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Abstract. Historical maps are important sources of information for
scholars of various disciplines. Many libraries are digitising their map
collections as bitmap images, but for these collections to be most use-
ful, there is a need for searchable metadata. Due to the heterogeneity
of the images, metadata are mostly extracted by hand—if at all: many
collections are so large that anything more than the most rudimentary
metadata would require an infeasible amount of manual effort. We pro-
pose an active-learning approach to one of the practical problems in au-
tomatic metadata extraction from historical maps: locating occurrences
of image elements such as text or place markers. For that, we combine
template matching (to locate possible occurrences) with active learning
(to efficiently determine a classification). Using this approach, we design
a human computer interaction in which large numbers of elements on a
map can be located reliably using little user effort. We experimentally
demonstrate the effectiveness of this approach on real-world data.

Keywords: Active Learning - Threshold Detection - Human Computer
Interaction - Template Matching - Historical Maps - Knowledge Discovery

1 Introduction

In this paper we apply proper data mining techniques to a problem in the digital
humanities. Many (university) libraries and archives have an extensive collection
of historical maps. Besides being valuable historical objects, these maps are an
important source of information for researchers in various scientific disciplines.
This ranges from the actual history of cartography to general history, as well as
the geographic and social sciences. To give a non-trivial example: onomastics,
the study of the origin and history of proper names, makes extensive use of
historical maps.

With the progressing digitisation of libraries and archives, these maps become
more easily available to a larger number of scholars. A basic level of digitisation
consists of scanned bitmap images, tagged with some basic bibliographic infor-
mation such as title, author and year of production. In order to make the maps
searchable in more useful ways, further metadata describing the contained in-
formation is desirable. A particularly useful class of metadata is a georeferenced
index of the contained geographical features (such as labeled cities and rivers)
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Fig. 1. Place markers and text on several historical maps from the Franconica collec-
tion. Note the variety of visual styles, both in the pictographs and the lettering.

and geopolitical features (such as political or administrative borders). In this
context, a georeferenced map element is one that is associated with a real-world,
geographical location (in some coordinate reference system). This enables queries
that are useful for actual research practice, such as “all 17*" century maps that
include the surroundings of modern-day Wiirzburg,” or comparing the evolution
of place-name orthography in different regions. It also enables analyses of the
geographic/geodetic accuracy or distortion of the maps, which is of historical
and cartographic interest.

Unfortunately, analysing the contents of historical maps is a complex and
time-consuming process. For the most part, this information extraction task is
performed manually by experts—if at all. For example, it currently takes the
Wiirzburg University Library between 15 and 30 hours to georeference just the
labeled settlements in a typical map from their collection.! To see why it takes
so long, consider that the number of labeled place markers in a map can be in
the order of several thousand.

Automated tools for this task are scarce, for a variety of reasons. For one,
there is a large variety of drawing styles in historical maps. This makes it hard
for a single algorithm or software tool to automatically perform well on a large
set of maps: see Figure 1 for some examples of the range of styles that occur in
the Franconica collection.? Secondly, there is the question of input. When an his-
torian georeferences a map, he or she brings a wealth of background information
and the ability to do additional research when required. Finally, there is the issue
of correctness: in general, algorithms for extracting semantic information from
bitmap images are far from perfect. This is to be expected since these problems
are truly difficult for computers. To the curators of historical map collections,
however, the correctness of metadata can be of paramount importance (not to
mention: a matter of pride).

In light of the above difficulties, we have developed an active-learning system
for a generally-applicable subproblem in this area. In this paper we demonstrate

! Personal communication with Dr. H.-G. Schmidt, head of the Manuscripts and Early
Prints department, Wiirzburg University Library.
2 Wiirzburg University Library, http://www.franconica-online.de/



Active Learning for Classifying Template Matches in Historical Maps 3

that active learning is suitable for this real-world task. As a first step, a user
indicates a rectangular crop around the map element he or she is looking for,

such as 4 or 4. We use standard techniques from image processing to find a set
of candidate matches, but the problem remains to determine which of these can-
didate matches are in fact semantically correct. We model this as a classification
problem and use pool-based batch-mode active learning. Experiments show that
the resulting human-computer interaction is efficient.

