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Abstract

The increasing transistor integration capacity will entail hundreds of processors on a single chip. Further,
this will lead to an inherent susceptibility to errors of these systems. To obtain reliable systems again,
various redundancy techniques can be applied. Of course, the usage of those techniques involves a significant
overhead. Therefore, the identification of the optimal degree of redundancy is an important objective. In
this paper we focus on core-level redundancy and checkpointing rollback-recovery. A model to deter-
mine the optimal degree of spatial and temporal redundancy regarding the minimal expected execution
time will be introduced. Further, we will show that in several cases, the minimal expected execution time
is achieved just by a simultaneous combination of both techniques, spatial redundancy and temporal redundancy.

1 Introduction

Continued technology scaling leads to an ever incre-
asing transistor integration capacity. Following this
trend, tens of billions of transistors will be available
on a single chip. Unfortunately, the performance gain
is limited when the increasing number of transistors
is used for larger processor cores. Performance incre-
ase is governed by Pollack’s Rule [1], which states
that microprocessor performance increase is roughly
proportional to the square root of the increase in com-
plexity (i.e. area). Applying Pollack’s Rule inversely, a
smaller core that requires half the area has only a per-
formance loss of about 30%, but a large power reduc-
tion since power consumption decreases linearly with
size. A system consisting of hundreds of small cores
has therefore a higher computational throughput rela-
tive to a system with a single large core. Many small
cores have also further benefits, such as the ability to
turn off individual cores when they are not needed.

Otherwise, the shrinking transistor size leads to an in-
creasing variability in performance and reliability [2].
This is due to static variations (e.g. random dopant
fluctuations) and dynamic variations (e.g. heat flux),
whereas the latter are time and context variant. That
leads to irreversible device degradation over time as
well as frequent and intermittent single-event upsets
(so called soft-errors), caused by alpha particles or
neutrons hitting a latch.

Therefore, our expectation of a future system on chip
(SoC) architecture is a steadily aging, and highly error-
prone system with hundreds of processing elements
(PEs). Intermittent failures, like single-event upsets,
cause that one-time factory testing becomes insuffi-
cient. Hence, it will be a challenge to yield reliable
systems anymore.

A possible solution to enhance the reliability of such a
system is the utilization of various forms of redundan-
cy. In this paper we will focus on the combination of

spatial and temporal redundancy at core-level. Besides
the redundancy level, e.g. circuit-level [3] or core-level
[4], another important parameter of spatial redundancy
is the degree of redundancy, e.g. dual modular redun-
dancy (DMR). However, DMR allows only error de-
tection, triple modular redundancy (TMR) or even n
modular redundancy (NMR) enables error correction.
Temporal redundancy techniques, like checkpointing
and rollback-recovery [5], perform the same task se-
veral times on the same resource in case of a failure.
As the error probability of a task increases with its
runtime, the task is partitioned into segments. After
each segment the state of this task is stored, such that
a rollback to the last validated state is possible. The-
refore, each segment has a lower error probability as
the whole task.

In this paper we will show that there exists an optimal
number of PEs when using spatial redundancy, and an
optimal number of checkpoints when using temporal
redundancy. This is due to the communication over-
head. We will further show that the minimal expected
execution time will be achieved just by a combination
of both techniques in many cases. This also holds for
a resource constrained system, where only a restricted
number of PEs is available.

The remainder of the paper is organized as follows. In
Section 2 we present related work. Section 3 descri-
bes our system model and further assumptions. Section
4 discusses three different redundancy techniques and
shows that an optimal degree of redundancy exists re-
garding the minimal expected execution time. In Sec-
tion 5 we analyze a resource constrained system and
a group of tasks. Finally, this paper closes with a con-
clusion and an outlook to future work in Section 6.

