

Deutsche Telekom Corporate R&D

Evaluation of Next Generation Network Architectures and Further Steps for a Clean Slate Networking Approach

Michael Düser and Andreas Gladisch

T-Systems Enterprise Services GmbH, Technologiezentrum SSC ENPS, 10589 Berlin

31 July 2006, ITG EuroView 2006, Würzburg

... **T** Deutsche
Telekom

DISCLAIMER

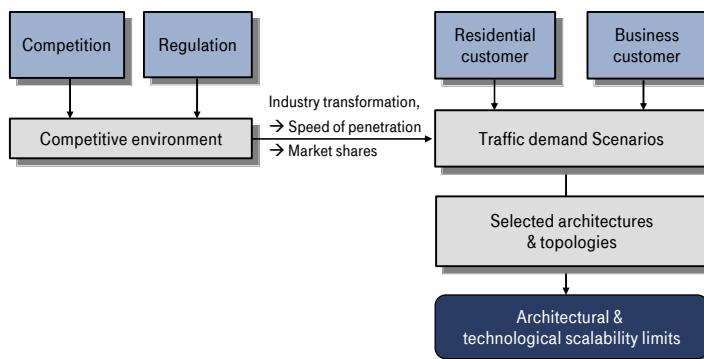
All material presented here is the sole property of the Deutsche Telekom Zentralbereich Technology & Innovation (ZB T&I), Friedrich-Ebert-Allee 140, 53113, Bonn, Germany.

Copyright © Deutsche Telekom 2006

Motivation

Change of (technical) paradigms

- Services converge to packet-based solutions (VoIP, IPTV) at the customer edge
- Transport becomes ever more cost-efficient
- Optics in the access – broadband everywhere


Analysis & implications

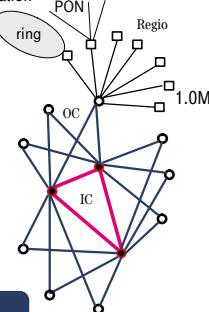
- Implementation of converged networks offering seamless services
- Investigation of the trade-off between packet- and circuit-based solutions
 - How scalable are different network architectures?
 - Which role do transport solutions in future core networks?

Objectives

- Investigation of 3 typical architectures with respect to node throughput, link and tunnel size for a DT related network architecture
 - Extend technical discussion to further aspects ...
 - Some contributions to the 'Clean Slate' discussion regarding future network research direction

Embedding of Architectural and Traffic Demand Scenarios Considering Future Competitive and Regulatory Impact

Topological Scenario


DT IP network topology

Traffic demand: 1 - 100 Tbit/s

Abstracted topology

- 75-node (3 inner core, 9 outer core, 63 regional nodes)
- Inner/outer core triangles
- 7 regio networks connected to each outer core location

© 2006 Deutsche Telekom

Konzernentwicklung : ITG Euroview 2006.ppt

Important Combinations of Architectural & Technological Alternatives

ACCESS

Here: Focus on
core/metro

Multiple options
possible for access
(FTTx)

METRO

Conventional
Metro
↓ trend
Collapsed residential aggregation network

indicates areas
of key consideration

CORE

- IP/static OTN
- IP/SDH/WDM
- IP/dynamic OTN (GMPLS)
- IP/Ether/static OTN
- IP/all optical

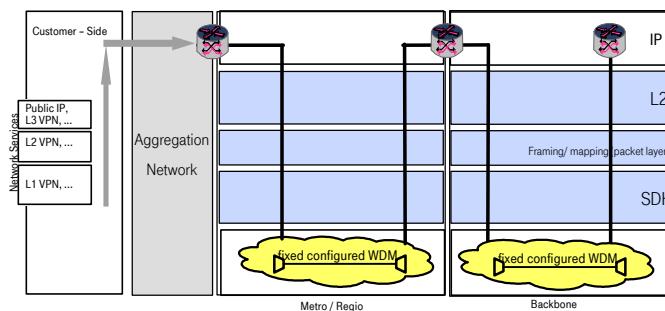
IP = IP/MPLS

© 2006 Deutsche Telekom

Konzeptentwicklung - ITG Forum 2006.net

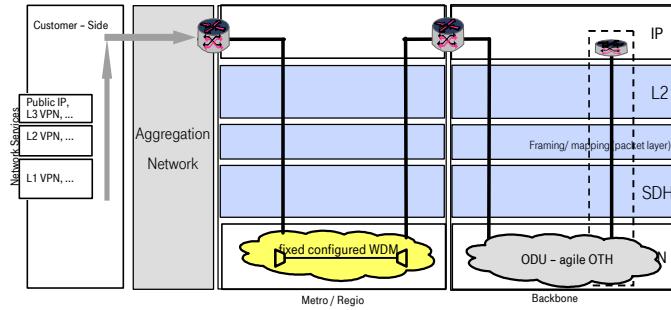
Brief Description of Three Considered Architectural Scenarios

- IP/MPLS routers in the metro and backbone area interconnected by fixed OTH systems
- Common management of IP and OTH



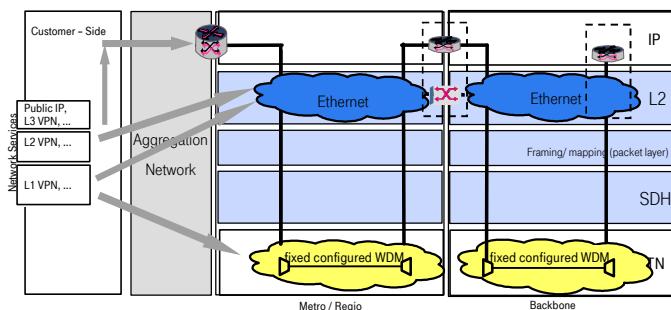
- IP/MPLS routers with fixed OTH systems in the metro, and reconfigurable OTH systems in the backbone
- Common control and management (GMPLS)

