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1 Abstract

Goal of this bachelor thesis is the evaluation of results gained from processing
sentences of a foreign domain with several german state-of-the-art syntax par-
sers. While this paper contains a general overview of important syntax parser
terminology, as well as an introduction to common syntax parser architecture,
the main focus lies on the experiment of finding the best running parser on
the given domain, in addition to gaining an impression on the most common
sources of errors to consider when choosing a parser for a specific domain. Our
findings include issues with long, complex sentences for all parsers, as well as
problems being caused by ancient or otherwise non-standard words. While all
parsers show significantly lower scores in comparison to existing evaluations on
fitting domains, the ParZu dependency parser shows quite substantially better
results then all other parsers.

2 Einleitung

Das automatische Analysieren von Sätzen nach Syntax und Semantik ist ein weit
reichendes, aktuelles Forschungsgebiet mit vielen unterschiedlichen Ansätzen.
Während auf der einen Seite neue Technologien für die Nutzung des sog.

”
Par-

sens“ erschlossen werden [19], finden gleichzeitig Wettbewerbe zur Messung die-
ser Ansätze statt [17]. Diese Wettbewerbe der

”
Shared Tasks“ der CoNLL Kon-

ferenz für Natürliches Sprach Lernen(Conference on Natural Language Lear-
ning) [11] beschäftigten sich ins besondere mit der Ermittlung der effektivsten
Methoden im Bereich des Syntax Parsens. Die Aufgabe des Syntax Parsers be-
steht in der satzweisen Analyse eines Dokuments mittels der Unterteilung eines
Satzes in seine einzelnen syntaktischen Bestandteile. Erreicht wird dies durch
vorrangehendes Training des Parsers mit Hilfe einer vorhandenen Menge an be-
reits korrekt markierten Sätzen, den sog.

”
Treebanks“, durch Maschinenlernen

oder manuelles Erstellen einer Regelmenge. Für standardmäßige Messung ver-
schiedener Parser werden hier beim Training die einzelnen Parser bestmöglich
an die zu untersuchende Textart, die sog.

”
Domäne“ angepasst. Dies erfordert

allerdings genaueres Wissen um die Beschaffenheit der anschließend zu untersu-
chenden Texte, und ist demnach nicht immer möglich und/oder sinnvoll. Dieser
Problematik entsprechend sollen in diesem Paper fünf moderne Parser auf ihre
Leistungsfähigkeit in einer ihnen unbekannten Domäne untersucht werden. Die
Arbeit soll Aufschluss geben welcher Parser die wenigsten Schwierigkeiten auf
der unbekannten Domäne zeigt. Außerdem sollen die einzelnen Fehler der Parser
per Hand untersucht werden, um so einen Eindruck für die Fehlerquellen beim
Parsen auf unbekannten Domänen zu erhalten.
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Zunächst soll ein Überblick über die generellen Bestandteile eines Parsers
gegeben werden. Darüber hinaus werden die beiden am weitest verbreiteten
Ansätze des Konstituenz und Dependenz Parsens vorgestellt, und einige Um-
setzungen dieser Strukturen erläutert. Auch soll ein Einblick in die Evaluation
der Leistung verschiedener Parser durch Vorstellung eines

”
shared tasks“ der

Konferenz für natürliches Sprachlernen (Conference on Natural Language Lear-
ning CoNLL) gegeben werden. Anschließend werden die fünf in unserer Arbeit
verwendeten Parser betrachtet und gegebene Besonderheiten in ihrer Funktions-
weise analysiert. Es folgt ein Überblick über Aufbau und Ablauf unseres Expe-
riments zur Ermittlung des effizientesten Parsers. Insbesondere wird hier unsere
Testmenge, sowie deren Beschaffenheit vorgestellt. Das Anschließen der einzel-
nen Parser wird beschrieben, eben so wie die Erstellung unserer Musterlösung,
welche für die Messung der Leistungsfähigkeit der einzelnen Parser benötigt
wird. Des Weiteren wird erläutert, auf welcher Ebene die einzelnen Parser Er-
gebnisse mit der Musterlösung verglichen werden. Die Art der Auswertung der
Ergebnisse der einzelnen Parser wird ebenfalls beschreiben. Schließlich werden
die Resultate der Parser auf verschiedenen Ebenen betrachtet und die Fehler
der einzelnen Parser manuell analysiert. Dies ermöglicht einen Einblick über die
Leistungsfähigkeit der Parser, sowie einen Aufschluss über zu berücksichtigende
Faktoren bei der Wahl eines Syntax Parsers für eine gegebene Domäne.

