
Institute of Computer Science
Chair of Communication Networks

Master's Thesis

Revised Version (as of June 5, 2024)

Modeling and Evaluation of
Sustainable Mobility Concepts
for the Campus Mobility

Modellierung und Evaluation
nachhaltiger Mobilitätskonzepte
für die Campus-Mobilität

Helena Fehler

Prof. Dr.-Ing. Marco Pruckner
Prof. Dr. Marie Schmidt
Supervisors

Submission
February 26, 2024



Deutsche Zusammenfassung

Aktuell fährt immer noch ein groÿer Teil der Studenten in Deutschland mit dem Auto
zu ihrer Universität. Dies tri�t vor allem auf Studenten zu, die nicht in der Nähe
ihres Universitäts-Campus wohnen. Da solch ein tägliches Pendeln mit dem Auto einen
groÿen Beitrag der gesamten jährlichen CO2 Emissionen ausmacht, entwickelt diese Ar-
beit ein Framework für das Untersuchen und Vergleichen von alternativen Mobilitäts-
Möglichkeiten durch die Auswertung dieser in einer Simulation. Konkret wird in dieser
Arbeit untersucht, wie sich die jeweilige Anwendung von Ridesharing oder Ridepooling
für die Universität Würzburg im Vergleich zueinander und zu einem Vergleichsszenario,
in dem alle Studierenden mit einem eignen PKW fahren, verhält. Dafür entwickeln
wir eigene Umsetzungen für Ridesharing und Ridepooling und werten diese für Agenten
aus, die wir mit realistischen Heim-Positionen in und um Würzburg und Transport-
Nachfrage versehen. Wir erfahren, dass Ridepooling nicht zur Reduktion der gesamten
zurückgelegten Kilometer führt und die Nachhaltigkeit allein von den genutzten Ride-
pooling Fahrzeugen abhängt. Zudem zeigt sich in unseren Ergebnissen, dass Ridesharing
zwar bessere Ergebnisse bezogen auf Emissionen- und Kostenreduktion hat, aber auch
dazu führt, dass etwa 10% der Studierenden einen schlechten Service erfahren, da sie
keine Ridesharing Rückfahrt �nden und somit eine Alternative benötigen.
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1 Introduction

In the wake of climate change, more sustainable mobility concepts are developed in
order to reduce CO2 emissions. Since daily commute by car makes up a large part
of emissions [1], �nding new ways for reducing the amount of cars on the street is a
good starting point for alleviating emissions created by commuting. A large percentage
of such daily commuters are university students. Although German students typically
receive semester tickets from their university, about 25 percent of them commute in
their private cars which can be seen in a study from 2018 [2]. This can be attributed
to public transport not being convenient enough for a big portion of students, mainly
students living farther away from their university campus [3]. In other areas, such as
corporate mobility, methods like ridepooling are already being used for, e.g., bringing
workers to their workplace and back home [4] or transporting them inside an employee
campus [5]. But while some alternative models for campus mobility are o�ered and
researched extensively [6, 7], there still is no popular solution for German students since,
as of 2018, only six percent of them report about sharing a vehicle for commuting [2].

Developing alternative university campus mobility approaches comes with unique dif-
�culties. Unlike most employees, university students do not have a single starting time
for their classes which, additionally, di�er every day of the week. Furthermore, their
preferred commuting times do not have to correlate with their classes since students
oftentimes stay at their campus for other activities such as studying, socializing and
eating at the cafeteria. This leads to the conclusion that students' transportation needs
are dynamic and ill-suited for public transport which comes with overloaded buses in
peak times, empty buses in o�-peak times, long rides due to detours and, especially in
rural areas, infrequent arrival times.

This might result in students choosing commuting by car as a more comfortable option
which also allows for a drive without more stops than needed - unlike taking the bus.
Therefore, solutions for transporting students should be based on actual demand and
consider having a su�cient amount of vehicles for peak times and not performing too
many detours as not to have long rides. Additionally, creating an actual incentive for
students to choose the dynamic alternative instead of driving their car as usual, such as
o�ering low prices, is of importance. If these aspects are considered, dynamic solutions
for grouping student rides to campus o�er a compromise for balancing the quality of
experience (e.g., costs for the students, ride times, waiting times) and sustainability.

Two mobility models that opt to assign passengers to groups that can e�ciently drive
to a destination together are ridepooling and ridesharing. Ridesharing is the method of
people with similar destinations sharing a ride in a private car, grouping people for an
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1 Introduction

already existing ride [8]. Then, the passengers contribute to paying the costs of the ride.
Ridepooling, on the other hand, is a model in which a vehicle, in most cases owned by a
ridepooling company, groups (pools) people with similar transportation needs together
and then picks them up and drops them o� at di�erent stops [9].

In order to evaluate if alternative mobility approaches such as ridepooling and rideshar-
ing have e�ects on making campus mobility more sustainable, they need to be compared
in a realistic way. In this work we develop a framework for modeling and simulating
di�erent mobility modes under the same circumstances. With the help of this framework
we can assess the opportunities and challenges for utilizing new mobility modes and can
o�er some decision support for universities trying to further the sustainability of their
campus mobility.

For this we focus on students living outside of a speci�ed radius around their campus
since their transport connection is usually worse. For simplicity's and comparison's
sake, a reference scenario in which all considered students drive their own private car
to campus is created. We then compare this method, named �EverybodyDrives�, to
a ridesharing approach and a ridepooling approach which we develop as parameterized
models.

Input are parameters such as accepted time-windows for arrival or departure at the
student's campus or the distance a student is willing to walk. The algorithms used in
the mobility models have to make decisions around grouping people for rides to and
from multiple university campus positions. These decisions are made with the goal to
have low ride times and costs for students as well as reducing CO2 emissions. This can
be done by grouping as many students as possible, which is limited by hard constraints
like arrival or departure time-windows and maximum accepted ride times speci�ed by
students. In order to combat the problem's complexity, the developed algorithms for
these approaches use heuristics like �least distance between student homes�. We then
compare the di�erent mobility models for the output metrics �travelled kilometers�,
�travelled minutes�, �emissions� and �costs�.

In this work we utilize our framework to speci�cally examine the campus mobility of
the University of Würzburg which does have ample public transport opportunities inside
the city of Würzburg (Germany). Nevertheless, the aforementioned problems of either
full or empty buses, infrequent bus schedules and long commutes for students living
outside the city still persist. Therefore, we assess whether ridepooling and ridesharing
could alleviate these problems for this setting. However, our framework is also applicable
to other university campus mobility scenarios since we can con�gure campus locations,
agents' local distribution and their travel demands.

In summary, this work presents, compares and evaluates the di�erent mobility modes
for a realistic scenario in order to answer our central research question: Are ridepooling
and ridesharing more sustainable methods for campus mobility than our baseline scenario
and to what extent? Furthermore, we assess which approach performs the best under
which circumstances and test the stability of our models.
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1 Introduction

In chapter 2 we present the background and de�nition of ridesharing and ridepooling
and give an overview of the related work for ridesharing and ridepooling approaches and
campus mobility. Chapter3 then describes the project's methodology, which entails the
concepts, ideas and algorithms of this work. Additionally, the methodology contains
more detailed explanations for the methods and processes used in our framework as well
as a description of the speci�c scenario we use for evaluation. We present the results
of the speci�ed simulation scenario in chapter4 which is followed by chapter5 which
entails sensitivity analyses that verify the stability of our models and examine which
parameters have the biggest impact on the simulation's outcome. We conclude this
work with a short summary, our most important �ndings and possible future work in
chapter 6.
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2 Background and Related Work

This chapter describes the background for ridesharing and ridepooling which entails a
short summary of their history, most common usages, and new developments. Further-
more, we present other works in the literature for ridesharing and ridepooling as well as
campus mobility as a whole.

2.1 Ridepooling

After presenting some background on ridepooling as a concept, we �rst address that ride-
pooling approaches can be very di�erent and then expound on some of these approaches
and their di�erences to our work.

2.1.1 A Brief Historical and Present Background for Ridepooling

Ridepooling, or Mobility on Demand (MOD), is a mobility concept in which people
are grouped based on their transportation needs and transported without a �xed route.
Nevertheless, the passengers do not have to have the same pickup and dropo� positions.
They can either be picked up and dropped o� at di�erent stops or all driven to the
same position (which is the basis for so-called feeder systems). For this, stops can
either be made at any possible positions or have to be speci�ed beforehand. [9]. The
crucial di�erence to ridesharing is that a ridepooling organization supplies the vehicles
and drivers for the grouped rides. Since the used vehicles are not privately owned in
ridepooling, new mobility techniques such as autonomous driving and the utilization
of electric vehicles can be tested to further maximize the e�ect of emission and cost
reduction. On the other hand, more empty rides to depots or pickup positions are
needed which could dampen the positive e�ects of grouping people for transport.

Pooling taxis or so-called �call buses� can be seen as the forerunners of ridepooling
situations. But, organizing via phone turned out to be ine�cient and pooling a lot of
people made rides too long and chaotic.[10] A popular modern ridepooling service would
be MOIA [11] which operates in Hamburg and Hanover and is booked by using a mobile
phone app.

2.1.2 Ridepooling Categories

Ridepooling (as well as ridesharing) can be divided into categories. Vansteenwegen et
al. [9], for example, di�erentiate between dynamic-online, dynamic-o�ine and static ap-
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2 Background and Related Work

proaches. Generally, what constitutes a dynamic approach is that changes to the sched-
ule can be made during the planning horizon, i.e. new demand information can a�ect
the route planning while some services are already running. Furthermore, dynamic-
online approaches allow changes to ongoing services (i.e. driving vehicles can change
their route), whereas dynamic-o�ine methods only allow for services that have not yet
started to be altered.

In static approaches, on the other hand, every service execution is planned beforehand
and no changes can be made once operation starts. Thus, all considered demand data
has to arrive before the planning horizon.

Vansteenwegen et al. further present additional categories for ridepooling approaches,
such as many-to-many versus many-to-one (feeder systems), fully �exible vs semi �exible,
and a category based on whose goals are optimized (passenger goals vs operator goals
vs multiple objectives). Many-to-many versus many-to-one means whether passengers
are all dropped o� at the same position whereas fully �exible vs semi �exible addresses
if time tables are either completely omitted or adapted based on demand.

The ridepooling approach used in this work falls into the category dynamic -o�ine
as changes can be made during the planning horizon but ongoing vehicle rides can not
be adjusted by new demand information. Furthermore, since no time tables are used
and students of the same ride can be dropped o� at di�erent, but similarly located,
stops (either campus locations or home positions) we consider this work's ridepooling
approach many-to-few and fully �exible. Lastly, the considered objectives are from the
passenger perspective.

2.1.3 More Ridepooling Papers

As previously presented, a ridepooling approach can be dynamic or static. In the liter-
ature, works that utilize static approaches try to solve complex situations that are fully
known beforehand. For example, a static on-demand bus routing problem (ODBRP) is
introduced by Melis and Sörensen [12]. The ODBRP involves a �eet of buses, bus sta-
tions, travel times and transportation requests with departure and arrival options and
time-windows. The goal was to assign passengers to departure and arrival bus stations
and create bus routes to minimize the passengers' travel times. For solving this com-
plex problem, a large neighborhood search heuristic is presented. The results show that
on-demand bus systems can signi�cantly reduce total passenger ride times compared to
traditional �xed-line and timetable-based systems.

On the other hand, works with dynamic approaches usually aim to solve a problem
in which information is revealed bit by bit. One dynamic-online approach is by Gomes
et al. [13] who developed a Demand Responsive Transportation (DRT) system in which
passengers pick a start and end destination and are served by vehicles with the same
capacity. Some of the transportation requests are assumed to be known beforehand
which are solved as a static problem. Then, dynamically arriving requests are considered
during operation. Gomes et al. use a heuristic method by utilizing a reactive greedy
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random approach with a local improvement phase afterward for building possible routes.
They determine pick-up time-windows to be hard constraints and delivery time-windows
to be soft constraints. In contrast, in this work's approach time-window constraints
depend on the type of ride (either ride to campus or ride home) wherein either all
pickups or all drop-o�s entail a hard time-window constraint. Another di�erence is
that, in the work of Gomes et al., a stop can be visited multiple times during one ride
since passengers may have di�erent time-windows for this stop whereas in this work,
only passengers with overlapping time-windows for the same stop are grouped together
in order to only visit a stop once during a ride.

We concluded that our ridepooling approach should use a dynamic approach as we
�nd that this resembles the real-world commuting behavior of students, who oftentimes
spontaneously decide about transportation needs, more closely.

While further deciding how to structure and develop our approach, we came across
many works in the literature that use precise simulations that can model tra�c behavior
such as MATSim for evaluating their ridepooling approach. For example, Liyanage and
Dia [14] developed an agent-based simulation in which they compare on-demand public
transport to scheduled bus services in Melbourne, Australia. For this, they develop a
microscopic tra�c simulation approach. In order to compare the on-demand approach to
the scheduled bus services, they used the same passenger demands, which they modelled
in a origin-destination matrix, for both scenarios.

Another ridepooling approach using a microscopic tra�c simulation model (MATSim)
was developed by Narayan et al. [15] in order to evaluate di�erent tra�c modes, namely
�xed public transport, private cars and �exible on-demand transport for which they used
the algorithm by Hörl [16]. These tra�c modes exist in competition with each other and
are chosen by the agents whose behavior was then analyzed. The authors considered
di�erent �eet sizes for the �exible mode and cost ratios between the �xed and �exible
mode.

Since we are not interested in the in�uence of tra�c on ridepooling (and ridesharing)
and in turn the resulting in�uence on tra�c in this work, we do not use a microscopic
tra�c model. Instead, we focus on the feasibility and the e�ects of di�erent mobility
modes on metrics like emissions and costs under the same circumstances. Therefore, we
also do not consider agents' choice behavior since the di�erent scenarios are evaluated
separately.