- IP/MPLS routers and/or L2 switches in the metro and backbone interconnected by fixed OTH systems
- Interconnection of routers / switches via L2 or L3 possible - the functional separation needs further investigation
- Managed by common or separate IP and Ethernet control planes


Scenario I: All IP/MPLS

Description & Assessment

- Efficient traffic grooming and cost effective transport of coarse granular traffic streams in backbone
- Offers IP/L3 services and emulates L1 and L2 services
- Increased data plane complexity
- Scalability of integrated multilayer control may be limited
- Acceptable migration path from MPLS to GMPLS

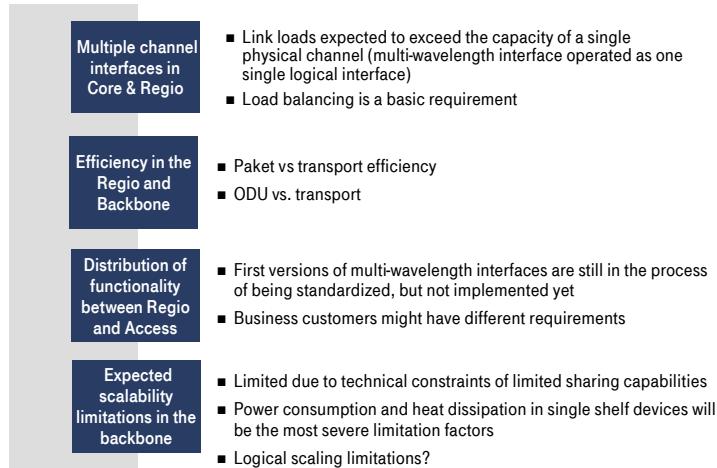

Scenario II: IP/MPLS - GMPLS

Description & Assessment

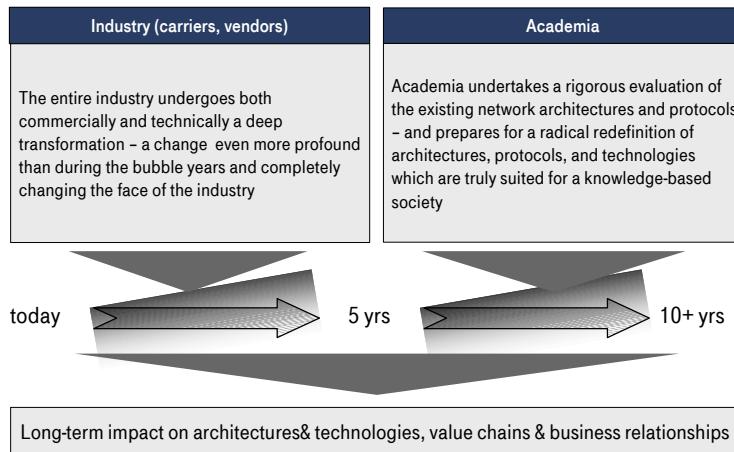
- Efficient traffic grooming and cost effective transport of coarse granular traffic streams in backbone
- Offers IP/L3 services and emulates L1 and L2 services
- Increased data plane complexity
- Scalability of integrated multilayer control may be limited
- Acceptable migration path from MPLS to GMPLS

Scenario III: Dominant Ethernet

Description & Assessment


- Leased line brutto bandwidth high because LLs' low filling factor (20%): migration of LL to Ether production offers high packet gains
- Offers IP/L3 and L2 services and emulates L1 services
- Simplified data plane but continuing cost advantage of Ethernet switching over IP/MPLS routing unclear
- Currently high complexity of Ethernet configuration, fault and performance management
- Unresolved tension between view of Ethernet as a low-cost fabric versus the rich fabric for tomorrow's services

Assessment of Nodal Throughput, Link Load and Tunnel Bandwidth


	IP/MPLS	GMPLS	Ethernet
Nodes	<p>IP/MPLS routers reach a maximum > 10 TBit/s throughput</p> <p>→ achievable today → But, highest transport cost</p>	<p>A) ODU begins at regio: Router throughput max. 3 TBit/s ODU switch max. 30 TBit/s</p> <p>B) ODU begins at outer core: Router throughp. max. 20 TBit/s ODU switch max. 30 TBit/s</p> <p>→ data processing in inner- and outer core ODU based with reduced cost</p> <p>→ Trade-Off: reduced packet gain due to lower filling degree in inner- and outer core, leading to increased ODU brutto load</p>	<p>IP routers process data in regio (and outer core) with maximum of 3 TBit/s (20 TBit/s)</p> <p>→ Ethernet switches in (outer core and) inner core reduce costs But, a number of unresolved issues exist for Ethernet technology</p> <p>→ Achievable today → But, high transport cost</p>
Links	→ requires inevitably link bundling on IP level for all load scenarios	→ aggravates the problem identified for IP/MPLS scenario	→ requires inevitably link bundling on IP level for all regarded load scenarios
Tunnels	<p>Multiple channels per link required</p> <p>Full mesh outer core: higher than 10 GBit/s on all channels</p> <p>Full mesh regio: mostly below 10 GBit/s per channel</p>		

The choice of transport or packet technology depends on the incremental cost, the meshing and the resulting tunnel bandwidth

Critical Issues Identified ... Leading to a more Thorough Investigation of Future Issues

Future Network Evolution and Research Directions – The Big Picture

Architectural Implications

Investigated in Detail

- ▶ IP and the optical core
- ▶ Topologies and routed networks
- ▶ Router development and IP architectures
- ▶ Issues in routing architectures
- ▶ Future applications
- ▶ The role of Ethernet