3 Theorie des Syntax Parsens

Im diesem Kapitel soll zunächst ein Überblick über die grundlegenden Begrif-
fe des Parsens geschaffen werden. Zusätzlich werden einige bekannte Ansätze
erläutert und ein Ausblick auf zukünftige Technologien gegeben. Auch auf die
Ermittlung des State of the Art für Syntax Parser soll kurz eingegangen werden.

3.1 Tagger

Die Grundlage unserer syntaktischen Satzanalyse bildet ein sogenannter Part-
of-Speech Tagger. Dieser Tagger ordnet jedem Wort innerhalb eines Satzes ein
Part-of-Speech Tag zu, welches die Wortart des Wortes im Satz beschreibt.

Der für unsere Forschungsarbeit verwendete Tagger, Helmut Schmids
”
Tree-

Tagger“ [15], bestimmt seine Part-of-Speech Tags durch den Vergleich der ein-
gegebenen Sätze mit einem privaten, bisher unveröffentlichten Trainingscorpus
in folgender Weise:

Der Tagger besitzt ein Lexikon, in welchem alle ihm durch den Trainingscor-
pus bekannten Wörter mit ihren Tags und deren Vorkommenswahrscheinlich-
keiten aufgeführt werden. Dies wird als lexikale Wahrscheinlichkeit bezeichnet.
Auch besitzt das Lexikon Einträge über häufige Verknüpfungen von Worten,
welche zur Erkennung von Phrasen genutzt werden können. Dies stellt die kon-
textuelle Wahrscheinlichkeit eines Tags dar. Ein sog.

”
Hidden Markov Model“

analysiert nun einen Eingabesatz unter Berücksichtigung beider Wahrscheinlich-
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keiten des Lexikons. Die erweiterte Erklärung der Vorgehensweise eines Part-of-
Speech Taggers ist nachschlagbar bei Clark et. Al. [4] S. 192ff.

So entsteht für jeden Satz eine abstrakte Satzstruktur(Abbildung 1), was
den Parsern ermöglicht, bei unbekannten Wörtern auf die Part-of-Speech Tags
zurückzugreifen.

Während einige Parser die Part-of-Speech Tags als zusätzliche Eingabe zu
den zu parsenden Sätzen erwarten, besitzen andere Parser ihre eigenen Tagger
Methoden, welche zusammen mit dem Hauptprogramm ausgeführt werden.

NE VVFIN ART NN -PUNCT-
Lydia bewegte die Lippen .

Abbildung 1: Hier wird ein Satz mit zugehoerigen Part-of-Speech Tags darge-
stellt.

3.2 Morphology
1 Zusätzlich zum Setzen von Part-of-Speech Tags können Wörter auch mit Mor-
phology Informationen versehen werden. Diese werden durch das Aufspalten des
Wortes in Präfix, Wortstamm und Suffix, und deren Abgleichen mit speziellen
Regeln oder Lexika ermittelt. Eine morphologische Analyse besteht aus einer
genaueren Analyse des Wortes nach Genus, Kasus, Numerus und Person, und
versorgt einen Parser somit mit zusätzlichen Informationen, welche insbesondere
das Bestimmen der Art einer Phrase, sowie das Finden der generellen syntakti-
schen Struktur des Satzes erleichtert.

Auch hier existieren Parser, die ihre eigenen Algorithmen zur morphologi-
schen Analyse verwenden. Ein Zuführen der Morphology Tags mit der Eingabe
des Textes ist allerdings auch üblich.

3.3 Syntax Parser

Syntax Parser sind Programme, welche, mit Hilfe von Regeln oder durch eigenes
Lernen an vorbearbeiteten Beispielen, Sätze auf ihre Satzteile und deren syn-
taktische Funktion automatisch analysieren. Während Parser existieren, welche
ausschließlich die Struktur eines Satzes betrachten, vergeben andere Parser, wie
Tagger, Labels/Tags, die eine tiefere Analyse des Satzes, z.B. durch die Unter-
scheidung von Subjekt und Akkusativobjekt, ermöglichen. Doch auch der gene-
relle Ansatz, sowie die Funktionsweise der Parser können unterschiedlich sein.
Die zwei am häufigsten verwendeten Grundarchitekturen für Syntax Parser, so-
wie einige übliche Umsetzungen, sollen im Folgenden kurz vorgestellt werden.

