

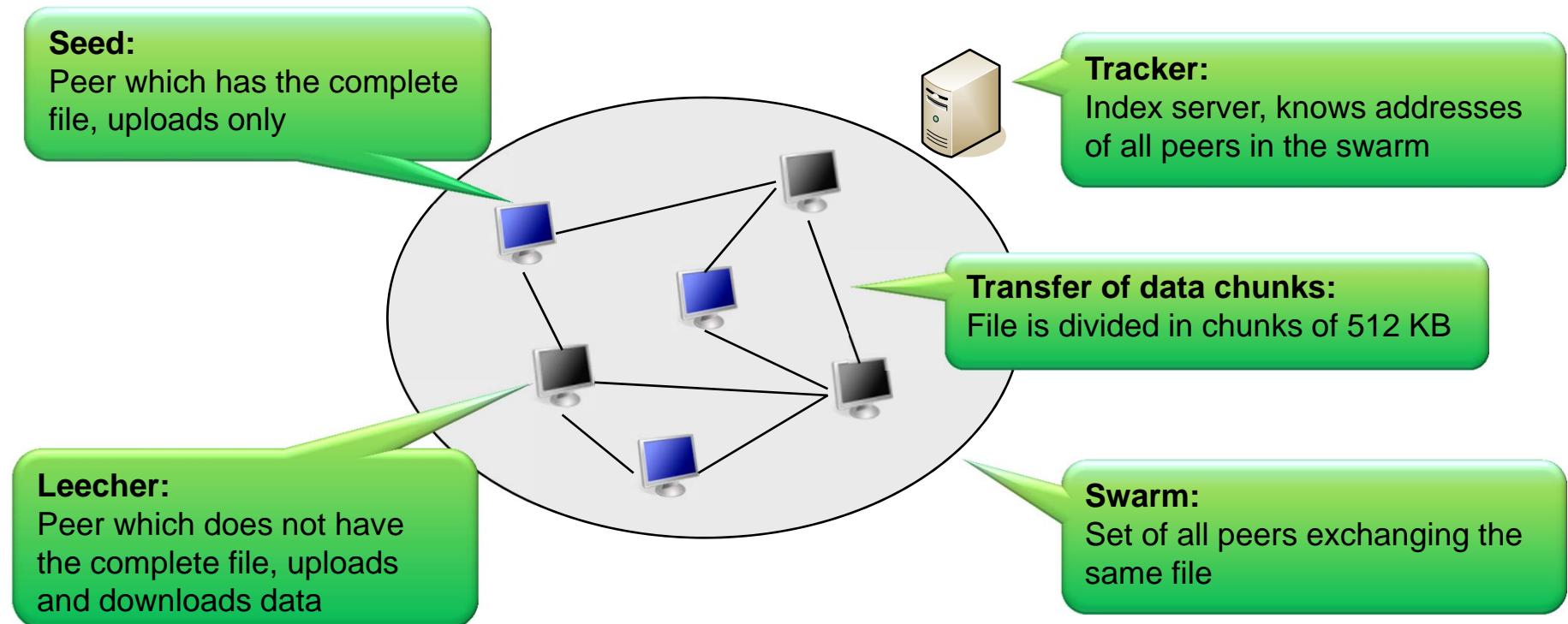
The Impact of Caching on BitTorrent-Like Peer-to-Peer Systems

