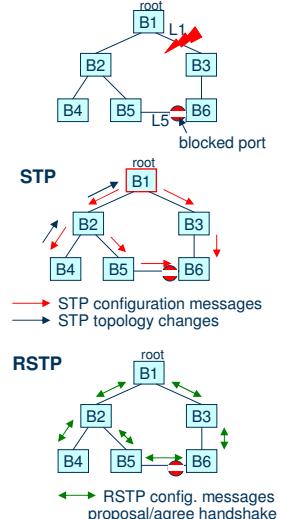


Spanning tree protection in Ethernet microwave radio networks using adaptive modulation

7th Wuerzburg Workshop on IP
2007-07-23

Torsten Mueller, Herbert Leuwer,
Thorsten Kaiser, Thomas Alberty

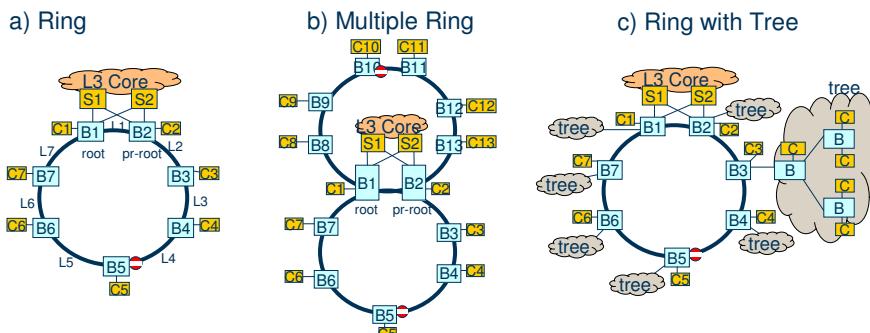


Introduction

- Microwave radio
 - Important application: mobile backhaul - today mainly E1
 - Future:
 - capacity increase, best effort services (HSPA)
 - other applications (fiber extension, enterprise)
 - Ethernet
- Ethernet protection
 - Based on spanning tree protocol - various versions - xSTP
 - Question: Recovery time after failures? Which issues influence the recovery time?
- Propagation conditions
 - Influenced by rain fading
 - Adaptive modulation on a single link:
 - high availability for "guaranteed traffic"
 - high data rate for best effort traffic but lower availability
 - Additional optimization in network: rerouting of best effort traffic using xSTP -> high availability for best effort traffic

The Spanning Tree Protocols

- Purpose
 - eliminate loops
 - can be used as protection mechanism
 - various versions defined by IEEE
- Spanning Tree Protocol (STP)
 - root node regularly generates BPDUs
 - other nodes relay BPDUs
 - transitions between port states:
 - timer based operation
 - recovery time: 18s...130s
- Rapid STP (RSTP)
 - independent exchange of BPDUs between nodes
 - rapid transitions on point to point links
 - Investigation: recovery time
- Multiple STP (MSTP)
 - multiple instances, rapid transitions as RSTP

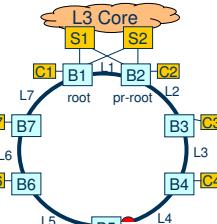
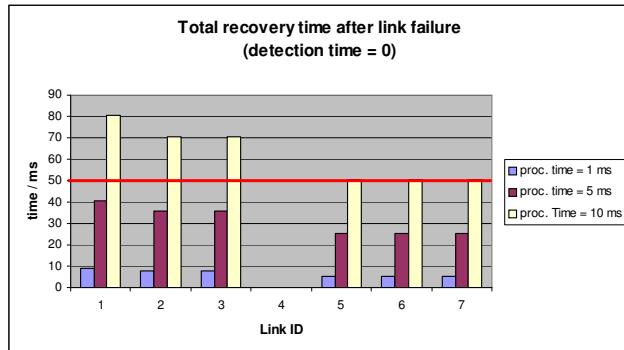

2007-07-23, Torsten Mueller

3

ERICSSON

Investigations of RSTP protection time

- Methodology: Discrete event simulation
 - using an exact bridge model
- Main interest: total recovery time
 - time between error and when all end stations can communicate with each other
- Various network topologies

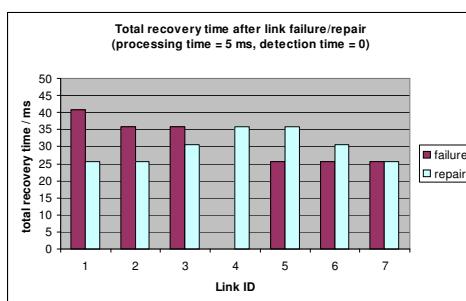


2007-07-23, Torsten Mueller

4

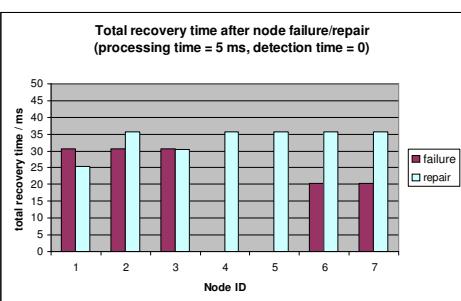
ERICSSON

RSTP protection in a ring

Link failure - BPDU processing time



- important factor: BPDU processing time
- worst case in typical ring: $t_{recovery} = t_{detect} + (N+2) \cdot (t_{proc} + \underbrace{t_{queue} + t_{trans} + t_{prop}}_{\text{negligible}}) + t_{flush}$
- fast protection: optimize processing time
- orders of magnitude faster than STP


