aller Turingmaschinen, wobei eine universelle
Turingmaschine U(〈i, x〉) die Arbeit von Mi auf der Eingabe x mit spaceU (〈i, x〉) ≤
ci · spaceU (x) + ci simulieren kann. Wir definieren außerdem eine Menge S als

S = {〈i, 0n〉 | U akzeptiert 〈i, 0n〉 in Raum höchstens s(n)} ∈ DSPACE(s)

und verwenden S als ”Ausschlusskriterium“, um nun die Menge A stufenweise zu kon-
struieren. Dabei entscheiden wir in jeder Stufe n, ob das Wort 0n zu A gehört, sodass
0n ∈ An ⇐⇒ 0n ∈ A. Damit jeder Akzeptor von A für höchstens endlich viele Worte
unterhalb der Raumschranke arbeiten kann, betrachten wir während der Konstruktion
eine endliche Menge Bn von solchen Maschinen, die noch als Akzeptor in Frage kommen.
Akzeptiert eine Maschine aus Bn ein Wort 0n unterhalb der Raumschranke, so kann sie
als Akzeptor ausgeschlossen werden, indem 0n /∈ An gesetzt wird.
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Zu Beginn der Konstruktion setzen wir A0 = B0 := ∅ sowie i0 = 0. Weiterhin unter-
scheiden wir für n ∈ N zwei Fälle. Falls ein i ∈ Bn mit 〈i, 0n〉 ∈ S existiert, so setzen
wir

An+1 = An

Bn+1 = Bn \ {i ∈ Bn | 〈i, 0n〉 ∈ S}
in+1 = in

und setzen sonst

An+1 = An ∪ {0n}
Bn+1 = Bn ∪ {in + 1}
in+1 = in + 1

Wir erhalten nun A durch A = ⋃
i∈NAi.

Behauptung 3.23. A ist eine unendliche Menge und es gilt {in | n ∈ N} = N.

Beweis. Für einen beliebigen Schritt n ∈ N ist Bn eine endliche Menge. Im ersten Fall gilt
|Bn+1| < |Bn|. Daher kann höchstens für endlich viele m aufeinanderfolgende Schritte
der erste Fall eintreten, bevor Bn+m = ∅ gilt. Spätestens dann wird ein weiteres Element
zu An+m+1 hinzugefügt. Mit 0n+m+1 ∈ An+m+1 =⇒ 0n+m+1 ∈ A folgt, dass auch
nach keinem endlichen Konstruktionsschritt Ai = A gelten kann, da nach endlich vielen
Schritten ein weiteres Element hinzugefügt wird. Mit dem gleichen Argument erhalten
wir auch {in | n ∈ N} = N. �

Behauptung 3.24. A ist DSPACE(O(s))-immun.

Beweis. Sei Mi eine TM mit spaceMi
∈ O(s), sodass L(Mi) unendlich ist. Es existiert ein

minimaler Schritt n, für den in = i gilt. Wir erhalten zudem ci · spaceMi
(0m)+ci ≤ s(m)

für genügend große m, da Mi einen asymptotischen Raumbedarf kleiner s hat. Da Mi eine
unendliche Menge akzeptiert, akzeptiert Mi auch 0m für genügend große m. Sei m ≥ n
nun minimal, sodass beides gilt. Dann gilt insbesondere auch spaceU (i, 0m) ≤ s(m) und
wir wählen in der Konstruktion daher 0m /∈ A. Folglich akzeptiert Mi keine Teilmenge
von A. �

Behauptung 3.25. A kann in DSPACE(s) entschieden werden.

Beweis. Um 0n ?
∈ A zu entscheiden, ist es ausreichend die Konstruktionsschritte bis An

durchzuführen. An hängt dabei nicht von An−1 ab, daher muss A∩Σ<n nicht gespeichert
werden. Der Raumbedarf ist dann gegeben durch

logn︸ ︷︷ ︸
aktuelle Stufe

+
n∑

i=1
log i︸ ︷︷ ︸

Bn

+ s(n)︸︷︷︸
Anfragen an S

+ logn︸ ︷︷ ︸
Zeiger in Mengen
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Wegen
∑n

i=0 log i = log n! ≤ lognn = n logn ist An folglich in O(s(n) + n logn) Raum
berechenbar. Nach Annahme gilt s ∈ Ω(n logn). �

Den DSPACE(s)-Akzeptor für A nennen wir O. Für jede Maschine M mit L(M) =
A existiert eine Konstante c mit c · spaceM (x) ≥ s(|x|) für fast alle x ∈ A, da A
DSPACE(O(s))-immun ist. Wählt man c ausreichend groß, so gilt sogar c · (spaceM (x) +
|x|) ≥ s(|x|) für alle x ∈ A. Gleichzeitig benötigt O nur spaceO(x) ≤ c′s(|x|) ≤
cc′ · (spaceM (x) + |x|) Raum. Somit ist O ein optimaler Akzeptor von A.