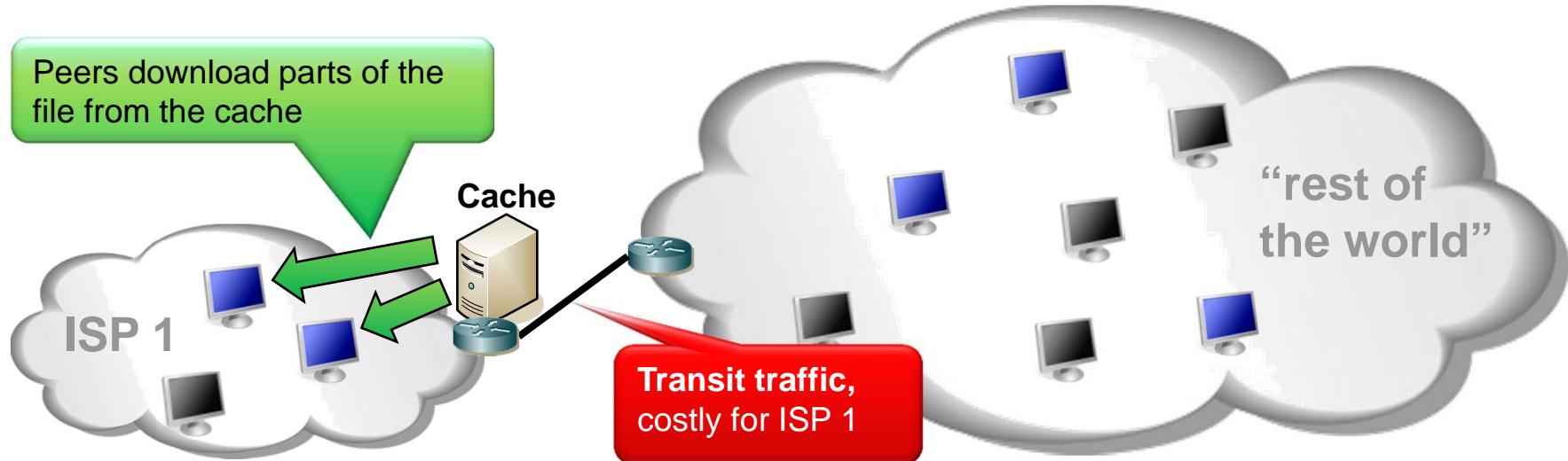
Best Paper Award at IEEE P2P 2010 in Delft, Netherlands

Frank Lehrieder¹, György Dán², Tobias Hoßfeld¹, Simon Oechsner¹, Vlad Singeorzan¹

¹*University of Würzburg, Germany*

²*KTH Royal Institute of Technology, Stockholm, Sweden*


Agenda

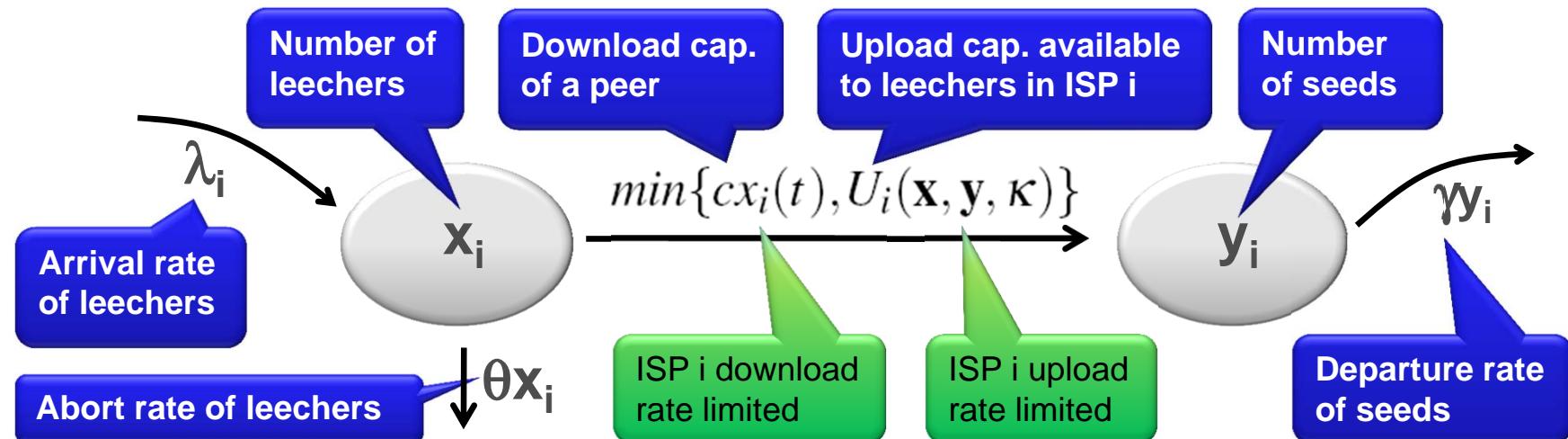

- ▶ Introduction
 - BitTorrent-like P2P networks
 - Caching in BitTorrent-like P2P networks
- ▶ Fluid model of caching
 - Number of peers
 - Transit traffic estimates
- ▶ Experimental and simulative validation
- ▶ Analytical results and insights
- ▶ Conclusion

