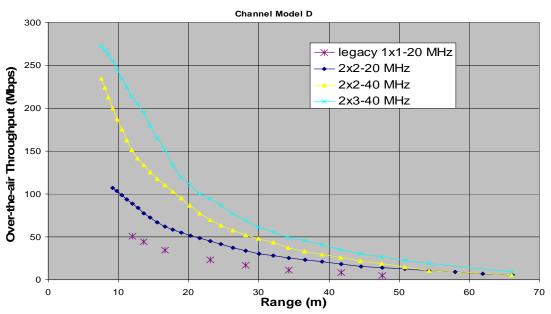
Mobile P2P After 5 Years – Where are we and where are we headed?

John Buford Avaya Labs Research March 2008

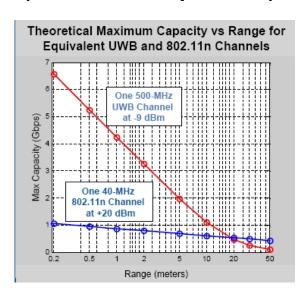
MP2P Highlights 2004 - 2008

	Organizers	Sessions / Main Topics
MP2P'04 Orlando	Jiannong Cao Maria Papadopouli Y. Charlie Hu Cecilia Mascolo	File Sharing Routing Networking Issues
MP2P'05 Hawaii	Maria Papadopouli Jiannong Cao Y. Charlie Hu Cecilia Mascolo	Information Sharing Routing Middleware
MP2P'06 Pisa, Italy	Kurt Tutschku Frank-Uwe Andersen Li Li Maria Papadopouli	Theoretical Foundations Applications of MP2P DHTs in MANETs
MP2P'07 White Plains, NY	Kurt Tutschku Li Li John Buford	P2P in Ad Hoc & MANETs Platforms Applications
MP2P'08 Hong Kong 3 21-2008 MP2P 2008	Kurt Tutschku Li Li John Buford © Copyright 2008 John Bufor	Caching and Load Sharing P2P SIP Security

Topics


- MP2P-1: Mobility in Internet scale P2P overlays
 - Why: P2P overlays support applications which are of interest to mobile users
 - Mobility in large P2P structured overlays
 - Multi-homed Device Roaming
 - Device heterogeneity, adaptivity, power-limits
 - Overlays to support mobility in future Internet
- MP2P-2: P2P overlays + MANETs
 - Why: P2P overlay might be useful abstraction for applications using MANETS
 - P2P overlay routing for MANETs
- MP2P-3: Hybrid
 - Why: Devices will run in both types of networks
 - Mobile devices in multi-overlay topologies (e.g., Internet, PAN, MANETs)

Mobility in Large P2P Structured Overlays


- Over 50 different structured overlay algorithms proposed
 - Logarithmic degree, constant-degree, one-hop, variable hop
- Most evaluated for stability under churn using 1 hour node lifetime or longer
- But, roaming scenarios could shorten node lifetime
 - Native layer address changes are effectively leave-join sequences
- Node lifetime also effected by energy limitations of devices, device usage patterns, and network connection costs
- Higher churn rate means higher bandwidth for structure overlay maintenance

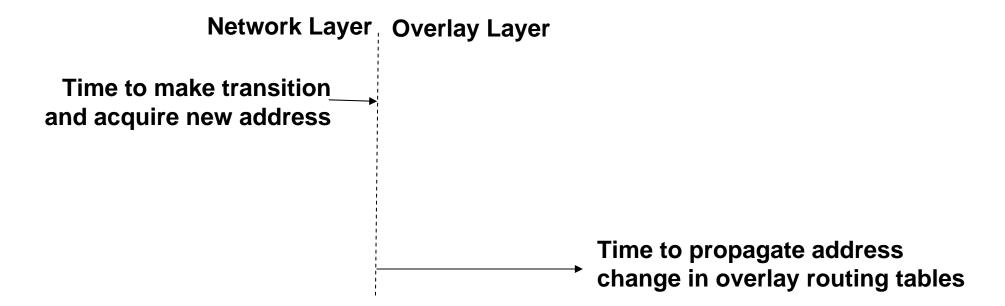
Transition Rates Due to Roaming

802.11n (Source: R. Stacey, Intel)