Many works examine ridepooling opportunities inside of cities as an alternative to,
e.g., taxis. We, however, deal with students who do not live inside their university
city and thus commute long distance trips in contrast to short distance trips inside
a city. One work that, like this work, focuses on people commuting from outside a
city is by Liu et al. [17] who investigate a ridepooling service (which they call bus
ridesharing) in which the passengers request long distance trips and wait until enough
people gather for the ride. The authors focus on optimizing ride-matching by solving the
capacitated clustering problem of travel demand and the location-allocation problem for
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2 Background and Related Work

pick-ups and drop-o�s as well as pruning with constraints afterward. For this, exact and
approximate algorithms are developed. A real-life dataset from Shanghai taxis is used
to demonstrate the e�ciency of the proposed service which is shown to be cost-e�ective
and energy-e�cient according to the results.

Further considerations have to be made about the vehicle �eet. Most works about
ridepooling assume that the utilized vehicles are autonomous so as to not consider op-
erational constraints. Since autonomous vehicles are not yet commonly used as of now,
examining ridepooling with employed professional drivers would result in more realis-
tic evaluations. Zwick et al. [18] simulate and evaluate a non-autonomous ridepooling
approach and compare its results to autonomous ridepooling. They demonstrate that
non-autonomous ridepooling is severely limited by operational restrictions like driver
shifts regarding the amount of served rides. Furthermore, they �nd that shift plans have
an important impact on these results.

Since we assess alternative mobility modes that could improve campus sustainability
in the future, we optimistically choose autonomous vehicles for fewer limitations from
the ridepooling provider side.

While most works in the literature focus on developing and evaluating algorithms for
e�ciently grouping people together, machine learning approaches are emerging more
and more for solving and helping with ridepooling problems, especially in the form of
reinforcement learning. Si et al. [19], for example, develop a two-level framework for
executing online ridepooling with the upper level using a reinforcement learning model.
They speci�cally investigate inter-city ridepooling and use the reinforcement learning
model of the framework's upper level for assigning vehicles to an intercity line whereas
the framework's lower level utilizes a large neighbourhood search heuristic for dynamic
vehicle routing. Their results show that their approach successfully balances the supply
for the incoming demand.

Meneses-Cime et al. [20] also utilize reinforcement learning for on-demand ridepooling
and speci�cally use it for creating a dispatcher of shared autonomous vehicles with the
goal of serving as many passengers as possible while minimizing their wait times. They
also �nd that their reinforcement learning based approach improves the results evaluated
for a realistic ridepooling problem in comparison to a simple vehicle dispatcher.

We however, opt for an approach without machine learning in order to have easily
explicable results where each simulation step result can be traced back to our algorithms'
instructions.

2.2 Ridesharing

In this section we �rst present background information about ridesharing's history and
present usages. Then, we introduce di�erent categories for ridesharing that are found in
the literature and describe di�erent ridesharing works afterward.
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2 Background and Related Work

2.2.1 A Brief Historical and Present Background for Ridesharing

Ridesharing is a method in which a driver of a private car takes people along to a
common travel goal in exchange for �nancial compensation. This way, no additional
vehicles have to be on the road and no empty rides have to be carried out. A downside
is that the driver, who provides their car, can decide whether to taking somebody with
them (considering the possible additional time of picking up and dropping o� the extra
passenger). If the driver, e.g. decides that they do not want to drive an additional
distance, less groupings of students can be found or passengers have to be willing to
walk from their starting position before the ride or to their end position afterward.

In order to arrange ridesharing, information about transportation demands of people
without a car and the supply of people with a car announcing their ride has to be gath-
ered and/or distributed. This can be done by people communicating with neighbours,
companies grouping employees who live close to one another or via an application that
uses the internet.

Naturally, ridesharing has existed since people are able to share transportation devices.
Travelling together has always had the advantage that less resources (e.g. wagons, gas)
were needed for the same amount of people and company can be shared. In the past
some governments or companies have tried to get people to share a ride in order to
incentivize saving gas or reducing pollution and congestion. However, the amount of
organizations whose goal is to group people for ridesharing exploded with the rise of
the internet since the grouping of people who do not know each other to share a ride
is especially easy now, seeing as the internet allows for the fast exchange of strangers'
data.[8]

Online platforms like BlaBlaCar [21] can let people advertise their planned ride for
other people to join them for a fee. Other platforms automatically set the groupings
based on algorithms for maximizing e�ciency.[22]

2.2.2 Ridesharing Categories and Challenges

Identifying obstacles for persons choosing to share a ride with someone is crucial for
developing a ridesharing approach that could realistically be accepted by students. Fu-
ruhata et al. [23] present a categorization for di�erent ridesharing approaches and ex-
amine the challenges that stand in the way of further acceptance and utilization of
ridesharing opportunities. The authors' developed a framework for recognizing the cru-
cial challenges and addressing them.

The presented categories for ridesharing are �identical ridesharing�, where the passen-
gers have the same start and end positions as the driver, �inclusive ridesharing� where
the start and end locations of passengers are on the way of the driver's path, as well as
�partial ridesharing� and �detour ridesharing�. Partial ridesharing is when either the
goal or the start position of passengers is not on the driver's way and passengers com-
plete this portion of the way themselves. Finally, detour ridesharing is when the pickup
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(1) (2)

Figure 2.1: An image excerpt from [23] for the visualization of detour ridesharing.

or drop-o� location of passengers is not on the driver's way and thus the driver makes a
detour. The case of the pickup or drop-o� points not being the passenger's origin or goal
destination is also included in this scenario. Detour ridesharing is further exempli�ed in
Figure 2.1 which is a simpli�ed excerpt of a Figure from [23] where (1) displays the case
of pickup and drop-o� not being the passenger's origin and destination and (2) shows
the other case.

Our ridesharing approach can be categorized as detour ridesharing since we model
drivers to be willing to drive a detour for picking up or dropping o� other students at their
campus. However, as students are not picked up or dropped o� at their home location,
they still have to complete a section of their path alone; thus we use a case of detour
ridesharing (1). Therefore, we examined the challenges for detour ridesharing presented
by Furuhata et al. and addressed them in our approach. For example, they mention the
di�culty of cost splitting for detour ridesharing since detours lead to additional costs
for the driver and the challenge of detours that are not bene�cial for all passengers
where all agents need to accept the additional travel. Moreover, in the case of detour
ridesharing (1) where passengers need to traverse a section of their journey themselves,
they need to �nd another mode of travel for this section.

We tackled these challenges by limiting the accepted detour time for every agent
individually and by also limiting the distance for traversing part of the journey alone
which makes it possible to walk by foot to the pickup or from the drop-o� location. This
way the alternative mode for passengers is settled and does not produce any further costs
or emissions. Since all campuses of the University of Würzburg are located in the same
city and either the start or end location of the ride is the same for everybody, the detours
and thus the additional costs are also limited to a degree. Therefore, we split the gas
costs for the whole ride evenly between all agents which then compensates the driver for
the undertaken inconveniences.
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2 Background and Related Work

2.2.3 More Ridesharing Papers

Similarly to ridepooling, ridesharing approaches can also be categorized into static and
dynamic. Since requests can arrive at short notice in many real-world scenarios and
dynamic approaches o�er more complex and thus interesting problems, most works that
we encountered in our research use dynamic ridesharing. However, there are some that
assume all information to be known beforehand. Tafreshian and Masoud [24], for exam-
ple, work with reoccurring pre-determined trips, e.g. for commuting to work, and use a
mixed integer program for solving their static problem.

As we are examining students who may have varying demands every day and can
decide to change their mobility needs spontaneously, we also use a dynamic approach
for both ridesharing and ridepooling.

A few research papers try to match people with the help of additional criteria such
as social aspects. Wang et al. [25] introduce a new ridesharing approach named col-
laborative activity-based ridesharing (CAR) that combines social-network-based and
activity-based ridesharing. The authors take advantage of users' social networks and
their space-time �exibility in order to increase the overall number of matches and fur-
ther the number of matches with friends. Evaluating CAR with an agent-based simula-
tion with realistic demand data showed no signi�cant di�erence regarding detour costs
compared to pure network-based ridesharing.

In our work we do not use social criteria due to our focus being on the sustainability of
our approaches. While we �nd travelling with friends to be a good incentive for agents
to use ridesharing, we deem quality of service constraints to be of more importance.

Yet again as for ridepooling, many ridesharing approaches consider the e�ects of tra�c
on ridesharing and the in�uence of ridesharing on tra�c. Tra�c criteria can be analyzed
with the help of simulation frameworks like MATSim. Such is done by Wang et al. [26]
who aim to examine the e�ect ridesharing has on the transportation system in MATSim
and want to use this as a basis for possible policy suggestions.

Another approach that takes tra�c in�uences into account is by Long et al. [27] who
use stochastic travel times between nodes in order to approximate the instability of
tra�c of the real world and examine the e�ect of travel-time uncertainty on cost-saving
from ridesharing with the help of a Monte Carlo simulation method.

As with ridepooling, we do not consider tra�c for evaluating ridesharing since our
focus lies on the comparison between our ridesharing and ridepooling algorithms.

Similarly to papers that investigate mode choice, some ridesharing works examine
which adoption rate is necessary for their ridesharing approaches to have a signi�cantly
better performance than alternative scenarios. In the work of Bista�a et al. [28], for
example, multiple adoption rates for ridesharing are assessed regarding their results for
quality of service and sustainability metrics. They �nd that a reduction of 10% of CO2
emissions requires a 20% ridesharing adoption rate and that an adoption rate of 80% is
necessary for achieving a reduction of 50% of emissions.
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2 Background and Related Work

While we do not consider adoption rate for the main evaluation of our approaches
since we assume all students to take part, we do examine the e�ects of lower adoption
rates in our sensitivity analysis.

As is the case for ridepooling, there also exists literature about using machine learning
for �nding ridesharing solutions. Haliem et al. [29] utilize deep reinforcement learning for
a ridesharing approach that allows users to in�uence matching decisions. Their model-
free framework lets drivers plan their rides based on expected rewards and allows for
matches to be accepted or rejected by possible passengers based on their preferences.
The framework furthermore in�uences the ridesharing matching with the help of rein-
forcement learning, based on pricing information. The results show that the framework
greatly improved upon the acceptance rates of matches and signi�cantly reduced the
covered distances.

As previously described, we do not use machine learning for either ridesharing or
ridepooling and instead create whitebox-approaches for evaluating the strengths and
weaknesses of our algorithms in regard to matching decisions.

2.3 Comparison of Di�erent Mobility Concepts

Other mobility concepts that often times get confused for ridesharing or ridepooling are
ridehailing and carsharing.

Ridehailing means the use of taxis or uber-like services which can be booked very
spontaneously and are used without additional passengers, i.e. by one person or one
group that is travelling together. However, this is not a sustainable mobility concept
since the ride is not shared and, additionally, empty rides have to be carried out to pick
up the passenger.[11]

Carsharing is a concept in which di�erent people share the use of a car, i.e. use the
car at di�erent times of day or days of the week. This is mainly used by people who do
not need a car often. This way, the emissions produced by the manufacturing of cars
can be reduced. Nevertheless, the rides themselves are not more sustainable than the
conventional single use of cars. Furthermore, additional rides to and from the dropo�
position of the car may have to be made.[11]

To the best of our abilities, we could not �nd any works in the literature that compare
ridesharing and ridepooling separately (without mode choice).

With this work we contribute a framework for modeling and evaluating di�erent mo-
bility modes for the campus mobility through simulation under the same circumstances
and hard constraints. Our framework makes it possible to easily and dynamically set
di�erent input parameters and add new mobility modes. We further develop and eval-
uate our own approaches for ridesharing and ridepooling based on heuristics and assess
which input parameters are crucial for the results of each mobility mode.
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3 Methodology

In this chapter we �rst present this work's problem statement and objective. We further
describe the utilized concepts and methods as well as our approaches for the mobility
modes.

3.1 Problem Statement and Objective

While students living near their university campus typically utilize public transport, stu-
dents who live outside their university town usually have fewer options for transportation
and are thus more likely to commute by car [2]. As commuting by car contributes greatly
to CO2 emissions [1], universities could help reduce the strain on the environment by
exploring alternative more sustainable modes of transport for the campus mobility of
their more remotely located students.

When developing a more sustainable mode of commute to and from campus, care
must be taken to ensure that students would be accepting of said mode. This can be
done by establishing quality of service constraints and creating an incentive for choosing
this mode, such as low costs.

In this work we therefore develop a framework that utilizes (hard) quality of service
constraints for evaluating alternative mobility modes for students who are more likely
to commute by car due to their distance to the university campus. We further evaluate
whether our implemented approaches for the examined modes are able to perform rea-
sonably well under the hard quality of service constraints. We judge said performance
by output metrics such as CO2-emissions and resulting gas costs. The chosen quality of
service constraints for ensuring acceptance among students are the distance a student
is willing to walk by foot, the bu�er time before and after a student's preferred arrival
and departure time, and how long they would be willing to ride in a vehicle given how
long they travel alone.

In our work we choose the mobility modes ridesharing and ridepooling which have been
shown in the literature to have a bene�cial impact on reducing CO2 emissions while still
being convenient as alternatives to our baseline mobility mode �everybodyDrives�.

In order to then make statements about the preferable mobility mode for campus mo-
bility, we evaluate and compare our mobility mode approaches for the campus mobility
of the University of Würzburg in Germany. While these results are not fully applicable to
other universities, we can deduce which factors are crucial for the success of ridesharing
and ridepooling and thus make statements for di�erent initial situations.
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To summarize, this work's central research question is: How do ridesharing and
ridepooling perform in comparison to each other and to the baseline scenario every-
bodyDrives regarding speci�ed output metrics for the case of the campus mobility in
Würzburg?

This can be divided into multiple sub-questions:

ˆ Are ridesharing and ridepooling feasible under the speci�ed hard constraints?

ˆ Do ridesharing and ridepooling perform well enough in a realistic scenario for
signi�cant reductions in CO2 emissions and student costs to occur compared to
our baseline scenario of driving alone by car?

ˆ Does ridesharing or ridepooling perform better and does this depend on the cir-
cumstances?

ˆ How sensitive are the outcomes of of each mobility mode on assumptions on e.g. the
distance a student is willing to walk by foot?

In order to answer these questions, the steps conceptualization, implementation and
evaluation as well as a sensitivity analysis have to be completed. In the step concep-
tualization we worked to ensure the comparability of the di�erent approaches and thus
modeled a mobility demand for all agents (students) which was used as input for all
approaches and entails the spatial distribution of agents as well their planned arrival
times at and departure times from their university campus. Additionally, the step con-
ceptualization also involved the design of the baseline scenario and the ridesharing and
ridepooling approaches and algorithms.

