

Using Physical Clocks for Replication in MANETs

Manuel Scholz,

Frank Bregulla

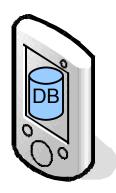
Freie Universität Berlin
Institute of Computer Science
14195 Berlin, Germany
{mscholz, bregulla}@inf.fu-berlin.de

Annike Hinze

University of Waikato
Dept of Computer Science
Hamilton, NZ
hinze@cs.waikato.ac.nz

Motivation

- Why physical timestamps in mobile environments?
- Examples:



- Disaster areas: coordination of firefighters and helpers
- Mobile tourist information service
- → Most recent information is needed
- Distributed calendar
- Distributed (mobile) database
- → Resolve conflicting operations: abort the younger one (first come first serve)

Overview

- Introduction
- Scenario
- Synchronization Protocol
- Skew Vectors
- Grid Time
- Correctness
- Conclusion & Future Work

Introduction

- Goal: ordering of concurrent operations with physical clocks
 - Problem: imprecisely synchronized physical clocks
- Basic idea of our hybrid approach:
 - Physical clocks are used for temporal distant operations
 - Logical clocks are used for temporal close operations
 - Time grid
- Problems
 - What exactly is temporal close / distant?
 - Peers in MANET have to make same decision.

Scenario

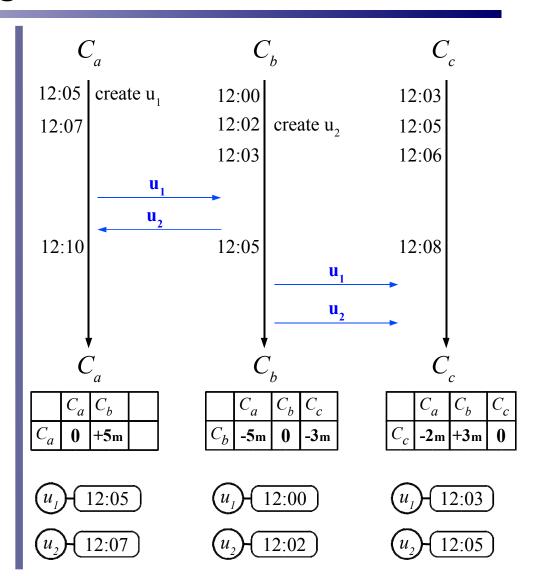
- Short term scenarios: one hour up to three days
 - Clock drift is disregarded
- 10 -100 participating peers forming a replication group
- Communication via WLAN (802.11)
- Update anywhere / multimaster replication
 - Operations: first executed locally and then propagated
 - Dissemination to all peers (sync. protocol)
 - → Concurrent update operations
- Goal: global consistency operations in same order

Time Synchronization Protocol

- External synchronization protocols (e.g. NTP) not suitable for MANETs
- Executed when peers meet for the first time
- Needs a predefined upper bound for round-trip of sync. message $\delta_{\mbox{\tiny mrt}}$
- Simple and lightweight protocol:
 - Peers exchange their local clock values
 - When round-trip time of sync. message $< \delta_{mrt}$ protocol is finished
 - If not: protocol is repeated
 - Protocol also determines skew

Skew Vectors

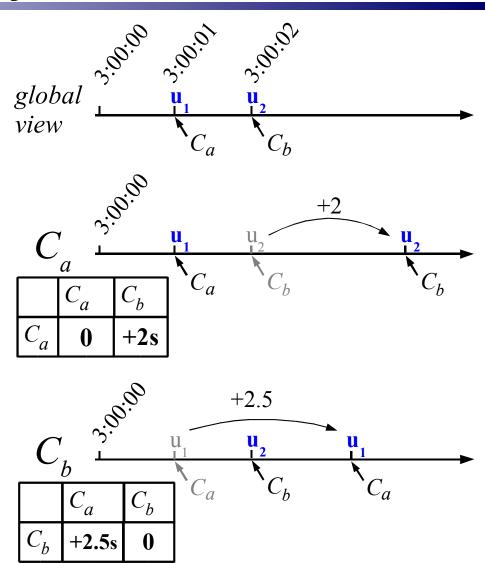
- Every peer stores time skew to all other peers
- Different local time on all peers
- But: same order on all peers
- Example:
 - Updates (u₁, u₂) have
 diff. times on diff. peers
 - u₂ always 2 min. after u₁



Message Delay Problem

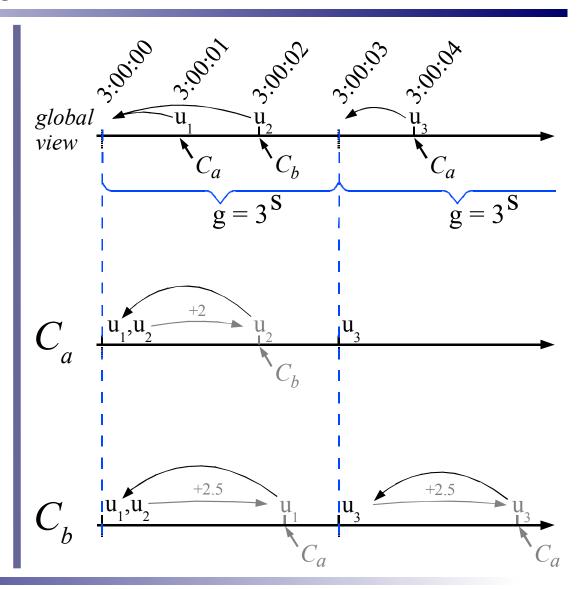
 Message delay can cause different order