UWB vs 802.11n (Source: D. Leeper, Intel)

	WiMax	802.11n	UWB	
	5 km	50m	10m	
Driving at 20km/hour	4 transitions/hour	400 transitions/hour = 6.7 transitions/min	2000 transitions/hour or 0.55 transitions/sec	
Walking at 1 km/hour	0.2 transitions/hour	20 transitions/hour	100 transitions/hour	

Mobility in Large P2P Structured Overlays

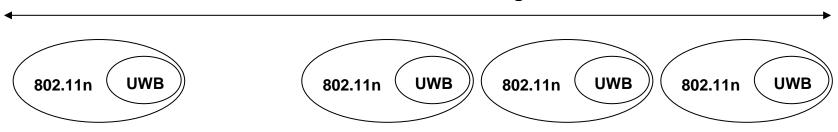

- Known techniques for mobility-induced churn
 - Nodes with Mobile IP use Home Address (HoA) in overlay
 - Nodes with fixed addresses act as virtual home agents
 - Quarantine mobile nodes (overlay clients)
 - Stealth nodes (participate in overlay on outgoing messages)
- Evaluation continuing
 - Difficult to evaluate since it requires simulation with both network layer and 100K+ peers

Mobility in Large P2P Structured Overlays

- H.-C. Hsiao, C.-T. King, Bristle: A Mobile Structured Peerto-Peer Architecture. *International Parallel and Distributed Processing Symposium* (IPDPS'03), 2003.
- O. Landsiedel, S. Götz, K. Wehrle. Towards Scalable Mobility in Distributed Hash Tables. Sixth International IEEE Conference on Peer-to-Peer-Computing, Cambridge, UK, August / September 2006
- A. MacQuire, A. Brampton, I. Rai, L. Mathy. Performance Analysis of Stealth DHT with Mobile Nodes, *Fourth IEEE Workshop on Mobile Peer-to-Peer 2006*.

- Worst case: all nodes are mobile
 - To maintain acceptable levels of churn, some % need to use home address (HoA) in overlay
 - Adds additional delay for all messages
 - Or overlay operator could provide super peers to act as home peers for mobile peers
 - Could help those nodes which are roaming far from their HoA
- Mobile node transitions to another network lead to lost packets during the transition
 - Possibile solutions are
 - Bi-casting the packets to both old and new CoA (care-of address),
 - Buffering packets at the HoA.

- What about low latency handoffs/Fast MIPv6 and pre-registration?
 - Reduces transition component of delay:

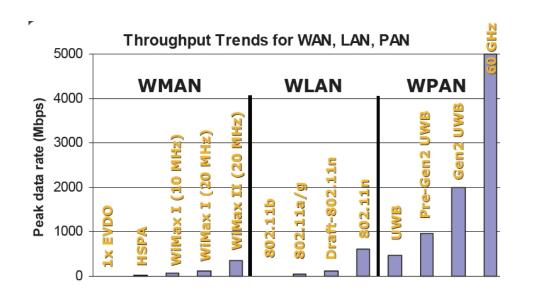

- Effect on node overlay address
 - Some algorithms compute overlay address from IP address and use this relationship in routing table maintenance to save space in the messages
 - 128 Bytes vs 8 byte
- Effect on proximity awareness
 - Many multi-hop overlays use proximity to select neighbors to reduce hop delay
 - If HoA is used for proximity determination then proximity benefit will be reduced
 - Assume measurement is based on RTT to IP address in overlay routing table