Die so konstruierten Sprachen haben zwar einen raumoptimalen deterministischen
Akzeptor aber dennoch ist unklar, ob Satz 3.13 anwendbar ist. Denn die konstruierte
Sprache lässt kein padding zu, da sie keine unendliche in L entscheidbare Teilmenge hat.
Das ist aber für padding nötig, da jede L-Teilmenge von A×Σ∗ injektiv auf A abgebildet
werden müsste. Es fehlt daher ein Beweis ob dennoch A × Σ∗ ≤log

m,L−L A. Daher geben
wir noch eine hinreichende Bedingung für die Existenz l-optimaler FL-Beweissysteme
an.

Satz 3.26. Aus L = NP folgt die Existenz beliebig komplexer Sprachen mit l-optimalem
Beweissystem.

Beweis. Aus L = P erhalten wir nach [Wra76] zunächst FL = FP und können daher die
Behauptung auf die Existenz beliebig komplexer FP-Beweissysteme zurückführen. Mit
P = NP folgt dann nach Messner [Mes01] die Behauptung.

3.7. Ein natürliches Beweissystem für GAP
Wir wissen nach 3.4, dass ein l-optimales FL-Beweissystem für eine vollständige Spra-
che einer Komplexitätsklasse bereits impliziert, dass jede Sprache dieser Klasse ein l-
optimales Beweissystem hat. Daher sind solche Sprachen besonders spannend. Eine sehr
natürliche Komplexitätsklasse für solche Betrachtungen ist NL. Wir wissen bereits, dass
für deterministische Raumklassen oberhalb von L keine ≤log

m -vollständigen Sprachen mit
l-optimalem FL-Beweissystem existieren. Für nichtdeterministische Raumklassen ist je-
doch kein solches Resultat bekannt. Wir definieren daher im Folgenden ein natürli-
ches Beweissystem für das NL-vollständige Problem GAP und untersuchen, ob dieses
l-optimal ist.

gap(〈G, s, t, p〉) =
{

〈G, s, t〉 falls p ein s-t-Pfad im gerichteten Graphen G ist
⊥ sonst

Offensichtlich ist Wgap = GAP. Weiterhin kann ein gegebener Pfad in logarithmischem
Raum durchlaufen werden, da nur der aktuell besuchte Knoten durch Zeiger in die
Eingabe gespeichert werden muss. Dann kann im Pfad für jede Kante geprüft werden,
ob eine entsprechende Kante auch im Graphen existiert. Zusätzlich müssen nur Start-
und Endknoten verifiziert werden. Daher folgt auch gap ∈ FL.
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Wir können eine Gemeinsamkeit mit sat beobachten. Die Schwierigkeit von GAP und
SAT liegt jeweils in einer existenziellen Quantifizierung für eine effizient verifizierbare
Lösung. Dieser Existenzquantor wird in der Definition von gap sowie von sat umgangen,
indem Lösungen explizit angegeben werden müssen. Ist ein solches Beweissystem l- bzw.
p-optimal, so kann jeder beliebige Beweis in einen konstruktiven umgewandelt werden.
Kann man also ausrechnen, ob eine Lösung existiert, so kann man auch mit geringem
Mehraufwand die Lösung explizit berechnen. Diesen Zusammenhang zeigen wir nun für
gap formal.

Bekanntes Resultat 14 (Messner, Theorem 5.2). Die folgenden Aussagen sind
äquivalent:

1. Für jede nichtdeterministische Polynomialzeitturingmaschine M mit L(M) =
SAT existiert eine Funktion f ∈ FP, sodass für jede Codierung w eines ak-
zeptierenden Rechenwegs von M(ϕ) die Auswertung von f(w) eine erfüllende
Belegung von ϕ berechnet.

2. Für jede nichtdeterministische Turingmaschine M mit L(M) = SAT existiert
eine Funktion f ∈ FP, sodass für jede Codierung w eines akzeptierenden
Rechenwegs von M(ϕ) die Auswertung von f(w) eine erfüllende Belegung von
ϕ berechnet.

3. sat ist ein p-optimales FP-Beweissystem.

Satz 3.27. Die folgenden Aussagen sind äquivalent:

(i) Für jede NPTM M mit L(M) = GAP existiert f ∈ FL, sodass für jede Codierung
w eines akzeptierenden Rechenwegs von M(〈G, s, t〉) ein s-t-Pfad in G durch f(w)
gegeben ist.