For the step implementation we modeled and programmed the di�erent mobility ap-
proaches in Java and used R for data generation. In order to set input parameters that
specify the simulation model's attributes and sequence of events, the simulation was
developed to read a con�guration �le for every simulation run.

The step evaluation entails the simulation runs with a chosen con�guration and as-
sessing the output metrics in order to answer the research question. Additionally, we
executed a sensitivity analysis for ensuring the models' stability and for assessing which
input parameters have the biggest impact on simulation results.

3.2 Tools and Methods

Alongside the programming languages Java and R we used multiple tools and methods
which are presented in this section.

3.2.1 Simulation

This sub-section is based on Averill M. Law's book �Simulation Modeling and Analy-
sis� [30].
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When a system is to be emulated, for example in order to assess the result of changes
to said system inexpensively, it can be modeled as an interplay of its components. If
this interplay is known entirely, the system's result can be calculated exactly. However,
many systems that are of interest in the real world are very complex and often contain
non-deterministic behavior. In this case, a simulation of the system can be more of use
since a mathematical model of the components' interplay can be used to approximate
the behavior of the real system.

There are di�erent categories of models and simulations. One categorization is static
vs dynamic. A static model does not have a concept of time whereas a dynamic model's
internal state changes over time. Another category is deterministic vs stochastic. If a
system is modeled without probabilistic elements, it is called deterministic. A model
that does contain probabilistic elements is considered stochastic. The next category
is discrete vs continuous. A continuous model's state changes continuously over time
whereas a discrete model's state only changes at speci�c instances, such as time markers
like seconds or when events occur. This leads to the categorization of discrete-time sim-
ulations vs discrete-events simulation. While discrete-time simulations can change the
system's state at every de�ned timestep, discrete-event simulations only do so every time
a prede�ned event takes place during the simulation's run. A variation of discrete-event
simulation is the agent-based simulation in which agents with attributes and behaviors
are able to make decisions during the simulation run and hereby a�ect the outcome.

For our study we develop a dynamic, discrete-event simulation model (that is also an
agent-based model) where the model's state changes over time but only events such as
incoming requests or ride starts lead to changes to the system state. Additionally, while
this is not the focus of our work, we model our agents to perform decisions about using
alternative mobility modes or travelling alone based on speci�ed hard quality of service
constraints. Furthermore, the model which we develop is deterministic since we generate
and save all random variants, i.e. the agents' home locations and campus assignments,
as well as all request data, separately before a simulation run in order to easily input
the same starting conditions for all mobility approaches. This way, we establish the
comparability of the approaches. However, changing our simulation's characteristic to
stochastic would be fairly easy by generating the request data after the simulation start
which could present a goal for future work.

3.2.2 OMOD

As the simulation's agents should resemble actual students of the University of Würzburg,
we ensure a realistic spacial distribution of their home locations. For this we use the tool
OMOD1 developed by Strobel and Pruckner [31] which can generate mobility-demand
for a speci�ed area.

1https://github.com/L-Strobel/omod/
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Given the number of agents as well as OpenStreetMap (OSM) and geographical data
in the form of a osm .pbf and .geojson �le for the region the user wants to create demand-
data for, OMOD returns a json output �le containing agent-objects with home locations
and activities for each evaluated day of the week and the corresponding locations. For
this, OMOD uses real buildings, extracted from the OSM data, and estimates the possi-
ble use of the building (like residential or commercial space) based on an OSM building
tag. This way, OMOD distributes agents' homes to realistic positions. As only these
home positions are needed for our purpose, we utilize the generated home positions and
discard the rest of the results output by OMOD.

3.2.3 Graphhopper

Finding an actually usable path for commuting between students' homes and their uni-
versity campus is important for evaluating a realistic scenario of students using di�erent
mobility modes. Graphhopper2 is an open-source routing engine which we include as
a Java library in this work. Graphhopper utilizes OpenStreetMap data and allows for
the use of di�erent routing algorithms like Dijkstra or A*. Furthermore, it provides a
speed mode which makes very fast responses without using heuristics to routing requests
possible. Still, a longer preparation time for the speed mode is necessary. However, it
only has to be executed once for the same OSM data since the preparation result is
stored afterward. Therefore, we use the speed mode for the two vehicle pro�les �foot�
and �car� to realize fast routing for each mobility mode.

3.2.4 Jsprit

Another open-source tool that we use in this work is jsprit3. Its purpose is solving Trav-
eling Salesman Problems (TSP) and Vehicle Routing Problems (VRP) in a lightweight
manner. Additionally, it is further able to solve multiple variations of these problems
such as the VRP with Time-Windows which we utilize since our problem deals with
hard constraint time-windows. Furthermore, as jsprit is a �exible tool, adding more
constraints and adjusting algorithms is easy and allows for solving even more complex
scenarios which is why we also utilize this feature. For example, we create an additional
constraint for not allowing waiting times at pick-up or drop-o� stops. For calculat-
ing the di�erent costs of a possible VRP solution we use the path distances given by
Graphhopper and dynamically build a distance and time matrix.

2https://github.com/graphhopper/graphhopper
3https://github.com/graphhopper/jsprit
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Figure 3.1: An excerpt from the zip code pair �le.

3.3 Creation of Agents and Request Data

In order to be able to execute a simulation for the campus mobility of Würzburg, we need
agents that represent the university students in and around the city. For the purpose of
evaluating a possible real-world scenario, these agents should resemble actual students
in their mobility behaviour regarding their home and campus locations as well as arrival
and departure times at campus.

3.3.1 Agent Home Zip Code Distribution

We start with distributing the students' home positions in a way that re�ects the reality
of the university students in Würzburg. For this task, we are provided by the University
of Würzburg with the results of a survey about its students' faculty a�liations and zip
codes of their home locations.

With this information we discover the necessary amount of students per home zip code
for each campus zip code. We further calculate the smallest distance (i.e. nearest points
distance) between each zip code pair. We then save this �home zip code to campus zip
code student amount� data along with the respective smallest distances in a json �le,
called �all_postcode_pairs�, of which an excerpt is shown in Figure3.1.

However, some students questioned in the study o�ered home zip codes whose distance
to Würzburg is not realistic for daily commute. A possible explanation is that these
students answered with their parents' home zip code. To address this problem, we set a
maximum radius of 55km as a cuto� point since more than 90% of German commuters
travel less than this distance daily [32].
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Therefore, we only consider students with zip codes within the speci�ed radius by
excluding home zip codes whose smallest distance between this home zip code region
and the campus zip code region is above the maximum radius.

As we use the smallest distance between zip codes for limiting the amount of agents of
our base population, there might be some included agents that actually live farther away
than 55km because they are located in the middle or the outer edge of their home zip
code region. However, this strategy ensures that the edge case of an agent living on the
nearest point to their campus zip code will also be included when the campus location is
also on the corresponding nearest point of the campus zip code. Moreover, these agents
chosen by the zip code distance only build a base set for agents to be pooled out of.
The agent selection for a simulation run is then based on actual distances between agent
homes and campus locations and pooled out of this base set.

3.3.2 Generating Agent Home Positions with OMOD

These aforementioned selected �home zip code to campus zip code� pairs with their
according amount of necessary students therefore serve as base for creating a wide range
of agents whose commuting behavior is of interest and can still be called realistic.

We create these agents with the help of the tool OMOD [31] which is explained in
more detail in Subsection3.2.2. Since a radius of 55km around Würzburg entails the
federal states of Bavaria, Hessen and Baden-Württemberg, we merge the OSM data of
the three states and output the merged result into an osm.pbf �le. For the geographical
data we create a geojson �le with the radius of 60km. Afterwards, these two �les and
the amount of agents to be generated is input into OMOD.

We choose three million as the number of created agents as this would roughly be the
amount of people living in the region covered in the geojson �le (based on the average
German population density). This high number of generated agents ensures that it is
very likely that enough agents with the necessary home zip codes are created. Otherwise,
OMOD runs with smaller numbers of agents could lead to some zip code regions not
being �lled with enough agents which did indeed happen for our �rst experimental
OMOD runs with, e.g., one million agents.

Out of these generated three million, we choose agents with homes in the zip code
regions mentioned in the base �all_postcode_pairs.json� �le until the necessary amount
of agents for each zip code is covered. Then, we assign a university campus zip code to
each agent which is also based on the zip code pair information.

Figure 3.2 displays a possible distribution, generated by OMOD, of agent home loca-
tions in the 55km zip code radius where each agent is shown in a color that is based on
their campus a�liation.
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Figure 3.2: An exemplary agent home distribution generated by OMOD with four dif-
ferent campus a�liations, limited by a zip code radius of 55km.

3.3.3 Request Data Creation

Since our created agents still lack transportation needs, we begin the step of creating
and storing such demand in the form of transportation requests which can be used as
input for the di�erent mobility modes.

Basis for this request generation is a survey by the German Federal Ministry for Digital
and Transport (BMDV) 4 who examined the mobility in Germany. This survey contains
information about the questioned university students' travel start times and end times
to their university as well as the duration of their stay which we use to additionally
calculate the students' departure times.

In order to create enough request data for students, probability distribution functions
must be extracted from the study data about arrival and departure times. We do this in
the programming language R which provides adensity function for estimating kernel
densities and anapproxfun function which can interpolate data points. With this, we
calculate the probability for a preferred arrival time for every 5 full minutes of a day.
Then, we adjust the resulting values in such a way that they form an actual probability
distribution and add up to 1. With this probability distribution we are able to generate
samples for the arrival times in a 5 minute tact.

4https://www.mobilitaet-in-deutschland.de/archive/index.html
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Since the arrival time in�uences the time that students spend at their university (e.g.,
a student who arrives at 16:00 at campus will likely not stay as long as a student who
arrives at 7:00), we split the arrival times and their corresponding staying times at
campus into four categories, namely the quartiles. For each quartile we then separately
determine a probability distribution for the staying times. As exempli�ed in Figure3.3,
which displays the arrival time distribution derived from the study, the �rst quartile of
people arrive at their campus until 8:30 (510 minutes of day passed), the second quartile
of students arrive until 9:40 (580 minutes of day passed), the third quartile until 14:10
and the last quartile contains all students who arrive until the end of the day.

Figure 3.4 shows the di�erent staying time kernel densities for each category. With
thesedensity function results and the functionapproxfun we determine for each cat-
egory a di�erent probabilities for the staying times for every 5 full minutes. We then
yet again adjust the resulting values for each category to add up to 1 and thus obtain
four valid probability distributions where the arrival time determines which probability
distribution for the staying time is used. With this we then generate an accompanying
staying time for every arrival time and save this as a departure time by adding the
staying time to the arrival time.

Additionally, an arrival time for the actual request has to be generated for every stu-
dent request as this time is needed for the simulation runs of ridesharing and ridepooling.
This is done by generating a decision time before the arrival time (i.e. the amount of
minutes that the request is sent out before students want to be at their campus) with
which the request's arrival time can be determined by subtracting the decision time
from the arrival time at campus. For generating the decision time we chose a continuous
distribution between 60 and 360 minutes.
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These request information tuples (arrival time, departure time, and request arrival
time) are then randomly assigned to each of the previously generated students. This
results in every request now containing the data of student, home position, campus
location, arrival time, departure time and request arrival time. We generate this infor-
mation for 12780 students that are the total amount of students created for the chosen
maximum radius of 55km (i.e. 55km as the smallest distance between zip codes).

This ensures that changing the outer radius for a new simulation run still preserves
previously regarded agents since a smaller radius means that a subset of the agents is
now considered. For example, expanding the outer radius to 40km after a simulation
run with an outer radius of 30km still retains the agents and their data living in the
30km range. Consequently, the outer radius should not be set above 55km.

3.4 Framework for the Simulation

In this section we describe how we model di�erent components of the simulation and
which parameters can be input for con�guration.

3.4.1 Modeling the Simulation Components

In order to execute simulations for multiple mobility scenarios, a framework in which
the same circumstances can be evaluated is needed. This framework is implemented in
the object-oriented programming language Java and contains modules for helping with
the agent and request data generation which is more closely described in Section3.3.
Furthermore, the framework entails multiple Java classes that model important elements
for the simulation runs. Figure3.5depicts the structure and connections of these classes
which we will highlight in the following text by capitalizing their names.

The input data for the simulation is modeled as the Java classes Agent, Request,
Coordinate and Vehicle. An Agent is speci�ed by an id, a request, a car, a home
position and attributes about their willingness to accept alternatives or inconveniences.
These attributes consist of how long they are willing to ride in a vehicle (which can be
set to di�erent values based on the mobility mode), how far they would walk (e.g. to
another home position) and whether they would accept using alternative mobility modes
at all. Furthermore, agents are also speci�ed with a time interval which determines the
time-window they accept for arrival or departure at campus. For the sake of simplicity
and comparability of the di�erent mobility models we further model each agent to own
a private car.

A Request belongs to exactly one agent, entails an id, a Requesttype, request time,
arrival time and departure time, as well as a home zip code, campus zip code, home
position and drop-o� position. Additionally, the corresponding agent's accepted time
interval value is used to calculate the time-windows for arrival and departure which are
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id : long
willing : boolean

willingToWalk : long
willingToRide : long

timeIntervalBuffer : long

Agent

Coordinate

longitude : double
latitude : double

code : String

Request

id : long
home-zipcode : String

campus-zipcode : String
requestTime : LocalDateTime
arrivalTime : LocalDateTime

arrivalIntervalStart : LocalDateTime
arrivalIntervalEnd : LocalEndTime
departureTime : LocalDateTime

departureIntervalStart : LocalDateTime
departureIntervalEnd : LocalDateTime

<<enumeration>>

RequestType

DRIVETOUNI
DRIVEHOME

BOTH

Match

Ride

<<enumeration>>

MobilityType
EVERYBODYDRIVES

RIDEPOOLING
RIDESHARING

Stop

<<enumeration>>

StopReason
PICKUP

DROPOFF
PARKING

REFUELING

startTime : LocalDateTime
endTime : LocalDateTime

id : long
groupNumber : int

differentStops : Map<Coordinate,String>
timeIntervalStart : LocalDateTime
timeIntervalEnd : LocalDateTime

id : long
groupNumber : int

startTime : LocalDateTime
endTime : LocalDateTime

id : long
seatCount : int

withDriver : boolean
consumptionPerKm : double

co2EmissionsPerLiter : double
pricePerLiter : double

<<Abstract>>
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Figure 3.5: The framework's classes and their relationships.
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also saved for each request. The Requesttype is implemented as an enum which can
either assume the values DRIVETOUNI, DRIVEHOME or BOTH.