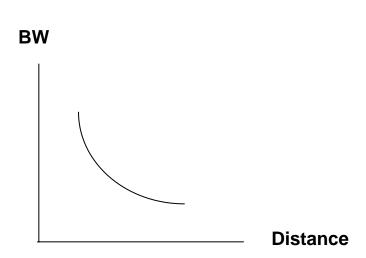
- Effect on relaying
 - TCP relays are used in overlays for media streaming
 - Relays increase throughput and reduce E2E delay if in mid-stream position
 - Determined through probing
 - J. Buford, A. Wang, X. Hei, Y. Liu, K. Ross. Discovery of In-Band Streaming Services in Peer-to-Peer Overlays. IEEE Globecom 2007, Nov. 2007.
 - If HoA is used for relay selection then relay benefit will be reduced
- NATed mobile nodes also depend on relays for NAT traversal
 - Selection of relay effect delays
 - Is it reasonable to assume that Mobile Nodes will be NATed?
 - These nodes could be gateways for a PAN with sensors and other personal devices

- Effect on topology-sensitve use
 - A number of types of overlays use topology awareness
 - Improve E2E routing or to
 - Form ALM trees with least delay
 - Topology measurements will be effected

Multi-Homed Peers

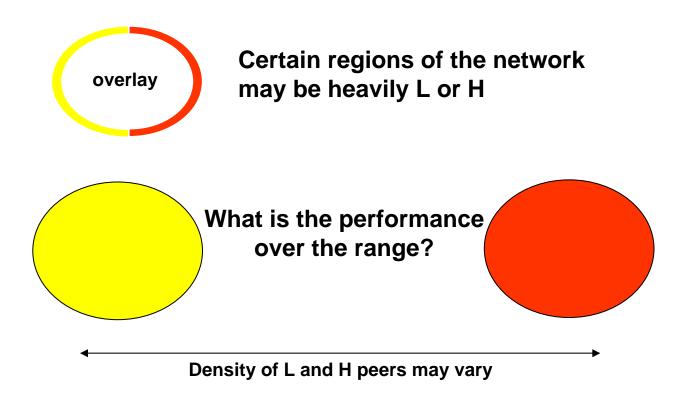
WiMax = 100x 802.11n range


- Peer registers in overlay using WiMax connection
- Uses 802.11 for higher-bandwidth transfers with other peers
 - Can first exchange IP address on 2nd interface
- Redundancy
 - Packets which aren't acked on primary path can be re-sent on widearea interface
 - Packets can be sent simultaneously on all available interfaces


Overlays to Support Mobility in Future Internet

- Several proposals for the future of the Internet are proposing overlays which are tied in to the infrastructure and support network services including mobility
- Examples
 - SpovNet
 - Service-Aware Transport Overlay (SATO)
- Also IETF HIP WG is designing "HIP-Bone" which provides an overlay using HIP addressing
 - Intended to leverage HIP features include mobility transparency

Device Heterogeneity


- Most overlays assume peers are homogeneous
 - Some have "super-peers"
- For mobile case, network bandwidth varies by type of wireless network and distance from access point

Distribution and Density

- Suppose there are two wireless technologies that have L and H bandwidth capacity respectively
 - Overlay may have peers using different wireless technologies
 - Peers may be close or far to the access point

Heterogeneity vs Adaptivity

- Heterogeneity
 - Different devices in the overlay have different capacities for CPU, storage, access BW
 - These capacities for each device are relatively stable over time
- => There are few transitions between H-, M-, L- states.

- Adaptivity
 - In a given access network, access
 BW varies
 - Distance from access point / base station
 - Interference
 - => could be frequent transitions between H-, M-, and L- states
 - Devices support multiple network interfaces
 - Devices roam and encounter different access BW
 - => If multi-homed, transitions could be masked by high bandwidth interface

Open Issues

- Heterogeneity
 - Recognize capacity
 - Use it to determine peer role in overlay
 - Design role-specific maintenance and lookup algorithm
- Adaptivity
 - Dynamically recognize capacity
 - Use it to budget maintenance and lookup traffic
 - Design overlay algorithms that adapt

Example: Variable Hop Overlays

What?

- Each peer in the overlay has bandwidth budget that is allocated to routing table maintenance
- Higher budget means more routing table updates are exchanged, leading to higher routing table accuracy
- Each peer manages its budget independently

Why?

