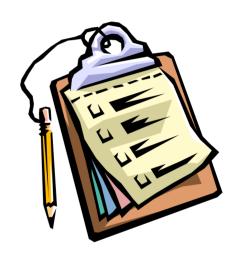


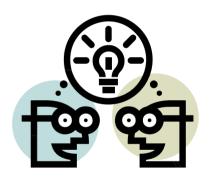
Experiences Using IEEE 802.11b for Service Discovery


Michael S. Thompson Scott F. Midkiff {stuboy, midkiff}@vt.edu Virginia Tech, USA

Overview

- Introduction
- Motivation
- IEEE 802.11b performance
- Low-traffic performance
- High-traffic performance
- Conclusion

Introduction



Goal:

 Present "real-world" performance data for IEEE 802.11b in ad hoc mode

Useful to:

 Anyone designing protocols or applications specifically for ad hoc IEEE 802.11b

Motivation

Purpose for conducting this work:

Designing a service discovery solution

- Observing the pitfalls and nuances of IEEE 802.11b in ad hoc mode using unicast and multicast addressing (frames)
- Testing low and high traffic volume scenarios

Experimental Setup

Hardware:

- Compaq iPAQ 3850 (200MHz StrongARM, 64MB memory, Dual PC Card slot sleeve)
- Xircom CWE1130 IEEE 802.11b PC card

Software:

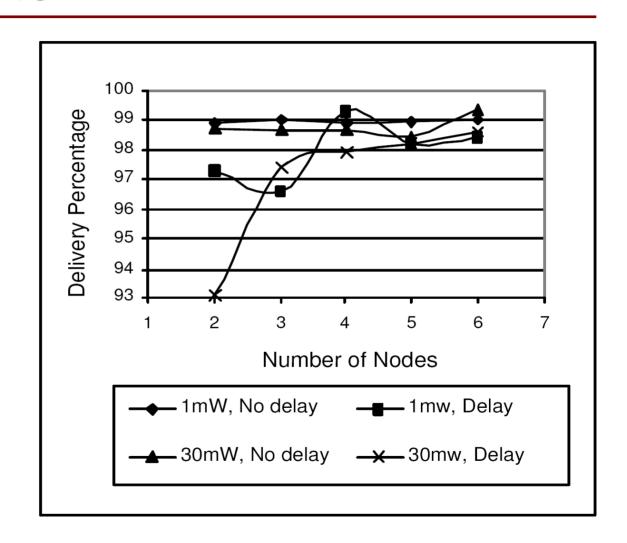
- Pocket PC 2002
- NET Compact Framework v1 and C#
- Ethereal and Network Instruments' Observer

Test 1: Low Traffic

Simulation of service discovery queries:

- Message generation, random (1-10secs)
- Broadcast flooding delivery
- With and without forwarding delay (0-200ms)
- Single and multihop configurations
- 1 and 30 mW transmit power
- Close proximity of nodes

Observing: packet loss


The Results

Multicast delivery probability

With and without delay

Transmit power of 1 mW or 30 mW

Analysis

Why is there variation in the delay scenario?

 Large standard deviation between points caused by a small number of tests

Observations:

- No delay scenario, missed packets were missed by all nodes
- Delay scenario, missed packets were missed by only one node

Using two nodes and unicast delivery, <u>no</u> packets were lost

A small number of multihop tests were also conducted

Multihop Results	Run1	Run 2	Run3	Average
Unique sends	417	428	413	419.33
Avg. misses / node	132.88	155.77	156	148.33
Avg. miss % / node	31.86	36.39	35.77	35.34
Avg. node degree	2.77	2.88	3.11	2.92

Analysis

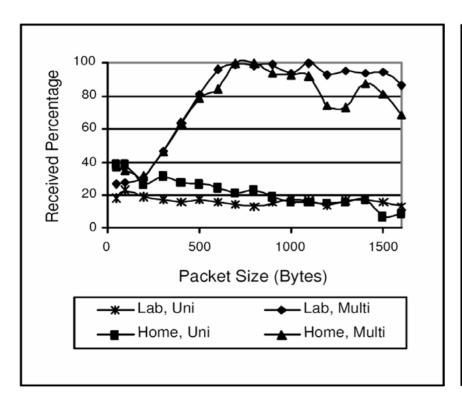
Why is there variation in multicast and unicast delivery?

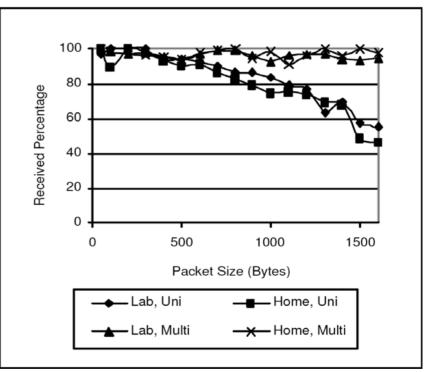
 IEEE 802.11b employs an ACK mechanism for unicast frames (but not multicast)

Observations:

- Neighbor degree increased across the tests, nodes did not move
- As neighbor degree *increased*, the miss percentage, also, *increased*

Test 2: High Traffic


Intrigued by the low traffic results, we wanted to see the performance in high traffic environments.


- Traffic generator to send packets with little or no delay to a traffic sink
- Packet size varied from 50 bytes and 100 bytes to 1600 bytes in 100-byte intervals
- Interpacket delay of 0, 1, and 2 ms
- High and low interference environments

Results

Percent of Packets Received (Multicast & Unicast)

No Delay

1ms Delay

Analysis

Unicast:

IEEE 802.11 MAC acknowledgements cause loss

Multicast:

- High loss for smaller packets
- Likely due to hardware resource limitations
- 2 ms delay scenario showed no loss difference between multicast and unicast

Conclusion

Observed IEEE 802.11b performance in:

- A low traffic scenario with varying transmit power and forwarding delay
- A low traffic, multihop scenario
- A high traffic scenario comparing unicast and multicast performance

Conclusion: IEEE 802.11b offers different levels of delivery probability based on the deliver type

Questions? Thanks!