The class Coordinate represents positions of, for example, homes or campus parking
locations. Each Coordinate contains a longitude value and a latitude value.

The Vehicle class is abstract and can be extended by actual vehicle models, such as
a speci�c car or car type like a minibus. Each vehicle entails an id, a seat count and
speci�cations about its gas consumption per km, gas price and CO2 emissions per liter,
as well as whether a driver is present or the vehicle is driving autonomously. In this
work the abstract Vehicle class is extended by the classes StudentVehicle and MiniBus.

StudentVehicle is supposed to represent a student owned private vehicle and MiniBus
represents a ridepooling vehicle which is usually a minibus with a few seats more than
a typical car.

Besides the input data multiple models are needed for portraying mobility elements
that we implement as Java classes. These classes are a Ride with its Stops and Stoprea-
sons, a MobilityType and a Match. The MobilityType represents the type of mobility
model used; it is an Enum which, in this work, can assume the values EVERYBODY-
DRIVES, RIDESHARING or RIDEPOOLING. A MobilityType attribute is used in the
class Match in order to state by which method a speci�c Match came to be.

The Match class depicts a possible matching of students for a shared ride. This
matching is not yet de�nitive but states that a joint ride for this group of students is
feasible. A Match contains an id and information needed to form a �nite matching,
a Ride. This information includes the Agents of the Match, the driver (which can be
null), the Match Vehicle, the Coordinates of the stops along the way, the RequestType
and MobilityType, the start and end Coordinates, and possibly a group number which
is needed for ridepooling. Furthermore, a match possesses multiple time-windows; one
for the most crucial stop (either �nal arrival for a match to campus or �rst student
departure for a ride home) and one time-window for each stop position.

Out of a Match a Ride can be derived which represents a �nite grouping of students
who ride in a vehicle together. This grouping can also consist of only one person who
either wants to commute on their own or could not �nd other students to match with.
Therefore, a Ride consists of similar attributes as a Match, i.e. an id, a list of agents, a
driver, a vehicle, a group number and start and end positions. But, further speci�cations
such as start and end times as well as actual Stops are added. The Stop class de�nes a
stop executed during a ride. It contains a stop start and end time, a stop Coordinate,
the students who the stop was for, and a Stopreason which is an enum with the possible
values PICKUP, DROPOFF, PARKING and REFUELING.

3.4.2 Input Con�guration

Multiple input parameters can be set in a con�g.json �le in order to specify a simulation
run. This way, we are able to evaluate di�erent scenarios for each mobility method
dynamically and fairly easily. Every simulation run consists of multiple separate simu-
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Figure 3.6: An exemplary con�guration json �le.

lations for evaluating every mobility mode with the same con�g �le whose path needs to
be stated with the simulation start. This con�g �le is then read in the start and entails
all the needed information. An exemplary con�guration is shown in Figure3.6.

Generally, the con�guration data can be split into the groups ��le paths�, �general
simulation speci�cation�, and �model speci�cation�. The categorization of the con�gu-
ration parameters can be seen in Table3.1.

The �le parameters serve as support in the case that some data necessary for the
simulation is missing as it can then be generated out of these �les. The general speci�-
cation parameters all specify important information for the execution of the simulation
runs. For example, the radius parameters in�uence which agents are considered out of
the base set with all 12780 generated agents. Lastly, the model speci�cation parameters
set attribute values in models such as Agent, StudentCar and MiniBus.

3.5 Approaches for the Mobility Concepts

In the following sections we present our approaches for the three mobility modes �ev-
erybodyDrives�, i.e. the baseline mode, ridesharing and ridepooling. This entails a
description of the used algorithms, tools, input, output, and the structure and sequence
of events of the simulation.

3.5.1 Simulation Sequence for all Mobility Modes

Since all mobility modes have the same goal of transporting agents to campus and back,
they entail similar simulation sequences which are portrayed in Figure3.7.

At �rst, before any of the mobility mode simulations can start, some data has to
be prepared. The agents that are speci�ed in the con�guration �le are read and the
additional information contained in the input parameters such as �student car seat
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File Path Parameters
request �le,
postcode �le,
postcodePairFile

General Speci�cation Parameters

lower radius,
upper radius,
stop time,
postcode mapping,
countOfGroups,
radiusToExclude,
bus count,
centralCoordinate

Model Speci�cation Parameters

student car seat count,
time interval,
accepted walking distance,
accepted driver time,
accepted ridepooling drive time,
studentCarConsumptionPerKm,
studentCarCO2EmissionPerLiter,
studentCarPricePerLiter,
busConsumptionPerKm,
busCO2EmissionPerLiter,
busPricePerLiter,
bus seat count,
busWithDriver

Table 3.1: Parameter categorization.

EverybodyDrives

Ridesharing

Ridepooling
Agents with 
request data

Request splitting

Matching for
incoming requests

Starting rides at
calculated start times

Saving output
metrics

Figure 3.7: The rough simulation sequence for all mobility modes.
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count� is applied to them. For the parameter �time interval� this speci�cally means
that we determine the time-windows for each agent based on the time interval value
(given in minutes).

We calculate the lower arrival time-window limit (inclusive) by subtracting the time
interval minutes from the preferred arrival time set in the agent's request and determine
the upper arrival time-window limit (inclusive) by adding the time interval minutes to
the preferred arrival time.

For the lower departure time-window limit (inclusive) we adopt the preferred departure
time set in the request (as we assume this to be the earliest possible departure) and for
the upper departure time-window (inclusive) we add double the amount of the speci�ed
time interval minutes. This way, both the arrival and the departure time-windows have
the same length.

In this work, we apply the same parameter values to all agents, i.e. all agents accept
the same walking distance, for example. For a more realistic evaluation, the parameters
could be set with probability distributions which could be investigated in future work.

These agents are then used as input for every mobility mode simulation. Since the
everybodyDrives mode does not entail any matching of agents, the next step is to imme-
diately determine when agents start their ride to or back from their university campus.
On the other hand, ridesharing and ridepooling have to execute matching of agents for
every request. Before this ridesharing contains an extra step in which we split the re-
quests into ride-to-campus and home requests. While the ride starts are not strictly after
all matching has been completed, the matching step starts earlier and is thus depicted
as a earlier step in this visualization.

After all rides have been completed, every mobility mode simulation saves the resulting
output metrics in several output csv �les. These metrics are costs, CO2 emissions,
travelled kilometers and travelled minutes for each ride separately and for each agent
summed up (i.e. the metrics for agent's ride to campus and back are added together).

For ridesharing and ridepooling we save additional metrics such as the number of
occupied seats for each ride.

3.5.2 EverybodyDrives Approach

For the purpose of evaluating and comparing the e�ects of ridesharing and ridepooling
as well as possibly more mobility modes down the line, a reference mobility mode is
necessary. As estimating the metrics of the di�erent possible ways of commute for
several thousand students is di�cult and time-consuming, we assume a baseline mobility
mode of every student travelling by a privately owned car. Since we focus on students
that live outside of Würzburg, this assumption comes a bit closer to the truth due
to students choosing the car more the farther away they live [3]. We call this mode
�everybodyDrives� in this work.

The basic idea for everybodyDrives is for every student to drive separately in their
own car and for them to arrive and depart at the exact time they wish to.
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Extracting arrival
and departure time

Calculating start time 
for ride to campus

Inserting ride starts
into the sorted list of

events

Beforethesimulationstart for therequest of eachagent:

Duringthesimulation:

Calculating and 
storing output metrics

Incoming Ride Start

Event

Request

Figure 3.8: The everybodyDrives simulation sequence.

As an agent's transportation needs are, in this work, expressed in a request, we extract
the necessary information from each agent's request. Since agents do not need to inform
anybody about their transportation goals in the everybodyDrives approach, a request
arrival time is not needed. With the speci�ed preferred arrival time we calculate the
start time for the ride to campus. We do this with the help of Graphhopper (see
Subsection3.2.3). The ride time of the path, given by Graphhopper, is simply subtracted
from the arrival time. We are able to determine the exact drive start time up front since
we do not consider any tra�c and therefore, no ride time �uctuations exist. The speci�ed
preferred departure time from campus does not need to be adjusted and serves as the
drive start for each agent's ride back home.

For everybodyDrives no further preparation of data is necessary.
Since we are working with an event-based simulation, the simulation simply starts

with the student with the earliest drive start for their ride to campus, followed by the
second earliest and so forth. As soon as some students start to drive home earlier than
other agents driving to uni, the events consist of ride starts to uni interspersed with ride
starts back home until, �nally, mostly rides back home remain. For each event (i.e. ride
start) the output metrics for this ride and agent are calculated, saved and also stored
temporarily. This simulation sequence is further exempli�ed in Figure3.8.

Finally, after all agents have driven to and back from their university campus, we
examine for each agent if all of their constraints have been observed and if so, the
output metrics for all agents and all rides are saved in result csv �les. These results
further serve as reference data for the other mobility approaches.

3.5.3 Ridesharing Approach

The idea for the ridesharing mobility concept is for students to share their rides to and
from campus in their private cars without sacri�cing the comforts of commuting by car
such as short ride times and travelling whenever the driver wishes to.
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3.5.3.1 Assumptions Made for the Approach

For avoiding inconvenient rides, we determine that the driving agent does not drive to
other agents' houses for pickup or drop-o� and instead expects the other passengers to
walk to or from the driver's home position. This necessitates other agents to be willing
to walk by foot. The maximum distance an agent is willing to walk can be set with the
�accepted walking distance� input parameter in the con�guration �le.

Dropping o� or picking up other students at di�erent campuses is permitted in order
to increase the possible groupings of students. However, in order to prevent large detour
times, we limit the accepted time an agent is willing to ride in a car for ridesharing.
This value is di�erent for every student and is based on the time it takes the student to
commute to campus on their own. We achieve this by inputting a function that speci�es
the accepted value for every student. We assume that a student with a short travel time
alone is willing to enlarge this time more percentage wise than a student who already
takes a long time to get to uni. As a result we choose the function �x + log1:4(x)�
with x being the time for travelling alone for calculating the accepted time as a default.
Nonetheless, this function can also be changed in the con�guration �le. This way we
obtain a rather realistic approach for drivers accepting small detours for picking up
fellow students along the way and refusing to drive to the other part of town for a
pickup. Through the use of a logarithmic function we further set agents to accept a
bigger change of ride time when living closer to campus and a smaller change when
living far away. For example, an agent who travels for 3 minutes when alone would now
accept travelling 6 minutes while an agent who originally travels for 40 minutes now
accepts rides up to 50 minutes. If ridesharing rides without any detours are wanted,
the function can be set to �x�. Similarly, the function can be set to �2x� or the like if
another linear relation such as doubling of accepted ridesharing drive time to drive time
alone is preferred.

Furthermore, the aspect of drivers and passengers only travelling at convenient times
is covered by using time-windows as hard constraints and limiting the travel-time as
this results in observing the wished for arrival and departure time of students and not
starting their ride to campus much too early or arriving back home too late for their
liking.

Additionally, our approach allows for agents, who have left their car at home, to not
�nd a match for travelling from the university campus back home. Thus, if no matching
ride home is o�ered by someone else, the a�ected agents are left stranded at their campus
and are denoted as �lost� in this work. Naturally, this would not be such a problem in
the real-world as public transport exists even though it might be very bothersome to
use for students living outside the university town. Furthermore, the hard constraint
time-windows could be disregarded in order to wait longer for another, though more
inconvenient, match that might also never emerge. However, as we do not consider
public transport in this work and strive to observe the hard constraints, these options
are not examined further.
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We instead o�er a hypothetical carsharing service to these students with the optimistic
characteristic of the carsharing vehicle having the same rate of CO2 consumption and
being allowed to be left at the student's home position after use. This way, no ride back
has to be considered for the utilized carsharing vehicle. We, however, set this option to
be costly (30 cents for every travelled kilometer) and are thus able to take into account
the negative e�ect of not �nding a match home.

3.5.3.2 Matching Strategy

Having ensured that ridesharing is not inconvenient for participants (with the excep-
tion of agents categorized as lost), we develop an approach for ridesharing for campus
mobility.

Since we modelled each student to own their own car, they all could be the driver of a
grouping. Therefore, the strategy is for them to �rst check whether another person with
a home position in the accepted walking radius to them already o�ers a ride to uni at a
�tting time. In this case the student then leaves their car at home and opts to become a
passenger of the already o�ered ride. If multiple such �tting ride o�ers exist, the student
chooses the ride with the smallest walking distance. Should no �tting ride o�ers exist,
the student would o�er to drive themselves in their own car and other students could
then join this new ride o�er.

The more detailed matching process looks as follows for every considered request:
First, we examine already existing matches for the considered request, from which
matches with the false RequestType or that are already full (i.e. all seats are occupied)
are eliminated.

These remaining matches are sorted based on the similarity to the request. The
considered aspects are the distance between the driver's home and the request-agent's
home and the similarity of the decisive time-windows of the match and of the request.
Matches with a small distance between the driver and the request-agent as well as a
similar time-window to the request's time-window are preferred and therefore at the
front of the list of possible matches. Of this list the �rst 20 matches are examined.

For each of these 20 matches (or less if there are no 20 possible matches), we check
if the assignment of the request-agent to the match is actually feasible under the given
constraints. If so, we add the match to a list of eligible matches. This check is carried
out by investigating multiple conditions:

ˆ The driver's home position is inside the speci�ed accepted walking distance to the
request-agent

ˆ There is an overlap between the match's time-window and the request's time-
window

ˆ All time-windows are observed and

ˆ All agents accept the resulting ride times
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The time-window overlap is evaluated di�erently depending on whether the driver's
campus is at the same location as the request-agent's campus. Should the locations be
the same, a true overlap has to exist. If the request-agent's campus location is di�erent,
the overlap is calculated by shifting the request-time-window either forward for rides to
uni or backwards for rides home by the time it takes to drive from the request-campus
to the driver's campus. This is due to the driver's campus location always either being
the last or �rst stop of a shared ride and the other stops always being executed before
or afterward, respectively. For example, a match's driver wants to arrive between 12:00
and 12:30 at uni, another student of this match wants to arrive between 11:25 and 11:55
at a di�erent campus. Since the drive from the second student's campus to the driver's
campus takes �ve minutes, the second student can be dropped o� at 11:55 with the
driver arriving at 12:00 at their campus.