1Dies und das Folgende nach [4] S. 366ff
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3.3.1 Dependenzgrammatik

2 Die Dependenzgrammatik definiert die strukturelle Basis eines Dependenz
Parsers und basiert auf der Annahme, dass die syntaktische Struktur eines Sat-
zes durch binäre, asymmetrische Dependenzrelationen zwischen den Wörtern
darstellbar ist. Jede Dependenzrelation besitzt ein zugehöriges Wort, den sog.

”
Head“ (Kopf) der Relation, sowie ein Bezugswort, den sog.

”
Dependent“. Auch

besitzt jede Dependenzrelation ein Label, welches die Art der Beziehung zwi-
schen beiden Worten, den sog.

”
Dependenz Typ“, beschreibt.

Lydia bewegte die Lippen .

ROOT

SUBJ

OBJA

ART

-PUNCT-

Abbildung 2: Hier wird ein Satz in Dependenz Grammatik dargestellt.

Am Beispiel aus Abbildung (2) erläutert, existiert eine syntaktische Verbin-
dung zwischen den Worten

”
Lydia“ und

”
bewegte“, welche anzeigt, dass der

Dependent,
”
Lydia“, in seiner Funktion als Subjekt (

”
SUBJ“) in Verbindung

zum Head,
”
bewegte“, steht.

Das zusätzlich eingefügte Wort
”
ROOT“ funktioniert als syntaktische Wur-

zel eines entstehenden Dependenzbaumes und beschreibt den Head des zentralen
Verbs des Satzes.

Es besteht weiterhin die Grundannahme, dass für jeden grammatikalisch
korrekten Satz ein zusammenhängender, den Satz vollständig syntaktisch be-
schreibender, Dependenzbaum erstellt werden kann.

Sämtliche Definitionen und Grundregeln für Dependenzbäume und deren
Erstellung sind nachlesbar in Kübler et. Al. [10] Kap. 2.1.

3.3.2 Dependenz Parser

3 Das Dependenz Parsen beschäftigt sich mit der Aufgabe, für eingegebene Sätze
automatisch einen passenden Dependenzbaum zu finden. Für diese Problem-
stellung existieren zunächst verallgemeinert zwei unterschiedliche Ansätze, das
sog. datengetriebene (

”
data-driven“), und das grammatikbasierte (

”
grammar

based“) Dependenz Parsen, für die einige häufige Umsetzungen im Folgenden
diskutiert werden sollen.

Datengetriebene Ansätze Datengetriebene Parseransätze greifen für die
Erstellung von Dependenzbäumen auf maschinelles Lernen zurück. Für diese
Parser wird also generell eine Trainingsmenge an Daten benötigt, die bereits

2Dies und das Folgende nach [10] Kap. 1.1
3Dies und das Folgende nach [10] Kap. 1.2
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mit korrekt markierten Lösungen versehen ist und vom Parser für die Erstellung
eines eigenen Modells verwendet werden kann. Auch hier existieren unterschied-
liche Herangehensweisen, von denen die beiden häufig verwendeten Methoden
des transitionsbasierten, sowie des graphbasierten Parsens in Folge betrachtet
werden.

Transitonsbasiert 4 Ein transitionsbasierter Parser arbeitet über eine
Zustandsmaschine, welche aus einer Menge von Zuständen, sowie einer Menge
von Transitionen/Übergängen zwischen Zuständen besteht. Bei Eingabe eines
Satzes in die Maschine wird nun Schritt für Schritt immer die wahrscheinlichste
Transition ausgeführt und so der Zustand der Maschine verändert. Dies wird
solange wiederholt, bis die Maschine einen terminalen Zustand erreicht, und
somit einen Dependenzbaum zurückgibt.

Um allerdings festzustellen, welche Transition im momentanen Zustand der
Maschine ausgeführt werden soll, werden sog.

”
Klassifikatoren“ benötigt. Diese

werden durch das Analysieren vormarkierter Beispielsätze, einem sog. Trainings-
corpus, oder auch Treebank genannt, mit Hilfe von Maschinenlernalgorithmen
einmalig ermittelt und als Modell für den Zugriff beim Parsen gespeichert.

Ein Parse-Algorithmus hat nun die Aufgabe, für den momentanen Zustand
der Maschine mit Hilfe der Klassifikatoren des Modells die wahrscheinlichste
Transition zu finden.

