

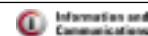
Fun Factor Dimensioning for Elastic Traffic

Joachim Charzinski
Siemens Information and Communication Networks
joachim.charzinski@icn.siemens.de

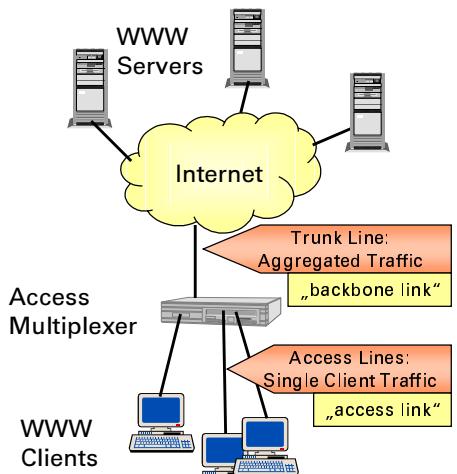
© J. Charzinski (Siemens AG) July 2000

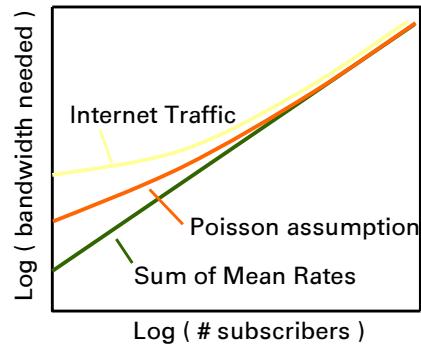
Ch 07.00
ICN M RP 11

① Introduction


Fun Factors

Models for Analysis and Simulation


Results


Ch 04.00
ICN M RP 11

Access Scenario Dimensioning Trunk Lines

Source: J. Charzinski, Siemens ICN M RP 11

Dimensioning

- Tuning of trunk to access line capacities
 - residential access
 - radio access network
- Matching of capacities within network element
 - processor vs. line capacity
 - line card vs. backplane bit rates
- Evaluation of user perceived quality of service
 - for SLAs
 - for advertising

Stream versus Elastic Traffic

- Utility Function
 - stream traffic: usability only with high bit rate
 - elastic traffic: (nearly) always usable
- Kelly, Roberts, Lindberger:
 - customers only pay for usability
 - only minimum rate guarantees should be given to elastic traffic
- Hartleb
 - customers pay for new high-speed access media
 - want to use services at higher bit rates

→ fun factor is paid for (“fun pricing” ?)

Traditional QoS Parameters

- Packet (cell) loss probability
- Delay and/or delay variation
 - unrealistic due to TCP flow control
- Total transfer delay
- Reaction time
 - unrealistic due to extreme variance of data volumes
- Problem: in contrast to stream apps, elastic apps still work, even if the perceived QoS is low
 - > hard to find the right parameter

→ A new QoS parameter is needed for elastic traffic!

Traditional Dimensioning Targets

- Buffer size
- Processing capacity
- Link bandwidth

→ Buffer size does not help to reduce packet loss
with self-similar traffic

Traditional Solutions

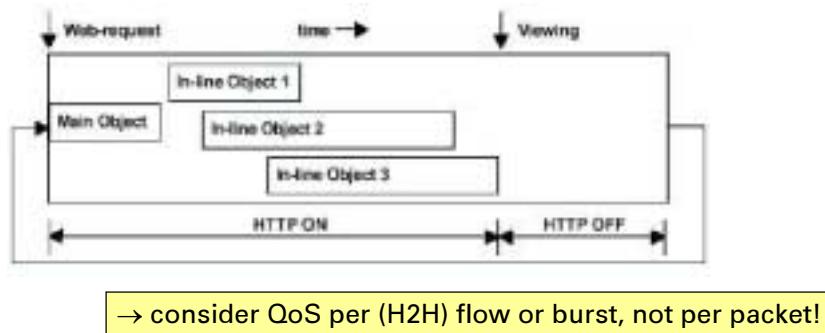
- Shaping
 - should co-operate with TCP, otherwise it is inefficient
- Admission control
 - introduces complexity into each network node
 - connection parameters must be known

Introduction

④ Fun Factors

Models for Analysis and Simulation

Results


Fun Factors

- ... should capture user perceived QoS
- ... should help predicting and evaluating system performance
- ... should allow comparison of different systems
- ... should be 100% in an ideal situation
... and less otherwise

- can also be viewed as “line efficiency” or the like to sound more serious

Elastic Traffic

- Waiting time until Web page is loaded (e.g. Choi/Limb)
 - Plus time varying bit rate

