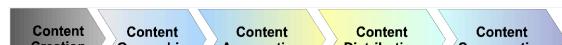


Content Distribution over IP: Developments and Challenges

Adrian Popescu, Blekinge Inst of Technology, Sweden
Markus Fiedler, Blekinge Inst of Technology, Sweden
Demetres D. Kouvatsos, University of Bradford, UK

Outline

- Introduction
- Content Distribution Networks, why?
- CDNs in Practice
- Current Status of CDNs
- Important Challenges for CDNs
- Routing in Overlay Networks, why?
- Routing Protocols for Overlay Networks
- Routing in Overlay Networks, how?
- Important Challenges for Overlay Routing
- Conclusions

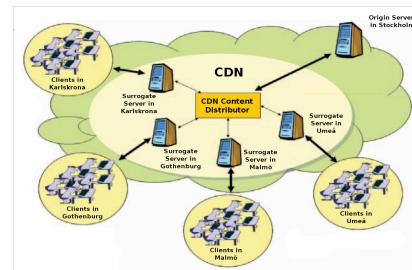


Introduction

- Currently, two important developments in telecom
 - Irreversible move towards IP-based networking
 - Deployment of broadband access, e.g., DSL, WiMAX
- Consequence
 - Appearance of more advanced and more bandwidth-demanding applications, e.g., VoIP, IPTV, online gaming
- Plethora of requirements
 - Multicast facilities, high bandwidth, low delay/jitter, low packet loss
- More constraints (e.g., billing, authentication, copy right)
- Need for unified architectural solution

Content Distribution Networks, why?

- CDNs are networking solutions where high-layer network intelligence is used to improve the performance in delivering media content over the Internet
- Internet is used for
 - Content acquisition
 - Content creation
 - Content delivery
 - Management
- History
 - First generation: focused on Web documents
 - Second generation: focused on Video on Demand (VoD) and audio and video streaming
- Example of offerings:
 - Triple/Quadruple Play
 - Transaction-based Web content
 - Streaming media
 - Real-time video, radio



CD value chain

CDNs in Practice

• Fundamental concepts

- Distributing content to cache servers located close to end users
- IP routers are used to deliver content to the optimal surrogate server
- Use of overlay routing to obtain better delivery performance
- Client-server communication flow is replaced by two communication flows
- Accounting mechanism to provide logs and other information to the origin servers
- Two types of data
 - Encoded/multimedia data
 - Metadata (to allow identifying, finding and managing the encoded data)

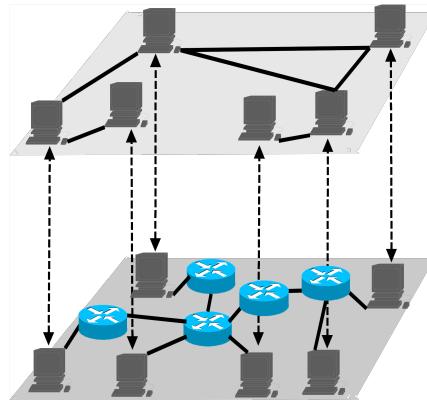
CDN in Practice (cont'd)

• Main functional components

- Content distribution
 - Moving the content from source towards users
- Request routing
 - Selecting the best location for retrieving the requested content
- Content routing
 - Delivering the content from the most appropriate place to the client requesting it
- Content processing
 - Creating and adapting content to user preferences and device capabilities
- Authorization, authentication and accounting
 - Enabling of monitoring, logging, accounting, and billing of content usage

Current Status of CDNs

- Today, more than 3k companies use CDN
- Most popular CDN providers
 - **Akamai Technologies**
 - www.akamai.com
 - Market leader for CDN (80%)
 - **Mirror Image Internet, Inc.**
 - www.mirror-image.com
 - Large range of services
 - **LimeLight Networks**
 - www.limelightnetworks.com
 - Large range of services
 - **Inktomi**
 - www.inktomi.com
 - Yahoo company

