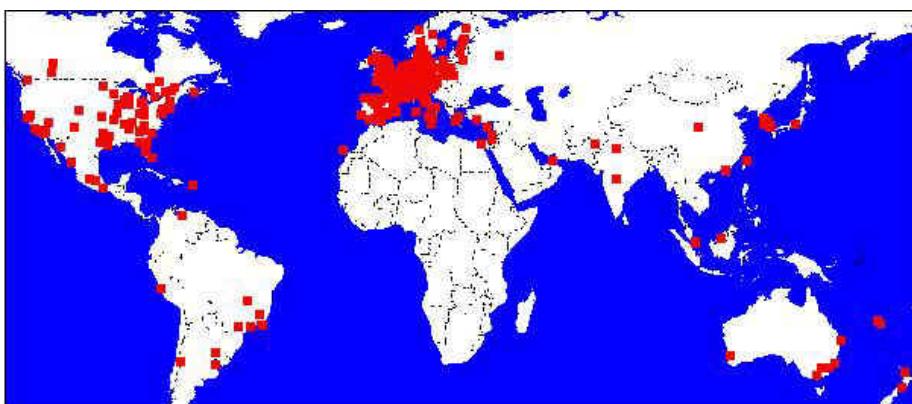


Traffic Profiles generated by Peer-to-Peer (P2P) Networking


Gerhard Haßlinger, T-Systems TZ ENPS, Deutsche-Telekom-Allee 7,
D-64295 Darmstadt; E-Mail: gerhard.hasslinger@t-systems.com

- P2P Applications and Effects on Broadband IP Access
- Smoothing of Traffic Variability due to P2P Protocols
- Traffic Paths in P2P Overlays
- Is Caching an Option for P2P ?
- Conclusions on P2P from the ISP's View

Efficiency of Peer-to-Peer Solutions

- ❑ P2P is an efficient communication scheme to distribute large data volumes avoiding bottlenecks of servers
- ❑ P2P networking makes vacant capacities of each user available: storage, computation & transmission capacity
- ❑ Connecting many small systems via P2P often yields higher performance than powerful single server systems (seti@home)
- ❑ Networks of global size are established for file sharing (music, video, software) and VoIP; even the most popular protocols seem to be initially developed by small teams or one person

P2P File-Sharing: Fast distribution of large files

Example: Harry Potter III early propagation after 2 hours on May 28th 2004 (Source: www.itic.ca/DIC/News/archive.html)
Availability & replication of data as needed, driven by demands

P2P Protocol Functions for File Sharing

- **Search- & Download Phase:** Data search via distributed schemes or servers, super nodes; downloads by pure P2P data exchange
- P2P establishes **Application Layer Routing Functions**
Routing message overhead and possible cross layer inefficiency
Choice of sources for download independent of IP network structure
- **Segmentation:** Small data chunks improve performance & reliability
 - Multi source transfers in parallel (BitTorrent: ~ 5; eDonkey: many) with a TCP connection per data chunk; flexible up-/download rates
 - Interrupted downloads can recover without repeating correctly received chunks; identification based on unique hash values
- **Tit-for-tat:** Parallel up-/download enforced, as soon as a node has data chunks available; upstream bottleneck for symmetric P2P traffic

Emerging P2P services and prerequisites

- Online Gaming and e-Learning Applications
 - Software downloads via P2P e.g. with BitTorrent build in
 - P2P support of online activity (VoIP, video channel, real time data)
- Content distribution: More frequent and larger software updates
- P2P solutions for small communities; cooperative work tools
- Extension to wireless and mobile environment
- Prerequisites:
 - Many security aspects are still unsolved in popular P2P networks
 - Appropriate payment schemes for converging telecommunication & broadcast TV market to be introduced especially for P2P