BitTorrent-Like P2P Networks

- ▶ In wide use for user-assisted content distribution, mostly file-sharing
- ▶ Responsible for a large fraction (60%) of today's traffic in the Internet
- ▶ Example network:

Caching in BitTorrent-Like Networks

- ▶ Focus of the study: impact of caches on
 - Number of leechers and seeds
 - Transit traffic between different ISPs
 - Single swarm scenario: no storage replacement strategies
- ▶ Caches (e.g. OverSi's OverCache P2P)
 - Run BitTorrent protocol, appear as high capacity peers
 - Upload only to local leechers


A Fluid Model of Caching – Overview

- ▶ Basis: fluid model of Qiu and Srikant (SigComm 2004)
 - Number of leechers and seeds in a BitTorrent swarm
 - Depending on arrival- and departure rates, up- and download capacities of the peers
 - Dynamics and steady state equations
- ▶ Our extensions
 - Multiple ISPs $i \in \{1, \dots, I\}$
 - Caches with upload capacities κ_i
 - Incoming and outgoing transit traffic of ISPs
- ▶ Road map
 - Model impact of caches on number leechers and seeds
 - Derive transit traffic estimates based on ISP affiliations of peers

System Dynamics

- ▶ Flow diagram for ISP i

- ▶ Fluid model

$$\frac{dx_i(t)}{dt} = \lambda_i - \theta x_i(t) - \min\{cx_i(t), U_i(\mathbf{x}, \mathbf{y}, \kappa)\}$$

$$\frac{dy_i(t)}{dt} = \min\{cx_i(t), U_i(\mathbf{x}, \mathbf{y}, \kappa)\} - \gamma y_i(t)$$

Steady State Solutions and Insights

- ▶ Steady state of the system: $\frac{dx_i(t)}{dt} = \frac{dy_i(t)}{dt} = 0 \quad i = 1, \dots, I$.
- ▶ Analytical solutions for avg. number of **leechers** x_i and **seeds** y_i in ISP i
- ▶ Insights (derived from the equations)
 - Case 1: all ISPs upload rate limited
 - Cache in ISP i **decreases** avg. number of leechers x_i
 - Cache in ISP i **increases** the avg. number of seeds in ISP i if peers are impatient ($\theta > 0$)
 - Case 2: all ISPs download rate limited:
 - no impact on number of peers
- ▶ Supposed impact on transit traffic
 - Incoming transit traffic decreased
 - Outgoing transit traffic increased or decreased?

