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Abstract

The line-based Dial-a-Ride Problem (liDARP) is a variation of the well-known Dial-a-
Ride Problem (DARP), in which vehicles respond to requests on-demand but are con-
strained to operate along a predefined line. In this thesis we extend the liDARP to
multiple lines by enabling users to transfer between them. We establish a comprehen-
sive problem definition for the line-based Dial-A-Ride Problem with Transfers (liDARPT)
and formulate an event-based MILP model to solve instances optimally. Implementing
and testing the model shows that problem instances with up to eight requests an hour
and 70 requests in total can be solved to optimality in under 15 minutes, where on aver-
age 99.7% of requests are accepted. While the system efficiency and acceptance rate are
generally better in the DARP setting for medium sized instances, our tests reveal that
the liDARPT approach scales better with more requests.

Zusammenfassung

Das line-based Dial-A-Ride Problem (liDARP) ist eine Variation des bekannten Dial-A-
Ride Problems (DARP), in dem Fahrzeuge nachfragebasiert auf einer Buslinie fahren.
In dieser Arbeit erweitern wir diesen Ansatz auf mehrere Linien zu einem Netzwerk, in-
dem wir es Nutzern ermöglichen zwischen Fahrzeugen umzusteigen. Wir formulieren eine
umfassende Problemdefinition für das line-based Dial-A-Ride Problem with Transfers (li-
DARPT) und stellen ein ereignisbasiertes MILP-Modell auf, mit dem Probleminstanzen
optimal gelöst werden können. Nachdem wir das Modell implementiert und getestet ha-
ben, können wir feststellen, dass alle Testinstanzen mit bis zu acht Anfragen pro Stunde
und 70 Anfragen insgesamt optimal in unter 15 Minuten gelöst werden können, wobei
im Durchschnitt 99.7% aller Anfragen akzeptiert werden. Zwar sind Systemeffizienz und
Akzeptanzrate im klassischen DARP in der Regel höher, jedoch skaliert der liDARPT-
Ansatz besser bei zunehmender Anzahl an Anfragen.
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1. Introduction

This thesis explores the capabilities of large on-demand bus networks for public trans-
port, by discussing an algorithm to solve problem instances optimally and comparing
the results to a different transport method.

Most people in modern society own personal cars, with numbers still rising in first
world countries like Germany, see [fS24]. As this report shows, on average a group of
1,000 people owns roughly 580 cars. These are used for every day commutes, which
leads to the vehicle occupancy typically being very low, in many cases being completely
empty besides its driver. However, a lot of these trips could be shared in theory, due to
similar origins and destinations or possible pick-ups along the routes.

This car dependency becomes even clearer when looking at the shares of motorized
vehicles used in passenger transport. According to [Umw24], in their most recent evalu-
ation done in 2021, the share of individual transport in Germany lies at 79.3%. Public
transport alternatives only managed a quota of 4.3%.

It is well known that emissions in freight or individual transport is one of many factors
leading to climate change caused by humans. The institution Climate TRACE reports
transportation in general as the sector responsible for the 4th most CO2e emissions in
2023 with 14.19%, see [TRA24]. These numbers call for closer attention and research
towards new solutions in public transport to improve efficiency. Among other things,
this could be accomplished by enhancing user-friendliness.

One heavily researched idea in the literature is constituted in the Dial-A-Ride Problem
(DARP). Here, small public buses can roam freely within an area and pick-up and deliver
users depending on their specific requests that are transmitted some time in advance.
In most problem formulations the buses can be shared by multiple users, thus increasing
the efficiency of the tours. Generally, this process can also be described as Ridepooling.
There are multiple services like this available nowadays, for example in some communities
in Germany. Typically they are referred to as Rufbus, but also more specifically Hol-
mich-App in Wuppertal, see [Flo20] and Call-Heinz in the rural region of Schweinfurt,
[Sch24]. Requests can be submitted easily through dedicated smart phone applications
or by phone.

In [RSS24], the authors proposed the line-based Dial-A-Ride Problem (liDARP) as a
variation of the standard DARP. The main difference being that a bus is now assigned to
a specific line, a series of stops it will always travel along. The bus will change directions
and pick-up users based on the passenger demand.

Obviously, for this to be efficient and attractive for users, we have to assume that the
predefined line connects a number of different areas, with easy access for as many users
as possible and without overly extensive deviations. Under this assumption, the hope
is to encounter less detours and thus more predictable routes and planning for users
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compared to standard DARP. As the requests should be more cohesive, they would
be easier to match, which should help us from an algorithmic point of view and more
importantly, improving the efficiency of the entire system, meaning more shared rides.

Generally, this approach could be especially interesting for bus networks in rural re-
gions. Since the overall demand for public transport is rather low, because of the lower
population density. Due to this, bus companies tend to reduce the frequency of buses.
Which again hurts the flexibility when using these services, creating a negative feedback
loop. In theory he liDARP approach could fix some of these issues, by offering more
flexibility to users and a higher occupancy of the buses per ride.

In this thesis we want to look further into the liDARP. Especially, extending previous
work by not only looking at a single line, but instead into bigger, overlapping networks
and enabling the users to transfer buses at certain stops. For this, we establish an
event-based mixed-integer linear programming (MILP) model, similar to [RSS24], where,
depending on a network of lines and corresponding buses, as well as a set of requests
from users, we try to find a routing of the buses and users, so that the overall number
of transported users is maximized. By enabling transfers between buses we have to look
at the whole network simultaneously, instead of just one line at a time. The network
could also contain cycles, which leads to a number of different routing possibilities for a
single request. Considering these extensions, we refer to this problem as the line-based
Dial-a-Ride Problem with Transfers (liDARPT).

The additional factors for this problem can lead to a lot more inconveniences and
especially a bigger model, compared to the liDARP, which we aim to tackle within this
thesis. In the process of this thesis, we implement a software framework, that is built
specifically for solving the liDARPT. For this, we implement an event-graph, similar to
[RSS24], an approach used for the DARP first by [GKS22]. By utilizing this framework,
different lines and sets of requests are tested and evaluated. We also compare these
results to the variation of employing standard DARP with the same set of requests,
while still solving optimally.

In the next section, Section 1.1 we will look into previous work in this area and
similar approaches of enabling transfers in a DARP formulation, followed by giving a
mathematical definition of the liDARPT in Section 1.2. In Chapter 2, the basic event-
based linear model of [RSS24] is explained in detail, as well as the necessary adaptations
made for enabling transfers. Afterwards the software implementation is discussed, where
different techniques are employed to ensure acceptable runtimes, Chapter 3. The used
parameters for testing and generating data are presented in Chapter 4 and the results
are evaluated. We conclude our findings and give an outlook on possible ways to extend
this research in Chapter 5.

1.1. Related Work
The well-known Vehicle Routing Problem with Time Windows (VRPTW) can be seen
as the earliest framework, that incorporates similar challenges as we are discussing here.
It is a very broad and overarching problem, that can be specified into many other more
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detailed scenarios. In its original form multiple locations are given, that are supposed
to be visited by a vehicle, within their respective time windows. A lot of research was
conducted in the 1990s and early 2000s, for example in [DDS92] and [TLZO01], where
the authors looked at solving instances exact via linear programming or used heuristic
methods, respectively. Ridepooling is very similar and constitutes a special case of the
VRPTW.

As the DARP is the corresponding mathematical formulation for Ridepooling, it is an
extensively researched topic. It can be considered in a static context, where all requests
are known in advance. However, a dynamic setting is also possible. In this case user
requests come in as time goes on and routes have to be adjusted on the fly. Most of the
research can also be distinguished by either solving the problem in an exact manner or
using heuristics, especially metaheuristics. We will cover static and exact approaches in
this section, as that is what we will focus on in this work. Firstly, a general overview of
previous research can be found in [HSK+18].

The 3-index formulation from [CL07] was hugely influential in the field. The authors
engineered a MILP on a location-based graph, with an integer variable for every path
between two points and bus. Furthermore, they suggest a branch-and-cut algorithm
to solve it and do so for instances with up to 50 requests. Only shortly after [RCL07]
improved on this work by proposing a 2-index variable formulation of this MILP. They
accomplish this by removing the indexing of the cars, only tracking the activation of an
edge and inferring the routes from that. This approach was considered the state-of-the-
art for a long time.

Recent notable findings were achieved by [RF21]. In their formulation, the routes
of the buses were split up into multiple fragments and the MILP is constructed on the
selection of those, instead of single paths. This leads to less variables and thus was shown
to have faster running times. Finally, the event-based approach shown in [GKS22] and
[GKP+24] resulted in greatly reduced running times and solved instances of up to 80
requests in less than 7 seconds optimally. In an event-based graph, a node represents
not only a location, but also a specific subset of passengers in the vehicle at this point.
This allows for many combinations in theory, but reduces the number of arcs greatly,
with the right preprocessing steps.

In [RSS24] the liDARP was established. For the specific problem variation multiple
MILP formulations were tested, with the event-based strategy coming out on top. The
authors managed to solve instances with up to 50 requests in under a second. In this
paper, only a single line was considered. A big challenge for this thesis, will be trying
to enable a network of lines with transfers.

Most of the work, on the classic DARP with transfers, has focused on establishing
few transfer points in the network, see [MLP14]. Here, the authors declare the Dial-a-
Ride with Transfers(DARPT), where they consider the static setting and use the given
demand to generate transfer points, to minimize the overall travel duration. Only at
these points passengers can change vehicles. A methaheuristic called Adaptive Large
Neighborhood Search was employed to solve the instances. When comparing results of
optimal solutions of the DARP, to heuristic ones of DARPT on the same instances,
it could be seen that the latter achieved slightly better performance on average. The
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instance sizes ranged from 16 up to 96 requests.
The authors in [DQ13] also worked with the DARPT framework. To solve the prob-

lem an insertion-heuristic was introduced. When using their specific heuristic, enabling
transfers lead to 11.9% more accepted requests compared to standard DARP. In their
experiments the demand consisted of 24 to 144 requests.

Finally, [GN23] recently proposed a model definition, where interchange is possible at
all pick-up and drop-off positions. They solved the problem exactly via Branch-and-Cut.
As expected this lead to longer computation times, so they also tested the metaheuristic
tabu-search for larger instances. With the second approach, solutions for up to 200
requests were found in less than 30 minutes.

1.2. Problem Description
In this section, we will present a mathematical definition of the liDARPT. We consider
a set of buses K, with each bus driving on a line l ∈ L. Every line l consists of an
ordered sequence of stops (s1, . . . , s|l|). Each bus is assigned to a single line by σ(k) ∈ L.
However, one line can have multiple buses and we consider all of them to have the same
maximum capacity of passengers cl ∈ N. A bus can drive along the line in both directions.
It is allowed to skip bus stops, however for simplification a bus is only permitted to turn
around when empty. If a bus starts or ends its tour, it always drives to the depot sdepot

of its corresponding line. The depot can be one of the stops of the line, or a different
location altogether. For two stops on a line si, sj we define function t to calculate the
travel time necessary for driving directly to one from the other: t(si, sj) ∈ R. The
triangle inequality holds for all stops si, sj , sm and t:

t(si, sj) ≤ t(si, sm) + t(sm, sj).