- Devices have heterogeneous resources and access network capacity
- Latency matters
- Many nodes have the capacity for more routing table accuracy
- Doesn't penalize the low bandwidth nodes

Variable Hop Overlay

Examples

- Jinyang Li, Jeremy Stribling, Robert Morris and M. Frans Kaashoek.
 Bandwidth-efficient management of DHT routing tables. In the
 Proceedings of the 2nd USENIX Symposium on Networked
 Systems Design and Implementation (NSDI '05), Boston, MA, 2005.
- A. Brown, M. Kolberg, J. Buford. An Adaptable Service Overlay for Wide-Area Network Service Discovery. IEEE Globecom 2007 Workshop - Enabling the Future Service-Oriented Internet. Nov. 2007
- A. Brown, J. Buford, M. Kolberg. Tork: A Variable-Hop Overlay for Heterogeneous Networks. Fourth Workshop on Mobile Peer-to-Peer 2007. March 2007

P2P and MANETs

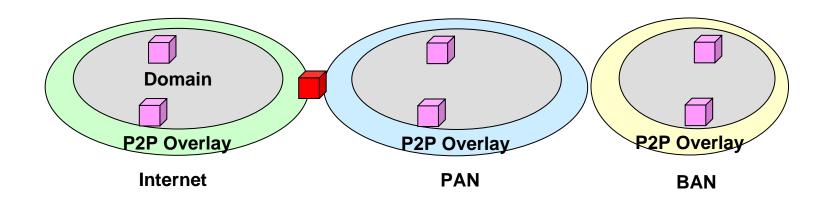
- The underlay design assumptions for most P2P overlays are quite dissimilar from the routing architectures proposed for MANETs
 - MANETs characterized by low bandwidth, higher error rate of the wireless medium, and low computation power of each node
 - Energy preservation is also a vital consideration in the protocol design
- DHT might provide a useful abstraction for some applications
 - Not clear that unstructured overlays have a significant value add
- If MANET is small then flooding/broadcast could be used as alternative to the usual DHT overlay routing

P2P and MANETs

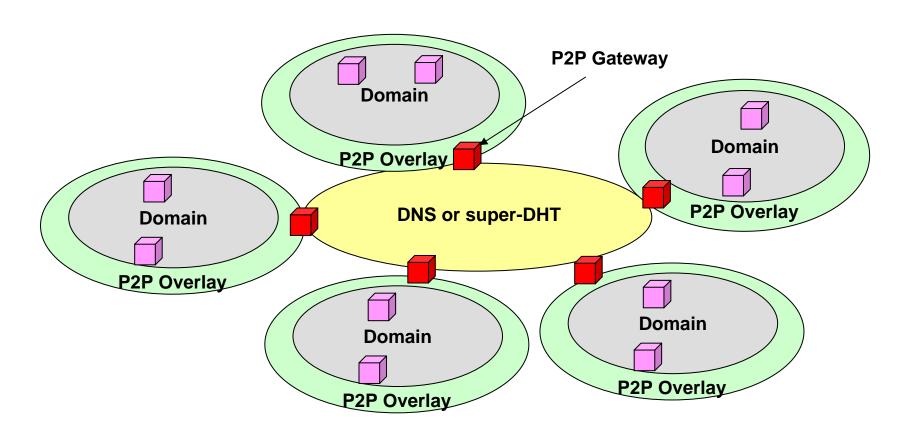
- Survey of recent work
 - M. Bisignano, G. Di Modica, Tomarchio, Orazio; L. Vita. P2P over Manet: a comparison of cross-layer approaches. 18th International Conference on Database and Expert Systems Applications, 2007. DEXA '07. 3-7 Sept. 2007, 814 - 818
 - Discusses: Ekta, MPP, Gnutella optimization for Manet, FastTrack over AODV, and MADPastry

Issues

- Given a cross-layer approach provides better performance and reduces network overhead
 - is it better to integrate the layers or to have 2 layers with an interlayer protocol?
- Is it worth to implement a DHT abstraction in a Manet environment, even if in a cross-layer fashion?
 - Less benefit as mobility increases and as size of MANET shrinks