A Simple Model for Transit Traffic

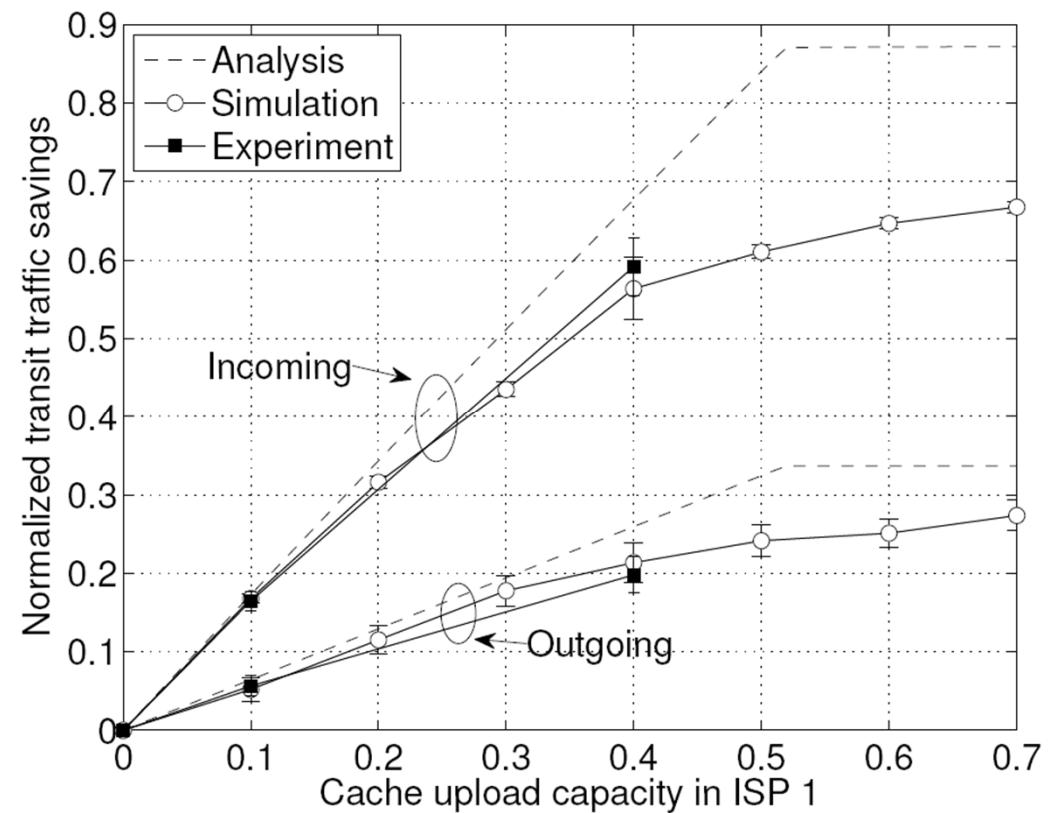
- ▶ Model of **incoming and outgoing transit traffic** of the ISPs
 - Based on the number of leechers x_i and seeds y_i in the ISPs
 - Abstracts from inter-ISP delays, BitTorrent neighbor selection, and the choke algorithm

- ▶ **Incoming transit traffic estimate**

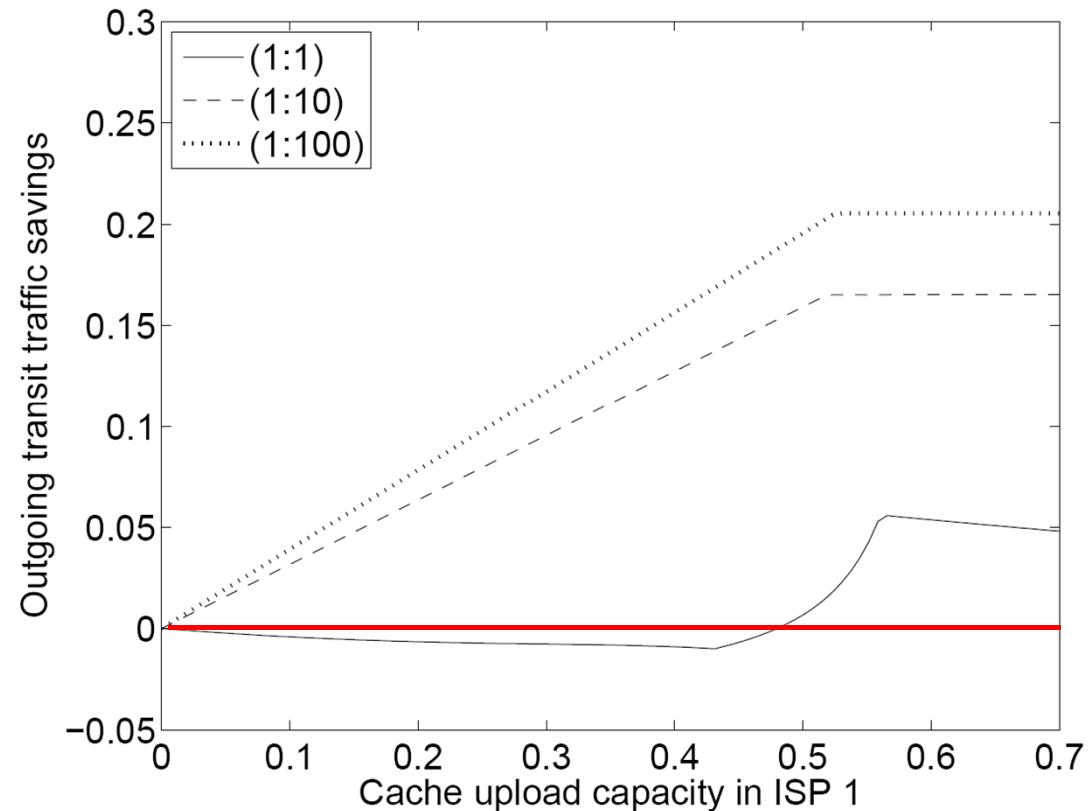
$$\text{Incoming transit traffic of ISP } i = \text{Total transfer rate in swarm (caches not included)} \cdot \text{Fraction of leechers which are in ISP } i \cdot \text{Fraction of upload capacity of peers outside ISP } i$$