2 Related Work

Both techniques, spatial and temporal redundancy, are
known research areas for some time. The foundati-



ons of reliability enhancement were already laid by
J. von Neumann in the 1950s [6]. Currently, spatial
redundancy is mainly deployed in safety-critical do-
mains like avionics [7] or fault-tolerant server systems,
such as the HP Integrity NonStop [8]. These systems
often premise a dedicated connection between redun-
dantly used PEs. LaFrieda et al. [9] and Sanchez et
al. [10] examined the benefits as well as the commu-
nication overhead of dynamic coupled cores (DMR),
which share their states over a bus and a network on
chip (NoC), respectively. We also assume that there is
no dedicated connection for state exchange between
core groups. Sloan and Kumar [11] proposed a scala-
ble NMR framework for error-prone chip multiproces-
sors, which supports in-network fault tolerance for low
voting latency. They have assumed a constant check-
pointing frequency as their focus was not on the de-
termination of the optimal degree of redundancy. An
analytical examination of the degree of spatial redun-
dancy was also not performed by them. Huang and
Xu [4] proposed an analytical method to characterize
the lifetime reliability of many-core processors. They
have analyzed the reliability of many-core processors
and various redundancy configurations. Though, tem-
poral redundancy was considered by neither of them.

Most papers targeting checkpointing and rollback-
recovery (temporal redundancy) presuppose error-
detecting PEs. Therefore, there must be only one cor-
rect PE in the system and there is no need to exchange
any process states. Bruno and Coffman [12] conside-
red the optimal schedule of checkpoints for a mul-
tiprocessor system. But in their work it is assumed
that a job will only run on a single PE, the remaining
PEs are thus spare parts. The authors in [13] and [14]
also determined the optimal checkpointing frequency
regarding the minimal expected job execution time.
However, their calculations supposed an instantaneous
failure detection and an immediate repetition of the
failed task. Since soft-errors are hard to detect by a
PE itself, we assume that errors are only detectable
by state comparison between PEs.

There are also some papers in the field of combined
spatial and temporal redundancy: Bougeret et al. [15]
and Yi et al. [16] also assumed instantaneous failure
detection. Fereira et al. [17] examined processor rep-
lication as a primary fault tolerance mechanism and
checkpoint/restart as a secondary mechanism. They
developed a MPI library but no reliability analysis was
performed. Véyrynen et al. [18] showed that there is an
optimal number of redundancy regarding the minimal
expected execution time and applying either temporal
or spatial redundancy. Their work is most related to
the work presented in this paper, due to the similarity
of the system model. A simultaneous combination of
both techniques was not analyzed by them, yet.

3 System Model and Assumptions

For the following calculations we assume a homoge-
neous many-core system. The considered system is
highly error-prone and the errors of the processing ele-
ments are independent and identically distributed. For
simplicity we assume that for Section 4 only one sin-
gle task exists in the system. The available processing
elements communicate via a NoC. This assumption is
not adherent for our model but we expect that commu-
nication costs for a message increase with the number
of recipients. The used architecture is therefore not
inherently capable of performing broadcast transmis-
sions. Each PE stores its context to a dedicated and
reliable memory region to allow a rollback in case of
failure. The PEs also generate a fingerprint or checks-
um of the stored context, which they exchange with
each other periodically to compare their own context
with the context of each other PE (coordinated check-
pointing). For instance, a fingerprint can be calculated
from a checksum on all register values and stored va-
lues since the last validation. These fingerprint com-
parisons are necessary, since we assume that the PEs
possess no dedicated hardware for error detection.

The system is confirmed if at least k& out of n possi-
ble fingerprints coincide with each other. In case of a
failure, i.e. if less than k£ messages coincide, all PEs
rollback to the last valid state to recalculate the recent
task. The chosen model for our homogeneous many-
core system is thus the k-out-of-n system model (cf.
[19], [20]). The probability of k or more successes is
given by:

Psys(n, k) = Z (?)pl(l - p)n_i7 (1)

i=k
wherein n is the number of PEs available in the sys-
tem, k is the minimum number of correct working PEs,
and p the probability for correct execution of a given
task on a single PE. Function p is time-dependent,
as the probability for correct execution decreases with
the runtime of a given piece of work. Then, (1) can
be written as:
" /n
partin ) = 3 (T)ora - por . @
i=k
We further assume that k& depends on n, e.g. k =
[ 5 ]. Therefore, we will abbreviate p,ys(n, k,t) in the
following pays(n,t) = psys(n, [ 5], 1).