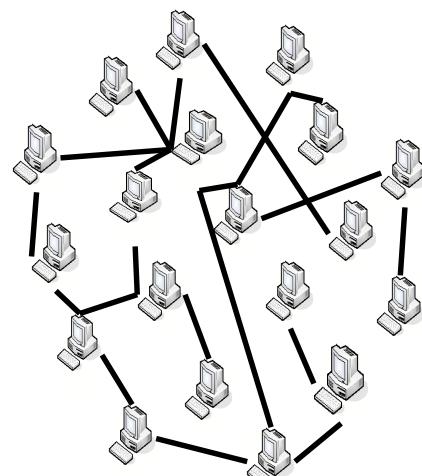

Important Challenges for CDN

- Where to place the surrogate servers?
- Which content to outsource and what practice to use for the selected content outsourcing?
- How many CDN architectures do we need, one CDN per application or just one CDN shared by all applications?
- How to exploit P2P technology, overlay routing and caching to improve the performance?
- How to exploit data mining over CDN to improve the performance?
- How to exploit content personalization to improve the performance?
- What model to use for CDN pricing?

Routing in Overlay Networks, why?

- Overlay networks are application-layer overlays operating on the inter-domain level, which allow alternative routing services and better performance
- Motivation
 - Ability to work, self-organize and scale in the presence of a highly transient number of nodes, network and computer failures
- New facilities
 - Designers can develop own routing and management algorithms on top of the Internet
- Main advantage
 - New protocols and functionality can be deployed atop of IP routers without the need to upgrade the routers

Routing Protocols for Overlay Networks


- Main functionalities in overlay networks
 - Overlay link performance monitoring
 - Topology construction
 - Overlay service composition
 - Provision of services to applications with soft QoS guarantees
- Fundamental concept overlay routing
 - Knowledge of underlying network performance is used to adapt the e2e performance to
 - Asymmetry of nodes in terms of, e.g., connectivity, network bandwidth and processing power
 - Lack of structure among them
- Ways to do routing
 - Source routing
 - Flat (or distributed) routing
 - Hierarchical routing
- Main categories of routing protocols for overlay networks
 - Proactive protocols
 - Reactive protocols
 - Hybrid protocols

Routing in Overlay Networks, how?

- Edge hosts learn of each other
- Based on knowledge of underlying network performance, they form loosely coupled neighboring relationships
- These relationships are used to induce a specific graph
 - Nodes are representing hosts
 - Edges are representing neighboring relationships
- Graph abstraction and associated graph theory can be used to formulate routing algorithms in overlay networks
- Graphs may range from star-like trees to complex k-node connected graphs

Important Challenges for Overlay Routing

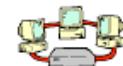
- Extreme complexity
- Overlay measurements
- QoS-aware overlay routing
- Multicast overlay routing
- Multipath overlay routing

Extreme Complexity

- Network dynamics
 - Caches, proxies, dynamic overlay topology, churn, free-riding, failure of IP links, route flapping
- Node dynamics
 - Available bandwidth for access, average throughput, error rate, delay, delay jitter
- Group dynamics
 - Process of formation and change of groups of users over the time
- Traffic dynamics
 - Different traffic characteristics, process of aggregation of traffic flows, Long-Range Dependence
- Routing optimization
 - Finding the optimal routes subject to diverse QoS, topological and other constraints
 - Two classes of optimization procedures
 - Optimization of network flows (e.g., shortest path algorithms, maximum flows algorithms, minimum cost algorithms)
 - Constraint optimization (e.g., particle swarm optimization, ant colony optimization)

Overlay Measurements

- Tasks
 - Focused on the performance of overlay links instead of individual IP links
 - Measuring of parameters like, e.g., average bandwidth (for streaming media), packet loss rate, latency, frame rate (for streaming video)
 - Two categories of measurements
 - Internal measurements: internal network performance
 - External measurements: end user performance as experienced by the customers themselves
- Current solutions
 - Combination of distributed hardware and software-based probes as well as using logs from various servers (e.g., from caches and streaming media servers)
 - Use of algebraic tools to compute link distances for links not directly measured
- Important challenges
 - Scalability with increasing number of nodes
 - Impact of the measurement probe traffic on network performance
 - Compensation for the effect of measurement traffic
 - Difficulties in mapping large systems
 - Reducing the monitoring overhead while maintaining the measurement accuracy
 - Sharing monitoring results