Graphbasiert 5 Graphbasierte Parser betrachten jedes Wort eines Satzes
als Knoten und versuchen aus diesen einen zusammenhängenden, syntaktisch
korrekten Dependenzbaum zu erstellen. Zur Gewichtung der verschiedenen Kan-
ten werden wieder Klassifikatoren herangezogen, die durch Maschinenlernen im
Modell des Parsers vorhanden sind. Da allerdings das Überprüfen sämtlicher
Möglichkeiten für alle Knotenkonstellationen zu aufwendig wäre, liegt die Her-
ausforderung dieses Parser Ansatzes in der Umsetzung eines effizienten Algorith-
mus. Ein Beispiel eines häufig verwendeten Parser Algorithmus wäre der gierige
(
”
greedy“), rekursive Chu-Liu-Edmonds Spannbaum Algorithmus, vorgestellt in

Kübler et. Al. [10] S. 47.

Grammatik basierte Ansätze Während datengetriebene Parser auf ein
durch Maschinenlernen trainiertes Modell zur Entscheidung des korrekten De-
pendenzbaums zurückgreifen, wird das Modell eines grammatikbasierten Parsers
in Form einer Grammatik erstellt. Die Nichtterminale, Regeln, sowie deren Ge-
wichtung sind von der Art der Grammatik abhängig. Im Folgenden sollen zwei
unterschiedliche Ansätze des grammatikbasierten Parsens präsentiert werden.

Kontext-freie Dependenz Grammatik 6 Für den Ansatz der kontext-
freien Dependenz Grammatik wird aus der Zugrunde liegenden Dependenz Gram-

4Dies und das Folgende nach [10] Kap. 3
5Dies und das Folgende nach [10] Kap. 4
6Dies und das Folgende nach [10] Kap.5.1
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matik wie nach Abbildung (3) eine Kontext-freie Grammatik erstellt. Es werden
als Nichtterminale der Grammatik die Heads der Relationen eingesetzt und die-
se mit ihren direkten Dependenten und sich selbst verknüpft. Nun können im
Verlauf des Baumes Regeln in Form von Abbildung (3) betrachtet werden. Da-
mit entsteht aus der Dependenz Struktur eine Kontext-freie Grammatik, auf die
etablierte Parser Algorithmen für kontext-freie Grammatiken, wie z.B. der in
Collins et. Al. [5] Kap. 3.4.2 aufgeführte CKY Algorithmus, angewendet werden
können. Die Regeln der erstellten Grammatik, sowie deren Gewichtung können
entweder durch Maschinenlernen aus einer Treebank gewonnen, oder per Hand
erstellt und passend gewichtet werden.

NE VVFIN ART NN -PUNCT-
Lydia bewegte die Lippen .

ROOT

SUBJ

OBJA

ART

-PUNCT- NE + VVFIN -> VVFIN
ART + NN -> NN

VVFIN + NN -> VVFIN
VVFIN + -PUNCT- -> VVFIN

ROOT + VVFIN -> ROOT

Abbildung 3: Hier wird die Umwandlung eines Satzes von Dependenz Struktur
in eine Grammatik dargestellt.

Konstraintbasierte Dependenz Grammatik 7 Die Basis einer kons-
traintbasierten Dependenz Grammatik ist eine Menge von Einschränkungen.
Diese Einschränkungen beziehen sich auf die Wortart des Wortes, also das Part-
of-Speech Tag, und werden aus der Syntax der Sprache erstellt. Sie können ge-
wichtet werden, basierend auf ihrer Vorkommenshäufigkeit. Wenn beispielsweise
97% aller deutschen Sätze ein Verb enthalten, dann kann eine Einschränkung
erstellt werden, nach der ein Satz mit Gewichtung 0,97 ein Verb enthalten
muss. Ein Parser Algorithmus hat hier also die Aufgabe, für einen Satz die
Lösung auszugeben, welche insgesamt, unter Berücksichtigung der Gewichtun-
gen, die wenigsten Einschränkungen verletzt. Auch können Einschränkungen
auf die Abfolge von Worten bezogen werden. So könnte beispielsweise eine Ein-
schränkung erstellt werden, bei der die Existenz eines Verbs im Satz mit 90%
Wahrscheinlichkeit die Existenz eines Subjekts nach sich zieht. Einschränkun-
gen selbst können hier wieder sowohl aus einer Treebank durch Maschinenlernen
bezogen, als auch manuell geschrieben werden.