As input we receive a set of customer requests R, each request r ∈ R consists of
a number of persons qr ∈ N, that want to be transported. Furthermore, a request is
attached to a pick-up r+ and a drop-off r− and for both there is a time window [er+ , ℓr+ ]
and [er− , ℓr− ] in which the related action needs to occur. Additionally, each request has
a maximum ride time Lr, which the users overall traveling time, from the first pick-up
to final drop-off, must not exceed. Generally, we assume a fixed service time π, this is
the amount of time needed to handle all combined users getting in or out of the vehicle
at a stop. No matter if that is only one user being picked-up or multiple users leaving,
while others enter the vehicle.

We aim to find a plan Qk for every bus k, i.e., a sequence of stop actions (ρ1, ρ2, . . . ).
An action ρ consists of a number of properties: It is identified by the stop location
oρ ∈ σ(k), corresponding time of arrival eρ as well as departure ℓρ. To track the routes
each user takes, there is also a set of requests for drop-off Dρ and a set of requests for
pick-up Pρ, attached to each stop action. Both of these sets consist of requests, of which
there can never be more than the capacity of the bus, |Dρ|, |Pρ| ≤ cσ(k). For the plan
to be feasible, all travel times have to be respected. Meaning the following holds for all
subsequent stop events ρi, ρj in the plan Qk:
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Identifier Description
K set of buses
k bus

σ(k) function that assigns a line to bus k
cl capacity of buses on line l
L set of lines
l line
si i-th stop location of a bus line

sdepot start and end location of bus tour on a line
t(si, sj) distance function for two stops

R set of requests
r request
qr number of passengers for request r

r+, r− pick-up, drop-off action for request
[er+ , ℓr+ ] pick-up time window
[er− , ℓr− ] drop-off time window
Lr maximum travel time of request r
π service time

Qk plan for bus k
ρi i-th stop action of plan Qk

oρ location of stop action ρ
eρ, ℓρ arrival, departure time of stop action ρ

Pρ, Dρ set of requests picked up, dropped off at action ρ
pr decision variable for request r

Tab. 1.1.: Variable Description
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t(oρi , oρj ) ≤ eρj − ℓρi .

In this problem formulation it is possible to deny some requests. This can be achieved
by defining a decision variable pr ∈ {0, 1} for every request r ∈ R. If pr = 1, the request
r counts as accepted and the above detailed plan would need to ensure the following
properties. First we can generate a route for r, which refers to a sequence of stop action
tuples ((ρ1, ρ2), (ρ3, ρ4), . . . , (ρm−1, ρm)). The intuition behind this being, that every
tuple describes the users’ path on a single line. They enter the bus at the first entry
and step out at the second entry of the tuple. So the composition of tuples forms the
entire route a user follows, using one or multiple buses, to get to their destination. These
conditions are laid out mathematically below:

• for every tuple (ρi, ρi+1): r ∈ Pρi and r ∈ Dρi+1 and ρi, ρi+1 ∈ Qk for a k ∈ K

• for action ρ1: r ∈ Pρ1 , oρ1 = r+ and ℓρ1 ∈ [er+ , ℓr+ ]

• for action ρm: r ∈ Dρm , oρm = r− and eρm ∈ [er− , ℓr− ]

• for every consecutive pair of tuples in the route (ρi1 , ρi2), (ρj1 , ρj2): oρi2
= oρj1

and
ℓρj1
≥ eρi2

+ π

• Lr ≥ eρm − ℓρ1 + π

As we already feature hard time constraints in this formulation, we do not consider
this in our optimization goal. Instead we focus on transporting as many users as possible,
while secondly minimizing the overall traveled distance by the buses. We assume the
travel time to be directly proportional to the distance, thus we simply minimize the
travel duration here. This can be achieved by using a penalty W added to the sum for
every denied request and leads to the following objective function:

min
∑
k∈K

|Qk|−1∑
i=1

t(oρi , oρi+1) + W
∑
r∈R

(1− pr). (1.1)
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2. Event-Based Model

The goal is to find an optimal solution for the liDARPT. For that, the standard approach
is to generate a MILP model based on the given network and requests. However, as we
have already discussed in Section 1.1, different model compositions are possible. For the
liDARP, multiple approaches were tested by [RSS24] and the method that lead to the
fastest computation times was the event-based formulation. Thus, in this chapter we
will focus on this strategy and formulate a model suitable for the liDARPT based on it.

This method was introduced for the DARP by [GKS22]. It involves an extra step
where events have to be created first, which are then linked to each other in an event
graph. An event can be explained as a specific user allocation to a bus at any point in
time. Typically, it is either a pick-up or drop-off event, meaning users of one request
are joining or leaving the bus at each event, while the other remaining passengers stay
in the vehicle.

For a line l we denote an event as a tuple (v+
1 , v2, . . . , vcl

) or (v−
1 , v2, . . . , vcl

) for the
case of pick-up or drop-off, respectively with vi ∈ R ∪ 0. We write vi = 0 to indicate
the absence of users. In the simplest case qr = 1 for all requests and each element vi of
the tuple corresponds to a single seat in the vehicle. However, as we allow for different
numbers of users for requests, this is not generally true and we have to check that the
vehicles maximum capacity is not exceeded for an event. The requests v2, . . . , vcl

are
always written in ascending order, so there is only one event for a request action and
specific set of other requests. Finally, there is an idle event (0, 0, . . . , 0)l added as well
for every line l ∈ L, which symbolizes a bus starting and stopping at its depot.

1

2

3

Fig. 2.1.: Example of a network and requests.

To gather a better understanding of this approach, we look at a simple example
involving a single vehicle with a capacity of four. In Figure 2.1, a single line and stop
locations are shown. Furthermore, three requests {1, 2, 3} and their corresponding routes
are depicted. By accounting for local constraints, like two requests that travel along
completely distinct parts of the line, or timing constraints, many events can be eliminated
in preprocessing. Thus, only feasible events are left. After eliminating events based on
local properties, all possible events left for this instance are listed below.
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• (0, 0, 0, 0)

• (1+, 0, 0, 0), (1+, 2, 0, 0), (1−, 0, 0, 0), (1−, 2, 0, 0)

• (2+, 0, 0, 0), (2+, 1, 0, 0), (2−, 0, 0, 0), (2−, 3, 0, 0)

• (3+, 0, 0, 0), (3+, 2, 0, 0) (3−, 0, 0, 0)

The event graph G = (V, A) uses directed edges, referring from one event to a possible
subsequent event, meaning that the bus could drive from the first to the second, while
carrying out the corresponding pick-up or drop-off actions. The MILP model is required
to then find a path through the event graph for every bus, that starts at and returns
to its line’s idle event. A number of additional constraints are needed as well to enforce
the number of picked up requests and correct timing of stops.

By employing some basic conventions, we can disregard even more events and arcs.
For example, for two or more actions happening at the same stop, the drop-off actions
are always handled first. As we will discuss later in Chapter 3 every action of a request
receives its own time window. We can use these time windows to process events in
descending order of their time window end. Not only does this shrink the number of
edges in the event graph, it is also an important technique that helps enforce time
windows in our model, on which we will elaborate in Section 2.2. Consequently, if there
are multiple requests available for pick-up at a certain stop, we consider just one specific
sequence they can be picked up in, by keeping only a specific subset of edges in the graph.
In the example from Figure 2.1 the events (3+, 2, 0, 0), (2−, 3, 0, 0) can be eliminated,
without restricting the set of achievable routes, as they do not follow our first convention.

Finally, there is the possibility of using time constraints to exclude some events or
arcs from the event graph. This could happen for example if two requests are planning
their travel for completely different points in time. So the combination of both of the
requests’ users in the same vehicle will never be possible. Similarly, we can leave out
some edges from the graph, as we can see for the example in Figure 2.1, by assuming
the earliest departure time of request 3 is later than the latest arrival times of both of
the other requests. In conclusion, only the arc back to the depot is necessary after event
(3−, 0, 0, 0). The resulting event graph is shown in Figure 2.2.

At first glance, the event-based approach can lead to a very big graph size. As shown
in [GKS22] the number of nodes is constrained by

V ≤ |L|+ 2|R|
max(cl)−1∑

i=0

(
|R| − 1

i

)
. (2.1)

This is due to the fact that we always consider one depot node (0, 0, . . . , 0)l for every
line l ∈ L, and for every request in R and both of its actions, we count all possible subsets
in R of size at most max(cl)− 1, with max(cl) denoting the highest capacity among all
lines. For |R| > |L|, max(cl), the number of nodes is bounded by O(|R|max(cl)).

In their work the authors of [GKS22] conducted similar assessments for the number of
edges and arrived at an upper bound of O(|R|max(cl)+1). By comparison, in the standard
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(0, 0, 0, 0)

(1+, 0, 0, 0) (2+, 0, 0, 0)

(3+, 0, 0, 0)(3−, 0, 0, 0)

(2+, 1, 0, 0) (1−, 2, 0, 0)

(1−, 0, 0, 0) (2−, 0, 0, 0)

(1+, 2, 0, 0)

Fig. 2.2.: Event graph for the instance in Figure 2.1 after preprocessing and pruning unnecessary
events.

location-based approach, the MILP model primarily receives a graph of the network and
the necessary stops for the given requests. Thus, the graph is in O(|R|). However,
most of the information on requests, like their time windows, or enforcing the maximum
capacity of the vehicles has to be handled explicitly.

Furthermore, we generally consider networks with a more sparse demand, meaning
only small buses are needed with 4 ≤ max(cl) ≤ 6. Coupled with the use of preprocessing
steps, where many events and edges can be eliminated in a lot of problem instances, the
MILP model often takes less time for computing the optimal solution, compared to the
location-based strategy, as shown by [RSS24].

2.1. Base Model
First, we will inspect the basic MILP model used for the liDARP as shown in [GKP+24],
but using our own notation. Additionally to the variables pr for each request r, every
edge a ∈ A in the event graph receives a corresponding binary variable xa. Also, for
every pick-up or drop-off action we add a continuous variable B to the model. This
variable will depict the exact departure time of the vehicle after the action takes place.

Overall, the formulation is guided by the location-augmented event based model de-
scribed in [GKP+24]. The authors used the special approach of sharing the time variables
B for all events of the same action. So we construct the model in a way, where a variable
can be part of many different equations, but we guarantee that only very few of them
become active, while most others become inactive and will not be affecting the final
result. Thus, less variables are needed compared to other proposed formulations.