Other failure scenarios

Link failure/repair and Node failure/repair

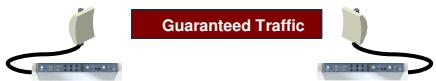
Link failure / link repair

Node failure / node repair

- Repair is not hitless
- Recovery time for link failure/repair and node failure/repair are in the same range

Adaptive Modulation on a link

Example with 2 PHY modes


Maximum capacity: 64-QAM – 116 Mbit/s

364 days

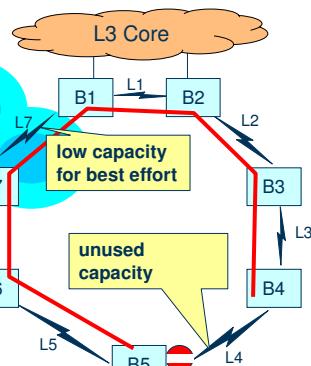
Guaranteed capacity: 4-QAM - 25 Mbit/s

9 hours

Non-availability: 0 Mbit/s

5 minutes

2007-07-23, Torsten Mueller


7

ERICSSON

Adaptive Modulation in a network

Capacity in network without rerouting

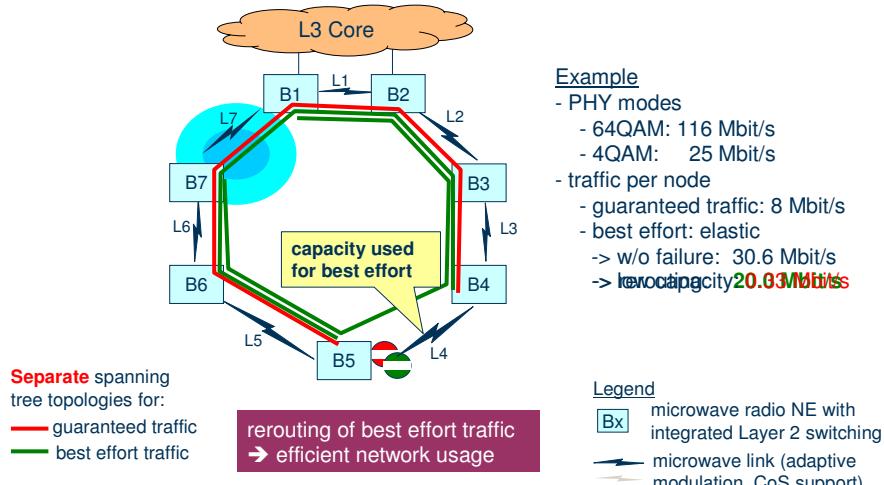
moving rain cell of high intensity
Single spanning tree topology:

Example

- PHY modes
 - 64QAM: 116 Mbit/s
 - 4QAM: 25 Mbit/s
- traffic per node
 - guaranteed traffic: 8 Mbit/s
 - best effort: elastic
- > w/o failure: 30.6 Mbit/s
- > low capacity: 0.333 Mbit/s

Legend

- [Bx] microwave radio NE with integrated Layer 2 switching
- [link] microwave link (adaptive modulation, CoS support)

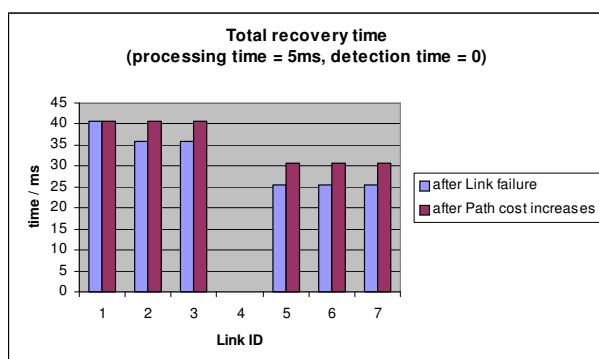

2007-07-23, Torsten Mueller

8

ERICSSON

Adaptive Modulation

Rerouting of best effort traffic


2007-07-23, Torsten Mueller

9

ERICSSON

Recovery time - path cost change

- Rerouting: dynamically change spanning tree path cost

- Total recovery time for best effort traffic similar to link failure: one additional flush

2007-07-23, Torsten Mueller

10

ERICSSON

Summary & Conclusions

- RSTP performance
 - RSTP provides fast recovery in realistic network topologies
 - Significant advantage over STP (several order of magnitude)
 - Fast recovery time achievable
- Adaptive Modulation
 - High availability for guaranteed traffic
 - Dynamic rerouting increases availability for best effort traffic
 - Rerouting using RSTP/MSTP dynamic path cost change
 - Interruptions for best effort traffic are short
- Acknowledgement
 - This work has been performed as part of the EIBONE research project funded by the German Federal Ministry of Education and Research

ERICSSON
TAKING YOU FORWARD