
1

Incorporating P2P Networks in
Service Provider Infrastructure

Alberto Leon-Garcia & Shad Sharma
University of Toronto

Why P2P for Service Providers?
“Virtual distributed servers”
Autonomous execution of applications on
commodity resources
P2P Innovations & Benefits

KaZaA, BitTorrent, Skype
Self-organizing, self-managing
Reliability
Scalability and Performance
Cost savings

P2P Broad Applicability
Not limited to rogue operators

Carrier Class Challenges
Reliability, Performance, Security

2

Introduction
Overlay Topology

Application layer routing
Nodes maintain logical neighbours to whom they forward messages

P2P Applications
Content Delivery
Lookups and Search
Service Virtualization

E.g. P2P HTTP server

Distributed Hashing
Hash table

Defines set of buckets that hold objects

Hash function
Distributes objects into buckets
Objects distributed “uniformly” among buckets

Distributed Hash Table
Nodes are the buckets that store objects
Objects: files/resources/things you want to
find/store

Structured overlays well suited to providing DHT
services

Predefined positions assigned to peers
Peers assigned hash values (buckets)

3

Introduction

TrebleCastHybrid Overlay
+ Fast & efficient DHT search
+ Robust, reliable, fast
insertion and removal
+ Resilient to churn

Chord
Structured DHT capable
overlays
Rigid finger tables

Kademlia
Loosely consistent DHT overlay
Relaxed finger tables

Structured Overlay
+ Fast & efficient DHT search

O(logB(n)) search time
O(logB(n)) search messages

Routing table maintenance
required
– Not robust under churn

Newscast
Epidemic protocol based on
gossiping

Montressor
Dual layer approach: Newscast
substrate

Unstructured Overlays
+ Robust, reliable, fast
insertion and removal
– Broadcast based search

O(mth root(n)) search time
O(m x n) search messages

72

73 42

71 70

41 40

69

74

75 44

43 20

21 6

19

68

39 38

67 66

37 36

65

18

5 4

17 16

15 34

35

76

77 46

45 22

23 8

7

78

79 48

47 24

25 26

9

0

1 2

3 14

13 32

33

10

27 28

11 12

29 30

31

80 49 50 51 52 53 54 55

63

64

61

62

59

60

57

58

56

TrebleCast (1)
Peers inserted in order in
spiral-like fashion

Spiral - Notion of layers:
Provides data redundancy
Data stored at each layer

Peers maintain 4 neighbours:
In, out, left, right

Successor:
Peer responsible for replacing a
failed peer
Successor moves “inwards”
(closer to core)

Layer indicative of peer
reliability

Peers closer to core
considered more reliable

4

TrebleCast (2)
Dual layer approach:

Newscast substrate
Grid superstructure

Adaptable to churn:
Superstructure repaired through
gossip messages exchanged at
Newscast substrate

Fast adaptive search:
Search messages exchanged at
superstructure layer
Lookups under static conditions:
O(logB(n))
Graceful search degradation
under increasing churn

Flexible data storage policy:
Choose location of stored data (at
core for instance)
Permits flexibility allowing data
redundancy and load balancing

Robustness and reliability:
Build overlay around core of
reliable server-like peers

Implementation
TrebleCast implemented in Java

Currently used for SIP virtualization
May implement any <key, value> pair storage
based mechanism
Register, store, retrieve, delete: O(log(n)) time

TrebleCast simulator implemented in Java

P2P Monitor implemented in Java
Monitors peers in a P2P network
Allows basic interaction with peers through virtual
console

5

Pareto Turnover

Reliable peers
move to overlay
core

Core “protected”
from churn

Improved search
time (less routing
table maintenance)

High Death Rate

Low Death Rate

Fast Adaptive Search

6

Static Search Comparison

Chord Churn Search Comp.

10-1 100 101 102 103
5

10

15

20

25

30

35

40

45

50

55

Churn Rate (Arrival Rate - peers/sec)

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(#

 o
f H

op
s)

Search Time vs. Churn Rate for Chord Networks of Mean Size 10000 (16384 max)

Exponential Lifetime
Pareto Lifetime

Aggressive repair
mechanism
implemented to
maintain Chord
structure

Search degrades
exponentially as
Churn rate
increases past 10
peers/sec

7

TrebleCast Churn Search Comp.

TrebleCast search
degrades under
exponential
lifetime distribution

Search remains
almost constant
under Pareto
lifetime distribution

Note: Storage
policy chosen so
that a core set of
reliable peers are
responsible for
storage

10-1 100 101 102 103
2

3

4

5

6

7

8

9

Churn Rate (Arrival Rate - peers/sec)

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(#

 o
f H

op
s)

Search Time vs. Churn Rate for TrebleCast Networks of Mean Size 10000

Exponential Lifetime
Pareto Lifetime
Exponential Lifetime w/ Bootstrap Server

Conclusions
Treblecast for service provider setting

Resilient to churn

Fast adaptive search: O(log(n))

Inherent support for data redundancy

Flexible data storage & retrieval policy