Peer-to-Peer traffic in ISP networks

- Since the millennium Internet traffic growth is driven by
 - deployment of residential broadband access (DSL) and
 - peer-to-peer applications (mainly file-sharing)
- P2P traffic generates a smooth background load:
Transfers of large GByte files often over hours or days
⇒ Smoothing effect on short term & daily traffic profiles
and on traffic matrices due to uniform distribution of data
- P2P traffic characteristics is favourable
but makes increase in traffic volume difficult to predict
⇒ High risk for planning & upgrade processes in IP networks

Measurement of P2P Traffic and Activity

- A decreasing part of P2P traffic can be identified on network and transport layer (P2P standard ports → HTTP, dynamic)
- Application layer & flow based analysis is more precise;
approaches for popular protocols are available e.g. via Linux firewall and by manufacturers of measurement equipment
- To be updated for each new or modified P2P protocol;
Unique & complete online classification is expensive
and depends on protocol mechanisms to disguise themselves
- Analysis of P2P network structures is possible by participating and monitoring/crawling of content, nodes and transfer activity

P2P share of Internet traffic measured in Europe

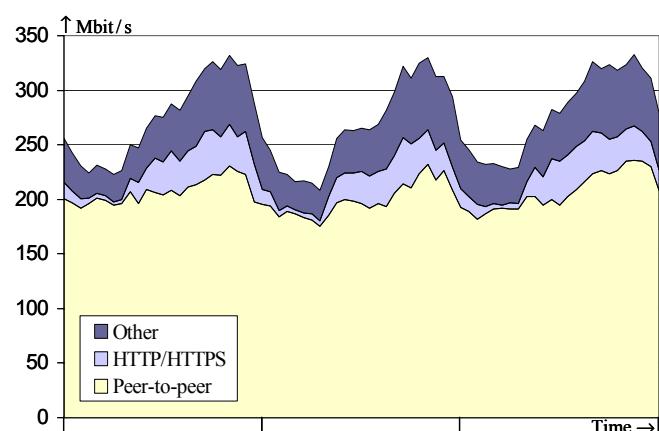
Application Mix due to TCP Port Measurement	Deutsche Telekom 2004 ¹	France Telecom 2003 ²	2004 ³	CacheLogic at a European Tier-1 Provider 2004 ⁴
eDonkey	60 %	38 %	~ 54.5%	~ 20 %
FastTrack	6 %	8 %	~ 1%	~ 10 %
BitTorrent	?	?	~ 3.5%	~ 16 %
Other Peer-to-Peer	4 %	4 %	~ 1%	~ 10 %
All Peer-to-Peer	70 %	50 %	~ 60%	~ 56 %
HTTP	10 %	15 %	?	~ 12 %
Other (non-P2P or unknown)	20 %	35 %	?	~ 32 %

The majority of traffic is often generated by P2P
P2P share seems to decrease a bit in last years
Preference for protocols varies (BitTorrent and Gnutella are still increasing)

Sources ¹ : www.eurescom.de/public/projects/P1500-series/p1553 (2005)

² : N. Azzouna, F. Guillemin: Experimental analysis of P2P applications on traffic in commercial IP networks. *Europ. Trans. on Telecom.* 15 (2004) 511-522

³ : L. Plissonneau, J. Costeux and P. Brown, Analysis of Peer-to-Peer traffic on ADSL, Passive & active measurement workshop, Boston (2005)


⁴ : www.cachelogic.com (2005)