- ▶ **Outgoing transit traffic estimate**

$$\text{Traffic from ISP } i \text{ to ISP } j = \text{Incoming transit traffic of ISP } j \cdot \text{Ratio of upload capacity of peers in ISP } i \text{ to upload capacity of peers outside ISP } j$$


Validation of the Model: Methodology

- ▶ Simulator
 - Simulation framework ProtoPeer
 - BitTorrent library of ProtoPeer
 - 25 simulation runs per configuration
- ▶ Experimental facility: German-Lab
 - Around 160 nodes, distributed across 5 universities in Germany
 - BitTorrent mainline client (version 4.4.0)
 - 5 experiment runs per configuration
- ▶ Scenario
 - Two ISPs, ISP 2 is 10 times larger than ISP 1
 - Cache in ISP 1 with varying upload capacities
 - Around 120 peers concurrently online


Validation of the Model: Transit Traffic

- ▶ Normalized transit traffic savings: fraction of traffic that can be saved by installing a cache
- ▶ Good match for outgoing traffic and incoming traffic with small cache capacities
- ▶ Incoming traffic savings overestimated (due to fluctuation of number of leechers)
- ▶ Even better match for larger swarms (see figures in the paper)

Analytical Results: Outgoing Transit Traffic

- ▶ Outgoing transit traffic savings wrt. to cache upload capacity
- ▶ Ratio of peer arrivals (ISP 1:ISP 2): (1:1), (1:10), (1:100)
- ▶ Caches more efficient when large fraction of the swarm outside ISP with cache
- ▶ Outgoing transit traffic may increase due to the cache
- ▶ Management of cache upload rates to different swarms required to maximize efficiency

Conclusion


- ▶ Proposed a **fluid model for caches** in BitTorrent-like P2P networks to estimate **impact on transit traffic**
- ▶ Validation via simulations and experiments with real BitTorrent clients
- ▶ Insights
 - Caches effective when a large fraction of peers outside the ISP
 - Caches can lead to increased outgoing transit traffic
- ▶ Future work
 - Impact of proximity-aware peer selection
 - Management of cache upload rates in multi-swarm scenarios

BACKUP

Analytical Results: Incoming Transit Traffic

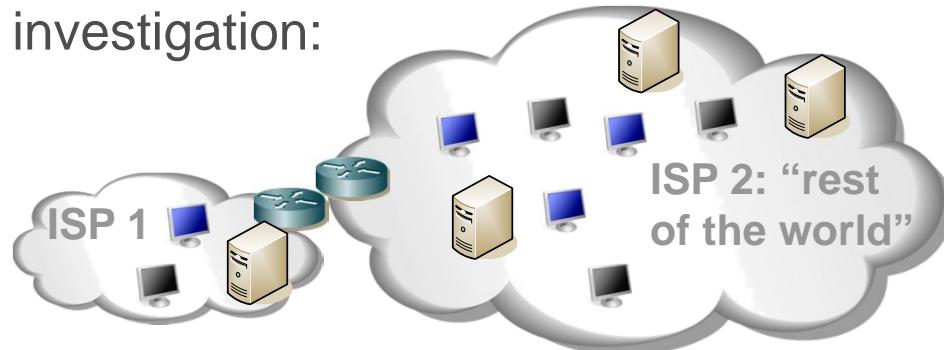
- ▶ Incoming transit traffic savings for ImU and ImC
- ▶ Ratio of peer arrivals (ISP 1:ISP 2): (1:1), (1:100), (1: ∞) “asymptotic”
- ▶ Incoming transit traffic savings of ISP 1 larger for the (1:100)-scenario
- ▶ Cache ineffective when a large fraction of the peers is inside the ISP with the cache

