Technische
Universitat
Dresden

Dimitri Marandin, Jose Gonzalez

%2”7 Chair for Telecommunications

Lehrstuhl Telekommunikation

Link Cache Validation Mechanism for Dynamic Source Routing (DSR) in Ad hoc Networks

1. Abstract

An ad hoc network is a collection of mobile hosts with wireless network
interfaces that may form a temporary network without the aid of any
established infrastructure or centralized administration. In such
environment, the nodes operate both as hosts as well as routers. Due to
mobility, the topology of the network may change randomly, rapidly and
unexpectedly. Because of these aspects and the fact that the resources are
limited in mobile nodes, an efficient routing in ad hoc networks is a crucial
and challenging problem.

2. Introduction

Dynamic Source Routing (DSR) is one of efficient on-demand routing
protocols. The main idea of on-demand routing is to find and maintain only
needed routes. The obvious advantage of discovering routes on-demand is to
avoid overhead costs of maintaining routes that are not used.

In order to avoid the need for such a route discovery to be performed
before each data packet is sent, such routing protocols must cache
previously discovered routes.

There are two types of cache structure.

OFORONO
OFOFONONO
ORGRORONO
ORORORONO

{a) Path Cache

New link

OO0

i{b) Link Cache

00
90

3. Problem Statement

Due to mobility, cached routes easily become stale. The adverse effects of
stale routes can be summarized as:
= Causing packet losses, increasing packet delivery latency and routing
overhead.
» Degrading TCP performance.
= Wasting the energy of source nodes and intermediate nodes.

4. Linkcache Validation Mechanism

Our approach (DSR-DistributedFailurelnform) maintains a topology
propagation state in a distributed way. In a link cache a node stores
additional information for each cached link: which node’s neighbour has
learned which links from this node.

Each node gathers this information during route discoveries and data
transmission. To remove stale routes, such information is sufficient in most
cases because each node knows for each cached link which neighbours have
that link in their caches.

DSR-DFI has three main procedures:

addRoute - to insert the links together with information necessary for
updates.

findRoute — to search for routes maintained in the cache.

linkcacheValidation — to disseminate link failure information through
the network and remove stale links .

Procedure: addRoute

Input: Packet p

Variables:

ID nextHoplID, nodelD; Route R;

p-SR /*Source Route(SR) (array of links)*/

p.src /*source*/,p.dest /*destination*/,

p.type /*packet type*/

entry e /*link*/

Integer k,i /*p.SR[1]= nodelD*/

Methods:

getRoute(lD a,ID b) /*return a route of the cache
from “a” to “b”, 1f any*/.

findLink(ID a, ID b) /*return the link “a-b> from
the cache, 1Tt exists*/

Notes:

RREP /*ROUTE REPLY packet*/, DP /*Data Packet*/

l

4 10 11

1
Packet p

p.type == RREP
|| DP

NO NO

nodelD == p.dest

k :=0; R := getRoute(p.SR[i], p.dest); R := getRoute(p.src, p.SR[i]);
A 4 A 4
5 12
e:=findLink(p.SR[k], p.SR[k+1]); nextHopID := p.SR[i+1];
k ++; k :=0;

—

13
e:=findLink(R[k],R[k+1]);
K ++;

NO

YES

7
Store link e in Linkcache

nextHopID in
LinkCache.e.Neighbours
ToBelnformed

16
Store link e in Linkcache
Insert nextHopID in
e.NeighboursToBelnformed

17
Insert nextHopID in
e.NeighboursToBelnformed

8
p.SR[k] ==null

18
R[k] == null

NO

Procedure: findRoute
Input: Packet p

1
Packet p

Variables:
ID nodelD, lastHoplID /*previous hop from RREQ*/
2 boolean respond_to RREQ,

R := Dijkstra(p.dest);

i 0 boolean used_for_salvaging,

route R /*array of links*/

entry e /*link*/

Packet rrep /*ROUTE REPLY packet*/

rrep.dest /*destination of the ROUTE REPLY*/
rrep.src /*route replied*/

p.dest /*destination to which a route is

3
Used_for_
Salvaging

YES

searched*/
+ Integer i
. Methods:
e =R[i] Dijkstra(lD a)
i ++: Notes:
RREQ /*ROUTE REQUEST packet*/

Responds_
to_RREQ

7
lastHopID exists in
e.NodeToBelnformed

8
Insert lastHopID in
e.NeighboursToBelnformed

NO

YES

10
rrep := new Packet();
rrep.dest := p.scr;
rrep.src := nodelD;
send(rrep);

END

We have made a new DSR packet called FAILURE INFORM

packet
type

Field packet type indicates that the packet is a FAILURE INFORM and the
information about the broken link is contained in the next two fields.

The fields from and to indicate the end-points of the broken link .

There are two possible inputs in the procedure linkcacheValidation:

1) a node receives a packet informing about the error (ROUTE ERROR or
FAILURE INFORM packet),

2) a node detects a link breakage when it attempts to deliver

a packet to the next hop of the source route.

IP-Header from to

New field in link cache entry: NeighboursToBelnformed. It represents a list of
neighbourIDs, which have to be informed in case of failure in the link
represented by the fields from,to.

from to NeighboursToBelnformed timeout

L,

neighbouriD1

neighbourlD2

All the links maintained in link cache are bi-directional.