It should be noted that an increased number of used
PEs does not necessarily lead to an increase in reliabi-
lity. For instance, if the success probability of one PE
is only p(t) = 0.3, and k = [ %] like previously assu-
med, ps,s decreases with n. This occurs because the
expected number of coinciding values is only about
n-p < k. A possibility to enhance p,,s is a smaller
k, but this also results in an increased probability for
an undetected error. This is the reason why we have



chosen k = [%], inspired by the known k-out-of-2k
system model (cf. [19]).

4 Redundancy Techniques

As already stated, it is our objective to enhance the
reliability of an error-prone many-core system by the
application of spatial as well as temporal redundancy.
Thereby, an important aspect is the degree of redun-
dancy, since a high degree involves a major overhead
(e.g. communication costs). In the following subsec-
tions we calculate the expected execution time of a
task on a highly error-prone many-core system using
spatial, temporal, and combined spatial and temporal
redundancy.

In the failure free case, the runtime of the task to be
calculated is ¢. The arising overhead in case of a fault
is £y, which occurs due to the required rollback and
restart. Transmitting a fingerprint of the context from
one PE to another PE is position-independent and ta-
kes time ..

4.1 Spatial Redundancy

To enhance reliability, the task is calculated on n PEs
in parallel (active replication). After the task termina-
tion (at time t), all PEs exchange their context states
for fault detection. Obviously, the failure probability
is high if n is small and therefore less redundancy is
used. The probability for a successful error correction
is also low, which leads to a high failure probability of
the whole system. But please note that errors should
be still identifiable.

Though, if a high degree of redundancy is used, much
more errors could be corrected. That means, if less
than k errors occurred (e.g. k = [5]), the system can
calculate the task successfully. However, the commu-
nication costs are rising with the number of PEs used,
since each PE has to share its context with all other
PEs. In the following we address the question of which
degree of redundancy results in the minimal expected
execution time.

As already mentioned, we assume that the fingerprint
exchange between n PEs takes n-t. time. This ex-
change is necessary at least once (failure free case),
so that in the case of j failed attempts to compute the
task, the fingerprint has been exchanged j 4 1 times.
Each failed attempt takes also ¢ time, as failures can
not be detected until the fingerprints have been com-
pared. The expected execution time for spatial redun-
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Figure 1 Expected execution time using spatial red-
undancy and n PEs.
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Please note that p,,s in (3) is a function of runtime ¢
and n. However, since we want to minimize the dura-
tion of a task with a specific runtime, we can assume
that this time is constant and so p,s becomes a func-
tion of n.

Figure 1 shows the expected execution time for spatial
redundancy on a many-core system with n PEs ranging
from 4 to 60. To achieve a clearer depiction, only even
numbers of PEs were considered here, since k = [ 5|
causes that pgys(2i — 1) < pgys(2i), ¢ > 2N 0 € N.
The expected execution time for n = 2 PEs is also not

depicted here, as this time is very large (1224.1ps).

We assumed exponentially distributed errors with A :=
0.0001. This assumption was made for reasons of
simplicity, i.e. also the Weibull distribution can be
used. We further assumed ¢ := 1000ps, ¢y := 1.0us,
te:=0.1ps, and k := [5].

With a small degree of redundancy the expected run-
time is high, as the failure probability is high, too.



With the increase in redundancy the reliability impro-
ves. However, the overhead (here mainly the commu-
nication costs) increases also. So, after a certain de-
gree of redundancy (for this example, about 10 PEs)
the expected runtime even rises.

4.2 Temporal Redundancy

In this approach the task is calculated only on two
PEs. Both PEs exchange their contexts for failure de-
tection at regular intervals. Due to the lack of spatial
redundancy (number of PEs), both fingerprints must
coincide for a failure free computation. The task is
split in n. segments of equal size t,, = t/n., and
the contexts are exchanged and compared after the
computation of each segment. The probability of suc-
cess for a single PE computing a task with length
t = 1000us and with exponentially distributed failu-
res is p(t) = e=*"t = 0.905. Using 10 checkpoints,
the PE has to compute only 1/10 of the task between
two checkpoints, which leads to a success probability
of p(t/10) = e=*"*/10 = 0.990. The probability of a
failure for the whole task does not change by the use of
checkpointing as p(t/10)'° = p(t), but the inevitable
time loss in case of a failure changes. A high number
of checkpoints entails a short inter-checkpoint time,
and therefore the expected re-execution time in the
event of a failure decreases. Unfortunately, the com-
munication costs are rising with the number of check-
points and hence the optimal number of checkpoints is
unapparent. The expected execution time for temporal
redundancy is:

