
5. Example

DSR Route Maintenance

DSR-DFI

6. Performance Evaluation
The simulation model used:

• Simulator: ns-2.
• Number of nodes: 50, 100.
• Traffic model: CBR, 4pkts/s, 64 bytes.
• Number of simultaneous flows: 10, 20, 30, 40.
• Mobility model:

“steady-state” Random Waypoint model.
Velocity: Uniform distributed [1,19] m/s.
Pause time: 0, 150, 300, 450, 600, 750, 900 s.

• Simulation areas: 1500 m x 500 m, 1500 m x 1500 m.
• Simulation time: 900 s.

We compared our approach (DSR-DFI) with DSR with Link-Adapt timeout
(DSR-LA).

1500 m x 500 m, with 50 nodes and 10 flows.

1500 m x 1500 m, with 100 nodes and 10 flows.

7. Conclusions
Our approach (DSR-DistributedFailureInform) informs the nodes of the
network about link breakages in a distributed way. It allows to update link
caches quickly and with minimum overhead. Simulative investigation has
shown better performance of our approach against timeout-based
invalidation algorithms. Especially good results have been obtained for
delivery ratio and throughput.

We have made a new DSR packet called FAILURE INFORM

Field packet type indicates that the packet is a FAILURE INFORM and the
information about the broken link is contained in the next two fields.
The fields from and to indicate the end-points of the broken link .
There are two possible inputs in the procedure linkcacheValidation:
1) a node receives a packet informing about the error (ROUTE ERROR or
FAILURE INFORM packet),
2) a node detects a link breakage when it attempts to deliver
a packet to the next hop of the source route.

New field in link cache entry: NeighboursToBeInformed. It represents a list of
neighbourIDs, which have to be informed in case of failure in the link
represented by the fields from,to.

All the links maintained in link cache are bi-directional.
The timeout additionally used is Link-Adapt. Each node keeps a table
recording its perceived stability of each other node. When a link is used,
the stability metric for both endpoint nodes is incremented. When a link
is observed to break, the stability metric for both endpoints is
multiplicatively decreased.

1. Abstract1. Abstract
An ad hoc network is a collection of mobile hosts with wireless network

interfaces that may form a temporary network without the aid of any
established infrastructure or centralized administration. In such
environment, the nodes operate both as hosts as well as routers. Due to
mobility, the topology of the network may change randomly, rapidly and
unexpectedly. Because of these aspects and the fact that the resources are
limited in mobile nodes, an efficient routing in ad hoc networks is a crucial
and challenging problem.

2. Introduction2. Introduction
Dynamic Source Routing (DSR) is one of efficient on-demand routing
protocols. The main idea of on-demand routing is to find and maintain only
needed routes. The obvious advantage of discovering routes on-demand is to
avoid overhead costs of maintaining routes that are not used.
In order to avoid the need for such a route discovery to be performed
before each data packet is sent, such routing protocols must cache
previously discovered routes.
There are two types of cache structure.

3. Problem Statement3. Problem Statement
Due to mobility, cached routes easily become stale. The adverse effects of
stale routes can be summarized as:

Causing packet losses, increasing packet delivery latency and routing
overhead.

Degrading TCP performance.
Wasting the energy of source nodes and intermediate nodes.

4. 4. LinkcacheLinkcache Validation MechanismValidation Mechanism
Our approach (DSR-DistributedFailureInform) maintains a topology
propagation state in a distributed way. In a link cache a node stores
additional information for each cached link: which node’s neighbour has
learned which links from this node.
Each node gathers this information during route discoveries and data
transmission. To remove stale routes, such information is sufficient in most
cases because each node knows for each cached link which neighbours have
that link in their caches.

DSR-DFI has three main procedures:
addRoute – to insert the links together with information necessary for

updates.
findRoute – to search for routes maintained in the cache.
linkcacheValidation – to disseminate link failure information through

the network and remove stale links .