For a node v ∈ V we denote its incoming and outgoing edges by δin, δout and to further
simplify the notation φ(r) = {r+, r−} is used to represent the set of both actions of r.
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The depot node (0, . . . , 0) is abbreviated to 0 and the set Vr+ stands for all events in V ,
that correspond to a pick-up action of r.

min
∑
a∈A

taxa + W ·
∑
r∈R

(1− pr) (2.2a)

s.t.∑
a∈δin(v)

xa −
∑

a′∈δout(v)
xa′ = 0, ∀v ∈ V, (2.2b)

∑
a∈δin(v) : v∈Vr+

xa = pr, ∀r ∈ R, (2.2c)

∑
a∈δout(0)

xa ≤ |K|, (2.2d)

Bg∗ ≥ Br∗ + π + t(or∗ , og∗) ∀r∗, g∗ ∈ {φ(r), φ(g) | r, g ∈ R} : ,

−M(1−
∑

(v,w)∈A :
v1=r∗∧w1=g∗

x(v,w)), ((r∗, . . . ), (g∗, . . . )) ∈ A, (2.2e)

Br+ ≥ e0 + t(o0, or+)
∑

(0,w)∈A : w1=r+

x(0,w), ∀(0, w) ∈ A, (2.2f)

er∗ ≤ Br∗ ≤ ℓr∗ , ∀r∗ ∈ {φ(r) | r ∈ R}, (2.2g)
Br− −Br+ − π ≤ Lr, ∀r ∈ R, (2.2h)
xa ∈ {0, 1}, ∀a ∈ A, (2.2i)
pr ∈ {0, 1}, ∀r ∈ R (2.2j)

The objective function in Equation (2.2a) was discussed before in Section 1.2. We make
use of a penalty W big enough, so that the number of accepted requests is maximized
first and the secondary goal is to find a plan of minimal duration. The typical flow
constraint can be seen in Equation (2.2b). This needs to be upheld to make sure we
receive a path for every vehicle. Next, Equation (2.2c) is employed to guarantee that a
request r is picked up by a vehicle if and only if pr = 1. In Equation (2.2d), we assure
that exactly |K| paths start at depot node 0, which will also end there because of the
flow constraint.

For adjacent actions in the event graph, we use Equation (2.2e) to take travel duration
into account for the B variables. The inequality is disabled by a big-M factor, if there is
no edge activated between the two actions. Additionally, Equation (2.2f) guarantees the
correctness of the departure times for the very first actions on the paths. Finally, the
time windows of each action are ensured by Equation (2.2g) and the maximum travel
time in Equation (2.2h).

Due to the fact, that we aim for a lexicographic objective function, it is of importance
to find a W big enough, so that the number of accepted users in maximized first. Still,
we do not want to set this value arbitrarily large, as this could hurt the performance of
the model. With the following Lemma 2.1 we conclude a relatively small upper bound
for W , that we will also give a short proof for.
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Lemma 2.1. For W = 2NR + 1, where N is the total time needed to travel along each
line from start to end, the minimal solution OPT of our MILP model has the maximum
number of accepted requests.

Proof. By contradiction:
Assume there exists a different solution ALT with more accepted requests. We know that
the difference in penalty is at least 2NR + 1. However, we also know that OPT ≤ ALT .
This means, that the difference in traveled time has to be at least 2NR + 1.

ALT ≥ OPT

⇔
∑
x∈A

taxALT
a ≥

∑
x∈A

taxOP T
a + 2NR + 1 > 2NR + 1

This implies that the overall duration traveled in ALT is at least 2NR + 1. However,
any plan that minimizes the traveled duration cannot be longer than 2NR. In this
worst-case scenario every request in R needs to travel through the entire network, using
all of the lines. So, for every line a bus has to travel along the whole line to get into
position to pick-up the request and then drive all the way back for delivery. Leading
to an upper bound of 2NR for the travel duration. By exceeding the upper bound we
reached a contradiction. Thus, there can not be a solution with more accepted users
than in OPT .

2.2. Adaptations
In the liDARPT multiple buses on different lines have to be coordinated at the same
time, while users of requests are able to transfer from one bus to another. Furthermore,
due to cycles in the network there can be different route options for a single request.
We interpret a route option as one possible path through the network along one or more
lines from pick-up to drop-off location of the request.

The various route options have to be found within a separate preprocessing step.
As in larger networks the number of possibilities can be quite large, we can make the
compromise of only exploring some variations. For example, we identify the shortest
possible routing option for a request and then only explore variations with at most one
extra transfer. For a request r ∈ R, we consider a set of indexes Ω(r) = {1, 2, . . . }
and every ri with i ∈ Ω(r) as a route option for r. Additionally, each routing option ri

consists of multiple splits ri,j with j ∈ ω(ri). A split describes the users traveling along
a specific bus line, before arriving at the destination or switching to another bus line
afterwards. Accordingly, every split ri,j possesses a pick-up r+

i,j and drop-off action r−
i,j

and corresponding locations or+
i,j

, or−
i,j

.
An example for these concepts is pictured in Figure 2.3. Three different bus lines are

shown, each drawn in their own color, that form a network with a cycle. Furthermore,
a request r and its pick-up or+ and drop-off location o−

r are marked. There are two
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r1,1

or+

or−

r1,2

r2,1

r2,2

Fig. 2.3.: Example of a network with circles and a single request r with two route options.

sensible ways for the users of request r to travel to their destination. Both route options
consist of two splits in this example, as the users would have to transfer buses once in
each option. It should be noted, that multiple route options can also occur in the case
of overlapping lines. Meaning that, multiple lines run along two or more stops. So if the
users of the request would have to transfer between these lines, there are now different
options for transfer locations.

We declare RΩ = {ri,j | r ∈ R∧ i ∈ Ω(r)∧ j ∈ ω(ri)} as the set of all splits of requests.
Moreover, the set R∗

Ω = {r∗
i,j ∈ φ(ri,j) | ri,j ∈ RΩ} entails all pick-up and drop-off actions

of splits of requests.
Using this expanded notation is necessary, but can also grow the corresponding MILP

model quite extensively. Here, we need a variable for the timing of every splits pick-up
Br+

i,j
and drop-off Br−

i,j
for every split ri,j ∈ RΩ. Besides, additional decision variables

xri ≥ 0 for all r ∈ R and i ∈ Ω(r) are needed for the model to select one of the given
route options by setting its value to one, while the other option variables are kept at
zero. The variables can be declared as binary or relaxed as a continuous variable, without
constraining the result, see Lemma 2.2. Additionally, we simplify the notation by using
the inverse function σ−1(l) to find the set of buses that traverse line l ∈ L.
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min
∑
a∈A

taxa + W ·
∑
r∈R

(1− pr) (2.3a)

s.t.∑
a∈δin(v)

xa −
∑

a′∈δout(v)
xa′ = 0, ∀v ∈ V, (2.3b)

∑
a∈δin(v) : v∈V

r+
i,j

xa ≥ xri , ∀ri,j ∈ RΩ, (2.3c)

∑
a∈δout(0)

xa ≤ |σ−1(l)| ∀l ∈ L, (2.3d)

Bg∗
m,n
≥ Br∗

i,j
+ π + t(or∗

i,j
, og∗

m,n
) ∀r∗

i,j , g∗
m,n ∈ R∗

Ω : ,

−M(1−
∑

(v,w)∈A :
v1=r∗

i,j∧w1=g∗
m,n

x(u,w)), ((r∗
i,j , . . . ), (g∗

m,n, . . . )) ∈ A, (2.3e)

Br+
i,1
≥ e0 + t(o0, or+

i,1
)

∑
(0,w)∈A : w1=r+

i,1

x(0,w), ∀ri,1 ∈ RΩ, (2.3f)

er∗
i,j
≤ Br∗

i,j
≤ ℓr∗

i,j
, ∀r∗

i,j ∈ R∗
Ω, (2.3g)

Br−
i,|ω(ri)|

−Br+
i,1
− π ≤ Lr, ∀r ∈ R,∀i ∈ Ω(r), (2.3h)

Br+
i,j
≥ Br−

i,j−1
, ∀ri,j ∈ RΩ : j ̸= 1, (2.3i)∑

i∈Ω(r)
xri = pr, ∀r ∈ R, (2.3j)

xri ≥ 0 ∀r ∈ R,∀i ∈ Ω(r), (2.3k)
xa ∈ {0, 1}, ∀a ∈ A, (2.3l)
pr ∈ {0, 1}, ∀r ∈ R (2.3m)

The majority of constraints as well as the objective function can be found in the
model formulation of the liDARP, see Section 2.1. The main difference here is that most
constraints for the liDARPT are formed over splits, while before it was sufficient to
declare them for requests. One of the constraints with bigger changes is Equation (2.3c).
It is used to ensure that all splits of the selected route option are actually picked up. The
”greater equal” sign is used instead of equality, because some splits and their events are
part of multiple route options. This way, the model does not become infeasible whenever
these are selected. Because in the liDARPT multiple lines, with different depots are
considered, Equation (2.2d) has to be augmented, by defining it separately for each line
and adjusting the right-hand side to match the number of busses, see Equation (2.3d).

If we would not enforce a specific order for pick-up events, as we have noted in the
beginning of Chapter 2, our formulation of Equation (2.3e) could lead to inconsistencies.
When a request is picked up at its first stop with other requests, the end of its time
window could be disregarded. This is due to the fact, that Br+

i,1
is not necessarily the
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time of departure of the bus, instead we might have to wait for the other requests that
are picked up afterwards. By ordering events so that those which need to leave later
are handled first, the time windows of subsequent events fit within those of previously
handled events. Thus, we cannot exceed the time window for any event.

Furthermore, in Equation (2.3h), the maximum travel time is assured by checking the
difference of the last split’s drop-off time and the pick-up time of the first split for a
request. Then, Equation (2.3i) guarantees the timing for all subsequent splits, so that
no user is picked up before they even arrive at the location. Finally, in Equation (2.3j),
the route option variables of a request r are set into relation to the decision variable pr.
This ensures that exactly one route option is selected if and only if pr = 1.

Lemma 2.2. All variables xri for r ∈ R and i ∈ Ω(r) from the liDARPT model can be
restricted to binary values without loss of optimality.

Proof. Assume we have an optimal solution of the model.
For any r ∈ R we consider the following cases:

1. case pr = 0:
⇒ xri = 0 ∀i ∈ Ω(r), because of Equation (2.3c).

2. case pr = 1:
1. case ∃xri = 1:
⇒ xrj = 0 ∀j ∈ Ω(r), j ̸= i

2. case ∃xri : 0 < xri < 1: In this case, we could transform the solution to one
with equal objective value and binary variables. We simply set all 0 < xrj < 1
to 0, except one that should be equal to 1. This would obviously satisfy
Equation (2.3j). Similarly, Equation (2.3c) is also still upheld, because the xa

variables are binary themselves. So their sum was already required to be 1
before. The variables occur in no other constraint, so all of them are fulfilled
and the objective value is the same.
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3. Software and Implementation

In this chapter we will take a closer look at our implemented application for solving li-
DARPT instances optimally. The code is written in Python 3.10 and uses the IBM Cplex
Developer Edition for solving the ensuing MILP. It is publicly available on GitHub1. The
software is implemented in a way to enable simple extension, like observing the liDARPT
and our solution approach in the dynamic setting or simply employing different solving
algorithms. Thus, some of the data is redundant in the static case and some interfaces
could be implemented in a different way.

We will first look at the necessary input data and the format our implementation
expects in Section 3.1. In the following Section 3.2, we will go in detail on the different
modules and dependencies to gain an overview of the application flow. Afterwards,
some of the more interesting and complex algorithms used for preprocessing, especially
for generating the events and the corresponding graph are detailed in Section 3.3.