E[trun nc =MNec- Z 1_psys nc))(l v psys( ’ﬂc)
i=1

(1 (tn, +20tc) + (i = 1) 1)
_t+2'nc'tc nc'tf'(l_psys(tnc))
Psys (tnc) Dsys (tnc)

“

Here, psy. is a function of time, or rather the time to
calculate a checkpoint segment, as the number of used
PEs is constant n = 2. The expected execution time for
temporal redundancy with n. checkpoints is depicted
in Fig. 2. We assumed exponentially distributed errors
with A := 0.0001, ¢ := 1000ps, t¢ := 1.0ps, t.
1.0us, and n =k = 2.

As already seen at spatial redundancy, the expected
execution time function has a global minimum. First,
the execution time decreases, as the time loss in case
of a failure decreases. However, communication costs
predominate the execution time when too many check-
points are inserted. Here, the minimal expected exe-
cution time is achieved with n. = 10 checkpoints.
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Figure 2 Expected execution time using temporal red-
undancy and n. checkpoints.

4.3 Combination of Temporal and Spatial
Redundancy

In the previous subsections we have shown that there
is a non-trivial global minimum for the expected exe-
cution time using both spatial and temporal redundan-
cy. We will now address the problem of determining
the optimal number of PEs and checkpoints regarding
the minimal expected execution time with combined
spatial and temporal redundancy.

The task will be executed on n PEs, whereas n. check-
points are inserted. After each checkpoint the PEs ex-
change their context-fingerprints among each other,
whereby the communication costs increase linear with
n and n.. To enhance a given reliability pgy, both the
number of used PEs and the number of checkpoints
can be varied (taking into account the remark to (2)).

To determine the minimal expected execution time for
a task, the global minimum of the binary function
E[tyyn(n,n.)] has to be calculated:

E[trun(n7 nc)}

= Nl Z (1= psys(ns tn ) oy (n, tn,)
i=1
(i (n, +nte) + (0= 1) ty)

_t+mn-ne-te
psys(nytnc)

Ne-ty- (1- psys(m tn.))
psys<na tnc)

®)

The expected execution time for combined redundan-
cy is given by (5), which is a combination of (3) and
(4). But now, the minimal expected execution time
is achieved for a tuple (n,n.), indicating the num-
ber of used PEs and the number of inserted check-
points. Figure 3 shows the expected execution time
for exponentially distributed errors with ¢ := 1000us,
tf := 1.0ps, tc := 1.0ps, A = 0.0001 (Fig. 3a) and
A = 0.0005 (Fig. 3b).

For the sake of clarity, execution times greater than
1500ps are not plotted in Fig. 3. Here it becomes evi-
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Figure 3 Expected execution time using combined redundancy.
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Table 1 Expected execution time using spatial, tempo-
ral, and combined redundancy with several fault rates.
The degree of redundancy (n, n.) is also depicted. The
minimal runtime is printed bold for each fault rate .

dent that a high degree of both spatial and temporal
redundancy leads to a significant communication over-
head, and therefore also a high expected execution ti-
me. But even if a small E[t,.,,(n, n.)] can be achieved
with a pure form of redundancy (regardless of spatial
or temporal redundancy), the minimal expected exe-
cution time is achieved only with a combination of
both redundancy techniques for several examples (e.g.
Fig. 3b). The minimal E[t,,(n,n.)] is reached with
1 checkpoint and 6 PEs for A = 0.0001 and with 5
checkpoints and 4 PEs for A = 0.0005.

4.4 Comparison

The expected execution times depicted in Fig. 1 - 3
were plotted with parameters for which a non-trivial
global minimum exists and becomes most apparent. In
order to allow a better comparison of the three redun-
dancy techniques, Table 1 shows the minimal expected
execution time with identical parameters for all three
techniques. The results were obtained with the para-
meters ¢ := 1000us, £y = 1.0ps, and ¢, = 1.0ps. Table
1 illustrates also the degree of spatial and temporal
redundancy, for that the minimal expected execution
times have been reached.