2 Related Work

Since the digitisation and analysis of historical maps is of increasing interest to
libraries, several systems simplifying this complex process have been developed.
Most of these systems provide convenient graphical interfaces, but still rely heav-
ily on users to manually annotate or even georeference the input maps. See for
example Fleet et al’s Georeferencer [7] and the system by Simon et al. [23].
For the postprocessing of georeferenced maps, Jenny and Hurni [13] introduced
a tool that is able to analyse the geometric and geodetic accuracy of historical
maps and then visualise the identified distortions.

Some research has gone into image segmentation specifically for bitmap im-
ages of (historical) maps. Hohn [9] introduced a method to detect arbitrarily
rotated labels in historical maps; Mello et al. [15] dealt with the similar topic
of identifying text in historical maps and floor plans. These systems are rather
sensitive to their parameters, requiring careful tweaking in order to perform well.
In a further paper, Hohn et al. [10] specifically raise this as an area for improve-
ment: their experiments work well, but do not necessarily generalise to a large
variety of maps. The system of Mello et al. was developed for a large set of rather
homogeneous maps, which means that it was merited to spend significant effort
to find good parameter values. In contrast, we aim to handle diverse maps, each
with relatively small user effort. We therefore specifically address finding model
parameters.

There is not much research available on fully-algorithmic information re-
trieval specifically from historical maps. Automatic approaches exist, but only
for restricted inputs—that is, developed specifically to digitise a particular cor-
pus. For example, Leyk et al. [14] describe a method to find forest cover in a
specific set of 19" century topographic maps. Arteaga [1] extracts building foot-
prints from a set of historical maps from the New York Public Library (NYPL).
The effectiveness of these approaches is in part due to the homogeneity of these
relatively recent maps. The tests in this paper are performed on much older
maps (16" and 18} century).

We approach the above problem using active learning (see Settles [20] for
a survey). In particular, we use batch-mode learning [4, 8,11]. Our approach is
pool based, that is, we have a discrete set of items that we wish to classify and
we can only query the oracle on those items. In effect, we learn a threshold [3],
based on logistic regression. See Schein and Ungar [18] for a general discussion
of active learning for logistic regression.
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The design of our system takes into account the human factors involved in
using a human as oracle. This combines aspects of human-computer interaction
(HCT) and knowledge discovery, as advocated for example by Holzinger [12]. Such
factors can be incorporated in the algorithms used, as in proactive learning [6].
For our purposes we found that standard active learning suffices.

3 Design rationale

Our general goal is to georeference bitmap scans of historical maps. We focus on
a specific subtask of this larger goal in order to get a manageable problem. This
modular approach—with subgoals more modest than “understand this map”—
allows for rigorous problem statements and, thereby, reproducible experiments
and comparability; this is in contrast to monolithic software systems, where it
can be unclear how any specific detail influences the outcome. Competing sys-
tems for a certain step can then be proposed and evaluated. Such a “separation
of concerns” in systems for processing historical maps is also advocated, for ex-
ample, by Shaw and Bajcsy [22] and Schoneberg et al. [19]. The latter propose
a pipeline with separate tasks operating independently; our (interactive) system
could serve as a module in such a system.

The task we discuss in this paper is finding pictographs and textual elements.
This is an information extraction step that lifts from the unstructured level of
a bitmap image to data that is combinatorial in nature: a list of locations of
map elements. Finding approximate matches of an example image is a classic
problem in image processing (see for example Brunelli [2] for an overview). This
approach can be used for a variety of map elements, from settlement pictographs,
to forests, to text labels: we find approximate repeat occurrences of an example
image. However, standard techniques yield only a list of candidates along with
“matching scores:” this still needs to be converted into into a yes/no classifica-
tion. In this paper we focus on efficiently learning a classifier in this setting.

Specifically in our application, the user provides a template by indicating
the bounding box for an interesting map element. This could be a prototypi-
cal pictograph on the map, such as a house (&), a tree (@) or even individual
characters (4, €, 11). See Figure 3 for an example: here the user wants to find
all occurrences of the character ‘a’ and inputs the red rectangle in the leftmost
image. The template matching algorithm comes up with—among thousands of
others—the three matches indicated in the other images. The remaining problem
is to decide which of these matches are in fact semantically correct.