3.1. Input Data
As the goal of this thesis mainly concerns the feasibility of the liDARPT, we do not use
actual locations, roads and requests for our instances. Instead stops are referenced as
points on a 2D plane and the euclidean distance and a fixed traveling speed is presumed,
when moving in a straight line from point to point.

The input to the software is structured as follows. The program directly receives the
path to a configuration file, which entails many hyperparameters. Among them are the
service time π, unit distance, average speed and time window length for pick-up. Also,
the number of extra transfers, used for reducing the amount of considered route options
for requests is noted in the file. Most importantly, the request and network files are
linked from there.

The network file includes a set of all stops with id and two-dimensional coordinates.
Furthermore, lines with their ids are noted, each consist of a list of stop-ids. A line also
receives a depot coordinate and a capacity of users. We do not define the capacity per
bus, to simplify the MILP model. If we were to define the capacity per bus, then we
would need to create a separate event graph with different events for each bus on a line,
as a different capacity can lead to new events. Finally, all buses are listed with unique
ids and a corresponding line id.

Similarly, in the request file, each request is identified by an id. Additionally, the ids
of their pick-up and drop-off stops are documented and the amount of users tied to each
request. Finally, the earliest start time of the user is recorded and, for observing the

1https://github.com/barjon0/liDARP
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problem in the dynamic case, the file entails the time a request is first registered by the
system.

It should be noted that the request file does not foresee a fixed latest arrival time.
Instead, the application finds the shortest path and traveling duration for a request,
then calculates the maximum travel time by a function stated in the configuration file.
By adding the time window for pick-up, also noted in the configuration file, and the
maximum travel time to the earliest start time, we implicitly compute the latest arrival
time of a request.

In our tests we used 1.2 · log1.2(t∗
r) as the function for the maximum delay, considering

a shortest travel time t∗
r . The maximum travel time Lr is then derived from the addition

of the shortest travel time and the maximum delay. Subsequently, we compute the latest
arrival time ℓr− by adding the fixed length of the pick-up time window and maximum
travel time Lr to the earliest start time er+ . The function tolerates roughly double the
shortest time as delay for short requests of less than 5 minutes. However, for requests
of long to very long duration around 30 to 40 extra minutes are allowed.

3.2. Code Structure
First, we will get a better understanding for the implementation by discussing the mod-
eling classes. They are used to structure the problem and categorize the input data,
as well as the output. Also, some classes are important for the intermediate steps in
preprocessing. One can gain a basic overview in Figure 3.1.

In the upper right corner of Figure 3.1 we can see the basic modeling classes used for
the networks. Every bus travels on a line, while a line contains a list of stops and each
stop possesses a coordinate. Each bus also has a unique start and end time to specify
a time window in which the bus is on the road. Furthermore, the capacity of a bus is
decided by the line it drives on, as Line contains that parameter. The line also specifies
the depot, from which its buses start its tour and return to.

To the left, the modeling of requests is pictured. In the implementation, we use an ab-
stract class AbstractRequest to differentiate between actual Requests and the segmented
SplitRequests that do have a lot of the same characteristics. The abstract class contains
the basic information needed for a request, as well as implicitly calculated time windows
for pick-up and drop-off. Moreover, a request receives a time at which it was registered.
We also state the number of transfers, needed for the shortest path of a request. Finally,
every request gets a dictionary for all different route options and their splits, which is
calculated by the built in function splitUpRequest(). The SplitRequests get a unique id
and the line they are meant to travel along.

For structuring the output of the program, the Route class is used. It specifies a tour
for a defined bus, consisting of a list of RouteStops. This describes a stop at a certain
location, with some arrival and departure time, and a list of requests picked up and
dropped off. We can describe plans for all buses with these classes.

As we already discussed, our approach entails building an event-based MILP. For that,
we also have to model the events. First an abstract class Event specifies the core variables
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Request

+registerTime: Time
+numberTransfers: int

+splitRequests: Dict[int, List[SplitRequest]]

-splitUpRequest()

Line

+id: int
+capacity: int
+depot: Stop

+stops: List[Stop]

Stop

+id: int
+position: Coordinate

SplitRequest

+splitId: int
+line: Line

Route

+bus: Bus
+stops: List[RouteStop]

RouteStop

+stop: Stop
+arrivalTime: Time
+departTime: Time

+pickUp: List[Request]
+dropOff: List[Request]

AbstractRequest

+id: int
+numberPassengers: int
+pickUpLocation: Stop
+dropOffLocation: Stop

+timeWindowPickUp: TimeInterval
+timeWindowDropOff: TimeInterval

+actualStartTime: Time
+actualEndTime: Time

<<extends>>

Bus

+id: int
+line: Line

+startTime: Time
+endTime: Time

EventGraph

+requestDict: Dict[SplitRequest,Set[Event]]
+edgeDict: Dict[Event, Set[Event]]

+addEvents()
+checkConnectivity()

Event

+id: int
+first: SplitRequest

+others: Set[SplitRequest]
+timeWindow: Tuple[Time]

+location: Stop

+getSetBeforeEvent()
+getSetAfterEvent()

DropOffEvent

PickUpEvent

IdleEvent

<<extends>>

Fig. 3.1.: UML Diagram of modeling classes.

required for such a data type. For an event, we need to know the split in question, that is
either picked up or dropped off. Furthermore, all other splits also in the vehicle need to
be specified. A time window for an event is inferred within our program to eliminate some
events and edges in the graph. This abstract class is extended by the three possible types
PickUpEvent, DropOffEvent, and IdleEvent. Their behavior mostly differs in how they
implement the class methods getSetBeforeEvent() and getSetAfterEvent(), which return
the set of requests in the vehicle before or after the event. This will become important
for building the event graph. The graph structure in EventGraph is modeled by two
dictionaries. One gets the neighboring events for a given event, the other groups events
by their important split. The event graph can be build incremently by its addEvents()
method, that adds a list of events to the graph and infers the necessary edges. We check
that the graph is valid and fulfills some relevant properties with checkConnectivity().

The modules used for handling the workflow and containing most algorithms are
pictured in Figure 3.2. First, we can acknowledge the DataGenerator component on the
left side. Its responsibility is generating random user requests for given bus networks and
a specified number of users, which we use for testing. We will detail its inner workings in
Chapter 4. As discussed before, the program receives a configuration file, that specifies
necessary hyperparameters, as well as bus network and request file.
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Core

+users: List[Request]
+network: List[Bus]

+scheduleMode: Context
+solvingMode: Planner

+finishedSchedule: List[Route]

+start()
-readConfig()

DataGenerator

-numberStops: int
-numberRequests: int

-timeWindow: int

+generateRequests()
+writeRequestsToFile()

Bus network
.json

User 
Requests

.csv

configFile.json
<<provides>>

<<llinked>>

<<linked>>

<<interface>>
Planner

+handleInterrupt()

EventBasedMILP

+network: List[Bus]
+plannedRoutes: List[Route]

-graph: EventGraph

+preprocces()
-findEvents()
-createMILP()

-solve()

<<implements>>

<<implements>>

<<calls>>

<<runs>>

Output
.csv

<<generates>>

CPLEX

<<models>>

Static

Context

-timeTable: 
Dict[Time, Set[Request]]

+startContext()
-createTimeTable()
-triggerInterrupt()

Executor

+waitingUsers: List[Request]
+userLocations: Dict[Request,Stop]

+passengers: Dict[Bus,List[Request]]
+busLocations: Dict[Bus,Stop]

+routes: List[Route]

+executePlan(Set[Route])
-checkPlan()

<<validates>>

GenerateOutput

+writeResultToFile()

NetworkGraph

-graphDict: Dict[Stop, List[Edge]]

+getNodes()
+getEdgesIn(Stop)

+getEdgesOut(Stop)
+findShortestPath(Request)

+findSplits(Request)

<<builds>>

Fig. 3.2.: UML Diagram of functional workflow modules.

The Core module reads in the data and delegates control flow. To start, it instantiates
a NetworkGraph object, which is a graph of the bus network. This is then used to find all
feasible route options and splits for requests, see Section 3.3 We store this information
with the basic requests. The module GenerateOutput is called at the very end, to write
the resulting plan and some key figures into an external file. The remaining components
of the program are Context, Planner, and Executor. We decided on this implementation,
as it enables us to generalize the code for use in an dynamic environment. In the static
case the context simply instantiates a class implementing the Planner interface and waits
for a valid schedule. Then, forwards this result to the Executor, which validates the plan
by stepwise execution.

If we were to extend the program to the dynamic case, the Context module handles
control flow, as it hands currently registered requests to the Planner, waits for a result
or interrupts after a while to adhere to its time table. Then, the Executor is not only
used to validate a plan, but also to find the current location of buses and request users at
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a point in time. This way, the Planner is updated on the situation, when new requests
are registered and a new plan needs to be generated.

Different planning algorithms are feasible for this problem and could extend our Plan-
ner interface, like heuristics or other optimization approaches. However, we focus on
our event-based MILP method. The corresponding class EventBasedMILP receives a
list of buses and requests, as well as information on their current locations. With this
data, it starts preprocessing. A procedure that entails finding all possible events, that
can happen on a line. It then uses an EventGraph instance to structure the events, so
that the MILP model can be created. We use the CPLEX Python API for the process
of creating a model instance and then solving it via a local CPLEX installation. After-
wards, the CPLEX output variables need to be translated into a readable plan. In our
case, a number of Route objects to specify the paths each bus takes.

3.3. Preprocessing Algorithms
Preprocessing the input is a critical process in our program to create a simpler event-
based MILP model. So in this section we will take another look at the most important
steps. One of the first things we need to do is finding the shortest route for a request
within the network. For one, we need this information to implicitly determine the
maximum travel time we allow for this request. Furthermore, as discussed in Section 3.1,
the number of transfers for this path is used in determining the allowed number of
transfers in any other route option. The Dijkstra-algorithm is a well-known approach of
finding such a path. Thus, we employed this method on an instance of our NetworkGraph,
to find the shortest path for a request.

Subsequently, for finding all possible route options of a request we decided on a depth-
first search. The pseudocode in Algorithm 1 illustrates our approach that mirrors the
classic recursive depth-first search with backtracking to find all paths in a graph, with
some additional stop criteria.

The algorithm receives the current location, elapsed time, and the list of stops explored
to get to the current location. It generates a set of all possible paths through the line
network from pick-up to the drop-off location of a request as output.

For that purpose, the method can also reference to a NetworkGraph object, named
network. This construct only entails transfer stops as vertices, as all other stops do not
allow for us to make any kind of decision, so they can be omitted here. For a request,
its pick-up and drop-off locations are added to the graph and its edges are inserted
accordingly. Overall, the network object enables the algorithm to discover neighboring
stops easily, so it can traverse through the network quickly. It also finds the duration of
travel between two points.

When the method is first called for a request r ∈ R, it receives the pick-up location,
current time of zero and an empty set, because no stops have been explored yet. As this
is a recursive method, it is then called multiple times, for every explorable transfer stop,
along the way to the destination.