(ii) Für jede nichtdeterministische TM M mit L(M) = GAP existiert f ∈ FL, sodass
für jede Codierung w eines akzeptierenden Rechenwegs von M(〈G, s, t〉) ein s-t-
Pfad in G durch f(w) gegeben ist.

(iii) gap ist l-optimal.

Beweis.

Behauptung 3.28. (iii) =⇒ (ii)

Beweis. Sei M eine nichtdeterministische TM, die GAP akzeptiert. Man erhält ein FL-
Beweissystem für GAP wie folgt:

h(w) =
{

〈G, s, t〉 falls w ein akzeptierender RW von M(〈G, s, t〉) ist
⊥ sonst

Da nach Annahme gap ein l-optimales Beweissystem ist, existiert ein f ′ ∈ FL, mit
welchem gap(f ′(w)) = h(w) gilt. Dann ist f ′(w) = 〈G, s, t, p〉. Durch anschließende
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Projektion auf das letzte Listenelement erhält man die geforderte Übersetzung von ak-
zeptierenden Rechenwegen in s-t-Pfade. �

Behauptung 3.29. (ii) =⇒ (iii)

Beweis. Sei h ein FL-Beweissystem für GAP. Dann kann eine nichtdeterministische TM
M einen möglichen h-Beweis x für ein gegebenes y raten und danach deterministisch
prüfen, ob h(x) = y gilt. M akzeptiert so GAP. Nach Annahme existiert also ein f ∈ FL,
sodass für Codierungen w von akzeptierenden Rechenwegen von M f(w) einen s-t-Pfad
liefert. Da aus einem h-Beweis auch direkt ein akzeptierender Rechenweg von M folgt,
existiert auch ein f ′ ∈ FL, welches aus h-Beweisen einen s-t-Pfad liefert. Dann gilt

h(x) = gap(c(h(x), f ′(x)))

wobei c die Konkatenation zweier Listen leistet. �

Behauptung 3.30. (i) =⇒ (iii)

Beweis. Der Beweis von Behauptung 3.29 ist für diese Implikation noch zu schwach,
da h keine kurzen Beweise garantiert. Somit kann M h-Beweise nicht unbedingt in
Polynomialzeit raten. Dieses Problem kann umgangen werden, indem in einem weiteren
Beweissystem einige ausgegebene Instanzen vergrößert werden. Dazu sei g(〈G, i〉) eine
Kopie von G, in die |i| zusätzliche isolierte Knoten eingefügt wurden. Da dazu nur G
kopiert und ein Zähler der Länge log |i| nötig sind, ist g ∈ FL. Es gilt |g(G, i)| ≥ |i| für
beliebige G, i. Sei nun h′ ein Beweissystem wie folgt:

h′(x) =


〈g(G,w), s, t〉 falls x = 1w und h(w) = 〈G, s, t〉
〈G, s, t〉 falls x = 0w und gap(w) = 〈G, s, t〉
⊥ sonst

Ausgaben von h′ sind mindestens so lang wie die Eingabe. Folglich arbeitet M aus
dem Beweis zu (ii) =⇒ (iii) in nichtdeterministischer Polynomialzeit. Aus dem gleichen
Beweis erhält man dann auch unter Annahme von (i) ein solches f ′ ∈ FL, welches aus
h′-Beweisen s-t-Pfade berechnet. Da ein korrekter Pfad für h′(1x) auch ein korrekter
Pfad für h(x) ist, gilt schließlich

h(x) = gap(c(h(x), f ′(1x)))

�

Da nach Definition bereits (ii) =⇒ (i) gilt, folgt mit einem Ringschluss die behauptete
Äquivalenz.
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4. Besonderheiten von FL-Beweissystemen

4.1. L-Optimalität von gap impliziert den Kollaps L = NL
Ein Beweis von Pudlák [Pud17] zeigt, dass das Faktorisieren von Zahlen in determi-
nistischer Polynomialzeit gelöst werden kann, falls das Standardbeweissystem von SAT
p-optimal ist. Für den Beweis werden aussagenlogische Formeln genutzt, um auszudrü-
cken, dass eine Zahl n entweder prim ist oder einen echten Teiler besitzt. Da eine solche
Formel immer wahr ist, erhält man ein Beweissystem für SAT mit kurzen Beweisen für
diese Formeln. Ist sat aber p-optimal, so lassen sich diese kurzen Beweise in sat-Beweise
übersetzen, woraus ein echter Faktor für die betrachtete Zahl berechnet werden könnte.

Das gleiche Prinzip soll nun auf gap erweitert werden. Dazu wird zunächst eine Funk-
tion definiert, durch welche die Rechnung einer Turing-Maschine als Graph dargestellt
werden kann. Diese Konstruktion wird üblicherweise dazu verwendet, zu zeigen, dass
GAP NL-vollständig ist.

