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Service type 1 ≤ i ≤ S modulated Poisson arrivals of specified service distribution but a common expected 
mean rate µ  ��� state. Local balance equations (micro-state interrelations omitted):

 n ⋅ pn = Ai ⋅ki ⋅ pn−ki
i=1

S
∑ = M ⋅ spi ⋅ pn−ki

i=1

S
∑  ,  spi = 1 

i=1

S
∑ .  n⋅ ˆ p n = M ⋅ ˆ p n−d(n) ,  M = A⋅ d(n).

Ka-Ro multi rate difference equation (DE): Suggested one-level functional equation (FE):

Problem definition: for the entire state space subject to (s.t.) d(n, M, P, K) ≈ m1K. ˆ p n ≅ pn 

Functional equations (FEs) interrelate functions and operators on a common set of numbers. 
Special FE-types are difference equations (DEs), differential-, integral- equations, etc. 

i!= i ⋅(i − 1)! Γ(x + 1) = x ⋅Γ(x) i ⋅ pi = A ⋅ pi −1 x ⋅ f(x) = A ⋅ f(x − 1)

 Pi (A) =
Ai

i!
e−A  FG x, A( ) =

t x
A
∞

∫ e− t dt
Γ (1 + x )

≡
Γ (1+ x, A )

Γ (1 + x)
f(x) = D

Ax

Γ(1+ x)
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Solution of the multi-level Recurrence- by a one-level Functional-Equation for
bufferless Systems

Original Domain Transform Domain

bi = P(> C − ki ) = pnn>C −ki
C∑

 
d M,n,K,P( )≈ m1K[1+

cv K
2

γ
(1−

M
n

)], γ =
3,  n > M,
2, n ≤ M.

 
 
 

n ⋅ pn = Ai ⋅ kii = 1
S∑ pn −ki

χ W jω( ) = exp Ai
i =1

S
∑ (e jω ⋅k i − 1)

 

 
 

 

 
 

n ⋅ ˆ p n = M ⋅ ˆ p n − d

J. Y. Hui 90

 χ R jω , d( ) = exp M
d

e j ω ⋅d − 1( ) 
  

 
   

Erl Mb/s carriedY = M ⋅ 1 − E(Bi)[ ]≅ M ⋅ 1 − E1
C
d

,
M
d

 
  

 
  

 

 
 
 

 

 
 
 

ˆ p n ≅
1− n / M( )1/d

1− n / M( )
E n

d
, C
d

, M
d

 
   

  ≈
1
d

E n
d

, C
d

, M
d

 
   

  ˆ b i = ˆ p  n dn
C−ki

C
∫ ≅

1− C M( )ki/ d

1− C M( )
E1

C
d

,
M
d

 
  

 
  ≈

ki
d

E1
C
d

,
M
d

 
  

 
  

Result: Near-explicit continuous solutions covering the entire State and Service Range.
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 d(n, M,K, P) ≈ m1K 1+
cvK

2

γ
1−

M
n

 
  

 
  

 

 
 
 

 

 
 
 
 ,  γ =

3, M < n,
2,  M ≥ n.

 
 
 

 

Tangents at M ≈ n:

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.5

1

1.5

2

2.5

3

δ e

δ 0

δ 0

δ r

M/C ->

  δ
 ->

 

( δ e ->  δ 0 )

( δ r  ->  δ 0 )

δ t

γ = 2

γ = 3

δ = d / m 1K

M / n − >

δ t

M/C ->

b 1

b 30b 30

b 1

1000 1200 1400 1600 1800 2000

0.002

0.004

0.006

0.008

0.01
 (b) 

n ->

M/C = 0.50

 0.75 

 1 p 
n 

->

 
r 
K = (1, 2, 6,30 ) units,

r 
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Extracted Conclusions I

)*H. L. Hartmann, ITC 17, 2001, Salvador da Bahia (Brazil).

D
C

N

Effective recurrence depth k1< d < kS equals effective bit rate of the bursty ensemble stream 
under progress at each state n or bit rate of the state-equivalent one-level system.

Peaked single class stream zi = d -> Fredericks-Haywards blocking ap-
proximation E1(C/d,M/d) = expected value of B.

Scaling features: If for fixed P, Kc = c K, then dc = c d. If furthermore c commonly 
scales C and  M, all results remain unchanged. 

Limitations:The parameter identification of d in the MGF transform domain looses phase 
information used for the one-level CHF inverse, e. g. probability cycles of sophistica-
ted (P,K) combinations are averaged. d must not change significantly 
within [n - d, n].

Advantages:”Inherent elegance of the continuous FE-solution 
together with the fact that the approximation error is small.” 
Applications to multi-rate traffic NHR cf. reference )*. 
Generalization to multi-rate queueing systems to be
considered now.
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Switching 
Fabric

Queue Scheduling   
& Routing

A1k1

Aiki
AS kS

Committed modem rates ki of service type i with traffic demand Ai. Finite number
of service types S or truncated pdf of bandwidth.

Poisson arrivals of general 
distributed amplitudes s. t.  M = A i k i

i = 1

S
∑

sp i =
Aiki

M
,   sp ii = 1

S∑ = 1
General independent
distributed bit rates or 
truncated bit rate densities.

Arbitrary switch fabric aside selected queue scheduling,  
queue service & route processing. 

C

Cb

The GI modulated M/M/C/Cb Queueing Loss and M/G/C Processor Sharing System 

Multi-rate buffered switch with selected backbone links of capacity C performing the 
complete sharing mode for the total demand M. 