Due to its recursive nature, the method begins with a stop condition Line 1, returning
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Algorithm 1: recDFS(currStop, currT ime, explStops)
1 if currT ime > maxTime ∨ size(explStops) > maxNumberTransfers then
2 return set()
3 explStops.append(currStop)
4 if currStop = target then
5 return set(list(currStop))
6 else
7 optionSet← set()
8 for successor ∈ (network.getNeighbours(currStop) \ explStops) do
9 duration = network.getDuration(currStop, successor)

10 foundOptions = recDFS(successor, duration + currT ime,
explStops.copy())

11 for option ∈ foundOption do
12 option = currStop + option

13 optionSet.addAll(foundOptions)
14 return optionSet

an empty set if the current time exceeds the requests’ maximum travel time or the allowed
number of transfers is surpassed. After having made sure that none of these conditions
are hurt, the current location is added to the set of explored stops. Should the current
location also be the desired drop-off location, another stop condition is triggered and a
new set, with a list of the current stop is returned in Line 5, because it describes the
only valid path to the pick-up location. Otherwise, we prepare a recursive call for every
neighbor of the current stop in the network that has not been visited yet. Thus, circular
routes are excluded. After the duration for a route segment is computed, we find all
route options from the successors’ view to arrive at the drop-off location in Line 10. We
convert this solution to a solution for the current stop, by simply prepending the current
stop to all of the found route options, see Line 12. Then, after the altered options for
every neighbor are added together into one set, we can return this result to the calling
method.

Because we recurse on all neighbors of the current location, that were not already
traversed up to this stop, we are guaranteed to find all paths without circles between
pick-up and drop-off location in the network.

One of the central aspects of this thesis is the use of an event-based structure and
building the corresponding event graph. This step is very important for our method.
We aim to exclude as many unnecessary events and edges as possible, to shrink the size
of our MILP model and increase the solvers performance. However, the preprocessing
itself needs to be efficient and should not surpass the time required to solve the model.
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The overall workflow for generating the event graph in our implementation is depicted
in Algorithm 2. The algorithm receives the set of all splits RΩ as input and creates the
necessary events and builds the event graph.

Algorithm 2: makeEventGraph(RΩ)
1 for line ∈ network.lines do
2 events = set()
3 for dir ∈ line.direction do
4 candidateMapLocal = map()
5 candidateMapT ime = map()
6 R′

Ω ← ri,j ∈ RΩ where r is on line and traveling in direction dir
7 candidateMapLocal← sweepLineLocal(R′

Ω)
8 candidateMapT ime← sweepLineTime(R′

Ω)
9 candidateMap = map()

10 for ri,j ∈ R′
Ω do

11 candidateMap[ri,j ].pickUp = candidateMapLocal[ri,j ].pickUp ∩
candidateMapT ime[ri,j ].pickUp

12 candidateMap[ri,j ].dropOff = candidateMapLocal[ri,j ].dropOff ∩
candidateMapT ime[ri,j ].dropOff)

13 for ri,j ∈ R′
Ω do

14 for permutation ∈ buildPermutations(candiateMap[ri,j ].pickUp) do
15 events.add(PickUpEvent(ri,j , permutation))
16 for permutation ∈ buildPermutations(candiateMap[ri,j ].dropOff) do
17 events.add(DropOffEvent(ri,j , permutation))

18 hashList = list()
19 for event ∈ events do
20 hashList.add(hash(event.setBeforeEvent), event)
21 hashList.add(hash(event.setAfterEvent), event)
22 eventGraph.addNodes(events)
23 eventGraph.addEdges(hashList)

The algorithm is called with the set of all split requests RΩ. Splits that travel along
different lines can be processed independently of each other, as they can never be part
of the same event or have adjacent events. We loop over all lines in the network. As the
first task is to find all possible events, we can also loop over both directions in which a
bus can travel on the line. This is due to the fact that our busses never change direction
while passengers are inside the vehicle. Thus, there can never be two requests that want
to travel in opposite directions in the vehicle at the same time.

For every split request, we want to find all other splits that may ride together in the
vehicle. Out of all other splits R′

Ω that travel on the same line and in the same direction,
we filter the corresponding candidates in two ways. First, we observe the interval of stops
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between the splits’ pick-up and drop-off locations and look for possible overlaps. This
process is done once for all splits in R′

Ω in the sweepLineLocal() method and the results
are written into candidateMapLocal, see Line 7. This map now contains, for every split,
all splits that might be in the vehicle when the pick-up occurs and similarly all candidates
for the drop-off. We filter out all splits belonging to the same request.

Subsequently, we build all possible candidates for pick-up and drop-off, based on the
split requests’ time windows. These are inferred from the requests’ overall time windows
and minimum durations of every split. So we get a earliest and latest start, as well
as end times, for every split. With these two intervals, we call the slightly modified
sweepLineTime() method and collect its result in candidateMapTime.

Now that we have filtered the candidates based on their locality and timing, in Line 11
we combine both results, by computing the intersection for every split and action type
into candidateMap. From Line 13 onward, the buildPermutations() subroutine receives
a set of splits as input and generates all possible set permutations, up to a size of
cl. The method helps with further removing events, by generating the permutations
incrementally and always checking if it is feasible for the splits to share a vehicle, without
any of them missing their time windows. We do not explore any supersets further if this
condition is not met. Overall, the method allows us to build all events for pick-up and
drop-off of a split, now that we have all possible combinations of candidates for each
action of a split.

After all events are created, we need to find all directed edges between events for our
graph. Two conditions have to be met for two events to be adjacent. First, the set of
users in the vehicle after the predecessing event has to be the same as the set of users
before the successor is completed. Second, the events have to match up in regards of
timing. To focus on the first condition, instead of checking every pair individually, we
use a hash list. For every event, we get the set of users in the vehicle before the event
and the set of users after the event. For both sets, we compute its hash and store our
event at that hash in the list, we also need to mark if the event was placed there due
to the before or after set. We now go through the hash list and, at every index with
multiple events, we add edges from events placed there by their after set to events placed
by before sets.

This process is conducted in the addEdges() method of the event graph. Before adding
the edge we check that there are no violations in regards of the timing between the events.
This can be achieved by inferring time windows for every event from the time windows
of the corresponding splits. If it is impossible to arrive at the successor event in time,
after starting at the predecessing event within its time window, then no edge is created.
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4. Test Experiments

This chapter concerns itself with evaluating the capabilities of the event-based model
and the effectiveness of the liDARPT approach. We achieve this by running our imple-
mentation with multiple test instances and comparing the results. The focus of the tests
lies on three aspects, specifically.

First, we want to investigate the effects of the single, lexicographically weighted ob-
jective function, we proposed in Section 2.2, by comparing it to a second approach. In
this alternative the model is solved in two steps with different objective functions. The
overall question being if optimizing the number of accepted requests and traveled dis-
tance at the same time is too conflicting for the CPLEX Optimizer or leads to faster
computation times, see Section 4.2.1.

Furthermore, we examine the feasibility of the liDARPT approach by analyzing some
of the key performance indicators (KPIs) in Section 4.2.2. The following Section 4.2.3 is
concerned with determining the key factors that influence the complexity and scalability
of the event-based MILP.

Finally, in Section 4.2.4 the comparison of the liDARPT to the closely related DARP
becomes of interest. We want to see how well our approach works in relation to the
DARP, where all vehicles can roam freely. For this undertaking, we translated our test
instances to fit the software implementation from [GKP+24] and ran the tests again in
a static DARP setting with their basic event-based model.

4.1. Test Data
Before we expand on the results of our tests, we will provide an overview of our in-
stances and the experimental setup. We already discussed the required input format in
Section 3.1. The networks consist of a number of two-dimensional points on the plane
that form the stops and are chained together to lines. For a more practice-oriented
approach, the network instances are modeled after existing long-distance bus lines by
using publicly available network design diagrams as templates. These diagrams are
not in one-to-one correspondence with actual locations and streets, as they provide a
more clear and concise abstraction. They concern three different areas in the rural region
around the city of Schweinfurt in Germany. The three areas are Schweinfurt-Schleerieth,
Schweinfurt-Gerolzhofen and Karlstadt-Lohr. For each area, we varied the number of
stops and lines to create multiple instances from one network topology. Overall, we
chose seven network instances, detailed in Table 4.1. The table provides an overview
over the number of lines and stops in each instance. The number of transfer stops that
are served by multiple lines, allowing for requests to transfer between lines, is also listed.
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Network Name Lines Stops Transfer
Stops

Transfer Stop
Degree Sum

Network Length
in km

Markt-Karl 3 15 3 8 109.3
Markt-Karl-Lohr 5 26 5 14 165.6
SW-Geo_2 2 21 2 5 76.5
SW-Geo_full 4 32 4 13 120.1
SW-Schlee_2 2 14 2 6 58.6
SW-Schlee_3 3 21 3 11 92.8
SW-Schlee_full 5 28 5 17 129.9

Tab. 4.1.: Network overview

For the fourth column, the degrees of all transfer stops are summed and noted per net-
work instance. Intuitively, this is another parameter that could affect the complexity.
The higher the value the more transfer options are possible, in theory. Finally, we can
see the sum of the length of all lines in kilometers of our instances.

By examining many networks of different sizes and varying the number of lines and
transfer stops, we not only make sure many different topologies are covered, but it will
also allow us to compare the results across network instances and determine key factors
that increase complexity.

The Markt-Karl-Lohr instance is exemplified in Figure 4.1. It is one of the more
complicated topologies, as it consists of 26 stops and five different lines. Visualizations
of the other networks can be viewed in the Appendix A from Figure A.1 to Figure A.6.

The number of requests is certainly one of the most important parameters responsible
for the complexity of an instance. Thus, for every network, multiple sets of requests were
created with varying cardinality. However, the length of the time span that encloses all
of the requests’ pick-up times is also of great importance. Simply said, finding a solution
for serving 20 requests in one hour should be more difficult than doing so in five hours.

While the networks were modeled after real-world examples, the requests were gen-
erated randomly as no real-world data was available to us. To account for the length
of the time span, we decided on generating requests for a length of three, six and nine
hours. The number of requests was varied from 10 to 100 in steps of 10 requests. Thus,
for every network, 10 different sets of requests are available for each time span length.

The requests were created by drawing two different stops, uniformly at random, out
of all available stops in the network for every request. These were selected as pick-up
and drop-off location. By splitting the entire time span into discrete five minute steps,
we now sample an earliest pick-up time for a request with equal probability. Finally, the
number of passengers connected to a request was chosen by assigning a 90% probability
for picking a single passenger, 9% for two passengers and 1% for three passengers.

The following hyperparameters were used across all instances for testing. Every line
in the network was assigned two buses. The capacity for passengers cl of a bus on line
l was set to six for all lines. The service time parameter π was fixed to two minutes,
while we assumed a maximum delay for pick-up of a request to be 15 minutes. As
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Fig. 4.1.: Visualization of the Markt-Karl-Lohr network instance in the 2D plane. Transfer
stops are marked in light green.

stated in Section 3.1, the maximum delay after pick-up of a request was determined
by 1.2 · log1.2(t∗

r), where t∗
r is the shortest possible travel time of r in the network. At

most one extra transfer is allowed for a request compared to the number of transfers
in the shortest route. The traveling speed was assumed to be fixed to 65km/h for all
instances, except for the bigger examples SW-Geo_2 and SW-Geo_full, where it was
set to 70km/h.