Steady State Solutions and Insights

- ▶ All ISPs upload rate limited

Average number of leechers

$$\bar{x}_i = \frac{\lambda_i}{v(1 + \frac{\theta}{v})} - \frac{\kappa_i}{\mu\eta(1 + \frac{\theta}{v})} - \Delta_i(\mathbf{x}, \mathbf{y}, \kappa)$$


Average number of seeds

$$\bar{y}_i = \frac{\lambda_i}{\gamma(1 + \frac{\theta}{v})} + \frac{\kappa_i\theta}{\mu\eta\gamma(1 + \frac{\theta}{v})} + \frac{\theta}{\gamma}\Delta_i(\mathbf{x}, \mathbf{y}, \kappa),$$

A cache in ISP i decreases the average number of leechers in ISP i .

A cache increases the number of seeds in ISP i if $\theta > 0$, i.e., when peers abort the download

- ▶ Two ISP scenario sufficient for investigation:

depends on
(1) aggregate cache capacities and
(2) aggregate arrival rates in other ISPs,
but not on their individual values!

- ▶ All ISPs download rate limited: no impact on number of peers

Steady State Solutions for a Single System

- ▶ No distinction of ISPs, illustrates general impact of caches
- ▶ Upload rate limited case

Average
number of
leechers

$$\bar{x} = \frac{\lambda}{v(1 + \frac{\theta}{v})} - \frac{\kappa}{\mu\eta(1 + \frac{\theta}{v})}$$

Caches decrease the average
number of leechers

Average
number of
seeds

$$\bar{y} = \frac{\lambda}{\gamma(1 + \frac{\theta}{v})} + \frac{\kappa\theta}{\mu\eta\gamma(1 + \frac{\theta}{v})}$$

Caches increase the number of
seeds if $\theta > 0$, i.e., when peers
abort the download

- ▶ Download rate limited case:
no impact of a cache on average number of peers

A Simple Model for Transit Traffic

- ▶ Model of **incoming and outgoing transit traffic** of the ISPs
 - Based on the number of leechers x_i and seeds y_i in the ISPs
 - Abstracts from inter-ISP delays, BitTorrent neighbor selection, and the choke algorithm

- ▶ Notation

- Publicly available upload rate in ISP i :

$$u_i^P = \mu(\eta x_i + y_i)$$

Upload rate of peers in ISP i
that can be used by leechers
outside ISP i

- Demand rate in ISP i :

$$D_i^d = \max(0, cx_i - \kappa_i) \text{ (for ImC, similar for ImU)}$$

Rate that the peers in ISP i demand
from the total public upload rate

- Received rate of peers in ISP i :

$$D_i^r = D_i^d \min \left(1, \frac{\sum_j u_j^P}{\sum_j D_j^d} \right)$$

Rate at which peers in ISP i
can receive data from the
swarm

Transit Traffic Estimates

- ▶ Incoming transit traffic

$$\rho_i^I = D_i^r \left(1 - \frac{u_i^P}{\sum_j u_j^P} \right)$$

Assumption:

Incoming transit traffic the ISP proportional to the publicly available upload rate outside the ISP

- ▶ Outgoing transit traffic

$$\rho_i^O = \sum_{j \neq i} \rho_j^I \frac{u_i^P}{\sum_{k \neq j} u_k^P}$$

Assumption:

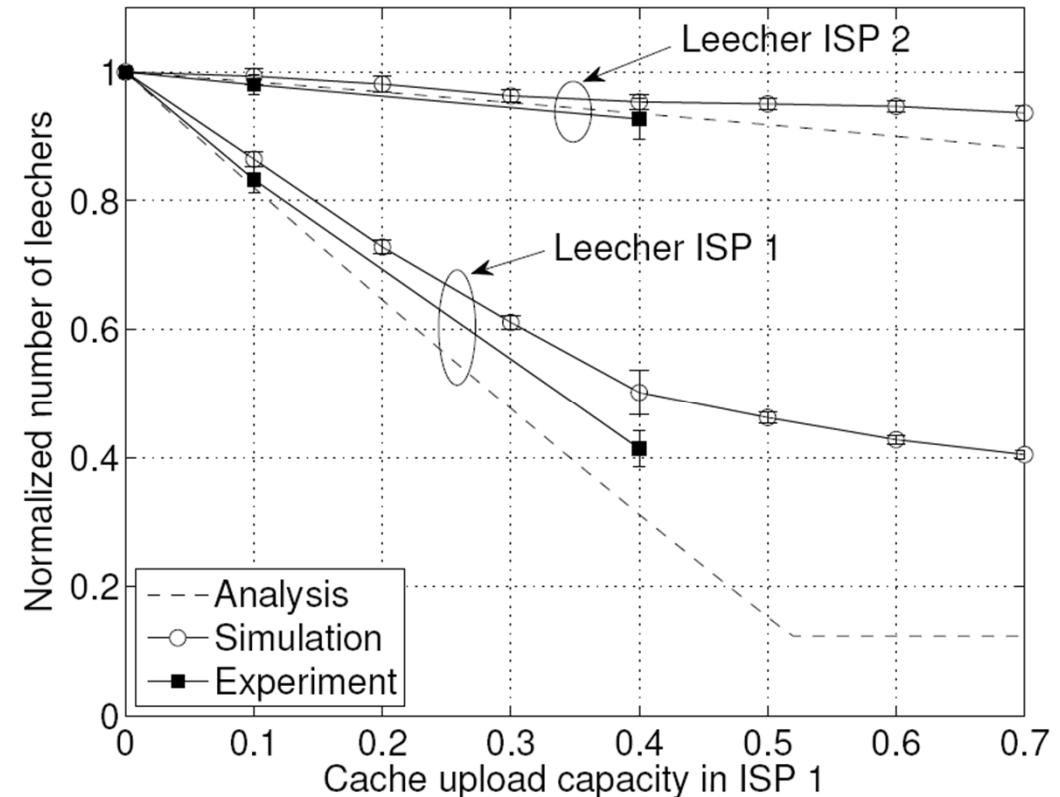
Transit traffic from ISP i to ISP j is proportional to the ratio of the publicly available upload rate in ISP i and the aggregate publicly available upload rate outside ISP j

A Simple Model for Transit Traffic

- ▶ Model of **incoming and outgoing transit traffic** of the ISPs
 - Based on the number of leechers x_i and seeds y_i in the ISPs
 - Abstracts from inter-ISP delays, BitTorrent neighbor selection, and the choke algorithm
- ▶ **Incoming transit traffic estimate**

$$\text{Incoming transit traffic of ISP } i = \text{Total transfer rate in swarm (caches not included)} \cdot \text{Fraction of leechers which are in ISP } i \cdot \text{Fraction of upload capacity of peers outside ISP } i$$

Assumption: incoming traffic of the ISP is proportional to the upload rate of the peers outside the ISP


- ▶ **Outgoing transit traffic estimate**

$$\text{Traffic from ISP } i \text{ to ISP } j = \text{Incoming transit traffic of ISP } j \cdot \text{Ratio of upload capacity of peers in ISP } i \text{ to upload capacity of peers outside ISP } j$$

Assumption: transit traffic from ISP i to ISP j is proportional to the ratio of the upload rate in ISP i and the aggregate upload rate outside ISP j

Validation of the Model: Number of Peers

- ▶ Normalized number: ratio of leechers with and without a cache
- ▶ Good match for ISP 2 and ISP 1 with small cache capacities
- ▶ Number of leecher in ISP 1 under-estimated for large cache capacities
- ▶ Reasons
 - Oscillations between an up- and download rate limited systems
 - Cache capacity not fully utilized

Taxonomy of Caches

- ▶ ISP-managed ultra-peers (ImU)
 - Run the BitTorrent protocol
 - **Appear as high capacity peers in the swarm**
 - Upload only to local leechers
 - Example: OverSi's OverCache P2P
- ▶ ISP-managed caches (ImC)
 - Similar to ImUs
 - Peers explicitly **prefer downloading from the cache**
 - Cache discovery protocols required (IETF ALTO & DECADE)
- ▶ Transparent caches
 - Intercept requests to external peers (DPI) and serve them
 - Example: PeerApp's UltraBand
 - Used for comparison, not part of our model