The usefulness of recognising individual characters should not be underes-
timated, since standard optical character recognition (OCR) does not perform
well when applied directly to an entire historical map: consider for example Fig-
ure 1, particularly the middle image where the text is not clearly separated from
the other map elements. Even in such messy maps, there are usually several
characters that are particularly recognisable (which ones might depend on the
handwriting). Given one typical example of a character, our method can be used
to find most of the other occurrences of the character with high precision. If we
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Fig. 2. Overview of the consecutive steps in our method. The input is a bitmap gen-
erated by scanning a historical map, and a template to search for. The output is a list
of positive matches and their location in the image.

do this for a small number of different characters, a later pipeline step can cluster
these results to find out where the text elements are (for example: labels). This
can be used as a preprocessing step for OCR, in case the OCR algorithm would
otherwise get confused by overlapping map elements or is computationally too
expensive to be run on the entire map. Because of this application, we prefer
our system to have a tendency to side with precision over recall: false negatives
are not a disaster if we use a suitable set of characters, since it is likely that at
least some character occurrences within each label will be found. This approach
based on finding a small set of specific characters as preprocessing is also used
by Leyk et al. [14].

In our experiments we have used a basic template matching algorithm, which
we briefly sketch here. Since all our maps are effectively black and white, we
first binarise to a 1-bit-per-pixel bitmap. Then we consider a sliding window,
which calculates a matching score for every possible position, to pixel precision:
when the template is shifted to a certain position, how many pixels are equal
between the template and the image, and how many are different? Following
standard procedure, we take the percentage of equal pixels as our matching
score.? If the score is high for a certain pixel (that is, for a certain position of
the template), it is likely that a slight shift of the template still results in a good
score; we therefore throw out all pixels that do not have maximal score in their
8-neighbourhood. Of the remaining pixels, we select the 1000 highest-scoring
ones: this parameter is chosen generously such that all true positive matches
survive this step. In this way, the template matching algorithm is used as a data
reduction and projection step that takes place before the classification happens.
See Figure 2 for an overview of the different steps in this process.

This leaves the classifier. We choose to classify based on a score threshold, or
equivalently: a rank threshold. A threshold that more-or-less cleanly separates
the true positive matches from the true negative matches does indeed exist in
our experiments: we have manually created ground truth for the templates in
Table 1 and find ROC curves with area under curve of around 0.9.

Because the maps and the templates vary wildly, picking a single threshold
value will not work. Some literature in fact handwaves this issue (for example [9])
by hand picking the value for their experiments. This is valid when the objective

3 Note that this basic approach is not invariant to scale and rotation. It is naturally
robust against small variations, but some historical maps would require a more
advanced template matching algorithm.
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Fig. 3. Various crops from the same historical map. The red rectangle in the leftmost
image indicates the crop used as template; the other three are computed candidate
matches. Note that these three matches have similar rank and score, but do not all
represent semantic matches of the template. In the ground truth we reject the rank-
180 match (probably a hill) and accept the rank-187 match (‘a’). The ground truth of
Experiment 4 accepts the rank-184 match (‘d’): see Figure 4 for the reasoning.
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Fig. 4. Distribution of the contents of the first thousand matches for Template 4,
ordered by rank. Matches containing either “a”, “d” or “g” can be separated fairly
well from the remaining matches using a threshold (e.g. rank < 200). In contrast, a
discrimination of strictly the matches showing “a” will not have high accuracy.

is to show that a certain algorithm can achieve high accuracy, but does not show
usefulness of the method in practice. In order to efficiently classify the potential
matches given to us by the template matching algorithm, we will employ pool-
based active learning with a human user as oracle.

Since a given candidate match either contains the desired element (correct)
or does not contain it (incorrect), we describe it with a dichotomous variable.
We then use logistic regression as a model to discriminate between correct and
incorrect matches. In the experiments section we show that logistic regression is
a suitable classifier when trained on complete ground truth (all labels).

