Incorporating P2P Networks in
Service Provider Infrastructure

Alberto Leon-Garcia & Shad Sharma
University of Toronto

Why P2P for Service Providers?

o “Virtual distributed servers”

o Autonomous execution of applications on
commodity resources

o P2P Innovations & Benefits
KazaA, BitTorrent, Skype
Self-organizing, self-managing
Reliability
Scalability and Performance
Cost savings

o P2P Broad Applicability
Not limited to rogue operators

o Carrier Class Challenges
Reliability, Performance, Security

Introduction

o Overlay Topology
Application layer routing
Nodes maintain logical neighbours to whom they forward messages

o P2P Applications
Content Delivery
Lookups and Search
Service Virtualization
o E.g. P2P HTTP server

Distributed Hashing

o Hash table
Defines set of buckets that hold objects

o Hash function
Distributes objects into buckets
Objects distributed “uniformly” among buckets

o Distributed Hash Table
Nodes are the buckets that store objects

Objects: files/resources/things you want to
find/store

o Structured overlays well suited to providing DHT
services
Predefined positions assigned to peers
Peers assigned hash values (buckets)

Introduction

Unstructured Overlays Newscast
+ Robust, reliable, fast Epidemic protocol based on
insertion and removal gossiping
— Broadcast based search Montressor
O(m* root(n)) search time Dual layer approach: Newscast
O(m x n) search messages substrate
Structured Overlay Chord
+ Fast & efficient DHT search Structured DHT capable
O(logg(n)) search time overlays
O(logg(n)) search messages Rigid finger tables
Routing table maintenance Kademlia

required
— Not robust under churn

Loosely consistent DHT overlay
Relaxed finger tables

Hybrid Overlay
+ Fast & efficient DHT search

+ Robust, reliable, fast
insertion and removal

+ Resilient to churn

TrebleCast

TrebleCast (1)

OB ORONORORONO

o Peers inserted in order in
spiral-like fashion

o Spiral - Notion of layers:
Provides data redundancy
Data stored at each layer

o Peers maintain 4 neighbours:
In, out, left, right

o Successor:
Peer responsible for replacing a
failed peer
Successor moves “inwards”
(closer to core)

o Layer indicative of peer
reliability
Peers closer to core
considered more reliable

TrebleCast (2)

o Dual layer approach:
Newscast substrate
Grid superstructure

o Adaptable to churn:
Superstructure repaired through
gossip messages exchanged at
Newscast substrate

000000
0000000
00000
000000
0000
0000000

0-0-0-0-0-0-0

o Fast adaptive search:
Search messages exchanged at
superstructure layer
Lookups under static conditions:
O(logg(n))
Graceful search degradation
under increasing churn

o Flexible data storage policy:

Choose location of stored data (at
core for instance)

Permits flexibility allowing data
redundancy and load balancing

o Robustness and reliability:

Build overlay around core of
reliable server-like peers

Implementation

o TrebleCast implemented in Java

o Currently used for SIP virtualization

May implement any <key, value> pair storage
based mechanism

Register, store, retrieve, delete: O(log(n)) time
o TrebleCast simulator implemented in Java

o P2P Monitor implemented in Java
Monitors peers in a P2P network

Allows basic interaction with peers through virtual
console

Pareto Turnover

TretbeCast Chum Sat Parsto Ovitrbrded Node Lt [x = 5000y

Ay High Death Rate
|
ol)
i i ® o Reliable peers
R i : s move to overlay
[core
.Ji
’| i o Core “protected”
FI from churn
§ O
= e
i o Improved search
a ; i : time (less routing
i i it i i : table maintenance)
e : = . s .
!
Jn:r-
.al e ‘—i T " Low Death Rate

Fast Adaptive Search

Search Time for Static Metwaork (10000 peers) as Time Passes
12 T T T T T T T

Average Search Time (Hops)
=
L

1 1 L 1 L
0 100 200 300 400 500 600 700 800 900 1000
Tirne (s)

Static Search Comparison

Search Time vs. Network Size

18 T
TrehleCast Average ST
5L TrebleCast Log-Fit ST J
-+ Chord Worst Case 5T
Chord Average ST

14| | ———Mewscast Average 5T (m=20) -
= 12F R
w
o
3
T
g 10- B
@
£
gk 4
=
c
m
T
LR il

MNetwork Size (# of Peers)

Chord Churn Search Comp.

Search Time vs. Churn Rate for Chord Networks of Mean Size 10000 (16384 max)

% ‘ ‘ ‘ o Aggressive repair
Exponential Lifetime -
s0L Pareto Lifetime meChanlsm
implemented to
asf maintain Chord
structure
Z 4o
:
s %7 o Search degrades
s :
£ Ll exponentially as
£ Churn rate
9 25) increases past 10
i<l
g peers/sec
< 20f
15+
10+
s ‘ ‘ ‘
10" 10° 10" 10° 10°
Churn Rate (Arrival Rate - peers/sec)

TrebleCast Churn Search Comp.

Search Time vs. Churn Rate for TrebleCast Networks of Mean Size 10000
T T

o TrebleCast search

Exponential Lifetime

Pareto Lifetime deg I’ades Ul’lder

Exponential Lifetime w/ Bootstrap Server

exponential
lifetime distribution

o Search remains
almost constant
under Pareto
lifetime distribution

Average Search Time (# of Hops)

o Note: Storage
policy chosen so
that a core set of
reliable peers are
responsible for
storage

2 I I
10 10 10" 10° 10°
Churn Rate (Arrival Rate - peers/sec)

Conclusions

o Treblecast for service provider setting
o Resilient to churn

o Fast adaptive search: O(log(n))

o Inherent support for data redundancy

o Flexible data storage & retrieval policy