Obviously, the minimal expected execution time is
achieved with combined redundancy for every fault ra-

te. This is due to the fact that n and n. can be chosen
as n > 2, n, = 1, which corresponds to spatial red-
undancy (cf. Table 1, A = 0.0001), and also as n = 2,
n. > 1, which corresponds to temporal redundancy.
For A = 0.0005 and A = 0.002 the minimal expec-
ted execution time is only accomplished with combi-
ned redundancy, what confirms the results from Fig.
3. Furthermore, due to the application of combined
redundancy, the number of necessary PEs to achieve a
certain accuracy can be diminished compared to spati-
al redundancy. The retrenchment of resources (PEs in
this case) saves energy and allows better parallelizati-
on. Combined redundancy requires also fewer check-
points for the same accuracy compared to temporal
redundancy, which leads to a lower NoC load. These
results encourage the assumption that combined red-
undancy becomes particular important for increasing
fault rates, as we expect them for future semiconductor
manufacturing processes.

5 Effects of Resource Constrained
Systems

In Section 4, we have shown that a combination of spa-
tial and temporal redundancy can lead to a significant
reduction of the expected execution time of a single
task on a resource unconstrained system. In this Secti-
on we examine how the results from Section 4 change
for a resource constrained embedded system. We now
also assume that a group of several tasks 77,...,7T;,
is running on this system.

In such a system, the degree of spatial redundancy of
the individual tasks affects each other. This implies
that a high degree of spatial redundancy for task 7T;
leads to a lower maximum feasible redundancy for all
other tasks running at the same time. The separate
determination of the minimal expected execution time
for every task is therefore no longer sufficient.



The chosen evaluation function for the following simu-
lated systems is the makespan of the investigated task
group. The makespan is the maximum expected task
completion time with respect to all PEs. That means,
we determine a state s for that applies:

(tre ()}

S denotes the set of states, # P E indicates the number
of available PEs, and tpg, (s) is the latest termination
time of all tasks running on PE PFE;, with the degree
of redundancy given by state s. A state for m tasks
consist of 2m variables [(n1,7c,1), . .. (Mm, Ne,m )], in-
dicating the degree of spatial and temporal redundancy
for each task. Obviously, the state space is enormous,
even for a small number of tasks. Therefore, we ha-
ve employed a simulated annealing based algorithm
to evaluate the state that achieves the least makespan.
The evaluation function considers the makespan as the
prior evaluation criterion. To achieve a reasonable de-
gree of redundancy even for the tasks, which are not
responsible for the makespan, the evaluation function
takes into account all task termination times, weighted
in descending order.

The initial state for our algorithm was
[(2,1),...,(2,1)], ie. dual modular redundancy
without temporal redundancy for each task. Due to
the resource constraint, there is also an upper bound
for the maximum degree of spatial redundancy for any
task. The following applies: n; < nypee = #PFEs,
i €{1,...,m}, whereas #PFEs indicates the number
of available PEs. n; specifies the number of utilized
resources, i.e. n; = 4 implies that four different PEs
are used. A schedule that maps a task on a resource
twice, is therefore an invalid schedule. This restriction
was made to distinguish between the fault-related
re-execution and the spatial redundancy. In scientific
work covering the scheduling of redundant tasks, this
restriction is frequently assumed, e.g. in [21]. The
allocation to different PEs also has the advantage that
a permanent failure affects only a single instance of
a task.

min max
seS | 1<i<#PE

Figure 4 depicts three schedules for a system with
four PEs and two tasks, a long-running task 77, and
a short-running task 75. The long-running task 77 re-
quires triple modular redundancy, whereas the short-
running 75 requires only dual modular redundancy.
Even if the schedule in Fig. 4a is completed faster
than the schedule from Fig. 4b and Fig. 4c, it is an
invalid schedule, as 75 is scheduled twice on PFE},.
The schedule from Fig. 4b is also an invalid schedule,
as it schedules both redundant versions of 75 at dif-
ferent times. Only the schedule from Fig. 4c is valid,
since in this schedule all redundant tasks are mapped
to different PEs and scheduled simultaneously. The
scheduling principle from Fig. 4b executes all versi-
ons as soon as possible. This can lead to better utilized
PEs and a smaller makespan compared to the schedule

principle from Fig. 4c, in which all redundant versions
of a tasks are executed at the same time. However, the
redundant versions of a tasks have to exchange their
states and confirm each other, which is not possible
with the principle depicted in Fig. 4b. In the followi-
ng we have therefore assumed that redundant tasks are
scheduled always simultaneously.