3.3.3 Konstituenz Grammatik

Im Gegensatz zu Dependenz basierten Strukturen, basiert die Konstituenz Gram-
matik auf einer Phrasenstruktur. Das Grundprinzip besteht darin, dass zunächst
jedes Wort auf ein Nichtterminal zusammengefasst wird, welches seine Wort-
art beschreibt. Anschließend werden jeweils zwei Nichtterminale zu einem, ei-

7Dies und das Folgende nach [10] Kap. 5.2
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ne Phrase beschreibendem, Nichtterminal zusammengefasst. Dies wird solange
wiederholt, bis die Wurzel des Baumes, das Nichtterminal

”
S“, welches den ge-

samten Satz umfasst, erreicht wird.

S

NP

NE

Lydia

VP

VVFIN

bewegte

NP

ART

die

NN

Lippen

Abbildung 4: Hier wird ein Satz in Konstituenz Grammatik dargestellt.

Am Beispiel der Abbildung (4) wird also zunächst jedes Wort auf ein Nicht-
terminal seiner Wortart abgebildet. Anschließend wird das Nichtterminal des
Wortes

”
die“ mit dem des Wortes

”
Lippen“ zu einer Nominalphrase

”
NP“ zu-

sammengefasst, was eine Abhängigkeit beider Worte darstellt. Die Verknüpfung
zwischen dieser

”
NP“ Phrase und dem Verb

”
bewegte“ wird mit als Verbphra-

se
”
VP“ markiert und schließlich mit der Nominalphrase, die aus dem Wort

”
Lydia“ besteht, zu einem vollständigen Satz

”
S“ zusammengefasst.

3.3.4 Konstituenz Parser

Das Konstituenz Parsen beschäftigt sich, wie in Abbildung(4) erkennbar, mit
der Aufgabe, einen Satz automatisch in Phrasen zu unterteilen.

Auch hier bestehen, Dependenz Parsern entsprechend, verschiedene Ansätze
mit der verallgemeinerten Unterteilung in datengetriebenes und grammatikba-
siertes Konstituenz Parsen, auf die im Folgenden kurz eingegangen werden soll.

Datengetriebene Ansätze Während für Dependenz Parser reine datenge-
triebene Ansätze existieren, bestehen datengetriebene Konstituenz Parser meist
aus Maschinenlernalgorithmen, verbunden mit einer passenden Konstituenz Gram-
matik. Diese Grammatik wird als Grundlage des Parsers gewählt, da die gesam-
te Struktur eines Konstituenz Baumes einfach in Grammatikform beschrieben
werden kann.

Ein Beispiel für eine solche Hybrid Architektur bieten die in Clark et. Al. [4]
Kap. 6.1-2 erörterte kombinatorische, kategorialsche Grammatik (eng. Combina-
tory categorial grammar

”
CCG“) mit konditionellem, log-linearem Parsing Mo-

dell. Während hier sämtliche möglichen Konstituenzbäume eines Satzes durch
die CCG Grammatik bestimmt werden, übernimmt anschließend das log-lineare
Parsing Modell die Bewertung der gefundenen Lösungen. Die Grammatik erstellt
ihre Lösungsbäume durch die Kombination von Wörtern und/oder Phrasen zu

8



sog.
”
Features“ nach den ihr antrainierten Regeln. Das Modell betrachtet an-

schließend die einzelnen Features mit Hilfe von durch Maschinenlernen erstellten
Häufigkeitsfunktionen, sowie Gewichten. Der datengetriebene Teil des Parsers
ist hier also für die Gewichtung der möglichen Lösungsbäume, und somit für
das Finden der wahrscheinlichsten Lösung zuständig.

Grammatikbasierte Ansätze Der grammatikbasierte Ansatz ist die gene-
rell am häufigsten gewählte Vorgehensweise von Konstituenz Parsern, da sich
ein Konstituenzbaum recht unkompliziert als Grammatik ausdrücken lässt. Ein
Beispiel für eine solche Architektur bietet die Umsetzung mittels PCFGs.

