

On the Use of Peer-to-Peer Architectures for the Management of Highly Dynamic Environments

Carlos Kamienski (cak@gprt.ufpe.br)

Djamel Sadok (jamel@cin.ufpe.br)

Joseane Fidalgo (joseane@cin.ufpe.br)

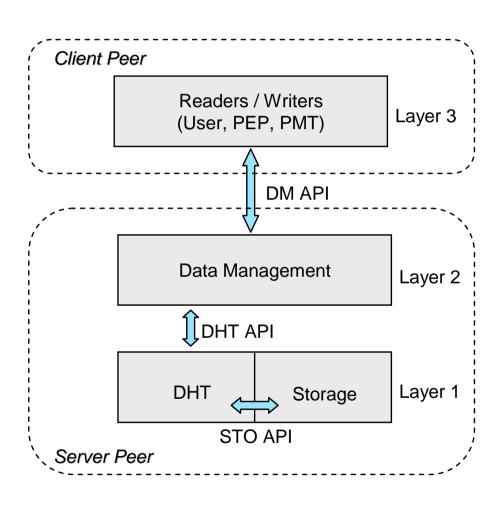
Jennifer Lima (jennifer@cin.ufpe.br)

Börje Ohlman (Borje.Ohlman@ericsson.com)

- Traditional management approaches not designed to deal with Internet wide services for mobile users
- Policy-based Management (PBM) may be an option
 - Policies are the aggregation of rules
 - Each one consists of one or more conditions and actions
 - Describe how to allocate resources to meet business goals
- IETF PBM framework
 - Policy Decision Points (PDP)
 - Policy Enforcement Points (PEP)
 - Policy Repository

Motivation for a new framework

- The IETF framework is focused on simpler problems from typical corporate networks
 - We consider service usage in the global Internet
- 3G/4G: huge number of mobile users with highly dynamic mobility and service usage patterns
- New requirements associated with those environments, provided by the p2p technology
 - Scalability, fault tolerance, self-configuration, load balancing, ...


- ▶ P2P Policy Management Infrastructure ⇒ P4MI
 - PBM framework based on the p2p technology as the main enabling mechanism
 - Based on a hierarchical p2p architecture, using Distributed Hash Tables (DHT)
 - Abstract framework
- PBM for Ambient Networks ⇒ PBMAN
 - An application (instantiation) of P4MI
 - Solutions for mobile and wireless systems beyond 3G

Policy Decision Network (PDN): core of P4MI

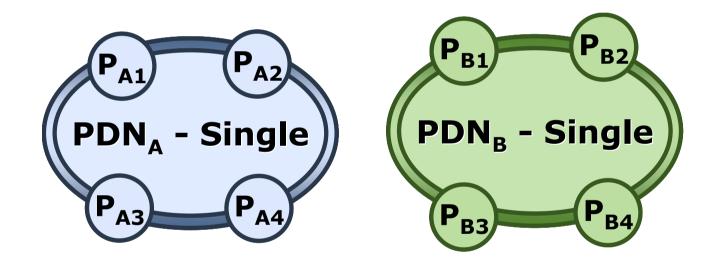
- Responsible for policy management and P2P issues
- Take decisions upon receiving service requests
 - Policies are retrieved and processed
- Comprised of:
 - Decision Points: P-Nodes (abstraction of policy servers)
 - Repositories
- Based on DHT (PDN-Ring)
- Policy Agents (composed of)
 - User and Policy Enforcement Point (PEP)

- Layer 1: DHT network + a simple storage system for dealing with records
- Layer 2: higher-level view of the data management system, allowing more complex data structures
- Layer 3: includes all readers and writers of policies, such as Users and PEPs

- Ambient Networks (AN):
 - New concept aimed at creating network solutions for mobile and wireless systems beyond 3G
- Enables cooperation of heterogeneous networks
 - belonging to different operators
 - or technology domains
- The key enabling concept is network composition
 - For allowing instant and dynamic user access to services and resources

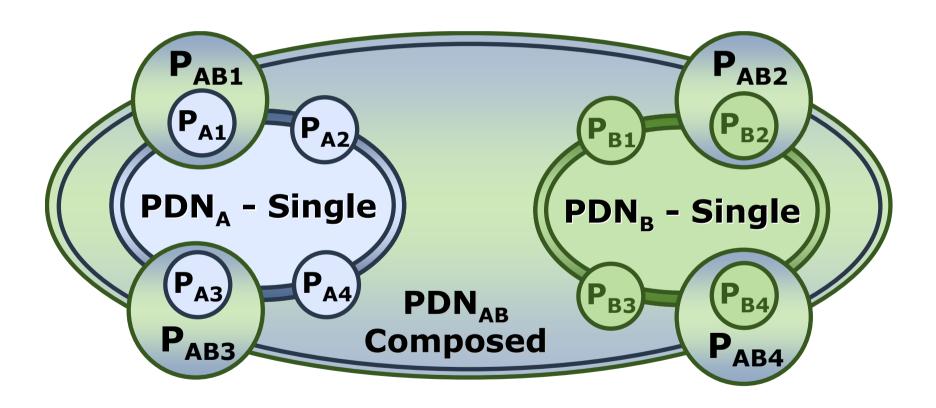
- Network Composition enables control-plane interworking and sharing of control functions among networks
- Composition can be thought of as a mechanism for automatic negotiation of roaming and/or service level agreements (SLAs)
 - Today negotiations are done manually

- PBMAN is concerned with the design and implementation of a management infrastructure for Ambient Networks
- Enabling technologies: PBM and P2P
- PBMAN goals
 - Framework specification: abstract
 - Prototype implementation: real
 - X-PBMAN: based on the X-Peer middleware (DHT)
 - Spiral methodology
 - Concepts \Rightarrow technology \Rightarrow implementation \Rightarrow validation \Rightarrow concepts \Rightarrow ...