Besides the problem of the optimal degree of redun-
dancy, a task mapping and schedule has to be calcula-
ted to determine the makespan. Multiprocessor sche-
duling is a NP-hard optimization problem (cf. [22],
[23]). The problem we consider is denoted as P||C),qz
in literature, where a set of independent tasks is sche-
duled non-preemptively on identical PEs in order to
minimize the makespan. To be able to investigate a
significant number of tasks and PEs, we have used
the LPT algorithm [23]. The LPT algorithm is list
scheduling with tasks scheduled in decreasing order
of their processing times. For non-redundant tasks,
LPT achieves a performance ration of % — 3-#1713153
(cf. [24]). Peng [21] has deduced an upper bound for
the performance ratio of redundant task scheduling on
multi-processors and has also shown that LPT is even
optimal in certain cases. However, Peng has premised
that redundant tasks are scheduled as soon as possible.
Since we assume that redundant tasks are scheduled
simultaneously, the upper bounds are not necessarily
valid for our results. For a large number of tasks, as
we examine them in the following, both the as soon
as possible and the simultaneously scheduling princi-
ple have achieved similar results for our examples. But
the determination of upper bounds of the performance
ratio is still pending.

To investigate the improvements of combined redun-
dancy over pure spatial or temporal redundancy, we
have compared the makespan of a group of tasks on
a resource constrained system. The considered task
group consists of eighteen independent tasks with va-
rious failure free execution times:

o H(T1) = () = (T3) = 100ps,
. t(T4) = QOOHS,

. t(Tg,) = t(Tg) = 250”8,

o 1(Ty) = t(Tx) = t(Ty) = 300ps,

. t(Tlo) = t(Tll) = 400}15,

. t(Tlg) = 450].15,

. t(Tlg) = t(T14) = t(T15) = 900”5,
. t(TlG) = 950}18,

. t(T17) = IOOOMS,

. t(Tlg) = 1200}18

For every redundancy technique, the maximum expec-
ted completion time was calculated for three different
numbers of available PEs (10, 20, and 50), and ex-
ponentially distributed faults with three different fault
rates (A = 0.0001, A = 0.0005, and A = 0.002). Table
2 shows the obtained results.

The results for spatial redundancy and DMR show that
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Figure 4 Three different schedules for four PEs and two tasks.

Number of PEs [ fault rate “ spatial redundancy [ temporal redundancy [ combined redundancy [ initial state (DMR) ]
A = 0.0001 2160.2us 1925.6us 1925.5ps 2160.2ps
n=10 A = 0.0005 3708.4us 2023.5us 2023.1ps 4440.0ps
A =0.0020 33714.1ps 2277.3ps 2277.3us 146176.0us
A =0.0001 1224.1ps 1249.0ps 1208.9us 1528.3pus
n =20 A = 0.0005 1854.0us 1317.9us 1226.5ps 3993.1us
A = 0.0020 27630.9us 1581.8us 1274.7ps 146176.0us
A = 0.0001 1208.5us 1249.0ps 1208.5ps 1528.3ps
n =50 A = 0.0005 1591.0ps 1317.9ps 1226.5ps 3993.1ps
A = 0.0020 27630.9us 1581.8us 1273.5ps 146176.0us

Table 2 Makespan for a group of tasks and a resource constrained system. The minimal makespan is printed

bold for every case.