PCFGs 8 Die am weitesten verbreitete Vorgehensweise für das Konstitu-
enz Parsen ist die Erstellung einer wahrscheinlichkeitsbasierten kontext-freien
Grammatik (probabilistic context-free grammar

”
PCFG“). Diese basiert auf ei-

ner Regelmenge, in der Kombinationen von Worten und/oder Phrasen auf Phra-
sen abgebildet werden. Auch sind sämtliche Regeln nach ihrer Auftrittswahr-
scheinlichkeit gewichtet, was eine Suche nach dem wahrscheinlichsten Lösungs-
baum ermöglicht. Beispielsweise ist der in Abbildung (5) gezeigte Konstituenz-
baum die optimale von einem Parser gefundene Lösung, wenn sämtliche neben
dem Baum abgebildeten Regeln zusammen die wahrscheinlichste Regelfolge für
den Baum ergeben. Die Regelmenge, sowie deren Gewichtung können entweder
von Hand, oder durch Maschinenlernen auf einer Treebank erstellt werden und
stehen dem Parser Algorithmus anschließend in einem Modell zu Verfügung. Ein
Beispielalgorithmus, welcher auf dieser Grammatik Konstituenzbäume erstellt,
ist der CKY Algorithmus, beschrieben in Collins et. Al. [5] Kap. 3.4.2.

S

NP

NE

Lydia

VP

VVFIN

bewegte

NP

ART

die

NN

Lippen

NE -> NP
ART + NN -> NP

VVFIN + NP -> VP
VP + NP -> S
Lydia -> NE

bewegte -> VVFIN
die -> ART

Lippen -> NN

Abbildung 5: Hier wird die Umwandlung eines Satzes von Konstituenz Struktur
in eine Grammatik dargestellt.

3.3.5 Gegenseitige Adaption von Ansätzen

Während Dependenz und Konstituenz Grammatiken sich von ihrem Aufbau
grundsätzlich unterscheiden, gibt es doch Wege, die Struktur zumindest soweit

8Dies und das Folgende nach [5]
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zu verändern, um sich der Ansätze der anderen Architektur bedienen zu können.
Eine dieser Vorgehensweisen wurde bereits bei der Vorstellung der kontext-freien
Dependenz Grammatik besprochen, wobei eine Dependenz Struktur abgeändert
wurde, um auf ihr Algorithmen für die zuvor bei Konstituenz Parsern erwähn-
ten PCFGs anzuwenden. Ein ähnlicher Ansatz in die andere Richtung wäre bei-
spielsweise die Grundidee des Stanford Shift-Reduce Konstituenz Parsers nach
Zhu et. Al. [23], welcher seine zu Grunde liegende Konstituenz Grammatik in ei-
ne Regelmenge einer Shift-Reduce Zustandsmaschine umwandelt und sich so das
ebenfalls besprochene Konzept des transitionsbasierten Parsens für Dependenz
Parser zu Nutze zu machen.

Es kann also beobachtet werden, dass beide Strukturen sich nicht gegenseitig
ausschließen, und dem Entsprechend viele Parser einen gemischten Ansatz für
ihre Architektur wählen, um möglichst viele Vorteile für ihre eigene Laufzeit
und Treffsicherheit zu erhalten.

3.3.6 Ausblick auf zukünftige Architekturen: Neuronale Netze

[20] Neuronale Netze bezeichnen einen Ansatz der Informationsverarbeitung.
Grundlage dieses Systems bietet, ähnlich dem menschlichen Gehirn, eine Menge
an stark verknüpften Verarbeitungselementen, den sog. Neuronen. Diese beob-
achten den mit ihnen verknüpften Input und reagieren gegebenenfalls mit einem
binären Signal. Wann Neuronen reagieren, und ob sie eine 0 oder 1 als Reaktion
abgeben, kann den Neuronen durch Maschinenlernen antrainiert werden. Falls
für den erhaltenen Input keine direkte Lösung antrainiert wurde, so wird durch
spezielle Algorithmen der ähnlichste dem Neuron bekannte Input und dessen
Lösung verwendet. Das gesamte neuronale Netz besteht aus vielen verschiede-
nen Neuronen, deren gesamte Ausgabe zur Ermittlung der benötigten Lösung
der Informationsverarbeitung verwendert wird.

Im Bereich des Syntax Parsens bestehen bereits Ansätze, die neuronale Netz-
werke für die Erstellung passender Syntax Bäume verwenden. Beispielsweise
wird die Architektur eines rekursiven neuronalen Netzes bei Socher et. Al. [19]
zur Erstellung einer Konstituenz Grammatik genutzt. Basiert wird die Archi-
tektur auf paarweiser Betrachtung jedes Wortes mit seinem linken und rechten
Nachbarn. Jedes dieser Paare wird durch ein neuronales Netz betrachtet, welches
den wahrscheinlichsten Parent-Knoten für das gegebene Paar findet. Sobald alle
Nachbarnpaare untersucht sind, wird das Paar mit dem höchstwahrscheinlich-
sten Elternknoten aus der Menge der zu untersuchenden Paare entfernt und mit
seinem Elternknoten ersetzt. Gleichzeitig wird eine Verbindung zwischen den
beiden im Algorithmus entfernten Elementen zu ihrem Elternknoten im Kon-
stituenzbaum erstellt. Dies wird so lange rekursiv wiederholt, bis ein vollständi-
ger Konstituenzbaum ensteht. Trainiert wird das Netz, wie bei herkömmlichen
daten-getriebenen Parsern, durch Maschinenlernen auf einer Treebank.
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3.3.7 State-of-the-Art von Syntax Parsern: CoNLL Shared Tasks