All of the tests were conducted on a 24 core Intel i9-13900F machine with 32GB RAM
and operating system nixOS 24.11. The code was run through a Python 3.10 interpreter
and the ensuing MILP model was solved by a local installation of the CPLEX Developer
Edition 22.1.1. We limited the models solving time to 15 minutes to test under realistic
conditions, where longer inference times are often infeasible.

4.2. Results
Before looking at our findings, we first define the important metrics that we will focus on
when analyzing and comparing different results. The authors in [LLMS21] put together
KPIs for Dial-a-Ride services. Among them is the system efficiency, which is computed
as follows.

systemEfficiency = kmBooked
kmTraveled (4.1)
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Here, the term kmBooked describes the sum of kilometers the accepted requests would
need if they were to travel to their destination directly, while kmTraveled is the overall
kilometers driven by the buses in our system to service these requests. Thus, with
a system efficiency of greater than 1 we would be saving kilometers compared to all
requests driving their own car. Another important figure is the vehicle utilization, it
helps us determine whether passengers are effectively grouped together. We define this
figure slightly different than in [LLMS21] by inserting the total distance traveled into
the denominator instead of the used distance.

vehicleUtilization = accRequestKM
kmTraveled (4.2)

The term accRequestKM refers to the sum of the distance each request travels in the
network. Even though the formula seems might seem complicated, its result is rather
intuitive. If we attain a utilization of 1.0, it means that on average each bus carried one
passenger at all times.

Furthermore, to investigate the user-friendliness of the system, we observe the accep-
tance rate of requests and average delay. By focusing on all of these figures, we assess
the quality of solutions and evaluate instances against each other.

4.2.1. Objective Function
There are two objectives we want to achieve for the solutions in lexicographic order.
The main one is to accept as many requests as possible, then the aim is to minimize
the travel distance of buses. There are multiple options to implement this, we focus on
two intuitive methods. We either combine both objectives into one weighted function as
shown in Section 2.2, or we solve the model with multiple objective functions. For this,
the model is solved once, where the number of accepted requests is maximized. This
number is then fixed by adding a new constraint and the model is solved again, with a
new objective function that minimizes travel distance.

Generally, both options have their upsides and downsides. With a single objective
only one solve is required. However, large weights can sometimes lead to numerical in-
stability. Furthermore, finding the optimal value with conflicting objectives can increase
the difficulty for the solver. The multi-objective approach on the other hand does not
encounter this issue, as the solver can focus on one objective at a time. Here, the main
problem arises with a maximal computation time, where we have to decide how long
the solver should spend on optimizing each of the objectives. As we selected a max-
imum solve time of 15 minutes for all tests, we decided on a 10 minute limit for the
maximization of requests, while the rest is spent on the travel distance.

To identify what approach works better for our MILP model, we tested both options
on the provided instances. For a time span length of three hours, the maximum number
of requests we tested was 60, while for six hours up to 90 request instances were evaluated
and in the nine hour span all request instances were tested. By limiting the number of
requests, we filter out all instances with solutions that far exceed a MIP Gap of 20% in
the single-objective approach.
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The main question is how do the objective values of solutions in the two model versions
compare. To explore this, we transformed the final solutions of the multi objective into
the weighted objective function that is used for the single-objective approach. When
both methods lead to optimal solutions the objective values should be equal. It will
be interesting to see how the values compare for bigger instances, where the solver was
unable to compute an optimal solution. For a fair comparison, we evaluate the relative
difference of values for each instance. The results are depicted in Figure 4.2. As will be
the case for most plots, on the x-axis we can see the density of requests. That is the
number of requests divided by the length of the time span of each instance. The y-axis
shows the relative difference computed as

∆̂objValue =
(objValMult − objValSingle) · 100

objValMult
.

So, a positive value indicates that the single-objective approach has a lower objective
value compared to the multi objective for this instance, meaning the solution is better
here.

First, for small densities we expected both solutions to be equal. As our weights in
the single objective should be high enough that a lexicographic order is induced. This
is consistent with our results, because densities of less than eight, were solved to the
optimum in both approaches and no difference in objective values were found. However,
if we increase the density it would appear that most instances received a better solution
in the single objective, with a difference of up to 40% in some cases. Even though there
are some instances a little below the breakeven point, meaning that the multi-objective
solutions were slightly better here. A big outlier is the instance SW-Schlee_3 with 90
requests and six hour time span at density 15, with a relative difference of over 80%.
This was one of the few cases were the multi-objective approach was unable to find
an acceptable number of requests to transport within the 10 minutes, while the single
objective got within 20% of the lower bound. Generally, we can see particularly high
gaps for the instances of SW-Schlee_3, SW-Schlee_full and for other networks with
many lines.

In the weighted objective function the weights enforce the lexicographic ordering be-
tween both objectives. Thus, the relative difference of objective values almost entirely
consists of the difference in accepted requests. This is why the difference in accepted
requests depicts the same pattern, see Figure 4.3.

However, we can observe the scale of the differences and see that for instances with a
density of at least ten, in roughly 67% of examples more requests were accepted in the
single-objective approach. Furthermore, for around 27% of instances with this density
the difference exceeds 10%.

Next, we can focus on the second objective, which is the travel distance. We aim to
assess if the five minutes spent on optimizing distance alone leads to more efficient routes.
By simply investigating the overall travel distance, no fair comparison can be made, due
to different numbers of accepted requests. Alternatively, the system efficiency normalizes
the travel distance with the booked kilometers of accepted requests. The difference in
system efficiency is plotted in Figure 4.4.

30



2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Density (Requests / time span length)

0

20

40

60

80

%
 in

cr
ea

se
 S

in
gl

e 
ov

er
 M

ul
ti 

Ob
je

ct
iv

e 

Difference in Objective Value
markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

Fig. 4.2.: Relative difference in objective value per instance, when using single objective over
multi objective.

Again, positive values correspond to instances where the single-objective approach
outperformed its counterpart in this metric. Here, for many instances the system ef-
ficiency is better in the multi-objective solutions, as most markers are placed in the
sub-zero region. Specifically, investigating instances with a density of at least ten, we
see that roughly 21% of the examples are more efficient in the single-objective approach,
opposed to 51% of instances performing better with multiple objectives.

If we observe the instances more closely, it appears that almost all the markers in the
upper half belong to the bigger instances with more lines and transfer stops. At the
same time, the networks that perform relatively well in the multi-objective approach are
SW-Schlee_2 and SW-Geo_2, both of which consist of only two lines.

Overall, the results show a trend of more efficient multi-objective solutions. This could
could be an indicator, to spend less time on minimizing the distance, as the results here
seem competitive to the other approach, and instead increasing the time for the first
objective, where the multi objective is lacking in quality.

Finally, we shift our focus to the computation times in both approaches. For small
to medium sized instances that can be solved optimally in 15 minutes, we want to find
out if one of the options can preferred to the other. In Figure 4.5, the difference in
computation times between both options is displayed. By subtracting the computation
in the multi-objective approach from the single objective, a marker in the positive region
indicates that we solved the instance faster with the latter.

The results show that for most instances the computation times in both options were
very close, as for roughly 91% of all instances the difference was less than a minute. In
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Fig. 4.3.: Relative difference in accepted requests per instance, when using single objective over
multi objective.

25% of examples the single-objective approach was faster, while it was at least a second
slower in 10% of instances. For the rest, the difference was less than a second. However,
there are a few clear outliers in either direction. Especially in favor of the single-objective
approach, as we can see a few instances that were solved 400 to 600 seconds faster here.
For instances of the same network there appears to be great fluctuations from on to the
other. For example, the SW-Schlee_2 network has instances that are outliers in the
positive and negative area. Even though it seems as if more instances were solved faster
with the single objective, overall no clear trend can be determined from these results.

In conclusion, while the system efficiency is close and no clear general distinction be-
tween computation times can be made, out of both options the single-objective approach
clearly outperformed its counterpart in accepted requests. As this is our main objective
we will focus on this approach in the following sections in all of our tests.
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Fig. 4.4.: Difference in system efficiency per instance, between multi objective and single objec-
tive.

4.2.2. Solution Quality
In this section we will investigate the quality of solutions that were achieved with a
single objective function, by plotting some of the key figures from each instance solution.
Again, we plot the results for instances with up to 60 requests for a three hour span,
90 requests over six hours and 100 requests over nine hours, resulting in 175 instances
overall. Increasing the number of requests for any of the time spans would lead to cases
where the relative MIP gaps far exceed 20% after a 15 minute solve.

This is the first quality indicator we focus on, see Figure 4.6. The relative MIP gap is
defined as

(objVal− BestBound)
BestBound · 100,

where BestBound refers to the greatest lower bound known to the solver when the
program stops. Instead of the density, we split up the instances by their time span into
three plots.

As expected, the gap tends to rise when the number of requests increases. Especially
in the final step, where the number of requests rises to the maximum, we can see a big
leap for most networks with relative MIP gaps of around 20% in four cases. Surprisingly,
the MIP gap of the supposedly harder instances, like SW-Schlee_full, SW-Geo_full is
relatively small across all time spans, exceeding a relative MIP gap of 5% only twice. On
the contrary, the networks with only two lines performed worse. Out of the nine occasions
a MIP gap of 10% was surpassed, four of those instances belonged to the networks SW-
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Fig. 4.6.: Relative MIP gap in percentage per instance.
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Schlee_2 and SW-Geo_2. The other five occurred for networks with three lines. This
effect might be explainable by a lack of busses. All networks receive two busses per line.
The ratio of available seats to requests is significantly smaller for networks with two
lines, which could lead to a more complicated problem.

The number of accepted requests is the main objective of our solution. Thus, the MIP
gap highly correlates with this value. The ratio of accepted requests to the available
number of requests is presented in Figure 4.7.
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Fig. 4.7.: Accepted Requests in percentage per instance.

Generally, more than 90% of requests were accepted in all but six instances, where up
to 18% of requests were denied. For the most part, the curves appear very similar to
the ones from Figure 4.6, particularly for the maximum number of requests. However,
some small deviations can be observed. Especially for the network SW-Schlee_2, for
example with a three hour time span and 30 available requests, one request was denied
even though the solve was shown to be optimal by the figure above. This also occurs for
the six hour span and above all in the nine hour case. Due to the buses being restricted
to their lines, it can happen that many requests appear along the same line, which could
overload the two buses assigned to this line. Thus, they are unable to serve the requests
within their respective time windows. Again, this is the case for networks with less buses,
like SW-Schlee_2, in particular. Overall, in roughly 22% of all instances, the percentage
of denied requests was higher than the relative MIP gap, meaning that the solver was
able to improve the lower bound by definitively excluding requests in these cases. The
most extreme case occurred for the instance Markt-Karl in a three hour span and 40
requests, it was solved optimally, but 7.5% of requests are denied, which corresponds to
three requests. Among all optimal solutions, on average 99.7% of accepts are accepted.

Next, to assess the economic viability of the liDARPT approach, we investigate the
system efficiency in Figure 4.8.