The check for the time-windows and ride times can be evaluated after solving the
VRP of this matching which we accomplish with the help of jsprit and Graphhopper
(see Subsections3.2.3and 3.2.4).

Should all conditions be true, the match is categorized as feasible for the examined
request and added to the list of eligible matches.

Out of these eligible matches we currently pick the one with the smallest walking
distance. In the future this could also be changed to pick the match with the least
overall time entailed. The request-agent is then added to the chosen match and a new
start-time, �tted to the new match solution, is calculated. Additionally, if the request-
agent has the same campus as the driver, we adjust the match's time-window to the
overlap of the previous match time-window and the request time-window. Should the
campus be di�erent, we update the match's stops. If the stops already contain the
request-agent's campus due to another passenger, the stop time-window is updated with
the overlap of the request's time-window and the other passenger's time-window.

3.5.3.3 Preparation of Data

The sequence of the ridesharing simulation is depicted in Figure3.9 and �rst starts with
a preparation of data which is also depicted at the top of the Figure.

Since we want the students to request their rides to uni and back home separately and
the input agents are con�gured to have only one request, which entails both preferred
arrival and departure times and one request arrival time, we �rst split this request into
two requests. One request for the arrival at campus and one for the departure from
campus. The source request's arrival time is given to the arrival-at-uni request and
a new request arrival time is created for the departure-from-uni request. For this, a
randomizer with a seed of �1234� generates a number between 30 and 120 minutes using
an equal probability distribution.

This way, students request a ride to campus even though they are not guaranteed a
ride back. We chose this approach as it presents a di�erence to the ridepooling approach
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Figure 3.9: The ridesharing simulation sequence.
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7:00
8:00

12:00

15:00

Agent A requests ride to campus and back ➔ no match home
Agent A arrives at campus in own car

Agent A and B depart from campus separately

Agent B offers ride home
Agent B arrives at campus in own car

Agent B requests ride to campus and back➔ no match10:00

13:00
14:00

7:00
8:00

12:00

15:00

Agent A requests ride to campus
Agent A gets dropped off at campus

Agent A and B depart from campus together
Agent A requests ride home➔ acceptsB‘s offer
Agent B offers ride home
Agent B arrives at campus in own car

Agent B requests ride to campus➔ no match10:00

13:00
14:00

Figure 3.10: The sequence when agent A ignores a ride o�er to campus from agent B
due to no ensured back ride (left) and the sequence for accepting the ride
o�er (right).

and also due to the fact that some possible matchings for the ride home only appear
once some students of this future match have already left their home. For example, a
student wants to arrive at campus at 8:00 and wants to leave at 15:00. Thus, this student
requests a ride to campus at 7:00 which results in a match. However, no matches are
yet available for the ride home at 15:00. If the student would now decide to ignore the
match for the ride to campus, as no ride back is guaranteed, they would miss out on an
incoming o�er for a ride back home from a di�erent student who does not want to arrive
at uni until 12:00 and also leaves at 15:00. This would result in no lost students but also
much less ridesharing matches. Hence, students who are using our ridesharing approach
have to be willing to trust that an opportunity for a ride home will emerge later on and
be tolerant of the possibility of being lost and having to use the more costly alternative
carsharing option. The presented example is further exempli�ed in Figure3.10in which
two possible timelines of the same example scenario are presented. On the left, the
example's timeline without request splitting is depicted which results in more cars on
the road. On the right, said example is presented with the splitting of requests.

After splitting the requests into arrival and departure requests, all resulting requests
are saved and chronologically ordered regarding their request arrival time since requests
can only be considered in the simulation as soon as they arrive.

Then, we calculate for every student how long they are willing to ride in a car based
on the input parameter function (�x + log1:4(x)� for our use) and their travel time alone
and set this value as another hard constraint.

After these preparations the ridesharing simulation can �nally start.

3.5.3.4 Simulation Sequence

As our approach is implemented as an event-based simulation, we jump from incoming
event to the next incoming event. This event can either be an incoming request for a
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ride (to uni or back home) or the start of a ride. Each step of the event processing is
depicted in Figure3.9.

As soon as a request arrives, our algorithm for �nding a match starts (see Subsec-
tion 3.5.3.2).

In the case of no eligible matches existing for the request, two scenarios have to
be considered. If the request is for a drive to uni, the request-agent o�ers to drive
themselves using their own car. Then, the next incoming requests can consider to join
this new o�er until the ride has to start. In the second scenario the request is for a ride
home. Since the request-agent was looking to join a ride home and does not have a car
at campus (as it was left at home), they are, as of now, stranded at their university
location. However, there is still the possibility of another agent who has a car at campus
o�ering a ridesharing opportunity for a ride home that �ts the stranded agent. Thus,
the stranded agent is not yet o�cially added to the �lost� group of agents; instead, their
request is added to a list of pending requests and is only o�cially categorized as lost
when their time-window for departure is in the past.

As mentioned, a student who drove their car to campus, naturally will also drive back
without considering other already existing matches. So, if a request from student with
a car at campus for a ride home arrives, this student automatically becomes the driver
of a new ridesharing match that other agents can join. With the emergence of this new
match, the pending request list is considered. Should a pending request of a student
who is so far stranded at campus exist, we examine whether this student can be added
to the new match. If so, they are no longer stranded.

Finally, the other kind of event that can occur in the ridesharing simulation is the start
of a ride. Each match update also updates the start time for this match. Then as soon
as it is a match's turn (based on the start time), we convert the match into an actual
ride that has a �xed start time, end time and information abouts stops for passengers
that travel to a di�erent campus. Then, the output metrics (travelled kilometers and
minutes as well as emissions and costs for each passenger) are calculated for this ride.
The travelled kilometers and minutes are calculated as the kilometers/minutes between
the pickup and drop-o� for each agent. The emissions and costs of the ride are split
between the passengers.

3.5.4 Ridepooling Approach

Similarly to the ridesharing approach, our approach for ridepooling strives to o�er a
comfortable alternative way of commuting to and from campus.

3.5.4.1 Assumptions Made for the Approach

Yet again, time-windows and maximum accepted driving times have to be observed in
order to ensure the desired convenient nature. However, as ridepooling does not entail
participants driving in private cars, no agent will be preferred for the start location of a

32



3 Methodology

ride. On the contrary, we decided that each agent would be picked up and dropped o�
directly at their home location, further contributing to the convenience of a ridepooling
ride. For this reason we set the students to accept slightly longer detours than for
ridesharing, which is why we specify �x + log1:2(x)� as the default input function for
calculating the accepted ridepooling ride time for each agent withx being the time
needed for driving alone.

The general idea of our ridepooling approach is for students to request a ride to and
a ride back from university in one single request that arrives before the ride to uni. If
both rides are guaranteed, the students are being picked up at their home location by
ridepooling vehicles and dropped o� at their campus with some detours along the way,
the same happens for the other direction. Should there not be two guaranteed rides, the
a�ected student uses their own car.

The new input general speci�cation parameters that are needed for ridepooling are
the count of vehicles used, a number of groups and a central Coordinate for categorizing
incoming requests as well as a radius for excluding requests from categorization. Addi-
tionally, the new input model speci�cation parameters consist of the ridepooling vehicle
gas consumption per kilometer (in liters) as well as the price and CO2 emissions per
liter. Then, there is also the seat count for the ridepooling vehicle and a speci�cation
for whether the bus is driven by a person or drives autonomously.

We further assume that multiple, locally distributed depots with �xed capacities exist
for housing the ridepooling vehicles from which the vehicles depart from and return to.
Furthermore, we set the service times for the vehicle times from 4:00 in the morning until
1:00 of the next day. The last ride of the vehicle has to be executed before the service
time is over. With the utilization of multiple depots we reduce the empty distance a
ridepooling vehicles has to cover at the start or the end of the day as long as it can
return to the closest depot. We further set the depot that is most centrally located to
have a higher capacity than the other depots, namely 40%.

3.5.4.2 Matching Strategy

The �rst step is for our algorithm to �nd a match for the ride to campus. For this, we
�rst need to assign the request to a group number in order to limit the examination of
existing matches since primarily matches with the same group number are considered.
A match is assigned the group number of the �rst request that lead to this match. This
assignment is based on the input central coordinate which represents a chosen central
point for calculating the angle between the request-agent's home and the y-axis of an
imaginary coordinate system with the central point as the origin. Based on the input
parameter count of groups we de�ne which angle-interval belongs to which group. For
example, if a count of 12 groups is input, we determine that each group contains a
span of 360/12 = 30 degrees. If a request-agent's home location leads to an angle of
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Figure 3.11: An example for assigning groups to agent requests based on home locations.

12 degrees, the request would belong to group 1. A request with a home with an angle
of 185 degrees will belong to group 7, 334 degrees equals group 12 and so on.

An exception to this assignment are requests with home positions located inside the
exclusion radius around the request-agent's campus that was speci�ed in the input pa-
rameters. Such requests are assigned the group number -1 and do not exclude any
matches based on their group number. We chose such an exception because including
agents who live somewhat close to their university campus should in many cases be
feasible without high detour times. A representation of this categorization of several
home-positions can be seen in Figure3.11. Additionally, Figure 3.12displays an exem-
plary splitting of agent locations into 18 groups where agents in proximity to campus
locations are excluded from this grouping and are colored black.

All existing matches of the same and adjacent group categories are then further �ltered
for the same Requesttype, not being fully occupied already and, similarly to ridesharing,
for an overlap of time-windows. Since we did not want for it to be possible that one
ride visits the same stop multiple times, we have to ensure that agents with the same
campus location have overlapping time-windows for either arrival times for rides to
uni or departure times for rides back home. Should a match, that is examined by
our �lter, not yet contain a stop at the request-agent's campus, we instead check for
a possible shifted overlap of time-windows between other stops. This means that we
perform the same overlap check as for ridesharing but for all stops of the match. For
each stop of the examined match we check whether a time-window overlap between the
stop time-window and the request's time-window exists where we once shift the request
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Figure 3.12: An example for assigning groups to agent requests based on home locations.

time-window forward by the time it takes to drive from the request's campus to the stop
campus and once backward by the time it takes to drive from the stop campus to the
request's campus. This way we try to ensure that a ridepooling solution should exist
where no idle times waiting for time-windows exist during a ride. Figure3.13exempli�es
this time shift consideration by showing an example in which an overlap exists for the
time-windows A [12:30 - 13:00] and B [11:55 � 12:25] since the drive from B to A takes
5 minutes.

The �ltered matches are then sorted by three standards. Most importantly, matches
with the same group number as the request get priority and will be the �rst in the

[Arrival 12:30 – 13:00]

[Arrival 11:55 – 12:25]

[Arrival 11:20 – 11:45]
Arrival at 12:31

Arrival at 12:25

[Arrival 11:20 – 11:45]

Figure 3.13: A depiction of two stops being possible in a ride even though their time-
windows are not overlapping.
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list. Then, we prefer matches that already stop at the request's campus. Lastly, these
gradations are ordered by the closest distance of another student's home of the match
to the request-agent's home. Afterwards, we take the �rst �ve matches of this sorted
list and check with the help of jsprit and Graphhopper whether �tting in the request is
actually feasible for each of these matches. It is feasible if the following conditions are
ful�lled:

ˆ all time constraints of all agents of the match and of the request-agent are observed

ˆ the resulting ride would �t between the vehicle's rides before and after

ˆ the vehicle's next ride still has to be feasible with the new ride's resulting vehicle
position and end time

ˆ no waiting times occur during the resulting ride

ˆ the ride time is accepted by all agents of the match

Out of the feasible matches of the �ve examined ones we chose the match with the
lowest total ride time and use this for a comparison with the best free vehicle at the
time.

We determine which vehicles might be free by excluding vehicles that are already ex-
ecuting a ridepooling ride during the request's time-window. Furthermore, we calculate
the drive time between the request-agent's home and campus and check for every not
yet eliminated vehicle if it could �t this drive time into its schedule in a way that the
request's time-window is observed; i.e. can the vehicle �t the drive from the agent's home
to campus so that it arrives during the time-window or, in the case of a ride home, can
the vehicle �t the drive from the agent's campus to their home so that we pick up the
agent during the time-window?

The vehicles that pass this condition are then sorted based on each vehicle's distance
between its last parking location and the request-agent's pick-up location. The vehicle
with the smallest distance is favoured. The �rst �ve matches of this sorted list are, if
feasible, put into a list of eligible matches of which the match with the shortest ride time
is picked as best match. Should no match of the �rst �ve be feasible, we start to examine
the next matches of the ordered list of �ltered possible matches. The �rst match to be
feasible according to the aforementioned conditions is picked as the best match for the
request.

We then go through the ordered list of possibly free vehicles and check if the ride
would actually be feasible since the vehicle still has to drive to the pick-up location
which might not be possible time-wise and the resulting ride might a�ect the vehicle's
next ride due to an adjusted vehicle position.

We then compare the �rst feasible free-vehicle match with the best match that was
found for already existing groupings and choose the free vehicle if its distance to the
pickup location is smaller than the distance between our new pickup location and the
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closest other pick-up location of the group match. In the case of no match being feasible
for the incoming request (for example, when no other matches exist yet), we also look
at ridepooling vehicles that might be free at the right time for the request.

This match �nding process is done for both the request-agent's ride to and back from
campus. Should there be a problem with either ride, due to all already present matches
not �tting or not being feasible and no free vehicles existing, the agent will prefer to not
take part in ridepooling and drive their own car.

3.5.4.3 Preparation of Data

In order to start a ridepooling simulation run with the aforementioned parameters, some
data has to be prepared �rst yet again. This is demonstrated at the top of Figure3.14
which depicts also the whole simulation sequence.