Definition 4.1 ([Pap94]). Für eine NL-Rechnung M(x) wird der entsprechende Konfi-
gurationsgraph GM (x) genannt. Die Knoten dieses Graphen stellen die möglichen Konfi-
gurationen der Maschine dar. Auf einem Arbeitsband sind |Σ|c·log |x| verschiedene Inhalte
und log |x| Kopfpositionen möglich. Weiterhin sind auf dem Eingabeband |x| verschie-
dene Kopfpositionen möglich. Zusätzlich hat die Maschine konstant viele Zustände und
Arbeitsbänder. Insgesamt erhält man daher p(|x|) mögliche Konfigurationen für ein Poly-
nom p. Diese sind daher jeweils durch c · log |x| Bits codierbar, folglich ist die Codierung
der Knotenmenge von GM (x) nur polynomiell lang. Wegen |E| ≤ |V |2 hat damit die
Codierung des gesamten Konfigurationsgraphen nur polynomielle Größe.

Die Kanten des Graphen beschreiben, ob ein Übergang zwischen zwei Konfigurationen
existiert. Für zwei Konfigurationen c1, c2 existiert also die Kante (c1, c2) genau dann,
wenn c1 in einem Schritt in c2 übergehen kann. Diese Kantenmenge kann man in log-
arithmischem Raum berechnen, da man je zwei Konfigurationen gleichzeitig im Speicher
halten kann. Für jede Konfiguration gibt es nur konstant viele Folgekonfigurationen, die-
se müssen mit der zweiten Konfiguration verglichen werden. Iteriert man so über alle
möglichen Konfigurationen, so erhält man die Kantenmenge. Da jede Konfiguration nur
logarithmischen Raum benötigt, gilt folglich GM ∈ FL.

Satz 4.2. gap ist genau dann l-optimal, wenn L = NL gilt.

Beweis. Sei A ∈ NL beliebig. Nach Immerman und Szelepcsényi [Imm88] erhalten wir
mit NL = coNL die Existenz von zwei NLTMs MA und MA mit L(MA) = A und
L(MA) = A. Ohne Beschränkung der Allgemeinheit kann angenommen werden, dass
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MA und MA auf dem gleichen Arbeitsalphabet arbeiten, gleich viele Arbeitsbänder ver-
wenden und jeweils nur eine akzeptierende Konfiguration haben. Durch Anpassen der
Zustandsmengen kann zusätzlich sichergestellt werden, dass beide Maschinen die gleiche
akzeptierende Konfiguration Acc einnehmen, sonst aber disjunkte Konfigurationsmengen
aufweisen.

Eine dritte NLTM M kann nun aus ihrer Startkonfiguration S nichtdeterministisch
in die Startkonfigurationen von MA und MA übergehen. Dadurch ist garantiert, dass
M auf jeder Eingabe akzeptiert, da A ∪ A = Σ∗. Weiterhin sind A und A disjunkt,
daher kann in M immer nur eine der beiden simulierten Maschinen akzeptieren. Aus der
zweiten Konfiguration eines akzeptierenden Rechenwegs von M kann abgelesen werden,
ob ein Pfad der Rechnung von MA oder von MA vorliegt. Auf keinem Rechenweg von M
wird die Simulierte Maschine nach dem ersten Takt geändert. Daher kann bereits aus
der zweiten Konfiguration eines akzeptierenden Rechenweges entschieden werden, ob die
Eingabe in A liegt.

Wegen L(M) = Σ∗ ist in GM (x) Acc immer von S aus erreichbar. Daher gilt WG′
M

⊆
GAP, wobei G′

M (x) = 〈GM (x), S,Acc〉. Sei nun g ein FL-Beweissystem für GAP wie
folgt:

g(x) =
{

gap(w) falls x = 1w
G′

M (w) falls x = 0w
Da gap l-optimal ist, existiert t ∈ FL, welches g-Beweise in gap-Beweise übersetzt. Da
G′

M (w) nach Konstruktion in GAP liegt, ist 0w bereits ein g-Beweis für G′
M (w). Aus

t(0w) erhält man folglich einen gap-Beweis für G′
M (w). Nach Definition von gap enthält

t(0w) einen S-Acc-Pfad in GM (w). Eine L-Maschine kann nun wie folgt A entscheiden:

Algorithmus 4 : Entscheidungsalgorithmus für A
Eingabe : x

1 Berechne y := t(0x)
2 Setze p auf den in y codierten S-Acc-Pfad
3 wenn der Nachfolgeknoten von S in p die Startkonfiguration von MA ist dann
4 akzeptiere
5 sonst
6 lehne ab

Es ist ausreichend, nur eine Konfiguration des Pfades im Speicher zu halten. Daher
muss y nie vollständig auf ein Arbeitsband geschrieben werden. Die Codierung einzelner
Konfigurationen kann in logarithmischem Raum abgespeichert werden. Da auch t und
das Inverse der Listencodierung in FL berechenbar sind, arbeitet der gegebene Algorith-
mus in logarithmischem Raum. Folglich ist A ∈ L.

