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Motivation

❏ effektive Bandbreite: Maß für Ressourcenbedarf eines Verkehrsstroms

❍ Verbindungsannahmesteuerung (CAC)

❍ Entgelterhebung (Charging)

❍ Netzdimensionierung

❏ Dimensionierung von IP-Netzen

❍ Ziel: Ausnutzung des statistischen Multiplexgewinns

❍ grundsätzliches Problem: Adaptivität durch TCP-Flusskontrolle

➥ Betrachtung eines Links, der kein Engpass für TCP-Verbindungen darstellt
(z. B. im Zugangsnetz)

❍ Erfahrungen bei IP-Verkehr: Selbstähnlichkeit

❏ verschiedene Methoden zur Approximation der effektiven Bandbreite

❍ „klassische“ Methoden

❍ Methoden für selbstähnlichen Verkehr

➥ Vergleich der Methoden auf Basis eines einheitlichen Verkehrsmodells
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Verkehrsmodell

❏ M/G/ -Burst-Modell

❍ Flüssigkeitsmodell: Paketebene nicht sichtbar

❍ Poisson-Ankunft von Bursts (Informationsmenge) mit Rate

❍ konstante Ankunftsrate  innerhalb eines Bursts

❍ Burstgröße  mit Mittelwert

❍ mittlere Rate

❏ M/M-Modell

❍ Burstgröße  negativ-exponentiell verteilt

❏ M/Pareto-Modell

❍ Burstgröße  Pareto-verteilt: ,

❍ falls : endlicher Mittelwert, unendliche Varianz von

❍ selbstähnlicher Verkehr mit Hurst-Parameter

❍ Selbstähnlichkeit erkennbar an Varianz des kumulierten Ankunftsprozesses
 (ankommende Informationsmenge in Intervall der Länge )
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Varianz des kumulierten Ankunftsprozesses

❏ M/M: für

❏ M/Pareto: für
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Effektive Bandbreite

❏ Bezug auf Bediensystem mit

❍ FIFO-Abfertigung

❍ (variabler) Bedienrate

❍ unendlichem Puffer

❍ M/Pareto- oder M/M-Ankunft

❏ QoS-Anforderung:
Überschreitungswahrscheinlichkeit
für Warteschlangenlänge

➥ effektive Bandbreite =
minimale Bedienrate, bei der
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REM-Approximation

❏ Rate Envelope Multiplexing (REM)

❍ Prinzip: Vergleich der momentanen Ankunftsrate  mit Bedienrate

❍ keine Berücksichtigung des Puffers auf Burstebene: „pufferloses“ Modell

➥ unabhängig von Burstgröße

❏ Abschätzung der Überschreitungswahrscheinlichkeit

❍ einfacher Ansatz: Approximation der Ratenverteilung durch Normalverteilung

❍ weitere Vereinfachung nach Guérin liefert

❍ konservative Abschätzung für
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Fluid-Flow-Approximation

❏ Grundlage: AMS (Anick, Mitra, Sondhi)

❍ Überlagerung von  ON/OFF-Quellen mit exponentiellen Phasendauern

❍ Verteilung der Warteschlangenlänge  durch Lösung eines
Differentialgleichungssystems (Eigenwert- und Randwertproblem)

❍ Approximation: nur Berücksichtigung des dominanten Eigenwerts

❏ Bestimmung der effektiven Bandbreite: Guérin et al.

❍ vereinfachende Annahme:  ➠

❏ Anpassung für M/Pareto-Modell

❍ Anpassung auf M/M-Modell durch Grenzübergang

❍ Anwendung auf M/Pareto-Modell mit gleicher mittlerer Burstgröße
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FBM-Approximation: „Norros-Formel“

❏ Fractional Brownian Motion (FBM)

❍ kumulierter Ankunftsprozess mit Varianz

❍ Varianzkoeffizient  („Spitzigkeit“)

❏ Norros: Analyse eines Bediensystems mit FBM-Verkehr

❍ vereinfachende Annahme: ➠

❍ Warteschlangenlänge  folgt näherungsweise einer Weibull-Verteilung

❍ effektive Bandbreite in Abhängigkeit von Varianzkoeffizient

❏ Anpassung für M/Pareto- sowie M/M-Verkehr

❍ Bestimmung des Varianzkoeffizienten durch Gleichsetzen von  für
FBM und M/Pareto bzw. M/M für

➥  für M/Pareto

➥  für M/M
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Kombinierte Methode

❏ Kombination von REM- und FBM-Approximation

❏ Berücksichtigung von statistischem Multiplexen  und Pufferung

=

≈

➥ Bestimmungsgleichung für effektive Bandbreite

❏ einfach numerisch lösbar (z. B. mit Newton-Verfahren)
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Warteschlangenlänge
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Effektive Bandbreite: M/M
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Effektive Bandbreite: M/Pareto (H = 0.6)
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Effektive Bandbreite: M/Pareto (H = 0.8)
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Zusammenfassung

❏ Vorstellung verschiedener Methoden zur Approximation der effektiven
Bandbreite

❏ Anpassung an M/Pareto-Verkehrsmodell

❏ Vergleich mit Burstebenen-Simulation

❍ FF: sehr ungenau in fast allen Bereichen

❍ REM: konservativ, einigermaßen genau bei kleineren Puffern, vor allem bei
starker Selbstähnlichkeit

❍ FBM: zu konservativ bei schwacher Selbstähnlichkeit, zu optimistisch bei
starker Selbstähnlichkeit und kleinem Puffer

❍ kombinierte Methode: noch optimistischer als FBM, dadurch genauer bei
schwacher Selbstähnlichkeit, aber schlechter bei starker Selbstähnlichkeit

➥ FBM-Methode gut, aber nicht in allen Bereichen

➥ einfache REM-Approximation als Alternative
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