Firstly, the speci�ed count of vehicles is generated with their starting position and
corresponding position time being their stay at their assigned depot and the earliest
possible service start. In contrast to ridesharing we do not need to split the requests
into arrival and departure requests as only one request is needed to plan the ride to and
the ride back from campus. Then, similarly to ridesharing, the accepted ridepooling ride
times are calculated and saved for each agent based on the input function and the drive
time alone. Finally, all requests are ordered by their request arrival time for the start of
the event-based simulation and thus, the simulation can start.

3.5.4.4 Simulation Sequence

The ridepooling simulation sequence is depicted in Figure3.14. At �rst, the occurring
events of the simulation will be request arrivals for both a ride to campus and a ride
back home. Each incoming request is put into our ridepooling algorithm for �nding and
guaranteeing a match for both rides.

If matches were found for both rides of an agent, we add said agent to both matches
and recalculate the matches' start times and stop time-windows. Should the agent's
campus now be the last stop for the ride to or the �rst stop for the ride back from uni,
we also recalculate the main time-window of the a�ected match. The new start-time of
the matches lead to a reordering of events in the simulation as this changes the actual
ride starts.

As soon as a ride start event occurs, we drop the accompanying match from the active
match list and calculate the actual stop times that happen during the ride as well the
resulting output metrics for each agent, i.e. the travelled kilometers and minutes, as well
as the emissions and costs of the ride. For each agent we compute the kilometers and
minutes from their pickup to their drop-o�. For the splitting of the total emissions and
costs of the ride, we consider the bee-line distance between each agent's home to their
campus. We then calculate the emissions for this agent as their percentual share of the
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Beforethesimulation for eachagent and each vehicle:

Calculating
accepted ride time

Set as hard
constraint for agent

Agent

Setting first position and 
service time as well as

last service time

Vehicle

Duringthesimulation:

Incoming

Event

Assigning a group
number based on 

home position

Calculating output
metrics Filtering and sorting

matches regarding
possiblity of feasibility
for the drive to campus

Checking for free
vehicles

Adjusting matches
and recalculating

ride starts

Checking for free
vehicles

Student drives on 
their own

Free vehicle
found

No free vehicle Free vehicle found

Filtering and sorting
matches regarding

possiblity of feasibility
for the drive home

Figure 3.14: The ridepooling simulation sequence.
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sum of all agents' distances multiplied with the total emissions which also include the
vehicle's empty drive to the �rst pickup location. The same is done for the costs.

After all events have been handled in the simulation, we ensure that all agents' con-
straints are ful�lled in their rides.

3.6 Calculation of the Output Metrics

We calculate the results for the output metrics as follows:
Travelled kilometers per agent: Adding up the kilometers from the agent's pick-up lo-
cation to the agent's drop-o� location.
Travelled minutes per agent: Adding up the driven minutes from the agent's pick-up
location to the agent's drop-o� location and adding the stop times for every stop along
the path (not for the pick up or drop-o�).

Ridesharing costs for one ride per agent:RC
n

Ridesharing emissions for one ride per agent:RE
n

with RC being the total ride (gas) costs,RE being the total ride (CO2) emissions
and n the number of agents of the ride.

Ridepooling costs for one ride per agent: CD AP n
i=1

CD i
� RC

Ridepooling emissions for one ride per agent: CD AP n
i=1

CD i
� RE

with CDi being the beeline distance of agenti's home to campus andA being the
considered agent.

3.7 Comparison of the Mobility Mode Approaches

In order to make sensible statements about the usefulness and sustainability of rideshar-
ing and ridepooling, we have to ensure the comparability between our implemented
approaches that we presented above.

The most important aspect of this is to use the same input data for each approach.
This particularly concerns the agents who must have the same home and campus loca-
tions as well as request data. Additionally, we use the same general and model con�gura-
tion parameters for comparable everybodyDrives, ridesharing and ridepooling scenarios.

Furthermore, we developed our ridesharing and ridepooling approaches with compa-
rability in mind and thus use the same tools for VRP-solving, distance and drive time
calculation and created few but signi�cant di�erences in addition to the basic di�erence
between ridesharing and ridepooling.
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Aspect with similarities Explanation

Campus stops The campus stops are de�ned the same

Agents
The same agents and transport demands are
considered for all mobility modes

Time-windows
The same time-window constraints exist for all
mobility modes

Considered costs
Only gas costs are considered for the cost cal-
culation

Stop times
The same stop standing times are considered
for stops during rides

Table 3.2: The similarities between our ridesharing and ridepooling approaches.

The Tables 3.2, 3.3 and 3.4 present an extensive overview of the similarities and
di�erences between our ridesharing and ridepooling approaches as well as aspects where
a di�erence between both modes depends on the parameter input.

3.8 Examined Scenario

In this work we examine if the application of ridesharing and ridepooling would achieve
a success regarding the reduction of CO2 emissions and costs for students if utilized for
the campus mobility in and around Würzburg. Therefore, we choose a realistic scenario
for evaluating the di�erent approaches under the same circumstances. For the actual
simulation runs we now calculate the actual distances between the students' campus and
home positions and only consider students located in a speci�ed radius. Since expecting
minibuses to cover huge distances would result in wasting time driving around without
any passengers and not picking up other students, we set the outer radius to 25km for
a realistic scenario. The lower radius is set to 2.0 for ensuring that students are not too
close to their destination campus which would make using ridesharing or ridepooling
nonsensical.

We set the maximum accepted walking distance to 1200 meters for each agent as this is
the distance that several German federal ministries ascribed to be the maximum sensible
walkable distance [33]. In order to con�gure a �exible approach of students being �ne
with arriving some minutes earlier or later than their favoured arrival time and leaving
campus even more minutes later than their favoured departure time, we set the time
interval to 15 minutes. This way, if a student wishes to arrive at 10:00, they would
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Aspect with di�erences Ridesharing Ridepooling

Requests
Requests are split into to-
campus and home requests

One request per agent ar-
rives which contains to-
campus and home ride

Accepting of to-campus
matches

Matches to campus are
accepted despite matches
home not being ensured

To-campus matches are
only accepted if home-
matches are immediately
found and binding

CO2 and cost splitting
CO2 and costs are split
evenly for a ride's agents

CO2 and costs are split
based on distance to each
agent's destination

Metric calculations for rides

Ride metrics are calculated
by considering the path
from the �rst agent stop to
the last agent stop

Ride metrics are calcu-
lated by considering the ride
start from the vehicle's last
standing position to the last
agent stop

Home stops
Stops are not directly at
agents' home locations

Stops are directly at agents'
home locations

Rides home

Agents without a car at
campus may not get a home
match and be stranded at
campus (lost)

Agents are guaranteed a
home ride (either through
ridepooling or private ride
home

Empty rides Rides can not be empty
Rides are often empty while
driving to the �rst pickup
positions

Table 3.3: The di�erences between our ridesharing and ridepooling approaches.
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Parameter aspects Explanation

Vehicle seat count
The seat counts of the ridepooling and student
vehicle are con�gured with the input and can
thus be the same or di�erent

Gas consumption
per km

The gas consumption per km of the ridepooling
and student vehicles are con�gured with the
input and can thus be the same or di�erent

CO2 emission per
liter

The CO2 emission per liter of the ridepooling
and student vehicles are con�gured with the
input and can thus be the same or di�erent

Gas price per liter
The gas price per liter of the ridepooling and
student vehicles are con�gured with the input
and can thus be the same or di�erent

Accepted ride
times

The accepted ride times can be con�gured sep-
arately for ridesharing and ridepooling by in-
putting functions. Since the function input val-
ues is the same for both cases, the accepted ride
times can be the same or di�erent for rideshar-
ing and ridepooling.

Table 3.4: Similarities and di�erences between our ridesharing and ridepooling ap-
proaches.
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still be �ne with 9:45 or 10:15. Similarly, if they wish to depart at 12:00, we assume
that this is the earliest possible time for departure which is why a later departure up
to 12:30 would still be acceptable. As already mentioned, the function for setting the
accepted ride-time for each agent is �x + log1:4(x)� for ridesharing and �x + log1:2(x)�
for ridepooling with x being the time for travelling alone. For both ridesharing and
ridepooling the stop time during a ride is set to one minute to account for aspects like
payment, choosing a place to sit and stowing luggage.

Furthermore, we use �ve campus locations, as �ve distinct locations are found in
the study and choose their locations as shown in Figure3.15 which also depicts the
chosen central coordinate that needs to be set for ridepooling. Additionally, Figure3.16
depicts the agents located in our speci�ed radius (a distance between 2.0 and 25.0 to
their campus) who are colored according to the campus they belong to. We also set
the additional ridepooling input parameters count of groups to 18, radius for exclusion
to 1500 meters and count of buses to 250. We chose 250 buses since we calculated the
maximum amount of agents that have overlapping arrival or departure intervals and
thus similar transportation times. This maximum amount is 1364 for our scenario and
as we aim to ful�ll most agents' travel demands we chose a number of buses that should
cover most of the demand when multiple agents travel together. For example, if each
bus would transport 5 students of the 1364 simultaneously, we could cover 1250 of the
1364 at the same time.

For modeling the student vehicles we used the model VW Golf 2.0 TDI (year of
manufacture 2010)5 with 5 seats total and a consumption of 0.048 liters gas per km,
2625 grams of CO2 emissions per liter gas and a price of 1.719 euros per liter gas. For
the minibuses we used the model Citroen Grand C4 Picasso (year of manufacture 2018)6

with 6 passenger seats and a consumption of 0.038 liters gas per km, about 2578 grams
of CO2 emissions per liter gas and a price of 1.719 euros per liter gas.

5https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/vw/golf/vi/270771/#technische-
daten

6https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/citroen/c4-
picasso/2generation-facelift/264035/#technische-daten
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Figure 3.15: The used campus locations in blue and the central coordinate for ridepooling
in red.

Figure 3.16: Agents considered in our scenario.

44



4 Evaluation

In this chapter we present the evaluations for the aforementioned realistic scenario for the
mobility modes everybodyDrives, ridesharing and ridepooling and discuss and compare
these results. This entails the results for the output metrics that are travelled kilometers
and minutes as well as cost and CO2 emissions. These output metrics are split into
output for the rides to campus, the rides home and the sum of both (i.e. per day).
Additionally, we demonstrate the possible reasons for the results with the help of more
output values such as the average number of occupied seats per ride or the average
amount of stops. We further address the characteristics of students who are categorized
as lost during ridesharing and validate the consistent nature of our results.

4.1 E�ects of Ridesharing and Ridepooling

In order to examine the output metrics' results, we analyze them for the travels to
campus and back separately as well as their sum for both rides. We do this both for all
agents separately and for the daily total sum of the metrics.

4.1.1 Daily Travelled Kilometers and Minutes of the Agents

Figure 4.1 shows the distribution of the travelled kilometers per day for all students as
violin plots. The baseline mobility mode (everybodyDives) is colored in blue, ridepooling
in pink and ridesharing in green. Additionally, the quartiles and the mean value are
displayed in each violin plot. We can see that both ridepooling and ridesharing do not
have a big e�ect on the distances covered by each agent with a mean of about 18km
a day for everybodyDrives to about 19km for ridesharing and 23km for ridepooling.
Furthermore, all quartiles are slightly higher for ridepooling than for ridesharing which
both have higher quartiles than everybodyDrives. Thus, we conclude that ridepooling
leads to slightly more kilometers travelled per agent than ridesharing. This is due to
the detours that are added for picking up or dropping o� other students. Since we set
agents to be more accepting of longer ride times for ridepooling than for ridesharing,
ridesharing leads to less or shorter detours as we can conclude by the lower mean for
travelled kilometers.

The travelled minutes per day for all students, shown in Figure4.2, behave similarly
to the travelled kilometers since more kilometers typically mean more minutes travelled.
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Figure 4.1: The distribution of the daily
travelled kilometers of the
agents.
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Figure 4.2: The distribution of the daily

travelled minutes of the
agents.

However, the e�ects of ridepooling look to be more drastic for the travelled minutes
which might be because of more detours being accepted in ridepooling which leads to
more stops experienced by passengers. Each stop adds more time to the ride (in our
case 1 minute) whereas the travelled kilometers are una�ected.

Furthermore, we can see that there are some agents who live far away and travel less
kilometers when ridepooling is used than in the baseline scenario while also not having
shorter travel times. This is unexpected since ridepooling adds detours to agents' rides
by picking up more passengers. When looking into the case for an agent that travels
nearly 100km a day when driving alone, we discover that this agent chooses to use the
freeway when travelling alone, as it is the faster option, and is forced to drive through
more rural areas when using ridepooling as other agents are picked up in these rural
areas during the ride. Figure4.3 displays this agent's case in which the agent drives the
quicker but longer route when possible and rides through the slower but shorter path
when grouped with other people. Therefore, this is yet another e�ect of ridepooling for
reducing travelled kilometers and thus also emissions and costs.

Similarly, there are cases for ridesharing where an agent might have a lower travel time
than in the baseline scenario. This is due to such an agent being a passenger and walking
to (or from) the driver's house which is located closer to the passenger's campus. As we
do not consider the kilometers the passengers travel by foot since they are limited and
do not produce any emissions or costs, the output metric travelled kilometers is reduced
for this agent. Figure4.4 demonstrates this e�ect for a speci�c case in our results.
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(a) Path of agent when travelling alone by
private car. (b) Path of agent when using ridepooling.

Figure 4.3: An agent preferring a path via freeway in the baseline scenario (left) and
being forced to drive through more rural areas when ridepooling is used
(right).

(a) Path of agent when travelling alone by
private car.

(b) Path of agent when using ridesharing
and being a passenger.

Figure 4.4: An agent (violet) walks to the driver (blue) of a ridesharing match and then
travels less kilometers by car.
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Figure 4.5: The daily gas costs (¿) for the
agents.
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Figure 4.6: The daily CO2 emissions (g) for
the agents.

4.1.2 Daily Costs and Emissions for the Agents

When examining the cost per day distribution for all agents, shown in Figure4.5, we
notice that ridesharing results in similar cost savings per agent as ridepooling and that,
generally, both modes result in less costs for the agents in our evaluated scenario.