Since acquiring labels is the most time-consuming step in our system—it
involves a human—we use active learning. Following standard practice, we use
the following batch-mode query strategy. As input it takes the list of candidate
matches, ordered by rank, and a parameter k, the size of a batch. (We examine
the choice of k in the experiments section.) The algorithm starts by assuming
the best-scoring match is correct and the worst-scoring match is incorrect and
(trivially) fits an initial model. Then, in each iteration it picks the & unlabeled
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matches that are most uncertain (according to the current model) and asks
the user to label this batch; the results are stored and the model is retrained.
After any number of iterations, this gives the following classifier: return the
user-provided label if available, and give the most likely answer according to the
logistic regression model otherwise.

4 Experiments

In order to evaluate the efficacy of our method, we have implemented the pro-
posed system and applied it to several real-world datasets. This section describes
our findings.

4.1 Evaluation Settings

We implemented our method primarily in Python, using the Scikit-learn library*
for logistic regression. The template matching is implemented in C++. All ex-
periments presented in this section have been run on a desktop PC. Neither
runtime nor memory were an issue; template matching takes up to a couple of
second on practical maps and batch selection occurs in realtime.

To evaluate our active learning approach, we created nine real-world data
sets. These were created by analysing template matching results from actual his-
torical maps, using various templates: the combination of a map and a template
identifies a data set. For every data set, we considered the thousand highest-
ranking matches and manually determined if they are correct. This gives us a
ground truth containing nine times 1,000 samples; Table 1 gives an overview of
these datasets.® Note that for some templates we have accepted several charac-
ters, not just the exact character in the template. This improves classification
performance for reasons illustrated in Figure 4; see also Deseilligny [5]. Choosing
which characters to accept for a certain template currently involves some user
judgment, but the sets shown in the table seem widely applicable.

The samples in these data sets have only one feature: their score according to
template-matching algorithm. These scores also imply a ranking of the samples.
In each of the following experiments, there was no clear difference between using
the actual scores and using the implied rank. For the rest of the paper, we report
the results of using the sample’s rank as its (only) feature.

In order to assess how difficult the classification for a particular template is,
and if learning is even feasible, we use ROC analysis for a threshold classifier.
Figure 5 shows an area under curve of over 0.85 for all experiments, showing that
the approach is feasible for a wide range of templates. As an additional measure
of difficulty, we trained the logistic regression model on a full ground truth of
each data set. This allows us to calculate the self information (or: surprisal) for
every sample, relative to this model. Table 1 shows the sum of self information

* See [17] and http://scikit-learn.org/
5 Available at http://wwwl.pub.informatik.uni-wuerzburg.de/pub/data/ds15/
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Table 1. Data sets used in our experiments. Each line describes one data set: the
name of the map, a thumbnail of the template, characters that were considered positive
matches, the area under curve according to Figure 5 and the self-information relative
to the logistic regression model trained on all samples.

Historical Map Template Accepted AUC Self-Info.
1 Carte Topo. D’Allemagne (1787) b b, h 0.85 462.91bit
2 Franciae Orientalis (1570) a a, g, d 0.90 566.95 bit
3 Franciae Orientalis (1570) e e 0.87 642.02bit
4 Clirculus Franconicus, De Wit (1706) aq a, g, d 0.92 444.48bit
5 Das Franckenlandt (1533) a a, g 0.87  590.50 bit
6 SRI Comitatus Henneberg (1743) n n, m, h 0.92 524.85 bit
7 SRI Comitatus Henneberg (1743) e e 0.87 524.01 bit
8 Circulus Franconicus, De Wit (1706) ! 0.88 560.29 bit
9  Clirculus Franconicus, Seutter (1731) ° 0.99 146.16 bit

All maps in this table are taken from the Franconica collection (http://www.franconica-online.de/)
of the Wiirzburg University Library. Identifiers: 1: 36/A 1.16-41; 2, 3: 36/A 20.39; 4, 8: 36/A 1.17;
5: 36/G.f.m.9-14,136; 6, 7: 36/A 1.13; 9: 36/A 1.18.

over all matches of each template. This can also be regarded as a measure of the
classification difficulty for the particular template: high self information hints at
a larger number of outliers and/or a wider interval of rank overlap between the
positive and negative samples. This interpretation is confirmed by the fact that
the data sets collected on maps from the 16*" century have higher self information
than those on maps from the 18" century. On many of the older maps, elements
indeed seem harder for humans to distinguish due to the heterogeneous style of
handwriting and the suboptimal state of preservation.