The breakeven value of 1 was only achieved once across all instances. However, due
to the fact that the kilometers booked are computed by the straight line distance in our
examples, it becomes harder to compare the two values than in a real-world scenario,
where there are not as many shortcuts. The only occurrence of a value greater 1 was for
the SW-Schlee_2 instance with a three hour span and 60 requests. It should be noted,
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Fig. 4.8.: System Efficiency per instance.

that in this solution a relatively high amount of requests was denied with 10 out of 60
requests, see Figure 4.7. In general, we can observe a trend where the system efficiency
increases with the number of available requests. This makes sense intuitively, as more
requests allow for more combination possibilities to share a vehicle.

It is evident that networks with more lines show a worse efficiency, compared to ones
with less lines. Especially the SW-Schlee_full instances produced the lowest efficiency
in almost all cases. At the same time instances from SW-Schlee_2 mostly provided the
best results. Most likely, this is due to the stops being split over more lines, thus the
requests need more transfers and cannot take shortcuts, like when they start and end
on the same line. So, the overall deviation is longer.

To investigate this effect further, we look into the average delays for accepted requests
of each instance, see Figure 4.9. The delay refers to the additional time a request takes
from pick-up to drop-off compared to the shortest possible travel time in the network.
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Fig. 4.9.: Average Delay in percentage per instance.

Unlike before, the values here are very spread out. In particular, for instances with a
small number of requests, as the average is more susceptible to outliers. Also, the delay
seems heavily reliant on the specific set of requests. Overall, the maximum average delay
is around 50% to 60%, which occurs for six of the instances in the three hour span.
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In general, the average delay increases with the number of available requests. This
is the expected behavior, as more requests will need to be grouped together. It is hard
to see a trend for any of the networks, specifically. Instances from Markt-Karl appear
mostly on the lower end, that said in these instances many requests are denied. Similarly,
in SW-Schlee_3 not all requests are serviced, however the average delay is among the
highest in many instances. It might have something to do with their different topologies,
but we cannot pinpoint a specific reason with certainty.

Next, the vehicle utilization is another measurement we are interested in and it can
be viewed in Figure 4.10.
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Fig. 4.10.: Vehicle Utilization per instance.

For this figure, we consider a ratio above 1.0 acceptable, as it implies that there is at
least one person in the vehicle at all times on average. Most instances with a density
below ten requests per hour struggled to achieve this goal, especially with a the three
hour span. In the visualization for the nine hour spans, we can even see some examples
that cleared the threshold earlier. Overall, the distribution follows a clearly visible curve
for all time spans with little variance between the networks. Finally, it is noteworthy
that for the maximum number of requests, the vehicle utilization keeps trending upwards,
even though quite a few requests were denied in some of these instances. This suggests
a good solution quality in those cases for the requests that were accepted.

Before we conclude this section, we will look at a few solution examples that reflect
the routes of buses. They are exemplified in Figure 4.11, the frequency of each route
is indicated by how bold each line is drawn. For this a boldnessFactor is computed for
each route by

boldnessFactor = KMRoute× frequency
KMtraveled .

From the visualization we can deduce that many shortcuts are used, in particular from
and to transfer stops. Only in a few cases the actual network lines are visible from the
solutions, for example line 621 in the Markt-Karl instance. Though, in most cases it
seems as if the buses roam freely within their own areas, similar to the DARP setup,
and deliver the requests from and to transfer stops if required.
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However, with a larger number of requests or in a real-world scenario with less short-
cuts, the line property could be amplified again.

(a) Markt-Karl with 6 hour span and 80 requests. (b) Markt-Karl-Lohr with 9 hour span and 90 requests.

Fig. 4.11.: Solution examples with the bus routes between the stops and their relative frequency,
depending on how bold the line is.

In summary, the results show that instances with a density of up to ten were solved
optimally or with a relative MIP gap of less than 5% in all but one case. Among optimal
solutions on average 99.7% of requests were accepted. For the maximum number of
requests in each time span length, the solver was not able to close the MIP gap and
denied up to 18% of requests in six cases. The liDARPT approach seems feasible, even
though the system efficiency was rather low overall, the vehicle utilization shows that it
is possible to group many requests together, which could indicate a higher efficiency in
a real-world setting.

4.2.3. Complexity
After we have gained an overview over the quality of our solutions, we turn our attention
to the complexity of our instances, to find key factors that make it especially hard for
the solver. We expect that more lines and transfer stops should increase the complexity.
The overall number of stops could be another crucial aspect, we assume that with less
stops the overlap between requests increases, leading to more events and event edges.
By looking at the MIP gap depicted in Figure 4.6 we can already determine particularly
complex instances, that produced a big MIP gap after 15 minutes. To expand on that,
the computation times for each instance can be examined in Figure 4.12.

The data shows many of the instances with a smaller density were solved in a very
short time span. For up to 20 requests, we were able to find a solution almost instantly.
Generally, it is not possible to distinguish the networks from each other to see a clear
trend. However, for each time span length we can observe a cut off point, around 40
requests for three hours, 60 requests for six hours and 80 requests for nine hours. After

38



10 20 30 40 50 60
Number of Requests

0

200

400

600

800

Co
m

pu
ta

tio
n 

Ti
m

e 
in

 se
co

nd
s

Computation Time - 3 hour span

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

10 20 30 40 50 60 70 80 90
Number of Requests

0

200

400

600

800

Co
m

pu
ta

tio
n 

Ti
m

e 
in

 se
co

nd
s

Computation Time - 6 hour span

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

20 40 60 80 100
Number of Requests

0

200

400

600

800

Co
m

pu
ta

tio
n 

Ti
m

e 
in

 se
co

nd
s

Computation Time - 9 hour span
markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

Fig. 4.12.: Computation Times per instance.

that amount almost all instances took the whole 15 minutes to solve. Before that, most
examples could be solved optimally in a relatively short duration. This observation also
shows that the complexity is not directly proportional to the density of requests. The
densities at the cutoff points are 13.33, 10 and 8.89, it decreases with a longer time span,
while there are more requests. Thus, the number of requests seems to play a bigger role
for the complexity than the density alone. We will expand on this effect further later in
this section.

Next, we aim to investigate the following question. Because the model and the number
of constraints depend highly on the size of the event graph, we want to know if there is
a clear correlation to the computation time. Furthermore, how important is the number
of edges compared to the number of nodes. Looking at Figure 4.13 helps us answer these
questions.

In theory, the number of edges can grow asymptotically faster than the edges by a
factor of |R|, see Chapter 2. By plotting both the number of nodes and edges on log-
scales, we can observe that they are highly proportional among our instances. This
signals that we are able to prune the event graph to an acceptable size by enforcing
restrictions like time windows and locality constraints in preprocessing. Furthermore,
there seems to exist a transition area around 1,000 nodes and 10,000 edges. Before this,
nearly all instances took a short time to solve. For bigger event graphs, the solver was
unable to find a solution within 15 minutes. With both of these properties combined, we
arrive at the conclusion that we can evaluate the complexity by either one of the graph’s
components, as they are proportional and show a trend regarding the computation time.

Following this finding, we explore the number of event nodes for every instance in
Figure 4.14 to evaluate the complexity of each network, without being restricted by the
maximum computation time.

For each time span length, the number of event nodes for each network seems to follow
exponential growth in the number of available requests. In particular, when tracing SW-
Geo_full’s instances in the six hour span this trend becomes more obvious. As expected,
the networks with the maximum number of lines result in the highest amounts of events.
Even though the number of stops varies between the networks, we cannot declare any
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Fig. 4.14.: Number of event nodes in the graph per instance.
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one of them to be the most complex in general, as the values vary too much from instance
to instance.

Surprisingly, test examples from SW-Schlee_3 often produce very large event graph
sizes. Sometimes even larger than the five line networks, despite consisting of only three
lines. Compared to the other network Markt-Karl that provides three lines as well, we
can observe a very large difference when there are many requests. The latter is comprised
of less stops, however we expected less stops would generally lead to more events, due
to more overlap of routes. It might be a result of the unique topologies, as examining
the related Markt-Karl-Lohr and SW-Schlee_full networks against each other reveals a
similar trend.

The plots would indicate that networks with only two lines are easier to solve, as their
instances are consistently among the bottom. Also, we can find evidence to support
our assumption about the number of stops, as one of the larger networks SW-Geo_2
results in the smallest event graphs in our tests. However, by comparing these findings
to Figure 4.6 there seems to be important factors missing here. In the figure above, the
biggest MIP gaps were found for networks with only two lines. We assume that even
though the model is significantly smaller in these instances, it is harder to solve based
on the number of buses. The ratio of buses to overall passengers is a lot worse here,
which seems to be problematic for the solver when trying to distribute the requests over
all vehicles.

4.2.4. DARP Comparison
As we have stated before, the liDARPT is a restriction of the DARP. Our hope is
to encounter solutions with less detours and faster computation times. To test these
assumptions we used the event-based DARP model from [GKS22]. The model is also
mentioned in [GKP+24] along with two newer models. All three have been implemented
in C++ and the code is publicly available on gitlab1. However, only the standard event-
based model enables rejection of requests, which is a necessary criteria for us to compare
the two.

After converting the exact instances discussed in Section 4.2.2 to fit the required input
format, we ran the tests with identical settings. Including a maximum solve time of 15
minutes, the same number of buses and the same time windows for every request. All
other settings described in Section 3.1 stayed identical as well.

Before we start comparing the quality of results, we will first inspect the relative MIP
gap in the DARP solutions. We can get an idea of the complexity and solution quality
of each instance by looking at the outcomes compared to the liDARPT in Figure 4.15.

First, it should be noted that the solver was not able to find any solutions for two of
the instances from network SW-Schlee_full within 15 minutes. More specifically, for a
three hour span and 60 requests and a six hour span and 80 requests. Furthermore, for
the instance SW-Geo_full with a six hour span and 90 requests the preprocessing time
took over one hour, so we did not complete a solve. From the remaining data points, we

1https://git.uni-wuppertal.de/dgaul/a-tight-formulation-for-the-darp
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Fig. 4.15.: Relative MIP Gap of DARP and liDARPT solutions by density of requests.

can observe that most instances with a density of less than ten were solved optimally.
However, for more dense examples, the relative MIP gap increases rather quickly, with 18
instances exceeding a 20% gap up to 70% in some cases, thus surpassing the encountered
gaps in the liDARPT by over 50%.

Similarly to the liDARPT, in the DARP setting the complexity is not directly pro-
portional to the density. There is already a spike up to 40% at density 11.11 that
corresponds to a nine hour span and 100 requests. For the time span of six hours the
smallest instances that exceed a gap of 40% are at 13.33, while for three hours that first
occurs with 50 requests and a density of 16.67. As the time span increases, relatively
fewer requests are required to cause large MIP gaps, indicating that the complexity is
not proportional to the density.

At last, it seems the solver had the most problems when there were less busses at its
disposal, SW-Schlee_2 and SW-Geo_2 both received 4 buses in total. These lay among
the top of the plots and for the latter no solution was found in two cases. The same
trend can be found for networks with more buses. These were consistently placed the
lowest.

Overall, we can make many of the same observations as for the liDARPT, however
there seems to be a clear difference in complexity of the models, as the relative MIP
gaps are significantly higher for the DARP.