Network Composition in PBMAN

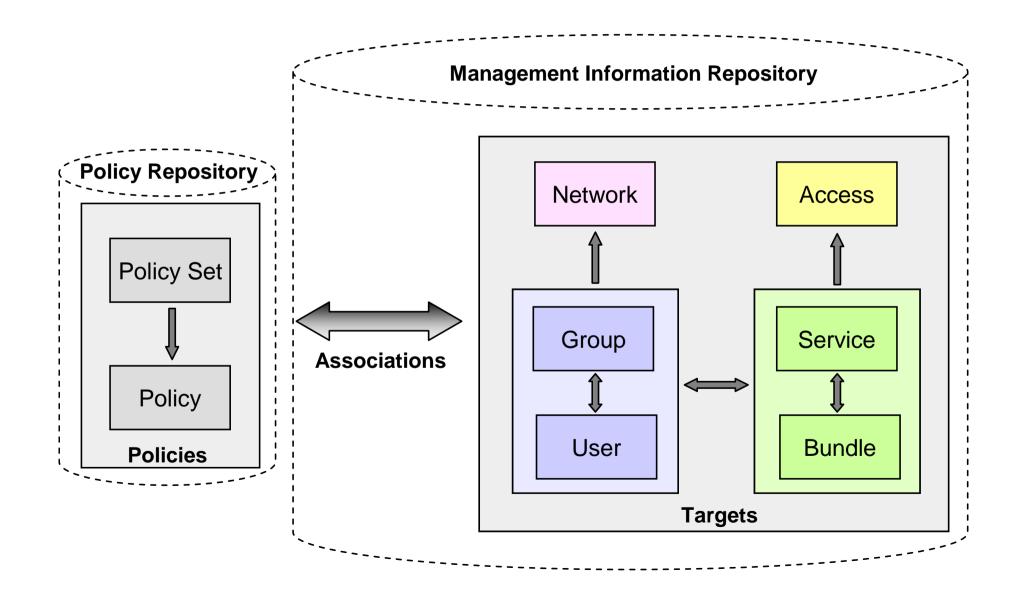
Composition types

- PDN/PDN
 - P2P composition: complex
 - Creation of a new composed DHT out of the single ones
- Agent/PDN
 - Typically a login process
 - Client/Server composition
- Agent/Agent
 - P2P composition managed by the PDN
 - Allows virtual compositions



PDN/PDN Composition - Before

PDN/PDN Composition - After



PDN/PDN Composition: Algorithm

- Step 1: Composition request from PDN_A to PDN_B
 - Two negotiators: P-Node_A and P-Node_B
- Step 2: Composition accepted by PDN_B
 - P-Node_A (source) creates new DHT
- Step 3: Join requests to the new PDN
 - P-Node_A and P-Node_B send "join" messages to other P-Nodes
- Step 4: Joining and republishing information
 - All important information (policies) is republished
- Step 5: Composition finished
 - All P-Nodes joined the PDN or timeout exceeded

PBMAN Information Model

Mapping: Information ⇒ Data Model

- PBMAN information model is mapped to the P4MI data model
- Basic DHT layer stores Key ⇒ content
 - DHT extension to allow complex data structures
 - Idea: build a distributed database atop the DHT
 - Key is divided into 3 parts: Key1, Key2 and Key3
 - Content is used to create lists, etc.

Data Management Layer: Examples

- Examples: Key ⇒ content
- {AN Id + Policy Id + info}
 - AN1 + PVoD1 + info \Rightarrow if service-req == vod then ...
- {AN Id + Target Id + policy}
 - AN3 + VoD + policy ⇒ PVoD1, PVoD2, PVoD3, ...
- {AN Id + Policy Id + target}
 - ISP_XYZ + PVoD1 + target ⇒ VoD, Jose, PremiumGrp

Future work

- Improvement of composition concepts
- Continuation of the prototype implementation
- Performance evaluation
 - Different types of compositions
 - Data Management Layer

- P4MI
 - Abstract PBM framework: hierarchical DHT network
- PBMAN
 - Instantiation of P4MI for Ambient Networks
 - P2P network for managing highly dynamic environments
 - Enables network composition
- X-PBMAN: Proof-of-concept prototype built
- Framework and prototype are work in progress
- Composition implemented: How to merge DHTs efficiently?

On the Use of Peer-to-Peer Architectures for the Management of Highly Dynamic Environments

Thank You!

This work was supported by the Research and Development Centre, Ericsson Telecomunicações S.A., Brazil

Composition: Motivation

- Networks become dynamic regarding structure and constituents
 - Network configuration must become flexible and autonomous
- Composition: generic Plug & Play method for creating, extending and merging networks
 - Automatic configuration of joint control plane
- Difference between end-system and network blurs
 - Users own networks that they attach to other networks