We measured the classification performance of our algorithm using accuracy
and F1 score. (See for example Parker [16] for definitions of these standard
evaluation criteria.) Values for precision and recall of our classifier will also
be discussed. Recall that for our application, precision is more important than
recall: a missed character or text label might still be located later using another
template, whereas false positives could potentially disturb subsequent pipeline
steps (such as OCR) significantly.

4.2 Evaluation Results

Classification Performance. We have run our algorithm on the nine real-
world data sets introduced above. Following Settles [21], we use learning curves
to show the performance of our method. We use batch size k = 3 unless stated
otherwise. A discussion of the choice of this parameter value follows later. As
a baseline, we have used a random strategy, where the batch of samples to be
labeled is picked uniformly at random from the pool of unlabeled samples. We
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Fig. 5. ROC curves for the data sets in Table 1. Highlighted are the lowest and highest
area under curve values for templates containing characters (Templates 1 and 4). Of
the two templates for place markers, one shows typical performance (Template 8) and
one performs exceptionally well (Template 9).

now show that our active strategy outperforms this baseline strategy in almost
every situation.

Figure 6 shows the learning curves of our active learning approach in compar-
ison to the random strategy. The plots describe the accuracy of both classifiers
against the number of iterations; the number of labeled samples is three times
this number, as we set k& = 3. For the random strategy, we performed 100 runs
and show mean, 10*", and 90" order statistic of the achieved accuracy. As we
can see in the figure, the accuracy of the active learning strategy dominates the
accuracy of the random strategy at almost every iteration. Only in the very be-
ginning (number of iterations below approximately 15), this is not consistently
true. However, the active learning approach is near the 90" percentile perfor-
mance of the random strategy in these situations as well.

Now we look at additional performance measures. The results in this experi-
ment refer to Template 6, as a typical example. Figure 7 shows the performance of
the active learning approach in comparison to three runs of the random sampling
strategy. Note that after 15 iterations, the active learning classifier dominates
the three random classifiers in accuracy, precision and F1 score. The random
approach does better only in terms of recall, which we find acceptable, as dis-
cussed before. The same observations hold for a larger number of random runs
and for the remaining data sets; plots are omitted for space.

It can additionally be noted that, in contrast to the random approach, all
four scores increase monotonically after the first few iterations when using the
active learning method. Thus, when adding additional labels, the classifier’s
performance is highly likely to improve. This property is especially valuable for
the design of proper user interaction when using active learning: from the users’
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Fig. 6. Learning curves comparing the performance of our active learning strategy
(k = 3) to the random baseline strategy. The bold black line indicates the accuracy of
our method over the iterations. The thin black line shows the mean accuracy of 100
runs of the random strategy; the grey area indicates 10'" to 90*" percentile.

point of view, it is hard to accept that additional effort in labeling leads to a
decrease in quality.

In the next experiment, we consider the self information of the samples that
our system selects, in comparison to those chosen by the random baseline strat-
egy. We calculate the self information as before (see Evaluation Settings). For
almost any number of iterations, the total self information in the samples from
the active learning strategy is considerably higher than in those from the random
baseline strategy. Figure 8 illustrates this for four templates; the same holds for
the remaining five data sets. This behaviour of the active learning strategy is
desirable, because higher self information means that the labeled samples were
indeed hard to classify for the logistic regression model and therefore having
them labeled by the user is valuable. In contrast, the random strategy presents a
substantial number of samples whose labels are comparatively clear (for example
because they have a very high rank), thereby wasting the user’s time.
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Fig. 7. Statistics for our active learning strategy (black) and three runs of the random
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Fig. 8. Self-information of all samples that have been labeled up to a given iteration.
The labels picked by the active learning strategy (bold black) are considerably more
informative than those selected by the random baseline strategy (black: mean, grey
area: 10" to 90*" percentile). Note that in the end, each strategy has labeled all samples
and achieves the self information of the ground truth as listed in Table 1.
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Fig. 9. Accuracy of our active learning strategy using different batch sizes k on Tem-
plate 3. For values of k between 3 and 7, accuracy is acceptable from the start and
increases for increasing number of samples. Exceedingly large values (k > 25) result
in inferior performance for the first few iterations and these represent significant user
effort due to the batch size.