Angenommen, es gilt L = NL. Sei GAP′ definiert als

GAP′ = {(G, s, t, k) | in gerichtetem Graph G existiert ein s-t-Pfad der Länge k}

Da ein Pfad der Länge k in einem gerichteten Graphen von einer NLTM geraten und
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dann geprüft werden kann, ist GAP′ ∈ NL = L. Für ein gegebenes (G, s, t) ∈ GAP kann
eine L TM nun wie folgt arbeiten:

Algorithmus 5 : GAPSuche
Eingabe : G, s, t

1 (V,E) = G
2 Bestimme mittels binärer Suche das kleinste k mit (G, s, t, k) ∈ GAP′

3 Knoten v = s
4 solange k > 0 tue
5 für u mit (v, u) ∈ E tue
6 wenn (G, v, t, k − 1) ∈ GAP′ dann
7 Schreibe v auf das Ausgabeband
8 v = u
9 k = k − 1

Für diesen Algorithmus müssen nur Anfragen an GAP′ beantwortet und zwei Konfi-
gurationen sowie die Restpfadlänge gespeichert werden. Das ist insgesamt möglich, da
GAP′ nach Annahme in L entscheidbar ist und da der kürzeste Pfad jeden Knoten höchs-
tens einmal durchläuft, also in seiner Länge polynomiell beschränkt ist. Sollte kein Pfad
existieren, so erkennen wir das bereits in Zeile 2. Hier wird dann kein geeignetes k ≤ |V |
gefunden, auch hierfür ist nur logarithmischer Raum nötig. Folglich können Pfade in G
über ein g ∈ FL berechnet werden. Sei nun f ein FL-Beweissystem für GAP. Aus einem
f -Beweis x erhält man einen gap-Beweis, indem man den Pfad g(f(x)) berechnet und
mit der Instanz f(x) konkateniert. Es folgt f ≤l

s gap. Also ist gap l-optimal.

4.2. Zusammenhang zwischen FL- und FP-Beweissystemen
Unsere Definition von FL-Beweissystemen scheint stärkere Anforderungen zu stellen, als
die übliche, da FL ⊆ FP gilt und die umgekehrte Inklusion nicht bekannt ist. Üblicher-
weise wird FL 6= FP angenommen. Gleichzeitig ist dadurch aber der Optimalitätsbegriff
auf FL-Beweissystemen scheinbar schwächer, da ein optimales FP-Beweissystem auch
jedes FL-Beweissystem simulieren muss, umgekehrt aber nicht. Es ist daher zunächst
unklar, ob zwischen den Optimalitätsbegriffen für FL- und FP-Beweissysteme über-
haupt Beziehungen gelten. Wir werden in diesem Abschnitt eine Technik zeigen, mit der
viele dieser Beziehungen gezeigt werden können. Hierfür zeigen wir, dass zu beliebigen
FP-Beweissystemenen ein FL-Beweissystem konstruiert werden kann, welches die gleiche
Sprache beweist. Es ist sogar eine Übersetzung der Beweise in FP möglich.

Lemma 4.3. Für jedes FP-Beweissystem f existiert ein FL-Beweissystem `, sodass
Wf = W` und f ≤p

s `.

Beweis. Es existiert eine TM Mf , welche zu beliebigen f -Beweisen x in polynomieller
Zeit ein y = f(x) berechnet. Folglich existiert ein Polynom t, sodass die Rechenzeit von
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Mf durch t beschränkt ist. Ein Rechenweg von Mf (x) kann daher höchstens t(|x|) Kon-
figurationen durchlaufen. Jede dieser Konfigurationen kann dabei höchstens t(|x|) Raum
verwenden. Daher existiert ein Polynom q, sodass Rechenwege von Mf auf x inklusive der
vollständigen Bandinhalte mit q(|x|) Bits codiert werden können. Für einen so codierten
Rechenweg muss ein Verifier nur überprüfen, ob die einzelnen Übergänge korrekt sind.
Dazu sind zwei Zeiger in die Eingabe ausreichend, die in aufeinanderfolgende Konfigura-
tionen zeigen. Ausgehend von einem Fixpunkt kann der Verifier die Unterschiede in den
Konfigurationen prüfen und testen, ob die Änderung durch eine korrekte Regelanwen-
dung entstehen konnte. Für diese Prüfung müssen nur Zeiger in die Eingabe gespeichert
werden, daher kann ein Verifier die Rechenwege in logarithmischem Raum prüfen. Sei `
nun definiert als

`(w) =
{
y falls w einen Rechenweg von Mf (x) mit Ausgabe y codiert
⊥ sonst

Da nur der Rechenweg geprüft und die Ausgabe imitiert werden muss, ist ` ∈ FL. Da
außerdem für jeden f -Beweis x ein Rechenweg von Mf auf x existiert, der höchstens
polynomiell länger ist, gilt f ≤s `.