9 Die Konferenz für natürliches Sprachlernen (Conference on Natural Language
Learning) ist eine jährlich von der Interessenvereinigung SIGNLL abgehaltene
Versammlung, in der viele verschiedene Forschungsaspekte des Sprachlernens
der Öffentlichkeit durch Vorträge, sowie die Erstellung eines umfassenden Sit-
zungsprotokolls vorgestellt werden.

Insbesondere beinhaltet die jährliche Konferenz eine gemeinsam zu bewälti-
gende Aufgabe, den sog.

”
shared task“, für die Teams von Wissenschaftlern

ihre Lösungsansätze präsentieren und deren Ergebnisse, sowie Funde im Sit-
zungsprotokoll der Konferenz festgehalten werden. Für diese Arbeit besonders
relevant ist hier der shared task der CoNLL Konferenz 2007 [11], welcher sich
mit der Evaluation verschiedenster Dependenz Parser auf mehreren Sprachen
beschäftigt. Auch besitzt der Task eine weitere Aufgabe des Anpassens eines
Parsers an eine unbekannte Domäne.

Mehrfachsprachen-Experiment Für die Evaluation der verschiedenen Par-
ser auf untschiedlichen Sprachen wurden für jede Sprache ein festes Trainingsset
mit mindestens 50.000 und höchstens 500.000 Tokens, sowie zu parsende Testda-
ten zwischen 4.500 und 7.500 Tokens zur Verfügung gestellt. Die Vorgehensweise
des Parsers bei Training und Parsen war dagegen den Teilnehmern überlassen.
Die gesamte Testmenge des Experiments beinhaltete insgesamt zwanzig ver-
schiedene Parseransätze, die auf elf verschiedenen Sprachen getestet wurden. Es
sind sowohl transitionsbasierte, als auch graphbasierte Parser aufzufinden. Die
Resultate der Parser variieren allerdings für beide Parserarchitekturen. Ausge-
wertet wurden die Ergebnisse anhand der Anzahl der Dependenzrelationen mit
Verweis auf das korrekte Head-Wort, dem sog. Labeled Attachment Score(LAS),
definiert in Kübler et. Al. [10] Kap. 6.1.

Während Ansätze existieren, die auf allen Sprachen einen Durchschnittswert
von 55% erreichen, zeigt der beste Parser einen Durchschnittswert von über
80% LAS. Auch für die unterschiedlichen Parserarchitekturen existieren star-
ke Schwankungen, wobei kein klarer Favorit erkennbar ist. Der beste erreichte
Labeled Attachment Score eines Parsers beträgt 89.61% für die englische Test-
menge, bei der generell gute Ergebnisse zu erkennen sind. Griechisch auf der
anderen Seite zeigt als syntaktisch kompliziertere Sprache mit 76.31% den nied-
rigsten Bestwert aller Sprachen auf.

Der mit einem Gesamtdurchschnitt von 80.32% am besten abschneidende
Parser ist eine Version des auch in unserem Experiment verwendeten Malt Par-
sers, der allerdings durch spezielle Lern- und Parseralgorithmen an den Versuch
des mehrsprachigen Parsens angepasst wurde und in Hall et. Al. [8] beschrieben
wird.