QoS-Aware Overlay Routing

- Tasks
 - Provide QoS guarantees in delivering media to end users
 - Provide global efficiency in resource utilization
- Current solutions
 - Solutions based on ideas used in wireless ad-hoc routing and/or P2P systems
 - Use of proactive and/or reactive routing protocols
 - Network caching is used as an orthogonal (and complementary) solution
- Important challenges
 - Design of overlay routing protocols that perform well under churn/selfish nodes
 - Solving the optimization problem related to QoS constraints associated with each route
 - Answering questions related to the interaction between overlay routing and BGP routing, e.g., finding the Nash equilibrium of the overlay routing game
 - Design of scalable multimedia cache architectures
 - Multimedia caching
 - Dynamic caching
 - Segmentation of streaming objects
 - Self-organizing cooperative caching techniques

Multicast Overlay Routing

- Tasks
 - Supporting group communication applications, e.g., audio and video distribution, multimedia conferencing, distributed interactive simulation, multi-player gaming
 - Minimizing server and network overhead
- Current solutions
 - Group management, tree construction and overlay routing are done without any support from Internet routers
 - Different forms, suitable for different applications: tree, dedicated intermediate servers (so-called reflector, to split and retransmit streaming media), mesh-based, application level virtual rings
- Important challenges
 - Scalability and robustness
 - Efficient multicasting, e.g., with reference to QoS
 - Channel and client heterogeneity with reference to bandwidth, delay performance, loss patterns and processing capabilities
 - Conflict: heterogeneity of client resource capabilities vs asynchrony of user requests
 - Content heterogeneity
 - Error control (reactive and proactive schemes, e.g., Forward Error Correction)
 - Congestion control (need to behave "TCP friendly")
 - Security

Multipath Overlay Routing

- Tasks
 - Open up the achievable throughput as compared to single path policy routing/BGP
 - Compensate for time-varying congestion on Internet paths
 - Compensate for software, hardware and configuration errors
- Current solutions
 - Simplest solution: mesh routing
 - Can be based on IP routing concepts, e.g., Distance Vector
 - New solutions, e.g., ant colony, dispersity routing, combining redundant coding with dispersity routing, parallel TCP flows, use of erasure codes, adaptive response by attractor selection (biologically inspired approach)
- Important questions
 - Given a specific amount of data, how to select the number of paths?
 - Given a specific topology, how to select efficient, loop-free paths such as to provide the requested QoS and to balance traffic loads?
 - Given a specific topology, how to determine the sending rate on each path (rate control) such as to maximize the aggregate utility of the sources?
 - What is the effect of multipath overlay routing on TCP stability and performance?
 - Given a specific topology and a specific multipath routing algorithm, how does one design a stable TCP congestion control mechanism that exploits the multipath routing capability?

Conclusions

- Challenges for emerging Internet services
 - Decentralization
 - Failure resilience
 - Ubiquity
 - QoS guarantees
- New architectural solutions based on CDN and overlay routing
- Many important research activities and results in the area
- There are however still many research challenges
- Strong need for move towards real-live deployment, e.g., PlanetLab in a first phase

References

- IETF Content Distribution Internetworking (CDI) Working Group, <http://www.ietf.org/html.charters/cdi-charter.html>
- Androulidakis-Theotokis S. and Spinellis D., "A Survey of Peer-to-Peer Content Distribution Techniques", ACM Computing Surveys, Vol. 36, No. 4, December 2004
- Pallis G. and Vakali A., "Insight and Perspectives for Content Delivery Networks", Communications of the ACM, Vol. 49, No. 1, January 2006
- Plagemann T., Goebel V., Mauthe A., Mathy L., Turletti T. And Urvoy-Keller G., "From content distribution networks to content networks – issues and challenges", Computer Communications 29 (2006), 551-562
- Li Zhi, Yuan L. and Mohapatra P., "An Efficient Overlay Link Performance Monitoring Technique", NETWORKING 2006, 5th International IFIP-TC6 Networking Conference, Coimbra, Portugal, May 2006
- Popescu A., Kouvatoss D., Remondo D. and Giordano S., "ROVER - Routing in Overlay Networks", EuroNGI project JRA.S.26, 2006

THANK YOU!