a single context comparison is not suitable for a high [ Task [ n | ne [ expected execution time
fault rate like A = 0.0020. Table 2 shows also that jT} ; i igji“b
. . . dus
a simple technique like DMR leads to an unnecessa- Ti 5T Toa lﬁs
ry high makespan even for A = 0.0005 or smaller. s | 2] 2 208 2us
Spatial redundancy achieves a little makespan for a Ts | 2] 3 260.4ps
low fault rate and high number of available PEs, but Te | 2] 3 260.4ps
is not suitable for a small number of PEs or a high Ir 2] 3 312.2ps
fault rate. Good results can be obtained with tempo- Ts 1213 31228
) ; . Ty | 2| 3 312.2ps
ral redundancy, however with an increasing number Tio 13 1 20485
of PEs, the advantage of combined redundancy rises. T, | 3] 1 404 8
Like for the previous findings for unconstrained sys- Tio | 4] 1 454.1ps
tems, combined redundancy achieves always the best Tz | 4 1 906.2us
results, as spatial and temporal redundancy are speci- Tig | 4] 1 906.2ps
al cases of combined redundancy. But for the majority Tis | 4] 1 206,215
. Tig | 4| 1 956.7ps
of our results, combined redundancy even outperforms T 61 100715
both, spatial and temporal redundancy. The advantage Tis | 61 1 1208505

of combined redundancy becomes particular evident
for a high failure rate as A = 0.002. A simple redun-
dancy technique like dual modular redundancy achie-
ves an expected completion time of 146176us, which
is more than 120 times of the failure free completion
time. Whereas combined redundancy achieves an ex-
pected completion time of 1273.5us, which is only an
increase of about 6%. Unfortunately, the states, with
which the results form Table 2 have been obtained, can
not be shown due to space restrictions. The states for
combined redundancy, n = 50 PEs, and A = 0.0001
as well as A = 0.002 are shown in Table 3 and Ta-
ble 4, respectively. As can be seen in Table 3 and
4, the determined makespan results from the expec-
ted execution time of the long-running task 7g. For
A = 0.0001, the expectation for a successful compu-
tation of task T1g without redundancy is about 89%.
Therefore a high degree of spatial redundancy achie-

Table 3 State for combined redundancy, A = 0.0001,
n = 50 PEs and the corresponding expected execution
time.

ves the least expected execution time and also the best
makespan in this case. Additional temporal redundan-
cy would only lead to an unnecessary overhead. For
A = 0.002, the expectation for a successful computa-
tion of task Tyg is only about 0.9%. A high degree of
temporal redundancy is therefore necessary to enhance
the expectation for a successful computation of a task
segment. Due to the high fault rate and the resour-
ce restriction, the degree of spatial redundancy of the
tasks affects each other. An example is the determined
degree for task Tg, which is (2,14), but optimal for
an unconstrained system would be (3, 3).



[ Task [ [ Ne [ expected execution time

n
T 2 5 119.6ps
Ts 2 5 119.6pus
T3 4 1 106.2us
Ty 2 9 239.1ps
Ts 2 12 298.9us
Ts 2 12 298.9us
T 2 14 358.6us
T3 2 | 14 358.6us
Ty 2 | 14 358.6us
Tho 4 4 424.8ps
Ti1 4 4 424 .8ps
T12 4 5 477.6}15
T13 4 10 955.1}1S
Tha 4 10 955.1ps
Tis 4 10 955.1ps
Tie 4 11 1008.3}18
Ti7 4 11 1061.2ps
Tis 4 13 1273.5us

Table 4 State for combined redundancy, A = 0.0020,
n = 50 PEs and the corresponding expected execution
time.

6 Conclusion

In this paper a model for the calculation of the mini-
mal expected execution time was introduced. We have
exhibited that there is an non-trivial degree of red-
undancy regarding the minimal expected execution ti-
me using both, either spatial or temporal redundancy.
Certainly, the minimal expected execution time can be
achieved only with a combination of both techniques
in several cases. Thus, also resource consumption can
be reduced, as opposed to a single form of redundan-
cy. We have shown that this also applies for a group
of eighteen tasks and a resource constrained system.

Our plans for future work include a further investigati-
on of task allocation and scheduling under utilization
of the gained redundancy information. That implies
the consideration of the parallelization capability. A
high degree of spatial redundancy involves a less ex-
pected execution time, but also constrains the maxi-
mum degree of parallelization. As parallelization has
an impact on the failure free runtime, it has to be con-
sidered as another parameter that affects the expected
execution time. A further aspect that can be improved
is the rating function for a redundancy configuration,
which currently considers only the PE restriction. E.g.
we intend to employ the NoC utilization, to restrain
the number of planed checkpoints.
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