Technische
Universität

Dresden

Dimitri Marandin, Jose Gonzalez www.ifn.et.tu-dresden.de

Link Cache Validation Mechanism for Dynamic Source Routing (DSR) in Ad hoc Networks

A CB D E

I

H
dP {H->E}

FKJ

C

Link DE breaks
RERROR

RERROR

RERROR

D has to check its cache
to find the nodes it

should inform about the
link failure DE

FI

FIFI

FI

FIFI

A CB D E

I

H

FKJ

G

dP {H->E}

Link DE breaks

RERROR

RERROR

RERROR

1
Packet p

2
p.type == RREP

|| DP
END

3
nodeID == p.dest

5
e:=findLink(p.SR[k], p.SR[k+1]);

k ++;

6
e == null

7
Store link e in Linkcache

9
p == RREP

13
e:=findLink(R[k],R[k+1]);

k ++;

14
e == null

16
Store link e in Linkcache

Insert nextHopID in
e.NeighboursToBeInformed

15
nextHopID in

LinkCache.e.Neighbours
ToBeInformed

17
Insert nextHopID in

e.NeighboursToBeInformed

END

NO

NO

NO

NO

YES

YES

YES

YES

NO

NO

YES

Procedure: addRoute
Input: Packet p
Variables:
ID nextHopID, nodeID; Route R;
p.SR /*Source Route(SR) (array of links)*/
p.src /*source*/,p.dest /*destination*/,
p.type /*packet type*/
entry e /*link*/
Integer k,i /*p.SR[i]= nodeID*/
Methods:
getRoute(ID a,ID b) /*return a route of the cache
from ‘a’ to ‘b’, if any*/.
findLink(ID a, ID b) /*return the link ‘a-b’ from
the cache, if exists*/
Notes:
RREP /*ROUTE REPLY packet*/, DP /*Data Packet*/

8
p.SR[k] == null

YES

YES

NO

12
nextHopID := p.SR[i+1] ;

k := 0;

4
k := 0;

18
R[k] == null

NO

YES

10
R := getRoute(p.SR[i], p.dest);

11
R := getRoute(p.src, p.SR[i]);

tofrompacket
typeIP-Header

timeoutNeighboursToBeInformedtofrom

neighbourID1

neighbourID2

.

.

1
Packet p,

2
p.type == FI

3
p.type == RERR

5
from := fi.from;

to := fi.to;

6
from := rerr.from;

to := rerr.to;

7
from := nodeID; /*p.SR[i]*/

to := p.SR[i +1] ;

8
e := findLink

(from,to)

12
p.type == FI

13
neighbourID

belongs
p.SR

14
fi := new Packet();

15
fi.from := from;

fi.to := to;
fi.dest := neighbourID;

16
send(fi);

END

17
Delete(

e.NeighboursToBeInformed[i]);
i++;

YES

NO

YES

NO NO

NO

NO

NO

YES

YES

YES

YES

Procedure: linkcacheValidation
Input: Packet p
Variable: ID from, to, nodeID, neighbourID; entry
e, Integer i, p.SR /*Source Route*/,
Packet fi /*FAILURE INFORM*/,
Packet rerr /*ROUTE ERROR*/, p.type /*packet type*/
Methods:
findLink(ID a, ID b) /*return the link ‘a-b’ from
the cache, if exists*/
Note: RERR /*ROUTE ERROR*/, FI /*FAILURE INFORM*/

18
Delete e from Linkcache

NO

4
node detects the failure

sending p

9
i := 0;

END

11
neighbourID !=

null

10
neighbourID := e.NeighboursToBeInformed[i];

1
Packet p

6
Responds_
to_RREQ

7
lastHopID exists in

e.NodeToBeInformed

END

5
e == null

YES

NO

NO

NO

NO

YES

YES

YES

Procedure: findRoute
Input: Packet p
Variables:
ID nodeID, lastHopID /*previous hop from RREQ*/
,
boolean respond_to_RREQ,
boolean used_for_salvaging,
route R /*array of links*/
entry e /*link*/
Packet rrep /*ROUTE REPLY packet*/
rrep.dest /*destination of the ROUTE REPLY*/
rrep.src /*route replied*/
p.dest /*destination to which a route is
searched*/
Integer i
Methods:
Dijkstra(ID a)
Notes:
RREQ /*ROUTE REQUEST packet*/

2
R := Dijkstra(p.dest);

i := 0;

4
e := R[i];

i ++;

8
Insert lastHopID in

e.NeighboursToBeInformed

9
R[i] == null

3
Used_for_
Salvaging

YES

NO

10
rrep := new Packet();

rrep.dest := p.scr;
rrep.src := nodeID;

send(rrep);