However, both mobility modes leads to some extreme outliers where an agent has to
pay a lot more than when travelling by themselves. This becomes especially evident
when looking at the costs for a single ride per agent, displayed in Figure4.7. The
ridesharing cost outliers for the home rides can be attributed to the lost agents. As
for ridepooling, we can see that especially the one-way rides are a�ected by the outliers
since we only encounter either an agent's ride to campus or the ride back being a�ected
in our ridepooling simulation run. For example, an a�ected agent pays a lot more for the
ride to campus and then pays a smaller amount for the ride home. This way, the cost
sum for the agent is not in�uenced as drastically as the costs of the a�ected one-way
ride.

We ascribe these cost outliers to two factors. Firstly, the agents of a ride have to
account for the empty ride to the �rst pick-up position (in the likely case of the ride-
pooling vehicle not already being located at this position). Should an agent happen to
be the sole passenger of a ride, they would consequently have to pay the gas costs for
more kilometers than when travelling alone. If we executed ridepooling with vehicles
that had the same emissions per kilometer as the student vehicles, this would result in
our approach needing at least two agents per ridepooling ride to be pro�table.
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(b) Costs for the ride home per agent.

Figure 4.7: The costs for one-way rides where huge outliers are visible.

Secondly, even if multiple people share a ridepooling ride, the result may still not
be pro�table. This is due to our method of splitting the costs between the agents of a
ride since agents who live farther away from their campus have to pay a bigger portion
of the cost sum. Consequently, an agent who lives much farther away than the other
passengers of a shared ride has to pay most of the resulting costs. We deem this fair as
this agent also contributed the most to said costs. Nonetheless, in the worst case this
can lead to the explained costly outliers even with more sustainable ridepooling vehicles.

Since our method for calculating the CO2 emissions for each agent of a ride is the
same as for the costs, we encounter the same results as can be seen in Figure4.6. While
the average CO2 reduction per agent is signi�cant for ridepooling, there are outliers to
which we assign huge CO2 increases due to them either using a ridepooling ride alone
or living much farther away than the other passengers.

This problem could be addressed in future work by either developing a new cost
splitting method or by optimizing matches for each agent's resulting costs and CO2

share which could be done by pooling people with similar distances to campus together.
To summarize, in our evaluated scenario ridesharing leads to higher reductions of

CO2 emissions and costs for the students than ridepooling while also showing better
(i.e. lower) results for the Quality of Service indicator of travelled minutes.

4.1.3 Total Di�erences between the Mobility Modes

Table 4.1depicts the total output metrics for the modes. For ridesharing we present both
the results that include the alternative home rides and results without. We can see that
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Metric EverybodyDrives Ridesharing Ridepooling

Total travelled kilometers 120103.4
75249.89 incl. alt. rides,
69419.88 excl. alt. rides

123115.9

Total travelled minutes 130833
78651 incl. alt. rides,
72265 excl. alt. rides

149273

Total CO2 emissions (g) 15133034
7405582 incl. alt. rides,
6671001 excl. alt. rides

12324333

Total gas costs (¿) 9909.976
6117.555 incl. alt. rides,
4368.553 excl. alt. rides

8201.169

Total empty covered dis-
tances (km)

0 0 45792.57

Total to-campus detour
distances (km)

0 1658.512 14232.87

Table 4.1: The output metrics for the mobility modes in sum.

while ridepooling increases the driven kilometers and minutes, the emissions and costs
get reduced. Table4.2 displays additional output metrics for the modes like the average
seat count which shows that ridepooling leads to larger groupings than ridesharing.

We further investigate the metric results for the ridepooling minibuses. Figures4.8
and 4.9depict the daily travelled kilometers per minibus and the daily travelled minutes
per minibus, respectively. We can see that there is a wide range of vehicle activity with
some vehicles travelling only 150km a day and some up to 770km. Similarly, the active
ride times range from 230 up to 930 minutes (i.e. 3.8 to 15.5 hours) per minibus.

Figures4.10and 4.11show very similar distributions for the daily gas costs and CO2
emissions as for the travelled kilometers and minutes. This is due to the costs and
emissions linearly depending on the travelled kilometers.

The aforementioned range of travelled kilometers and minutes as well as costs and
emissions for the vehicles is a result of some ridepooling vehicles servicing more rides
than others and some vehicles being more idle and having longer standing times as
depicted in Figures4.12and 4.13.

This is due to our approach not balancing vehicle utilization. Furthermore, we prefer
vehicles with the smallest distance to a new stop location. This leads to vehicles with
remote positions (e.g., due to taking students home to their remote home locations)
not being assigned to further matches. This could be solved in future work by either
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Metric EverybodyDrives Ridesharing Ridepooling

Number of agents 6524 6524 6524
Number of lost
students

0 653 0

Number of driving
students

6524 2856 466

Number of rides 13048 5712 4574
Number of rides with
> 1 students

0 2898 3166

Average seat count 1 � 2.17 � 2.85
Average seat count to
campus

1 � 2.28 � 2.81

Average seat count
home

1 � 2.06 � 2.9

Table 4.2: The additional output metrics for the mobility modes.
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Figure 4.8: The daily total travelled kilo-
meters for the ridepooling vehi-
cles.
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Figure 4.9: The daily total travelled min-
utes for the ridepooling vehi-
cles.
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Figure 4.10: The daily total gas costs (¿)
for the ridepooling vehicles.
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Figure 4.11: The daily total CO2 emissions

(g) for the ridepooling vehi-
cles.
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Figure 4.12: The amount of rides per ride-
pooling vehicle in a day.
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Figure 4.13: Total idle standing time (min-
utes) per ridepooling vehicle in
a day.
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Figure 4.14: The daily average seat occupancy for the ridepooling vehicles.

favouring vehicles with longer idle times or repositioning remotely located vehicles and
summoning them back to the depot, for example.

Another indicator for our vehicle utilization not being balanced is the average ride
occupancy per ridepooling vehicle. As we can see in Figure4.14, most vehicles have an
average ride occupancy between 2.8 and 3.3 passengers. However, some vehicles only
transport 2 passengers on average while other vehicles have an average occupancy of
4. This is again due to our approach not considering distributing passengers between
vehicles evenly and instead aiming for shorter travel times for the students.

4.2 The In�uence of Vehicle Choice

As we mentioned above, the e�ect of ridepooling depends on the di�erence of sustainabil-
ity between the student vehicle and the ridepooling vehicle. This is due to our method
of calculating the costs and emissions as said relationships are solely linearly dependent
on the travelled kilometers.

Since ridepooling entails vehicles covering distances unoccupied, we can not just sum
up the travelled kilometers with passengers. Instead, we have to sum up the total
travelled ridepooling vehicle kilometers and further add the distances travelled by agents
who drove in their own car. The formula for calculating the total kilometers per day is
thus DRV �y+ DSV �x for ridepooling with x as the student vehicle emissions per km andy
as the ridepooling vehicle emissions per km as well asDRV as travelled ridepooling vehicle
distance andDSV as travelled student vehicle distance. The formula for calculating the
total kilometers per day for everybodyDrives isDED � x with DED as total distance
travelled in everybodyDrives.
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4.2.1 Break Even Point

With this we can calculate how much more sustainable the ridepooling vehicles have to
be in order to produce the same or less emissions or gas costs. We equate the ridepooling
and everybodyDrives total kilometer formulas with a less-than-or-equal relation and can
this way determine the maximum emissions per kilometer for the ridepooling vehicles.

DRV � y + DSV � x � DED x
DRV � y � DED � x � DSV � x
DRV � y � (DED � DSV ) � x

y �
(DED � DSV ) � x

DRV

This means that the emissions per kilometer for the ridepooling vehicle need to be
smaller or equal to the di�erence between the total student car emissions in both modes
divided by the total travelled kilometers of the ridepooling vehicles in order to not create
more emissions.

Now we can apply this to our evaluated scenario. As previously explained in Subsec-
tion 4.1.3, we have a total of 113866.7 kilometers travelled by the ridepooling vehicles
(DRV ) and 9249.155 kilometers travelled by agents in their car (DSV ). The total cov-
ered distance for the everybodyDrives mode, all travelled by student car, is 120103.4
kilometers (DED ).

Inserting this into our equation we obtain

y �
(120103.4 � 9249.155)� x

113866.7

y � 0.973544� x

as a result. Consequently, the ridepooling vehicle needs to have a maximum of
97.3544% of the CO2 emissions per kilometers of the student vehicle.

In our speci�c case we set the student vehicle to have a consumption of 0.048 liters
per kilometer and emissions of 2625 grams of CO2 per liter. This equates to 126 grams
of CO2 per kilometer which is ourx. Inserting this into the equation

y � 0.973544� 126

y � 122.666544
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Figure 4.15: The function f (x) = 113866.7x + 9249.155� 126 (green) breaks even at
x = 122.666544(blue) where it reaches the total amount of CO2 emissions
in everybodyDrives, namely15133028.4 grams of CO2 (orange).

shows us that ridepooling will not produce more CO2 than everybodyDrives in our
scenario as long as the ridepooling vehicles have a CO2 per kilometers rate of 122.666544
at most.

This point of breaking even is further demonstrated in Figure4.15which displays the
function f (x) = 113866.7x + 9249.155� 126.

4.2.2 Possible Utilization of Electric Vehicles For Ridepooling

In order to make the ridepooling mode even more sustainable, electric vehicles could be
used. Therefore, we brie�y examine how much CO2 could be saved when using electric
minibuses for transporting students. The German Federal Ministry for the Environment
described that electric vehicles also produce CO2 emissions due to the production and
provision of electricity [34] that is not yet fully sustainable as long as ecological electricity
is not used. Using the German energy mix, the ministry states that a typical electric
vehicle leads to about 70 grams of CO2 per driven km (only considering energy provision
and not production or maintenance).

With this we can calculate the total CO2 emissions for ridepooling with electric vehicles
(while student vehicles still use gas) for our scenario.

113866.7 � 70 + 9249.155� 126 = 9136062.53

These resulting 9136062.53 grams of CO2 are only about 60.37% of the 15133034
grams for the everybodyDrives mode and thus a considerable reduction of emissions. If
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Figure 4.16: The kernel densities for the departure times (displayed in minutes of day)
for the agents who end up lost and the agents that do not.

we were to use ecological energy for the ridepooling vehicles, the reduction would be
even greater.

4.3 Lost Students

While our ridesharing approach shows the best results for CO2 emissions and costs on
average, some students have to face the consequences of being lost and then paying more
than thrice for their ride home. This makes the approach as a whole more unattractive.
Thus, we examine if these lost students of our scenario have certain characteristics in
common in order to exclude such students from ridesharing in the future and possibly
reduce the percentage of lost students.

When we compare the departure times of agents categorized as lost to the other agents,
we can see that lost agents are more likely to want to leave early in the morning or late in
the evening as shown in Figure4.16. Since there will not be many other agents wanting
to drive home at these times, the likelyhood of being lost will be higher. Therefore, in
a real-world application of our ridesharing approach we would recommend agents who
plan on leaving either early or late not to use ridesharing.

Nevertheless, we can see that most lost agents want to depart at similar times than
other agents. Consequently, the departure times can not be the only reason leading ot
agents being lost. This could be examined more closely in future work in order to assess
if agents that end up lost can be accurately predicted before a simulation run.
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Figure 4.17: Kernel densities for the request times.

4.4 Consistency of Results

In order to validate that our results for the mode choices are of a consistent nature
and do not vary greatly for di�erent agent speci�cations, we also evaluate other input
con�gurations. Firstly, we examine whether the demand data of agents is crucial for
the results of the mobility modes. Then, we create di�erent agent home distributions to
check whether the e�ects of our mobility modes depend on location.

4.4.1 Evaluation for Two Work Weeks

For the comparison between multiple days of campus commute we create nine more pos-
sible request sets in which each request entails an arrival, departure and request arrival
time. We do this as described in Section3.3, i.e. we use the same probability distribu-
tion as before that is based on the MID survey and where the departure time depends
on the arrival time. We then create nine agent-request sets by yet again assigning each
agent one request randomly for all nine generated request sets. Therefore, each agent-
request set contains the same agents with the same home location; Only the time aspect
of their demand is di�erent.

Together with our �rst agent-request set that we used for evaluating our scenario, we
now have ten such sets that could represent two weeks of commuting to campus and
back, i.e . two times Monday to Friday. This could in turn represent one week in two
semesters each. Figure4.17demonstrates that the time distributions of all ten days are
very similar.
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Figure 4.18: Ridesharing kernel densities for the daily costs for the agents.

Still, as the requests containing this time information are assigned randomly to the
agents, di�erent demand data could still lead to di�erent results since groupings of agents
for travelling together are time-dependent.

However, our evaluations of all ten days show that the di�erences for both ridesharing
and ridepooling e�ects are negligible between the ten days. In Figure4.18we can see the
kernel density of the values of the daily costs for agents for the mobility mode ridesharing.
There we can observe in the left Sub�gure that each day's distribution of daily costs
look very similar. On the right we demonstrate that even the two days with the biggest
di�erences in their cost distributions (according to t-tests) seem to have nearly identical
cost distributions.

Similarly, ridepooling shows no signi�cant di�erences for the daily costs for agents
between the ten days. Figure4.19visualizes the kernel densities of all daily cost values
for all days on the left and the two densities for the two days with the biggest di�erence
where we can yet again see that these densities look nearly identical.

Another crucial metric is the number of agents per ride as this metric is indicative for
the success of the mobility modes. Looking at Figures4.20and 4.21, which display how
many rides have x occupied seats for ridesharing and ridepooling respectively, we can
conclude that this metric also behaves similarly for the ten days.

When examining all of the above-mentioned and multiple more metrics through an
anova, we verify that the ten days, i.e. ten di�erent agent-request sets, show no sta-
tistically signi�cant di�erences. Thus, we con�rm that both our ridesharing and our
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Figure 4.19: Ridepooling kernel densities for the daily costs for the agents.
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Figure 4.20: Number of occupied seats per ride of a day for ridesharing.
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Figure 4.21: Number of occupied seats per ride of a day for ridepooling.

ridepooling approach produce consistent results for demand with di�erent time informa-
tion.

4.4.2 Di�erent Agent Home Locations

After verifying that our approach is stable regarding di�erent mobility demand time-
wise, we now also want to examine whether di�erent origin destination pairs lead to
di�erent e�ects of the mobility modes. This way we want to ensure that our observation
of CO2 and cost reductions are not a result of chance.

