University of Luxembourg
Faculty of Sciences, Technology, and Communication
Campus Kirchberg
6, rue Richard Codenhove-Kalergi
L-1359 Luxembourg-Kirchberg

A Dynamically Adapting Mobile P2P Multiplayer Game for Hybrid Networks

UbiSettlers

Christian Hoff, Ulf Wehling, Steffen Rothkugel, Christian Hiedels

Mobile Computing and Communication Research Lab christian.hoff@uni.lu mocca.uni.lu

Outline

- Introduction
 - Hybrid Networks
 - UbiSettlers
- Inconsistencies in Game State
- Trading
- Network Feedback
- Stimulating Cooperation
- Current State

Introduction

- hand-held game consoles become more and more popular
 - Nintendo DS or Playstation Portable
 - support IEEE 802.11 networks
- limitations
 - single-hop neighborhood only
 - maintain global game state
 - strong coupling between players during a single game
- UbiSettlers tries to overcome these limitations by
 - using hybrid networks
 - introducing network feedback mechanisms
 - explicitly allowing inconsistencies in game state

Hybrid Networks

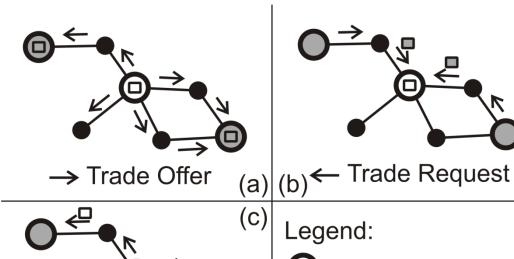
- different communication technologies involved
- self-organizing ad hoc groups
 - WiFi in ad hoc mode
 - bluetooth
- infrastructure networks
 - GPRS or UMTS
 - WiFi access points
- devices connected to several networks act as gateways

christian.hoff@uni.lu

Application Server

UbiSettlers

- inspired by the game "The Settlers"
- real-time strategy game for multiple players
- each player controls an island
- goals:
 - civilize island
 - evolve population
 - establish infrastructure
- instruments:
 - create buildings to speed up processes
 - trading with other players
 - teamwork to create complex buildings

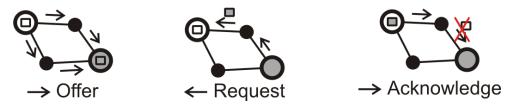


Inconsistencies

- UbiSettlers explicitly allows inconsistencies in the global game state
- inconsistencies are mapped on appropriate game elements
 - e.g. lost trading message → pirates capturing the merchant ship
- softens the strong requirements of common mobile games
 - multihop connections
 - dynamic joining and leaving users
 - game state gets not lost due to disconnections

Trading

- → Trade Acknowledge


- Vendor
- Customer
 - Vendor Goods
 - Customer Goods

- handshake model for local trading
- flooding and LMR protocol
- reconciliation protocol
 - generic approach to conciliate data items
 - merging different versions of trade offer lists
 - introduces small message overhead
 - higher data freshness

Trading (contd)

inconsistencies in global state allowed, e.g.

- vendor received goods, customer not
- explained after timeout through pirates
- automatic trading
 - place periodically recurring offers
 - maintained and propagated in the background
 - matching offers are negotiated automatically
- trade brokers in the backbone
 - vendors send offers to trade brokers
 - interested customers participate in an auction (cf. eBay)

Network Feedback

- mapping network events on game elements
 - lost messages → pirates
 - disconnections from backbone → disabling trade brokers
 - new devices → automatic trading
 - hop count → distance between islands
 - topology → prefer local/near trading partners (highlighted in offer list)
 - ...
- "random generator" for game elements
- uses topology and routing information
 - already maintained by used protocols
 - achieved by modifications to these protocols

Network Feedback (contd.)

- Lightweight Mobile Routing (LMR)
 - reactive routing protocol for multihop MANETs using request-reply messages
 - adopted to support gateway links to backbone
 - messages augmented with additional information, e.g. hop count
- Weighted Application-aware Clustering Algorithm (WACA)
 - clustering algorithm for hybrid wireless networks using master-slave paradigm
 - master devices are selected upon
 - battery power
 - wireless networking technologies
 - signal strength, ...
 - already maintained topology information
 - e.g. knowledge about master/slave devices or used network technology
 - made available for applications

Stimulating Cooperation

- two classes of common approaches introduced in literature
 - token-based or market-based
 - reward devices for relaying packets
 - trust management or reputation-based
 - devices observe behavior of other devices
 - misbehaving devices are punished
- it is not clear which of these approaches is the best for specific application scenarios
- Huang et αl. (2004) conclude: "incentive systems should be tailored to the needs of each individual application rather than a general solution"

Stimulating Cooperation (contd.)

- simple application specific incentives
 - trading for balancing different island properties
 - research of blueprints for complex buildings only in teamwork possible
- application specific token-based approach
 - adapted protocol introduced by Buttyán and Hubaux (2003)
 - players have to pay the merchants and their ships (sending messages)
 - passing ships (forwarded messages) pay for the usage of the harbor
 - different link costs for ad hoc and infrastructure links
- again inconsistencies are allowed
 - no exact mapping of virtual fees to real network topology required

Current Status

Conclusion

- we presented a real-time strategy game for hybrid wireless networks
- we soften the strong requirements of common mobile games by allowing inconsistencies
- we introduced the concept of network feedback (not restricted to mobile games)
 - assimilation of existing protocols
- we presented an adapted protocol for stimulating cooperation in hybrid networks

Thank you...

...for your attention!

Questions?