Definition of the Fun Factor

- Access Fun Factor φ_A
 - Ratio of ideal to real download time

$$\varphi_A = \frac{t_{ideal}}{t_{observed}}$$

- Mean bandwidth during downloads over access link rate

$$\varphi_A = \frac{E[B | B > 0]}{C_{AL}}$$

- other Fun Factors can be defined correspondingly relative to other measures (e.g. rate available from the Internet)

Introduction

Fun Factors

④ Models for Analysis and Simulation

Results

Worst-Case (low loss) models

- Make sure that the considered link is **not a bottleneck**
 - make the loss rate on this link low enough
 - -> TCP will not be influenced by this link
 - use bufferless burst scale model to make sure small packet scale buffers will suffice
- Example: Engset Rate Loss Model
 - n ON/OFF sources with ON probability β and rate r_{ON}

$$p_{loss} = \sum_{i=\lceil c_L / r_{ON} \rceil}^n \binom{n}{i} \beta^i (1-\beta)^{n-i} \frac{i r_{ON} - C_L}{\rho C_L}$$

Rate Convolution

- Input traffic
 - n variable-rate fluid traffic streams
 - continuous distribution of bit rate per source
 - $$C_R(x) = P\{R_{ON} > x\}$$
 - independent sources -> n -fold convolution
 - $$C_R^{(n)}(x) = P\left\{\sum R_{ON} > x\right\}$$
 - measured rate distribution from real (overdimensioned) Internet access or target rate distribution can be used
- Bufferless loss model (Rate Envelope Multiplexing)
 - simple approximation for “non-bottleneck” link
 - target: keep loss probability very low

$$p_{Loss} = \frac{1}{nE[R_{ON}]} \int_{x=C_L}^{\infty} C_R^{(n)}(x) dx$$

Norros' Fractional Brownian Motion Model

- Input traffic is FBM with drift

$$A_t = mt + \sqrt{ma}Z_t$$
 - mean rate m , Hurst parameter H , variance coefficient a
- Captures long-range dependence
 - buffer can be dimensioned including LRD effects
 - several approximations reduce accuracy of results
 - rate dimensioning results do not differ significantly from approaches that take the variance into account but ignore LRD

$$C = m + (H^H (1-H)^{1-H} \sqrt{-2 \ln \varepsilon})^{\frac{1}{H}} a^{\frac{1}{2H}} x^{\frac{H-1}{H}} m^{\frac{1}{2H}}$$

M/G/r-PS Processor Sharing Model

- Input traffic
 - Poisson arrivals of fluid ON/OFF traffic streams
 - arrival rate λ , maximum ON rate r_{ON}
 - generally distributed (e.g. heavy-tailed) ON volume
- TCP flow control modeled by Processor Sharing discipline
 - simple approximation for TCP behaviour on a single link
 - result: (time) mean of delay factor f_R

$$f_R = 1 + \frac{\rho}{r(1-p_0)} \left(\frac{1}{1-\rho} + r_g - r \right) \frac{\frac{(r\rho)^{r_g}}{r_g!}}{(1-\rho) \sum_{i=0}^{r_g-1} \frac{(r\rho)^i}{i!} + \frac{(r\rho)^{r_g}}{r_g!}}$$

Burst Level Fluid Flow Simulation

- Program A
 - unelastic fluid traffic and finite buffer size
- Program B
 - bufferless model
 - fair re-distribution of bandwidth after each ON or OFF event under overload

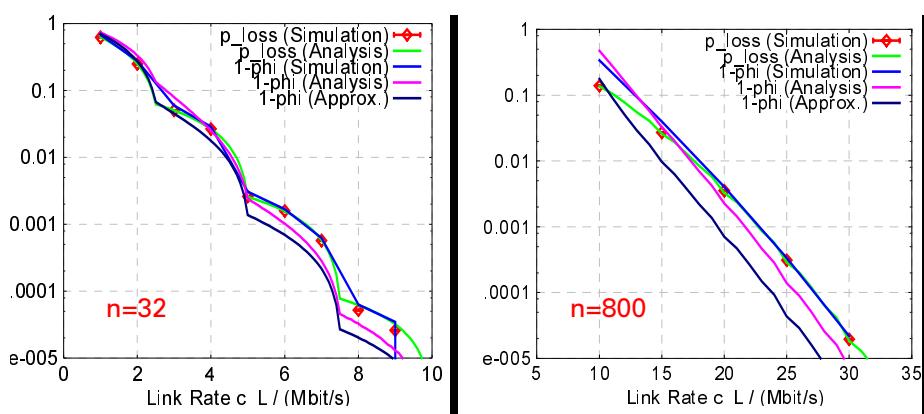
Summary of Models

Model	sources	buffer	r_{ON}	source	rate sharing
Engset Rate	n	0	r_{ON}	ON/OFF	no
Norros FBM	(n)	x	unlimited	FBM	no
M/G/r-PS	∞	enough	r_{ON}	ON/OFF	yes
Rate Conv.	n	0	$C_R(x)$	open	no
Simulation A	n	x	r_{ON}	ON/OFF	no
Simulation B	n	0	$C_R(x)$	ON/OFF	yes