For this we utilize the tool OMOD once more and generate four additional sets of agent
locations that re�ect the zipcode home location distribution of the university students
in Würzburg. These �ve di�erent home location sets are shown in Figure4.22where the
�rst one is the set we used for the evaluation of our scenario. Since all home location
sets are based on the same zipcode, they look roughly the same. However, inside each
zipcode the agents' home locations are placed noticeably di�erent.

While we obtain di�erent results for the all four main output metrics, we do not
�nd this surprising since di�erent home locations naturally lead to di�erent travelled
kilometers. However, the crucial question that we need to answer is whether ridesharing
and ridepooling have the same e�ects on the output metrics, i.e. if all home-location sets
experience the same degree of reduction of CO2 emissions and costs.

To evaluate this, we calculate for all agents how the costs and emissions developed
from everybodyDrives to both ridesharing and ridepooling and do this for all �ve home-
location sets. This way, we can assess if a signi�cant di�erence exists between the �ve
home distributions regarding the e�ects of ridesharing and ridepooling. Using an anova,
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Figure 4.22: The �ve di�erent home distriutions for the agents with our utilized one at
the top.
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Figure 4.23: The e�ect of ridesharing compared for all �ve home disributions.

we learn that there is indeed no statistically signi�cant di�erence for the reductions of
CO2 and costs per agent between the home distributions which is further demonstrated
in Figures 4.23, 4.24and 4.25.
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Figure 4.24: The e�ect of ridepooling compared for all �ve home disributions.
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This chapter entails the analysis of the in�uence of input parameters on the mobility
mode results. We investigate the in�uence of both mode speci�c parameters and general
parameters.

5.1 General In�uence Factors

In this chapter we examine input parameters that in�uence multiple mobility modes
such as the distance based radius in which agents are considered for our simulations.

5.1.1 Radius

Naturally, the outer radius, that is input as a cut-o� point for which agents should
be considered based on their home distance to their campus, signi�cantly a�ects all
output metrics for all mobility modes. This is because of the population of agents being
changed for every non-negligible change of radius. We exemplify this in four sub�gures
of Figure 5.1 that show the e�ect of changing the input outer radius on four di�erent
output metrics.

On the top left of the Figure we can see that the increase of the radius also leads to an
increase of the average daily travelled minutes per agent in a nearly linear relation for
all mobility modes. This is due to every increase of radius adding more agents who live
farther away and thus travel a longer amount of time. The ridepooling characteristic of
having higher travelled minutes per agent is a result of more stops per ride which each
add a stop time.

The top right sub�gure displays the e�ect of the outer radius on the average gas
costs back home per agent. Since the ride home is a lot costlier for agents categorized as
lost in ridesharing, the ridesharing costs are higher than the ridepooling home ride costs.
Furthermore, we can see that the ridesharing costs converge to the everybodyDrives costs
for higher radiuses. This might be a result of both the number of lost agents increasing
for higher radiuses, as demonstrated in the bottom right sub�gure, and the decreasing
average seat count for higher radiuses. We presume this decreasing seat occupancy to
be a consequence of the more remote agents not having as many other agents located
in their vicinity and also leading to ride times too long to �t into a ridepooling vehicle's
schedule; thus, leading them to drive their own car.
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Figure 5.1: The absolute values for di�erent input values for the radius parameter. The
bottom right �gure is only applicable to ridesharing.

65



5 Sensitivity Analysis

percentOfWillingAgents=40

percentOfWillingAgents=60

percentOfWillingAgents=80

percentOfWillingAgents=100

0 500 1000 1500 2000
Mean of daily CO2 emissions (g) per agent

everybodyDrives

ridePooling

rideSharing

percentOfWillingAgents=40

percentOfWillingAgents=60

percentOfWillingAgents=80

percentOfWillingAgents=100

0.0 0.5 1.0 1.5
Mean of daily gas costs (€) per agent

everybodyDrives

ridePooling

rideSharing

percentOfWillingAgents=40

percentOfWillingAgents=60

percentOfWillingAgents=80

percentOfWillingAgents=100

0 1 2
Average seat count per ride

ridePooling

rideSharing

percentOfWillingAgents=40

percentOfWillingAgents=60

percentOfWillingAgents=80

percentOfWillingAgents=100

0 200 400 600
Number of lost students

Figure 5.2: The absolute values for di�erent percentages of willing agents. The bottom
right �gure is only applicable to ridesharing.

Consequently, the choice of outer radius is of great importance when designing a
real-world application of ridesharing and ridepooling.

5.1.2 Willingness of Agents

Since the assumption that all students outside of Würzburg would be willing to use
alternative mobility modes is rather unrealistic, evaluating the di�erent modes for sub-
portions of agents is of great interest.

Figure 5.2 displays the e�ects of di�erent percentages of agents being willing to use
alternative mobility modes (i.e. ridesharing or ridepooling in our case) on output metrics.
Since the everybodyDrives mode is not a�ected by this input parameter, its output
metrics are not a�ected as well. On the top left we can observe how the average daily
CO2 emissions per agent is in�uenced and can see that, as expected, the emissions are
greatly dependent on how many of the agents are inclined to use alternatives for both
ridesharing and ridepooling with ridesharing being slightly more dependent.

The average daily gas costs for the agent, displayed on the top right of Figure5.2,
behave similarly as the emissions (as both depend on the travelled kilometers) with the
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exception of ridesharing costs also containing the higher home ride costs of lost students.
Therefore, the values for ridesharing and ridepooling are closer together for the costs.

Both the costs and emissions can be explained when we observe the two sub�gures on
the bottom of Figure 5.2. Naturally, with fewer agents using mobility modes for sharing
rides, the average seat occupancy of the rides per day decreases greatly. Since more
people use their own car, the number of lost agents in ridesharing also decreases.

In summary, both ridesharing and ridepooling only yield satisfying results for the
reduction of CO2 emissions and gas costs when enough agents are willing to utilize these
modes. In our scenario at least 80% willingness is needed. We can further see that
ridesharing leads to greater reductions in all cases.

5.1.3 Time Constraints

Next, we examine the e�ect of both relaxing and restricting the time-windows for arrival
and departure. Figure5.3 shows how the adjustment of these time constraints in�uence
four exemplary output metrics. As we can see in the top two Sub�gures, ridepooling
is less a�ected by relaxing the time-windows than ridesharing which might be because
of ridesharing being more limited regarding the amount of possible matches (due to the
walking radius) which is where less time constraints open more matching possibilities
in the walking radius. On the other hand, ridepooling does not seem to bene�t greatly
from more match options.

The direct comparison of costs for the ride to campus and costs for the ride home
yet again demonstrate the negative e�ect lost agents have on the average costs for the
home ride. However, both ride types (to campus and home) are similarly a�ected for
their respective mobility mode with the exception of the home rides also not experienc-
ing a notable improvement. This might be due to the amount lost students also not
signi�cantly decreasing between the values 20 and 25.

The behavior of the number of rides in response to di�erent time-intervals indicates
why ridepooling is more robust in regard to time constraints. In the lower right of
Figure 5.3 we can see that the amount of daily rides only slightly decreases, as well.

5.2 Speci�c In�uences on Ridesharing

Some of our input parameters only in�uence ridesharing, namely the number of seats of
the student vehicle and the distance an agent is willing to walk to or from the driver's
home of a match.

In the top of Figure 5.4 we can see the e�ect of changing the student car seat count
on the average seat occupancy and the number of lost students. Interestingly, while the
average ride occupancy is indeed higher for more available seats in the student car, this
negatively a�ects the amount of lost students. The reason for this is that more agents
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Figure 5.3: The absolute values for di�erent input parameter values. The bottom left
�gure is only applicable to ridesharing.
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Figure 5.4: The absolute values for di�erent input parameter values for ridesharing.
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travelling as passengers (i.e. a higher average seat occupancy) leads to more agents
depending on other students taking them along for the ride home.

On the other hand, a larger accepted walking distance, too, leads to a higher average
seat occupancy but also reduces the number of lost students. This leads us to believe
that the accepted walking distance is a crucial factor for the success of our ridesharing
approach. However, expecting students to walk higher distance would greatly impact
the quality of service of ridesharing.

5.3 Speci�c In�uences on Ridepooling

As for ridesharing, some input parameters only a�ect ridepooling which is why we present
these separately in this section. The parameters are the �eet size (i.e. amount of available
ridepooling vehicles) and the amount of seats in the ridepooling vehicle.

As visible at the top of Figure5.5, a smaller �eet of ridepooling vehicles (i.e. minibuses)
leads to a signi�cantly larger amount of students driving in their own car since the
vehicle �eet was at capacity and no matches were found. However, while the average
seat occupancy is reduced by a smaller �eet, the resulting changes are not as drastic as
for the number of driving agents.

We assume this to be because of many of the driving students for a small �eet, are the
sole passenger of a ridepooling ride for a larger �eet size. Consequently, the resulting CO2

emissions of our evaluated scenario are not as a�ected by changing the �eet size. This
leads to the conclusion that the �eet size can be reduced (e.g, for cost saving purposes)
without having a great negative impact on emissions. However, this only applies to
our scenario of the ridepooling vehicle not being signi�cantly more sustainable than the
student vehicle. Should the ridepooling vehicle have a really low emission rate and be
electric, for example, the CO2 emissions would be reduced immensely. Therefore, a
reduction of the �eet with more driving students as a consequence would thus lead to
higher emissions.

The in�uence of the ridepooling vehicle seat count is demonstrated at the bottom of
Figure 5.5. Here we can see that changing the number of available seats does greatly
a�ect the average seat occupancy for the rides of a day and thus also in�uences the CO2

emissions with vehicles with more seats result in less emissions. Therefore, using a ride-
pooling vehicle with a su�cient amount of seats seems promising for the sustainability of
ridepooling. Nonetheless, it should be noted that vehicles with more seats are typically
bigger with greater emissions as a consequence which should be taken into account when
a ridepooling vehicle is chosen.
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Figure 5.5: The absolute values for di�erent input parameter values for ridesharing.
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In this work we examined alternative mobility modes for the campus mobility of the
University of Würzburg. For this we developed a framework with which we are able to
model and evaluate di�erent mobility modes under the same circumstances and hard
constraints in an event-based simulation.

For this, we created agents that realistically represent the university students in and
around Würzburg regarding their home locations and transportation demand. We then
implemented the mobility modes ridesharing and ridepooling and evaluated them for a
realistic scenario with a maximum service radius of 25km around Würzburg. Afterwards,
we compared their results to each other and to a baseline mode in which every student
drives a private car.

We judged the modes' performance based on sustainability and quality of service
output metrics such as the amount of CO2 emissions and travelled minutes per day.
Additionally, we performed a sensitivity analysis and assessed which input parameters
and constraints have the biggest e�ect on the modes' results in our evaluated scenario.

6.1 Discussion

The results show that, for our assessed scenario in which all vehicles run on gas, rideshar-
ing produces the least amount of CO2 emissions as the total amount of travelled kilo-
meters is considerably reduced. On the other hand, since ridepooling vehicles have to
execute empty rides in order to to pick-up students and drive back to the depot, a re-
duction of kilometers could not be accomplished. Consequently, the sustainability of
ridepooling solely depends on the chosen ridepooling vehicles. As we utilized vehicles
with slightly less emissions per kilometer in our scenario, we do indeed accomplish re-
ductions for both CO2 emissions and gas costs, and that at the same rate. In contrast,
Ridesharing has a higher rate of CO2 reduction than costs reduction. This is due to
about 10% of agents not �nding a feasible match home during ridesharing and thus
being forced to use a more expensive alternative for getting home. Nevertheless, the
average gas costs are also reduced for ridesharing.

When another quality of service metric, namely travelled minutes, is examined, we
�nd that ridepooling leads to worse results since the average amount of travelled minutes
is signi�cantly higher due to more executed pick-up stops.

In summary, since our approaches for both ridesharing and ridepooling lead to CO2

and cost reductions, we conclude that they are indeed feasible and successfully so under
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hard quality of service constraints. We further conclude that, while ridesharing performs
better for our scenario (in regard to all average emissions, costs, travelled kilometers and
minutes), the results highly depend on circumstances such as how far an agent is willing
to walk by foot, how many seats each vehicle has or, especially, the emissions per km of
the used vehicles.

Therefore, there is no clear answer for the question of which mobility mode is better
for campus mobility as a whole. We would advise universities or institutions that seek
to improve the sustainability of their campus mobility to do a thorough survey for the
travel demand and requirements of their students to gouge which circumstances are
present and which quality of service metrics are crucial.

For example, while our ridepooling approach leads to more minutes travelled in a
vehicle, students are being picked up directly at their homes. Our ridesharing approach,
on the other hand, expects students to walk to the driving student, up to a certain
distance. It is possible that questioned students highly prefer not to walk at all and
would rather sit in a vehicle for longer. Furthermore, this might also di�er between
universities.

We additional deem it highly important that universities that encourage the use of
alternative mobility modes, ensure that all students have alternative options in case of
not �nding matches for their home ride.

As for our evaluated scenario, based on our results we would advise policy makers to
consider employing ridepooling with electric vehicles that, preferably, use ecologically
sustainable energy sources as this leads to the least amount of emissions and ensures
that agents can get a ride home.

However, since we evaluated a simpli�ed scenario without tra�c in�uences and no
unexpected incidents (such as students being late for pickup) more studies are necessary
for making de�nite claims about the performance of the examined alternative mobility
modes.

6.2 Future Work

In order to de�nitively judge which mobility modes are best suited for campus mobility,
further research is necessary, especially regarding the aspect of realism. For example, we
did not yet implement or explore the impact of tra�c on the feasibility and results of the
modes. In turn, the e�ect of each mode and tra�c and congestion is also of importance
for decision making.

Furthermore, as we set each agent to have the same quality of service constraints and
con�gured all vehicles of a type to be the same, it would be interesting to investigate
the e�ect of di�ering agent demands and vehicle attributes. For both the agents and
the vehicles these parameters could be set based on probability distributions.

When calculating the resulting costs of each mode, we presently do not consider
acquisition costs, service fees or the wear on the cars. For more realism in future work,
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these costs should also be taken into account. The same applies to examining the e�ect
of necessary refueling stops or employing drivers for ridepooling and thus having to
observe shifts.

This way, the sustainability of alternative campus mobility modes can be evaluted
and promoted for more realistic scenarios.
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