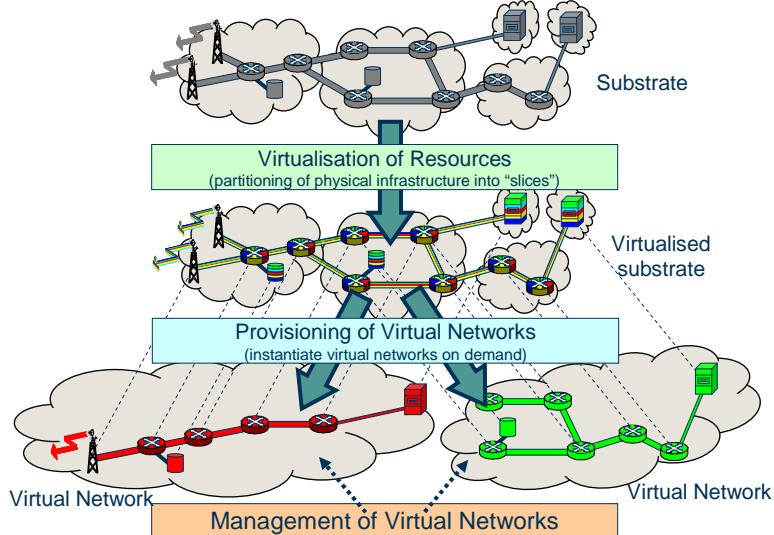

Flexible Architecture for the Future Internet

Stephan Baucke
Ericsson Research

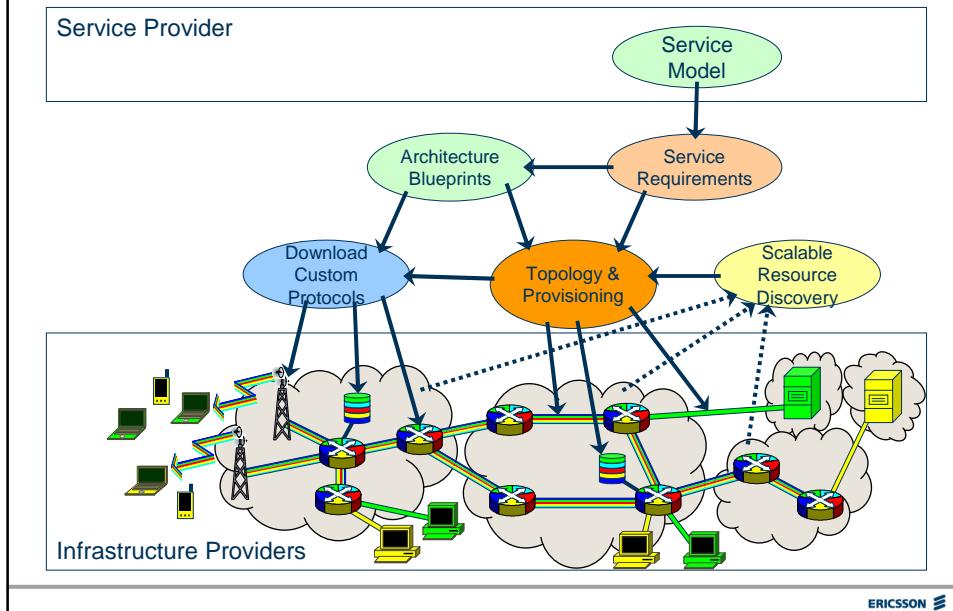
ERICSSON
TAKING YOU FORWARD


Has the Internet hit a wall?

- Some of today's challenges:
 - Mobility, identity, address semantics
 - Security (DDOS), private domains
 - Scaling up to massive number of communicating things
 - Operational complexity
 - ...
- Innovation is mostly limited to the application layer and the edges
 - Web applications, overlays, access technologies
 - Limited by architectural and engineering constraints of the Internet
 - Ever increasing complexity, low interoperability
- The Internet itself is increasingly resisting innovation
 - "Deployment stalemate" (see [CABO])
 - Incentives/revenue sharing for ISPs vs. net neutrality
 - Slow standardization processes
 - "Patches" (NATs etc.) keep complicating things
- **How can we bring innovation back into the network?**

ERICSSON

Network Virtualization Framework



What can virtualization do for us?

- Deployment and coexistence of innovative new approaches as well as legacy systems in a commercial setting
- Cost-efficiency by sharing infrastructure resources
- Empower service providers to deploy novel E2E services without requiring Internet-wide consensus
 - Overcome "deployment stalemate"
- Flexible resource allocation
 - Set aside resources for high-priority traffic
 - E.g. "Blue Light" applications: Shift physical resources to public safety networks in case of an emergency
- Open up the market for new business roles and competition
 - Trading of infrastructure resources
 - Separation of infrastructure and service providers

Virtualization as the basis for an innovation-friendly, evolvable architecture!
(and not just for experiments!)

Instantiating Virtual Networks On Demand

Virtualization Framework

1. Scalable provisioning of virtual networks

- Discover, provision, configure, and aggregate virtual resources on a large scale
 - Resource description
 - Type, capabilities, capacity, connectivity, cost, ...
 - Resource trading / bidding
 - Build topology (including mobile and volatile resources)
- On-demand instantiation of new virtual networks

2. Virtualization management

- Deployment and control of virtual network resources
- Dynamic reallocation of resources (e.g. for “Blue Light” scenarios)
- Manage volatile/mobile infrastructure resources

3. Folding points

- Controlled transition between virtual networks
- Connectivity and interworking
- Address and data format conversion
- Protocol translation

Virtualization of Resources

- Allow customization of programmable resources for maximum flexibility
 - Protocol software download/installation
- Standardized Virtualization Management interfaces
 - Discovery
 - Instantiation of new virtual resources
 - Provisioning
 - Control
- Protection of infrastructure assets via sandbox
- Secure separation of virtual networks
- Fixed resources
 - Routers, switches, links, network storage, ...
- Wireless resources (spectrum, wireless infrastructure, mobile nodes)
 - Virtualization of spectrum via
 - FDMA, TDMA, CDMA, spatial separation
 - Virtual basestations
 - Virtualization in the MAC layer
 - Allow co-existing, specialized RLC protocols
 - Mobile nodes as infrastructure resource
 - How to deal with mobile/volatile resources?

ERICSSON

Challenges

- Large scale
 - Spanning multiple infrastructure providers
- Fragmentation into isolated network islands
- Performance penalty through virtualization
- Security
 - Network separation
 - Protection of assets and resources
- Signaling in the virtualization framework
- Common virtualization management interfaces
- Accounting, billing, steering of revenue flows
- Manageability, complexity
- Bootstrapping, migration from legacy

ERICSSON