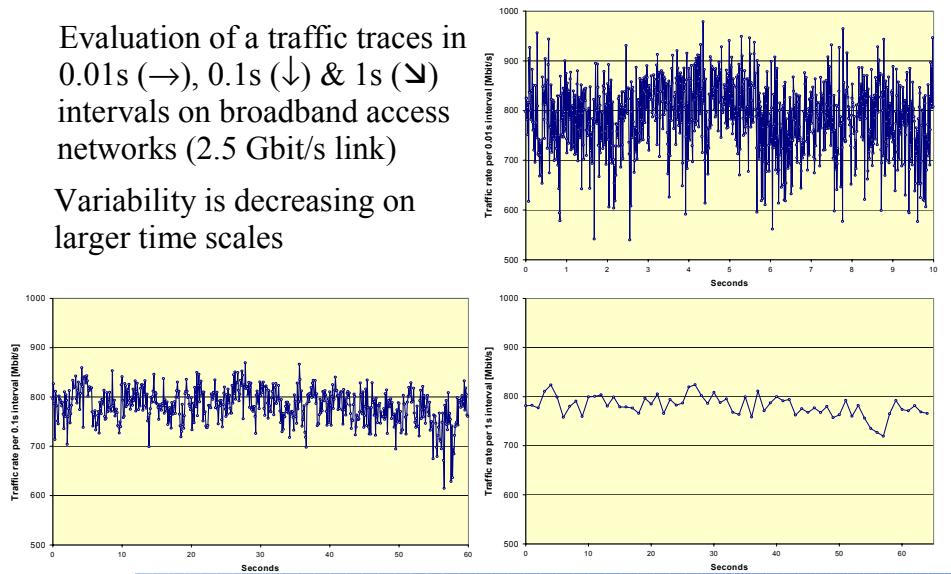
G. Haßlinger

..T..-Systems

Typical traffic profile in the IP backbone over 3 days

Smoothing effect of P2P on daily traffic profiles due to measurement in the backbone in 2003

$$\frac{\text{Peak Rate}}{\text{Mean Rate}} : \begin{cases} > 1.5 & \text{before 2001} \\ \sim 1.25 & \text{in 2003; is increasing since 2003} \end{cases}$$


G. Haßlinger

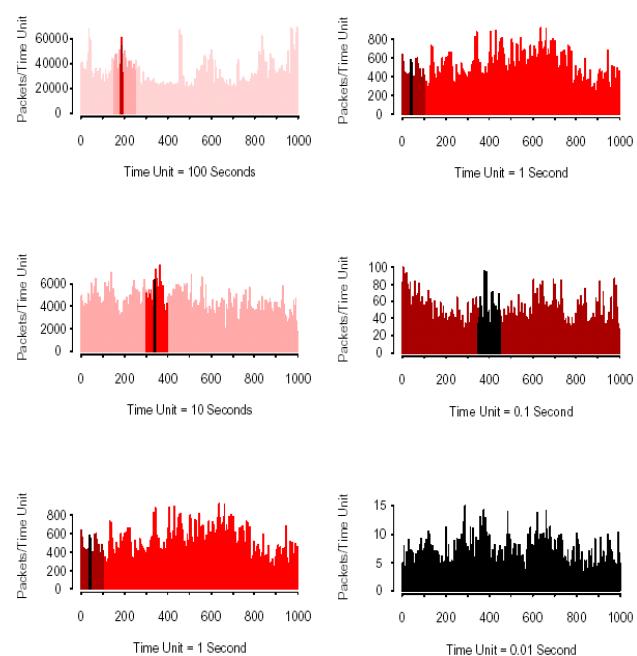
..T..-Systems

Traffic Measurement in multiple time scales

Evaluation of a traffic traces in 0.01s (\rightarrow), 0.1s (\downarrow) & 1s (\blacktriangledown) intervals on broadband access networks (2.5 Gbit/s link)