Um schließlich einen f -Beweis x in einen `-Beweis zu überführen ist es ausreichend,
Mf auf diesem x zu simulieren und nach jedem Takt seine Konfiguration inklusive der
Bandinhalte auszugeben. Das ist in FP möglich. Durch den Rechenweg ist dann ein
`-Beweis gegeben.

Die Aussage kann sogar noch verschärft werden. Die Konstruktion in Lemma 4.3
fordert nur, dass Rechenzeit sowie Speicher polynomiell beschränkt sind und dass ein
codierter Rechenweg in Logspace auf Korrektheit geprüft werden kann. Beides ist für
NPSV-Beweissysteme der Fall. Für die Übersetzungsfunktion t ist es daher ausreichend,
einen akzeptierenden Rechenweg zu suchen. Falls ein solcher existiert, so ist die Ausgabe
von f bereits eindeutig, t kann also einen beliebigen akzeptierenden Rechenweg wählen.
Falls kein Rechenweg eine Ausgabe macht, so ist f an dieser Stelle nicht definiert. Es ist
daher ausreichend, dass t einen festen Wert ausgibt, der keine korrekte Codierung eines
Rechenwegs ist. Nur die gefolgerte P-Simulation funktioniert nicht für alle f ∈ NPSV.

Auch für Relationen f ∈ NPMV existiert ein FL-Beweissystem `, sodass für alle x, y
mit y ∈ f{x} ein x′ existiert, sodass x′ höchstens polynomiell länger als x ist und
`(x′) = y. Allerdings existiert in diesem Kontext keine Funktion t, die f -Beweise in
`-Beweise übersetzt, da ein f -Beweis nicht eindeutig charakterisiert, welches Element
bewiesen werden soll. Dadurch ist die Übersetzung t nicht wohldefiniert.

Im Kontext von noch schwächeren Berechnungsmodellen ist die gezeigte Technik nicht
anwendbar. Um einen codierten Rechenweg zu prüfen, ist es notwendig, die ursprüng-
liche Eingabe vollständig in der Eingabe codiert zu haben. Solange für das Prüfen des
Rechenwegs Zeiger in die Eingabe gespeichert werden müssen, benötigt die Prüfung eines
Rechenwegs w daher Ω(log |w|) Speicher. Da die Codierung eines Rechenwegs von M(x)
bereits eine Länge von p(|x|) haben kann, ist die Prüfung der codierten Rechenwege
folglich nicht unterhalb von L möglich.
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Optimale Beweissysteme Aus Lemma 4.3 folgt nun direkt, dass die Existenz optimaler
FL-Beweissysteme genau durch die von optimalen FP-Beweissystemen charakterisiert
werden kann.

Satz 4.4. Eine Menge A ⊆ Σ∗ hat genau dann ein optimales FL-Beweissystem, wenn
sie ein optimales FP-Beweissystem hat.

Beweis. Seien g ein optimales FL-Beweissystem und f ein beliebiges FP-Beweissystem
für A. Lemma 4.3 garantiert ein FL-Beweissystem ` für A mit f ≤s `. Da g optimal ist,
gilt weiterhin ` ≤s g. Aus der Transitivität der Simulation (Satz 2.25) folgt f ≤s g.

Sei nun f ein optimales FP-Beweissystem für A. Mit ` sei das in Lemma 4.3 garantierte
FL-Beweissystem bezeichnet. Sei g ein FL-Beweissystem für A. Wegen FL ⊆ FP gilt
g ≤s f . Da ` wiederum f simuliert, gilt nach der Transitivität der Simulation (Satz 2.25)
auch g ≤s `.

Dieser Satz ermöglicht es uns, die Resultate von Messner [Mes01] zur Existenz von
optimalen FP-Beweissystemen in den Kontext von FL-Beweissystemen zu übertragen.

Korollar 4.5 (Verbesserung von Satz 3.2 ). Jedes A ∈ NP hat ein optimales FL-
Beweissystem.

Beweis. Nach Messner [Mes01] ist bekannt, dass beliebige Sprachen aus NP optimale
FP-Beweissysteme haben.