P2P and MANETS

	Ekta [11]	MPP [7, 6]	Gnutella over Manet	FastTrack over	MADPastry [17]
			[4]	AODV [15]	
Main goal	To provide an effi-	To provide a protocol	Optimization of an	To provide a common	To provide a DHT
	cient DHT substrate	suite for efficient P2P	unstructured P2P	framework where P2P	substrate explicitly
	in Manet	applications in a Manet	protocol for Manet	file sharing and ad-	designed for Manet
			usage	hoc networks are inte-	
				grated	
P2P overlay protocol	Pastry	Gnutella-like	Gnutella	FastTrack	Pastry
P2P protocol typology	DHT-based	unstructured	unstructured	unstructured (supern-	DHT-based
				ode usage)	
Routing algorithm	DSR	DSR (modified)	OLSR	AODV	AODV
Routing alg. typology	reactive	reactive	proactive	reactive	reactive
Main design principle	Integrated approach	A protocol suite with	Cross-layer interface	Integrated approach at	Integrated approach at
	at network layer	a vertical interlayer	to synchronize on	network layer	network layer to pro-
		communication pro-	shared data structure		vide indirect-routing
		tocol. Reusing of	and to react to events		functionality
		existing protocol as far	generated at different		
		as possible.	layers.		
Performance evaluation	Comparison with	Comparison with the	Comparison with the	Comparison with the	Comparison with Pas-
	a Gnutella-like	ORION system	legacy Gnutella be-	layered approach with	try and a Gnutella-like
	behaviour		haviour	and w/o supernodes	behaviour
Prototype implementation	Yes (Linux based)	No (SDL specification)	No	No	No


Source: M. Bisignano, G. Di Modica, Tomarchio, Orazio; L. Vita. P2P over Manet: a comparison of cross-layer approaches. 18th International Conference on Database and Expert Systems Applications, 2007. DEXA '07. 3-7 Sept. 2007, 814 - 818

Hybrid Cases

- Hybrid Ad Hoc Infrastructure case
 - A kind of federated overlay problem (see next slide)
- Why?
 - Provide E2E continuity for applications

Federated Overlay

Approaches

- 1) All peers in PAN/BAN overlays participate in Internet overlay
 - Peer overlay address uniqueness across overlays to avoid collisions in the address space
 - Could use a hierarchical address scheme
 - Maintaining visibility of data across the two overlay networks.
 - Peers in an PAN/BAN determine what data of theirs is to be visible in global DHT
 - Explicit put to global DHT
- 2) A peer in the PAN/BAN DHT acts as a gateway (GW) to the global DHT
 - GW peer has a unique identifier in the global DHT
 - Requests to the global DHT get routed through the GW peer
 - GW Peer may change due to power and use

Conclusion: MP2P 09

- Peer-to-peer overlays for MANETs and sensor networks
- Hybrid P2P architectures for integrated MANETs and wide-area networks
- Large-scale heterogeneous P2P systems
- Mobility in federated overlay architectures
- Impact of network mobility on P2P systems and services (mobile IP / MANET)
- P2P-based information sensing and fusion
- MP2P performance & measurement studies
- Semantic routing & overlay routing in MP2P
- Delay tolerant MP2P systems
- Resource and service discovery in MP2P
- Resource exchange mechanisms in MP2P
- Peer access and control in mobile environment
- Data exchange and rendering techniques for mobile P2P devices
- Secure communication protocols for MP2P
- Nature-inspired algorithms for MP2P
- Novel MP2P applications & services
- Theoretical issues on mobile information diffusion
- MP2P SIP
- MP2P messaging systems, monitoring systems, searching systems, games, etc.
- Location dependent MP2P services
- MP2P over different bearer services: 2.5/3G (GPRS/UMTS) / 802.11 (WLAN)
- MP2P & operator/provider requirements
- Reliability and carrier-grade performance of MP2P services

Thank you!