The timeout additionally used is Link-Adapt. Each node keeps a table
recording its perceived stability of each other node. When a link is used,
the stability metric for both endpoint nodes is incremented. When a link
is observed to break, the stability metric for both endpoints is

multiplicatively decreased.
Procedure: linkcacheValidation
Input: Packet p
Variable: ID from, to, nodelD, neighbourlD; entry
e, Integer i, p.-SR /*Source Route*/,
Packet fi /*FAILURE INFORM*/,

. Packet rerr /*ROUTE ERROR*/, p.type /*packet type*/

Packet p, Methods:
findLink(ID a, ID b) /*return the link “a-b” from
the cache, i1f exists*/

Note: RERR /*ROUTE ERROR*/, FI /*FAILURE INFORM*/

2
p.type == FI

4
node detects the failure
sending p

5 6 7
from := fi.from; from := rerr.from; from := nodelD; /*p.SR[i]*/
to :=fi.to; to :=rerr.to; to:=p.SR[i+1];

8
e := findLink
(from,to)

NO

YES

10
neighbourlD := e.NeighboursToBelnformed[i];

11
neighbourlD =
null

NO

13
neighbourlD
belongs
p.SR

12 YES

p.type == FI

14
fi := new Packet();

v

15
fi.from := from;
fi.to ;= to;
fi.dest := neighbourID;

v

16
send(fi);

\
v

17
Delete(
e.NeighboursToBelnformed[i]); NO
i++;
18
Delete e from Linkcache

5. Example RERRORI@ P (58]
I

RERROR] |

@@=

©

oA

DSR Route Maintenance

o

RERROR]'

|
FIN)

©
|

=)< (Eo»

Link DE breaks

dP {H->E}

Link DE breaks

SHEOH

D has to check its cache
to find the nodes it
should inform about the

link failure DE

6. Performance Evaluation

The simulation model used:

. Simulator: ns-2.
. Number of nodes: 50, 100.

. Traffic model: CBR, 4pkts/s, 64 bytes.

. Number of simultaneous flows: 10, 20, 30, 40.

. Mobility model:

“steady-state” Random Waypoint model.
Velocity: Uniform distributed [1,19] m/s.
Pause time: 0, 150, 300, 450, 600, 750, 900 s.

. Simulation areas: 1500 m x 500 m, 1500 m x 1500 m.

We compared our approach (DSR-DFI) with DSR with Link-Adapt timeout

. Simulation time: 900 s.
(DSR-LA).

EHHH I 1 1 1 I
~ DSR-DFT —@— 1
& 1888 © psp-1p T
¥ 1680 T T .ﬂf"ﬁ"
-
£ 1400 | Tl
£ 1208 f LIV .
£ 1pee .
%@ -

3 800 - .
£ 608 | .
4HH @J | 1 1 1 |

8 150 380 450 608 750 900
{a) Pause Time (s}
T,:I 1E 1 1 1 I 1
- | DSR-FI —&—
T 1T DSR-LA T
T 12 .
=
2 18 .
< 8T Ny]
1]
6 I 1 T i
ol T
@ 1T T T L]
ool e
é H 1 1 T 1

Throughput {bitssf=s}

Average Packet Delayi{s)

8 158 3688 458 688 758

{c} Pause Tine (s}

988

Good Cache Replies Sent

Hormnalized Routing Load

0.8

8.6

f.4

a.2

168

ga |-

68

48

28

I 1 I 1 1
*I—I--l—lv/

DSR_DFT —&— |

DSE-LA
| 1 | 1 1

8 158 388 458 6688 758 9068

{b} Pause tine {=}

' DSR-FI —&—
DSR-LA
S
"]
I ? i]
B
] 1 T 1 -H_h"‘-hh“‘lﬂ

8 158 388 458 6688 758 9068

{d} Pause Tine {s}

1500 m x 500 m, with 50 nodes and 10 flows.

2088 DSRIDFII T
1880 I nopi g
1688
1488 .
1280 -
10888 -
808 -
608 -
400 g .
EHH 1 1 1 1 1
A 158 308 458 6BA 758 940
{a) Pause Time (=}
H 1 1 1 1 1
D5SE-DFT —&—
ir DSR-LA T
E\ .
5 = ", T -
aF W I -
3 J_\I _
2 - . -
1 - -
H 1 1 1 —\—_I

8 158 3868 458 668 7950 968

{c} Pause Tine (s}

Good Cache Replies Sent

Hormnalized Routing Load

1

8.8

280

158

1808

a8

DSR_DFI —&—
| DSR-LA

8 156 386 458 608 758 980

{b} Pause time (=}

DSR-DFI —&—
DSR-LA

8 158 388 458 6688 758 9068

{d} Pause Tine {s}

1500 m x 1500 m, with 100 nodes and 10 flows.

7. Conclusions

Our approach (DSR-DistributedFailurelnform) informs the nodes of the
network about link breakages in a distributed way. It allows to update link
caches quickly and with minimum overhead. Simulative investigation has
shown better performance of our approach against timeout-based
invalidation algorithms. Especially good results have been obtained for
delivery ratio and throughput.