Next, we will turn our attention to the number of accepted requests, by evaluating the
difference in percentage between both settings per instance, see Figure 4.16. Positive
values indicate that instances have more accepted requests in the liDARPT setting and
negative the opposite.

On first glance, it appears that in general more requests are accepted in the DARP.
More specifically, in roughly 27% of instances this was the case, while the liDARPT was
better in about 8% of examples. Even though the MIP gap is worse in most instances,
the DARP tends to accept more requests. In particular, looking only at instances that
were solved within 20% of optimality in the DARP, of which there are 153, shows that
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Fig. 4.16.: Difference in accepted Requests in percentage per instance, between DARP and
liDARPT solutions.

in only two cases the liDARPT accepted more, which is roughly 1%. In general, the
differences mostly range between 1% to 10% with a few outliers up to 25%. Especially
at larger densities we can observe some cases, where the liDARPT exceeds the DARP.
As we have seen in Figure 4.15 these instances were not solved close to optimal in the
latter. Overall, it becomes evident that the liDARPT is more restricted, which leads to
more rejected requests.

Following that, we want to figure out if the liDARPT results in more efficient tours.
The difference per instance is shown in Figure 4.17. Again, if a marker is placed in the
positive region, it means that the liDARPT solution is more efficient.

10 20 30 40 50 60
Number of Requests

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Di
ffe

re
nc

e 
Sy

st
em

 E
ffi

cie
nc

y 
(li

DA
RP

T 
- D

AR
P)

Difference System Efficiency - 3 hour span

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

10 20 30 40 50 60 70 80 90
Number of Requests

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Di
ffe

re
nc

e 
Sy

st
em

 E
ffi

cie
nc

y 
(li

DA
RP

T 
- D

AR
P)

Difference System Efficiency - 6 hour span

20 40 60 80 100
Number of Requests

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Di
ffe

re
nc

e 
Sy

st
em

 E
ffi

cie
nc

y 
(li

DA
RP

T 
- D

AR
P)

Difference System Efficiency - 9 hour span

markt-karl
markt-karl-lohr
sw-geo_2
sw-geo_full
sw-schlee_2
sw-schlee_3
sw-schlee_full

Fig. 4.17.: Difference in System Efficiency per time span, between liDARPT to DARP.
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Fig. 4.18.: Difference in computation time of the solver between liDARPT and DARP.

However, we can observer a clear trend as all markers are placed in the negative
range, meaning the DARP approach lead to more efficient solutions. In particular, for
43 examples the system efficiency exceeded 1.0 in the DARP setting. In the figure a slight
upward curve is visible towards the end, meaning close to the maximum of requests the
difference started to shrink down. However, this is most likely due to the big relative
MIP gaps occurring for these DARP results. Overall, it appears that having the buses
restricted to lines decreases the efficiency for a lower number of requests. Especially, as
the buses in the DARP can always travel along a straight line in our simplified setting,
while in a real-world scenario driving along actual streets involves more deviations.
Furthermore, the effect is heightened by the number of lines in the liDARPT network,
as we can see networks like SW-Schlee_full place among the lowest in many cases. At
the same time, networks with less lines like SW-Geo_2 and SW-Schlee_2 appear closer
to zero.

After we have compared the quality of solutions against each other, we want to con-
clude our findings by investigating the difference in computation time needed by the
solver, depicted in Figure 4.18. We have already seen from Figure 4.15 that the li-
DARPT approach scales better with more requests in this regard. Now, our focus shifts
to smaller instances. By subtracting the computation time needed for the DARP by the
liDARPT solution time, positive values correspond to instances where the liDARPT was
able to solve the model faster.

It becomes evident that the DARP approach leads to faster computation times in
most cases. This was the case for 33% of all compared instances, while for roughly 24%
the liDARPT setting excelled. The gap between the two becomes even more obvious
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Fig. 4.19.: Preprocessing time of DARP approach.

when examining the average difference when either was better. For instances where the
liDARPT was faster, the average difference is 40.7 seconds, while for the opposite the
average time saved was 298.4 seconds.

Very small instances, with a density of less than seven, were solved instantaneous
in almost all cases in both approaches. Thus, the difference is close or equal zero.
Interestingly, for instances with a slightly bigger density the solver generally needed less
time in the DARP setting. Including quite a few examples with a difference between 400
to 800 seconds in favor of the DARP. Among these data points are mostly the networks
SW-Geo_full and Markt-Karl-Lohr. Both of which consist of the maximum number of
lines being five. So even though the MIP gap was rather low in the liDARPT for these
instances, the solver was not able to close it entirely, which was achieved much earlier
in the DARP setting, with close to the maximum number of requests, see Figure 4.16.

Apart from this, there are also a few outliers in the other direction. As the density
exceeds 15, in both approaches the full 15 minutes were needed for finding an optimal
solution, except for one instance of the Markt-Karl-Lohr network.

From the results we discussed so far, the DARP excels in most of the aspects. However,
there is one factor we did not include so far and that is the time needed for preprocess-
ing. That includes generating the events, followed by finding and pruning edges. The
computation time required for this step is depicted in Figure 4.19.

As stated before, one of the instances was left out entirely due to the preprocessing
time. By observing the plot we can see a great increase for the most dense instances. As
well as some outliers before that, where the preprocessing step took a couple of minutes.
Interestingly, the instances that consistently took the longest consider a three hour span,
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even though the maximum number of requests is only 60 here. They can be found at
density 20 on the far right side of the figure. The density appears to be an important
factor for the preprocessing time. Differing to many of our other findings, where it looks
like the number of requests is more important than just the ratio.

In the liDARPT, preprocessing was done within seconds for all instances. The longest
time being 13 seconds in one case. Here, we can observe one of the limitations of the
DARP, as the event graphs become too big to solve very soon.

This becomes particularly evident from the event graph sizes for the DARP compared
to the liDARPT, exemplified in Figure 4.20.
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Fig. 4.20.: The number of event nodes in DARP (a) and liDARPT model (b) and number of
event arcs in DARP (c) and liDARPT model (d) by density.

On first glance the figures of event nodes and arcs appear very similar for each ap-
proach. The relative positioning of the instances to another is almost identical, however
the overall amount of arcs seems to be larger by a constant factor. We already discovered
this behavior for the liDARPT in Section 4.2.3. Here, we can observe that for the DARP
the number of edges is proportional to the number of nodes as well.

For both variants we can identify a curve in each plot. That said, there is a clear
difference in the slope between the two. While the graphs rise up to 10,000 nodes in the
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DARP, in the liDARPT the largest graphs lie around 1,000 nodes. Again, this suggests
a better scalability in the liDARPT as the density of requests increases.

In summary, our results show that the DARP tends to deliver better solutions. On
one hand, in terms of accepted requests, with up to 10% more in a few of our tests.
On the other hand in overall efficiency, where the difference ranged from 0.1 to 0.55
in favor of the DARP. In particular, the medium sized instances in our tests revealed
this trend with faster computation times. However, it should be noted that the DARP
solutions decreased in quality with more requests, where the MIP gap increased faster.
The liDARPT approach seems to scale better with the number of requests, exemplified
by the preprocessing times and event graph sizes.
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5. Conclusion

In this thesis, we generalized the liDARP approach from [RSS24] to the liDARPT, a
multi-line system that enables users to transfer between buses. Besides formulating a
comprehensive problem definition for this problem, we also developed an event-based
MILP model that can be used to obtain an exact solution. We then implemented a
Python program that can read in various problem instances and perform the necessary
preprocessing steps within seconds. After which, it constructs our MILP model to gener-
ate a solution that maximizes the number of requests and secondly minimizes the overall
travel distance.

The program was used to extensively test the feasibility of the liDARPT approach.
Among the tested instances were networks with up to five lines, while varying the number
of requests from 10 to 100 and the time span length, so different densities of requests
were tested. First, we evaluated two design choices for the objective function against
each other. Comparing a single lexicographically weighted function to executing two
solves with different objectives. Under an overall time limit of 15 minutes, the former
clearly outperformed the multi-objective approach when faced with medium to large
amounts of requests. This lead to a difference in relative MIP gaps of up to 80% and for
67% of the larger instances to more accepted requests within our time limit.

Afterwards, we investigated the quality of solutions more thoroughly. The model was
solved optimally for instances with a density of up to eight requests per hour. Here,
none of the solutions denied more than 7.5% of available requests and on average 99.7%
of requests were accepted. Thus, for almost all of the requests, routes were found that
comply with the time restrictions, proving the feasibility of the liDARPT approach.
However, investigating the system efficiency revealed that the overall distance traveled
by the buses exceeds the sum of distances between each pick-up and drop-off pair in all
but one case. Meaning that, if all accepted users were to use their own vehicle, it would
lead to less CO2 emissions in these instances. That said, we could observe an upward
trend with an increasing number of available requests, reaching a system efficiency of
0.8 for the largest instances.

Investigating the complexity of the model and finding important factors was another
one of our goals. We found a clear correspondence of the event graph size to the com-
putation time. Furthermore, the number of event edges is proportional to the number
of events in our test instances. This could be an important property, as it may allow for
better scalability. While the number of events appears to depend heavily on density of
requests, the results suggest that the total number of requests plays a more significant
role. However, the event graph size is not the only factor, as we observed that instances
with less lines produce relatively small event graphs. However, for larger instances their
relative MIP gaps and computation times exceeded networks with more lines in many

48



cases. This implies that a decrease in the ratio of buses to number of requests causes
the complexity to rise.

Finally, we compared the liDARPT setting directly to the related DARP, by employing
the C++ implementation from [GKP+24]. Our aim was to see if the liDARPT could
prove to be a more efficient alternative. Generally, the results revealed the less restricted
DARP was able to service more requests in roughly 27% of instances, with at most a
10% increase. It also achieved more efficient solutions, surpassing a system efficiency of
1.0 in 43 instances, as it was able to use more shortcuts. However, we could also observe
the DARP model was struggling with higher request densities, leading to MIP gaps of
up to 70% in a limited time setting. Comparably, the liDARPT appears to scale better
with bigger instance sizes, which is also evident from the event graph sizes.

In future research, one could explore the liDARPT’s event-based MILP model further
with bigger instance sizes and longer computation times. Including, more extensive
hyperparameter tests, for example varying the number of buses or their capacities in
the networks to investigate how these affect the results and complexity. Furthermore,
in this work we only considered a static setting, we assume that in a dynamic context
the liDARPT approach could close the gap in performance to the DARP setting. As
the vehicles would be more equally distributed in the network at all times, it should be
easier to adjust its strategy to newly incoming requests.
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A. Appendix
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Fig. A.1.: Visualization of the network Markt-Karl.
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Fig. A.2.: Visualization of the network SW-Geo_2.
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Fig. A.3.: Visualization of the network SW-Geo_full.

51



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

2

4

6

8

10

12

8139

8148 Schweinfurt

Schleerieth

Fig. A.4.: Visualization of the network SW-Schlee_2.
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Fig. A.5.: Visualization of the network SW-Schlee_3.
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In this thesis, chatbots like ChatGPT were used occasionally to help with translating
words into english, finding synonyms and reformulating sentences to improve readability.
All of the work, analysis and conclusions were entirely made on my own.
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