Variability is decreasing on larger time scales

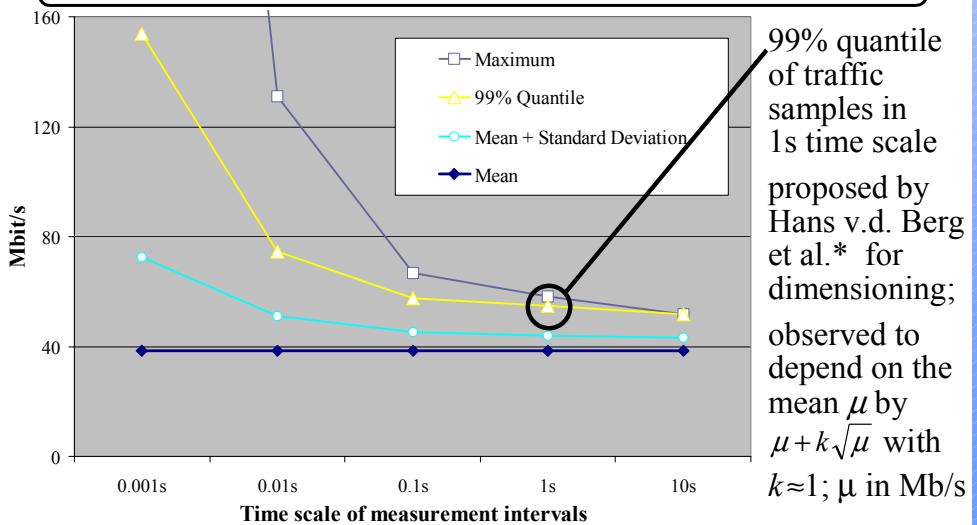
G. Haßlinger


.. T .. Systems ..

Comparison to Long-range Dependent, Self-similar Traffic

Source:

W. Leland et al.


IEEE/ACM Trans. on Networking (1994)

G. Haßlinger

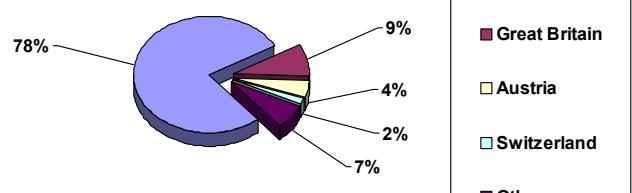
.. T .. Systems ..

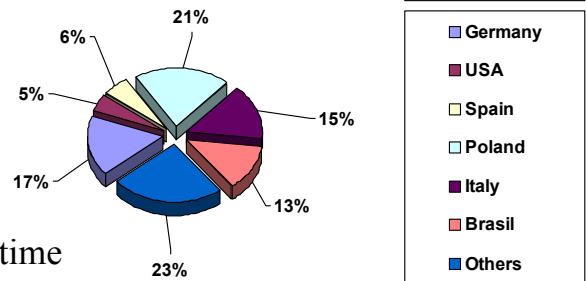
Variability in different time scales measured for a traffic trace of a 39Mb/s MPLS flow

* Hans v.d. Berg et al:

QoS-aware bandwidth provisioning for IP network links, Computer Networks 50/5 (2006) 631-647

G. Haßlinger


..T..-Systems..


P2P Source Locations: Communities due to language

Distribution of eDonkey sources for download to German destination:

Downloads of German content

Downloads of English content:
Seems to depend on server locations which may change over time

G. Haßlinger

..T..-Systems..

Caches for P2P Traffic

- ❑ P2P data is suited for caching, but often bypasses usual web caches
High cache hit rate expected for file sharing; no out of date problems
- ❑ Caches can replace the upstream path of P2P transfers
most relevant for limited bandwidth (mobile, asymmetric access)
- ❑ Transparent P2P caching offered by network analysis systems:
Online detection of P2P downloads for most popular protocols ...
- ❑ eDonkey option for transparent caching since October 2004:
20-25% of the peers make use of the eDonkey caching option
~ 8% of data can be downloaded from caches in DT's IP platform
- ❑ Does eDonkey option decrease or increase the traffic load ?
- ❑ Problems with illegal data in caches persist !

Conclusions

- ❑ P2P generates a relevant share of the Internet traffic since 2000
P2P is a factor in the penetration of residential broadband access
P2P makes prediction of traffic growth more difficult
- ❑ Smoothing effects of P2P are relevant for the variability of short term and daily profiles and in traffic matrices; Traffic profiles for residential broadband access differ from Ethernet traffic
- ❑ More free as well as business services to use P2P networking
- ❑ Main advantages: Simple overlay architecture to offer global services at low cost even without own network infrastructure;
Better performance than client-server for several purposes