Runtime. In our decidedly unoptimised implementation, it takes a total of
approximately one second of runtime to calculate 100 batches of size k = 3. As
this represents 100 batches of user interaction, the system is clearly suitable for
realtime applications.

Choice of Parameters. Our system depends on the batch size k. We have run
a set of experiments to evaluate the influence of k on our system’s classification
performance. Figure 9 shows that the performance of our system does not depend
very strongly on the choice of k, as long as no extreme values are chosen. Based
on this data set, we might recommend values between 3 and 7. This conclusion
holds for the remaining templates (plots omitted for lack of space).

When choosing the parameter k£, human factors should also be taken into ac-
count. The time taken to decide if a displayed candidate match is correct (that
is, to label a sample) varies with the batch size. Since selecting and delivering
a new set of samples to the user requires a perceptible amount of time (both
technologically and cognitively), a larger batch size may cause less user distur-
bance. For this reason—and aesthetic reasons—we currently use £ = 9 in our
web-based prototype implementation of the user interface.

5 Prototype of a User Interface

In addition to the experimental setup described above, we have implemented a
prototype user interface for our system. This allows us to assess not only the
abstract, but also the practical suitability of our approach. Figure 10 shows
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(a) An overview of a map, the corresponding templates (b) Classification interface
and the candidate matches. with batch size k = 9.

Fig. 10. Screenshots showing two user interfaces from our web-based prototype. Note
that (a) is intended to be used on large screens, while (b) can be used conveniently on
smartphones as well.

two screenshots of our implementation. The interface on the left allows users
to browse a historical map, crop templates and start the template matching
process. With the interface on the right, users can classify samples selected by
the active learning system (in the screenshot k = 9). By clicking or touching
any of the nine tiles, the tile turns around and shows a green check mark to
indicate that the sample was classified as positive. Once the user is finished
inspecting the nine samples, he or she presses the “Next” button. The samples
that remain unchecked will be considered negative and a new batch of samples
chosen by the active learning algorithm will be presented. Our implementation
of the user interface is web-based (using HTML5 and JavaScript), so it can be
used seamlessly on any device that runs a modern browser. In particular, the
classification interface can be conveniently used on smartphones, which enables
crowdsourcing of this task. (See also Arteaga [1].)

Using our prototype, it takes a user with some experience approximately
25 seconds to do 4 iterations (that is, to classify 36 samples, since k = 9). This
includes the runtime of our active learning algorithm and client-server overhead.
According to our experimental results in the preceding section, the stated num-
ber of labels is already enough to achieve good classification results for a typical
template. Projecting these numbers, our approach allows the effective classifica-
tion of 10 templates within 5 minutes, assuming the templates have been selected
beforehand. In contrast, even with significant experience it takes about 10 to 15
minutes to generate the full ground truth for a single template. This leaves quite
some time to select the templates and still achieve a factor-10 improvement in
template throughput. (Recall that the user is probably looking for many tem-
plates on the same map.) This shows that our system, and the proposed user
interaction, is well-suited for this application.
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6 Conclusion

In this paper, we have tackled a real-world problem from a knowledge-discovery
perspective: the extraction of information from historical maps. We have focused
on the detection of occurrences of certain elements in bitmap images, and intro-
duce a practical approach that solves this problem. Our proposed system uses
template matching for feature extraction from the image, and batch-mode ac-
tive learning to detect appropriate thresholds. Particularly this active-learning
step addresses an open problem in the literature on metadata extraction from
historical maps. We implemented this approach and experimentally demonstrate
that it performs well on real data sets from practice. In combination with the
user interface we propose, our system is able to save users a significant amount
of time when georeferencing historical maps. Directions for future work include
the following.

In a practical setting, our system clearly extends to other (historical) docu-
ments besides maps. Early experimentation shows, for instance, that the system
also works well for locating specific glyphs in medieval manuscripts. Our pro-
totype is currently being integrated into the existing workflow at Wiirzburg
University Library, which will enable user studies on a proper scale.

On a more abstract level, our active-learning approach with human-computer
interaction is not limited specifically to historical documents and template match-
ing. We expect that many other computer-vision methods that depend sensitively
on parameter selection can benefit from this strategy.
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