Korollar 4.6. Es existieren beliebig komplexe Sprachen ohne optimales FL-Beweissystem.

Beweis. Für superpolynomielle zeitkonstruierbare t : N → N konstruiert Messner [Mes01]
Sprachen in coNTIME(t) ohne optimales FP-Beweissystem.

Korollar 4.7. Der Kollaps NP = coNP impliziert die Existenz beliebig komplexer Spra-
chen mit optimalem FL-Beweissystem.

Beweis. Messner zeigt diese Implikation für optimale FP-Beweissysteme.

l-optimale Beweissysteme sind mindestens so schwer zu finden wie p-optimale

Satz 4.8. Ist f ein l-optimales FL-Beweissystem für eine Sprache A, so ist f auch ein
p-optimales FP-Beweissystem für A.

Beweis. Sei f ein l-optimales FL-Beweissystem und g ein beliebiges FP-Beweissystem.
Nach Satz 4.4 gilt bereits g ≤s f . Weiterhin kann beobachtet werden, dass g von dem
in Lemma 4.3 konstruierte FL-Beweissystem ` sogar p-simuliert wird. Die Übersetzung
kann berechnet werden, indem ein Rechenweg von g auf der Eingabe simuliert und
die dabei durchlaufenen Konfigurationen ausgegeben werden. Die Simulation an sich
ist in Polynomialzeit möglich, da nach Wahl g ∈ FP. Für die Ausgabe der einzelnen
Konfigurationen ist dann nur noch polynomieller Overhead nötig. Da weiterhin ` ≤l

s f
gilt und FP unter Verkettung abgeschlossen ist, folgt nun g ≤p

s f .
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Es ist unklar, ob auch die Umkehrung dieser Aussage gilt. Die reine Verwendung von
Lemma 4.3 ist hier allerdings nicht ausreichend, da dafür beliebige FP-Berechnungen
in FL simuliert und die durchlaufenen Konfigurationen berechnet werden müssten. Ein
hinreichendes Kriterium wäre L = P, da dann nach einem Resultat von Jenner und
Torán [JT95] FP ⊆ FL folgt.

Wir erhalten auch ein Indiz für eine untere Schranke. Wegen GAP ∈ P können
s-t-Pfade in FP berechnet werden. Daher ist klar, dass GAP bereits ein p-optimales
Beweissystem hat. Implizieren p-optimale FP-Beweissysteme nun auch l-optimale FL-
Beweissysteme, so erhalten wir ein l-optimales FL-Beweissystem g für GAP. Grund-
sätzlich wissen wir nicht, wie dieses Beweissystem funktioniert. Insbesondere ist unklar,
ob das Standardbeweissystem gap dann l-optimal ist. Lassen sich aber aus g-Beweisen
Rückschlüsse auf mindestens einen inneren Knoten eines s-t-Pfades ziehen, so können wir
bereits durch den Konfigurationsgraphen wie im Beweis zu Satz 4.2 L = NL folgern. Um
diesen Kollaps zu umgehen wäre eine Beweistechnik erforderlich, durch die man keine
Informationen über die inneren Knoten eines verbindenden Pfades erhält. Im Gegensatz
zu den anderen Richtungen könnte man dann nicht das l-optimale FL-Beweissystem
direkt aus einem p-optimalen ausrechnen.
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5. Offene Fragen

Wir haben eine enge Verbindung zwischen FL-Beweissystemen und FP-Beweissystemen
beobachtet, insbesondere implizieren positive Antworten auf die Existenzfragen für FL-
Beweissysteme jeweils auch positive Antworten auf die Existenzfragen bei FP-Beweis-
systemen. Diese Implikationen könnten dabei helfen, die hinreichenden Kollapsbedingun-
gen von Messner abzuschwächen, da für raumbeschränkte Komplexitätsklassen manche
Resultate wie die Abgeschlossenheit unter Komplement bereits bekannt sind. Dadurch
stehen im Kontext von FL-Beweissystemen mehr Techniken zur Verfügung, über die eine
Verbesserung erzielt werden kann.

Speziell für die Existenz optimaler FL-Beweissysteme wäre eine zusätzliche Charakte-
risierung über einen raumoptimalen Akzeptor wünschenswert. Der analoge Beweis von
Messner lässt sich nicht direkt übertragen, aber ein solcher Zusammenhang ist dennoch
nicht ausgeschlossen. Da wir zumindest wissen, dass Funktionen in FL raumoptimal in-
vertiert werden können, scheint ein solcher Zusammenhang nicht ausgeschlossen. Könnte
man die Existenz optimaler FL-Beweissysteme so charakterisieren, so würden außerdem
die Sprachen mit raumoptimalem Akzeptor mit den Sprachen mit zeitoptimalem Akzep-
tor zusammenfallen.