Introduction

Fun Factors

Models for Analysis and Simulation

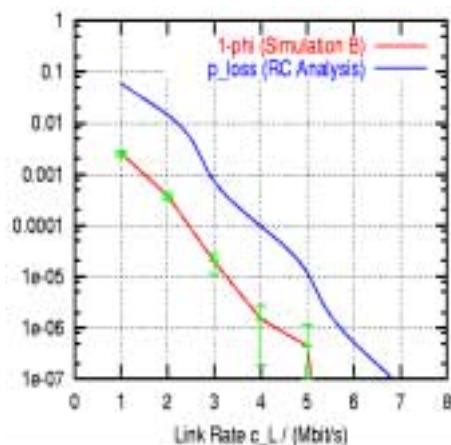

Results

Parameters

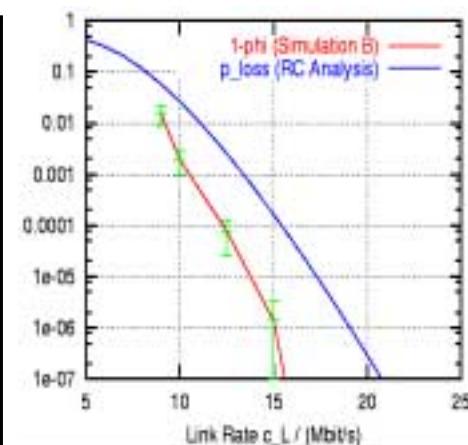
- Common parameters for all models are derived from the ADSL trial measurement in Münster, Germany
 - access trunk line was overdimensioned (100Mbit/s for 100 users)

Parameter	Symbol	Value
Mean Rate	m	10.5kbit/s
Access Line Rate	r_{ON}	2.5Mbit/s
Activity Factor	β	0.042
Variance Coefficient	a	$4.4 \cdot 10^5 \text{bit} \cdot \text{s}$
Hurst Parameter	H	0.915

QoS Indicator Results

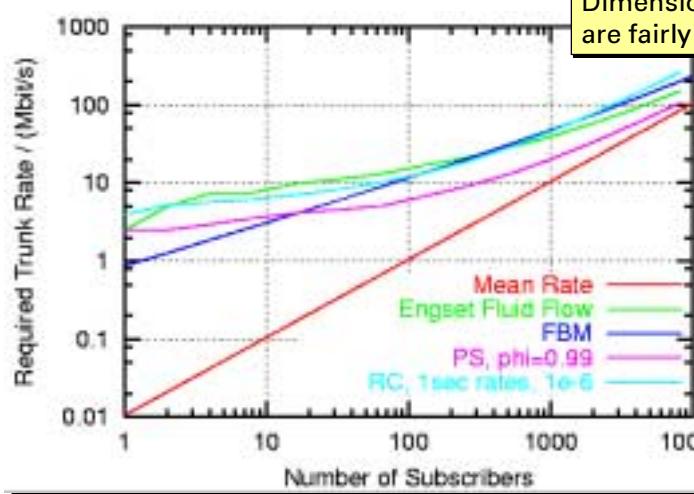


Homogeneous sources:
Results for p_{loss} and $1-\varphi$ are similar


QoS Indicator Results (2)

Consideration of ϕ is important if flows have different maximum rates

n=32



n=800

Dimensioning Results

Dimensioning results are fairly similar

Introduction

Fun Factors

Models for Analysis and Simulation

Results

④ Summary and Outlook

Summary

- Parts of the Internet or of IP networks can be dimensioned
- Fun Factor can be a measure for user perceived QoS
 - realistic target values can be found
- Dimensioning for loss probabilities does not really help
- Dimensioning for Fun Factor is possible
 - M/G/r-PS
 - continuous PS model

Future Work and Outlook

- Use the Fun Factor for online quality measurement
 - tool
- SLAs for Fun Factors
- Modifications of Fun Factor
 - include reaction times (e.g. DNS, connection set-up)
 - include multiple parallel TCP connections
- Fun Factor Analysis
 - difference between time mean and per connection mean
-> emphasis on long or short connections
 - difference between delay factor mean and fun factor mean
- Check validity of flow analyses for TCP