Process interrelations verified by the stationary state probability density functions (pdfs) 
and conditional test customers response times. 
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Original Domain Transform Domain

Functional Equation of the  pdf

bi = P{W> C+ Cb − ki}

Min[n,C]⋅ pn =M⋅ spi
i=1

S
∑ pn−ki, n≤C+Cb

Min[n,C]⋅ ˆ p n = M⋅ ˆ p n−d χR s( ) = χ R
(P ) s( ) − ˆ P (W ≥ C )esC +

ˆ p CesC

1 − M
C esd

χW(s) = χW
(P)(s) − P(≥ C)esC +

pC ⋅esC

1− 1
C Aikie

ski
i=1
S∑

,

Generalization of the Ka-Ro Recurrence to States beyond C, e.g. C + Cb.

d M,n,K,P( )≅ m1K[1 +
cvK

2

γ
(1−

M
n

)], γ =
3,  n <C,
2,  n ≥C.

 
 
 

Result: Conditional response time of a test customer with message duration xt and bit rate kt

ˆ p n =
D
d

e−A

An/d

Γ(1+n / d)
,          0 ≤n≤ C,

AC/dρ(n−C)/d

Γ(1+C / d)
,   C<n≤

∞,
C+Cb.

 
 
 

 

 

 
  

 

 
 
 

T = T (x )b(x)dx ≡0
∞

∫
E[n]
d ⋅λ

=
χ R

(1) (0)
d ⋅ λ

T(xt) ≅ xt
kt

m1K
1 +

E2[N, ρN]
N(1 − ρ)

 

 
 

 

 
 

(M/M/N FF) 
A = M / d

N ≅ C / m1K
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data unit transfer delay (expanded) independent  
of original message length.

messages  dependent on residual lifetimes

M/G/1 round robin (RR)

FCFS M/G/1

Original messages
Router

Basic 
scheduling 
alternatives

tR

tq

With heavy tailed service time distri-
butions, the breakpoint xb increases by 
cb. Thus, processor sharing (PS) re-
sponse remains fair and more efficient 
than feedforward (FF) queue service.

T(x)=E{[Xt +W(X)]| Xt =x} T =E[T(x)]

 T = T(x)b(x)dx ≡0
∞

∫
E[n]
d ⋅ λ

≅
χR

( 1)(0)
m1K ⋅λ

 

T(
x)

x

M/G/1 FF

M/G/1 PS

0

t R = x 
1+ cb

2

2
ρ

1 − ρ
t R

tR
1 − ρ

xb ≡ t R

T(
x)

,
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 E [n ] = n ⋅ ˆ p n dn
0

∞
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FFLo

g[
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x)
]-

>
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Cb

n− >

d(n)

ˆ p n ≅ pn

m1K = 4.9,  cvK = 1.742
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Open Loop Streaming: It avoids download the entire file (e.g. audio, video, real time and playback). 
Thus, a client can playout the file without excessive delay. 1999 K. Lindberger)* proposed a flow as-
signment (FA) for stream traffic based on mean effective bandwidths e and mean peak bit rates h of 
the multi-rate ensemble. Our equivalent blocking relation reads in this almost ”bufferless” case: 

 bh ≅
1− (C / M)h /e

1− C / M
E1

C
e

,
M
e

 
  

 
  ≈

h
e

E1
C
e

,
M
e

 
  

 
  

*

= GoS 

Now, FA determines the admissable M. But e
and h are defined according to d. For peak rate 
admission e = h = d and bd = E(B) = E1. 
Note e.g. Lindberger‘s e / h = 0.45.

Closed Loop Elastic Applications: Elastic traffic (e.g. electronic mail, file transfer, remote access, 
and  Web transfers) can make use of as much or as little bandwidth as happens to be available. Of
course, the more bandwidth, the better. Therefore buffered fair peak rate orientation for heavy tailed
documents are favored. Low response times s.t. QoS and very low target blockings may be achieved 
by M/G/1(N) complete PS (CPS) systems instead of their partial PS (PPS) forerunners. 

 T(xt) =
xt ⋅ kt

m1K
fD ,   fD =

1
N

1+
ρ

1- ρ
 

 
 

 

 
 =

m 1K

C(1− ρ)
=

1
N(1- ρ)

 . 

 T(xt) =
xt ⋅ kt

m1K
fD ,    fD = 1+

E2(N, ρ ⋅ N)
N(1− ρ)

 

 
 

 

 
 

*

 ,  N ≅
C

m 1K
,  ρ =

M
C

< 1 . 
M/M/N FF or
M/G/N  PPS.

M/M/1(N) FF or
M/G/1(N)  CPS.
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Extracted Conclusions II

H. L. Hartmann, FG 5.2.1, July 2004, Würzburg.

D
C

N

The extended Ka-Ro multi-level equation system were iteratively solved. This enumeration 
requires CPU times of O[S(C + Cb)] and provides accurate discrete state probabilities. Unfor-
tunately, this complexity occurs again and again if the parameter set (M, K, P) changes.

The investigated one-level state-equivalent functional equation covers the entire continuous state
space. It provides a near explicit solution of optional accuracy. In order to maintain time 
complexities O(1) per state percentage inaccuracies due to fast normalization result. 

A main advantage of the one-level model is its down-compatibility to traditional
feedforward and feedback queue scheduling alternatives. In essence straight forward 
estimations of the multirate ensemble statistic create the desired
parameters of multirate scheduling schemes too.

The incomplete Gamma function proves to be a keying operational 
component of the closed or near explicit solutions for any 
multi-rate traffic engineering.  
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