Mit Blick auf die L ?= P Frage ist schließlich die Umkehrung der Implikation aus
Satz 4.8 interessant. Man könnte zeigen, dass diese Implikation nicht gilt, indem eine
Sprache mit p-optimalem FP-Beweissystem und ohne l-optimales FL-Beweissystem kon-
struiert wird. Da unklar ist, für welche Komplexitäten noch Sprachen mit p-optimalem
FP-Beweissystem existieren, ist diese Suche vermutlich sehr schwer. Man könnte aber
explizit nach einer Sprache in P suchen, die kein l-optimales FL-Beweissystem hat. Fin-
det man eine solche Sprache, so zeigt man damit, dass L 6= P. Auch daher ist davon
auszugehen, dass dieser Ansatz sehr schwierig ist. Könnte man stattdessen zeigen, dass
diese Implikation tatsächlich auch gilt, so könnte man darüber einen Hinweis erhalten,
ob gap oder ein ähnliches FL-Beweissystem bereits l-optimal ist. Dass daraus L = P
folgt, haben wir bereits in Satz 4.2 gezeigt.

40



A. Beweissysteme mit konstantem
Speicherbedarf

Bisher haben wir beobachtet, dass die Frage nach universellen Beweissystemen auch im
schwächeren Berechnungsmodell nicht leichter als mit der üblichen Definition von Cook
und Reckhow zu beantworten ist. Daher schwächen wir die betrachteten Beweissysteme
im Folgenden noch weiter ab und beschränken uns auf solche Funktionen, die mit dem
Berechnungsmodell der endlichen Automaten berechnet werden können.

Im Berechnungsmodell von endlichen Automaten wird im Gegensatz zu Turing-Maschinen
auf Arbeitsbänder verzichtet. Außerdem ist das Eingabeband ein read-once Band, sodass
die Eingabe nicht mehrfach durchlaufen werden kann. Eine genaue Definition von end-
lichen Automaten kann bei Hopcroft und Ullman [HU79] gefunden werden. Endliche
Automaten können auch Funktionen berechnen, indem in jedem Übergang zusätzlich
eine Ausgabe getätigt wird. Die Konkatenation der Ausgaben ergibt dann einen Funk-
tionswert. Die Menge der Funktionen, die von einem endlichen Automaten berechnet
werden können, nennen wir FDEA.

Satz A.1. Für eine Sprache A ⊆ Σ∗ sind die folgenden Aussagen äquivalent:

(i) A ∈ REG

(ii) A hat ein FDEA-Beweissystem

(iii) A hat ein l-optimales FDEA-Beweissystem

Beweis.

Behauptung A.2. (ii) =⇒ (i)

Beweis. Gegeben sei ein FDEA-Beweissystem f für A. Sei F ein deterministischer end-
licher Automat (DEA), der f berechnet. Ohne Beschränkung der Allgemeinheit können
wir annehmen, dass in jedem Übergang von F nur ein Symbol ausgegeben wird. Dazu
sind technisch ε-Transitionen nötig, die längere Eingaben über Blockierzustände aufbre-
chen. Wir erhalten dann einen nichtdeterministischen endlichen Automaten N , der den
Wertebereich der von F berechneten Funktion entscheidet, indem für jeden Übergang
der Form zasa → zbsb von F ein Übergang zasb → zb in N angelegt wird. Durch dieses
Vorgehen prüft N , ob eine Eingabe existiert, für die F das bisher gelesene Wort ausge-
ben kann. Nach einem Satz von Rabin und Scott [RS59] kann N in einen äquivalenten
DEA überführt werden. Folglich ist der Wertebereich durch einen endlichen Automaten
entscheidbar und daher eine reguläre Sprache [HU79]. �
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Behauptung A.3. (i) =⇒ (iii)

Beweis. Sei A ∈ REG. Folglich existiert ein DEA D mit L(D) = A [HU79]. Wir erhalten
einen DEA F , der genau wie D arbeitet und in jedem Übergang das gerade eingelesene
Symbol ausgibt. Offenbar berechnet F das FDEA-Beweissystem

h(w) =
{
w falls w ∈ A

⊥ sonst

Der Wertebereich von h entspricht nach Definition genau A, da h(w) = w für w ∈ A.
Gleichzeitig gilt dann für jedes FDEA-Beweissystem g für A, dass g(x) = h(g(w)) für
jedes beliebige x ∈ Σ. Wegen g ∈ FDEA ⊆ FL ist h also l-optimal. �

Da (iii) =⇒ (ii) bereits per Definition gilt, folgt nach einem Ringschluss die behauptete
Äquivalenz.
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