- Example:
 - Only 1 sec. between u₁
 and u₂
 - Delay 2 and 2.5 sec
 - →u₁ and u₂ are ordered differently



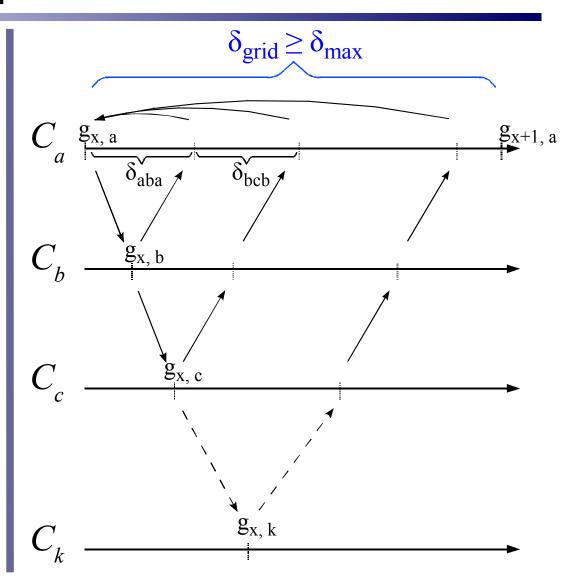
Grid Time

- Overlay time grid is used
- Timestamps are assigned to a grid time-slot
- Example:
 - u₁ and u₂ are in
 the same slot
 - u₃ is in the nextslot



Grid Width

- Grid width must be greater than max delay
- Max delay: single delay × max hops
- Single delay = δ_{mrt}
- Max hops = (no peers) - 1



Correctness

To prove correctness of method we have to show:

- 1. All operations are in the same order on all peers
 - → All grid values of a peer are assigned to the corresponding grid values on all other peers.

2. All operations with a temporal distance greater than a given value ($2\delta_{grid}$) are ordered according to their physical clocks

Correctness (Same Order on All Peers)

• Def. grid function:

$$\operatorname{grid}_a(t) = \left\lfloor \frac{t - \operatorname{offset}_a}{\delta_{\operatorname{grid}}} \right\rfloor \cdot \delta_{\operatorname{grid}} + \operatorname{offset}_a$$

Proof:

$$g_{x,a} = \operatorname{grid}_{a}(g_{x,b} + \operatorname{m-skew}_{ba})$$

$$= \operatorname{grid}_{a}(g_{x,a} + \operatorname{m-skew}_{ab} + \operatorname{m-skew}_{ba})$$

$$= \operatorname{grid}_{a}(g_{x,a} + \operatorname{skew}_{ab} + \delta_{ab} + \operatorname{skew}_{ba} + \delta_{ba})$$

$$= \operatorname{grid}_{a}(g_{x,a} + \delta_{ab} + \delta_{ba})$$

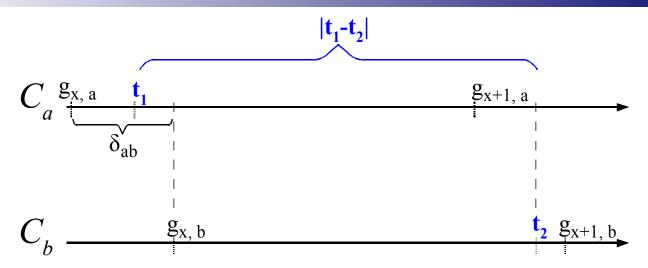
$$= \operatorname{grid}_{a}(g_{x,a} + \delta_{ab} + \delta_{ba})$$

$$= \operatorname{grid}_{a}(g_{x,a})$$

$$(\delta_{ab} + \delta_{ba} < \delta_{\operatorname{grid}})$$

$$= \operatorname{grid}_{a}(g_{x,a})$$

Correctness (Physical Clock Order)



- In which case are t₁ and t₂ ordered according to their physical clocks?
- Without message delay: minimal distance δ_{grid}
- With message delay: worst case grid slots are shifted by δ_{grid} because grid values cannot overlap
- $|t_1-t_2| > 2\delta_{grid} \rightarrow$ physical clock ordering

Conclusion & Future Work

- Hybrid timestamping mechanism (time grid):
 - Physical clocks are used for temporal distant operations (different grid slots)
 - Logical clocks are used for temporal close operations (same grid slot)
- Local skew vectors are used to store the skew among the peers
- Grid size is determined by single round trip time δ_{mrt} and max number of hops needed for initialization
- Next steps:
 - Refinement (time drift, bounded max hops, etc.)
 - Further tests of implementation (emulation ,repl. system)

Thank You!