Domänenadaptions-Experiment Im zweiten Experiment des CoNLL sha-
red task 2007 wurde die automatische Adaption verschiedener Parser auf eine ih-

9Dies und das Folgende nach [17]
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nen unbekannte Domäne betrachtet. Dies bedeutet, dass die zu parsenden Texte
sich in Struktur, Komplexität, sowie Wortschatz von den für das Parsertraining
verwendeten Mustern unterscheiden können. Der Aufbau dieses Experiments
lautete, nach Dredze et. Al. [6] wie folgt: Der für das Experiment bereitgestellte
Trainingskorpus der Parser bestand aus 15 tausend von per Hand annotierten
englischen Zeitungsartikeln des Wall Street Journals. Die Testdomäne, welche
den Teams zur Entwicklung des Parsers zur Verfügung stand, beinhaltete 200
annotierte englische Sätze aus dem Bereich der Biomedizin. Getestet wurden die
Parser auf 200.000 englischsprachigen Sätzen ohne labels aus dem Fachbereich
der Chemie, sowie auf englischen Eltern-Kind Dialogen. Ziel des Experiments
war die Umsetzung eines Parsers, welcher unter Verwendung der annotierten
Zeitungsartikel-Domäne für beide unbekannten Domänen treffsichere Ergebnis-
se liefern konnte.

Es soll an dieser Stelle kurz auf die beiden häufigsten Ansätze des Domänen-
adaptions-Experiments eingegangen werden. Weitere Ansätze sind in Nilsson et.
Al. [11] Kap. 5.4.3, sowie in den dort aufgelisteten Papers zu finden.

Zum einen wurde versucht, das Modell des Parsers durch einen Feature-
basierten Ansatz an eine unbekannte Domäne anzupassen. Dies beinhaltet das
Bewerten der in der Trainingsdomäne vorkommenden Verknüpfungen von Wor-
ten, den sog.

”
Features“, nach der angenommenen Häufigkeit dieser Features in

den zu parsenden Texten. Es sollen somit nur die Features der Trainingsmen-
ge berücksichtigt werden, von denen angenommen wird, dass sie sich auf die
Zieldomäne übertragen lassen. Diese überarbeitete Menge an Features kann an-
schließend zum Training eines neuen Parsers verwendet werden. Umsetzungen
von Dredze et. Al. [6] zeigen hier allerdings bezogen auf das spezielle Experiment
keine nennenswerten Verbesserungen.

Zum anderen wurde die Anpassung des Parsers über Ensemble-basierte Ansätze
erforscht. Hier wurden die Trainingsdaten auf mehrere, unterschiedliche Parser
aufgeteilt. Diese Parser wurden anschließend auf die Testmenge angewendet.
Darauf wurden sämtliche Sätze, für die die Parser Ergebnisse glichen, zur ur-
sprünglichen Testmenge hinzugefügt und schließlich ein einzelner Parser auf der
gesamten Trainingsmenge, bestehend aus den Zeitungsartikel und den überein-
stimmenden Sätzen, trainiert. Dieser Vorgang wurde von Dredze et. Al. [6],
sowie Sagae et. Al. [14] untersucht.

Allgemein kann Folgendes über die Ergebnisse des Experiments gesagt wer-
den: Während die Domäne der Eltern-Kind Dialoge durch eine zum Trainings-
satz verschiedene Annotationsweise der Dependenzen mit einem Bestwert von
nur 62.49% im Unlabeled Attachment Score (UAS) trotz der simplen Satzstruk-
tur nur sehr niedrige Werte aufweist, zeigt die Domäne der chemischen Auszüge
einige interessante Ergebnisse. Auch hier schwanken, wie im ersten Experiment,
die Werte zwischen rund 80% und 50% im LAS. Zu beobachten ist allerdings,
dass der Parser mit den besten Testergebnissen von 81.06% auf der angepassten
Chemie Domäne im vorherigen Experiment ein Ergebnis von 89.01% im LAS für
Englisch auf passender Domäne erreichte. Dies zeigt, dass die Treffsicherheit des
Parsers sogar beim Versuch der automatischen Anpassung auf eine unbekannte
Domäne deutlich abnimmt. Welche Probleme bei der automatischen syntakti-

12



schen Analyse einer unbekannten Domäne genau für solch eine Abnahme sorgen,
soll anhand unseres Experiments des Parsens einer unbekannten Domäne ohne
Anpassung der Parser untersucht werden.

4 Architektur verwendeter Parser

Das nächste Kapitel soll einen Einblick in die für unser Experiment verwen-
deten deutschen Syntax Parser bieten. Es soll ein kurzer Überblick über die
Funktionsweise der Parser, die Struktur ihrer Ergebnisse, sowie vorhandene Be-
sonderheiten gegeben werden.

4.1 Mate Parser
10 Der für unsere Forschung verwendete Mate Parser ist ein transitionsbasier-
ter Shift-Reduce Dependenz Parser, welcher sich einiger Zusatzfunktionen zur
Verbesserung der Parser Genauigkeit bedient. Die Form der ausgegebenen De-
pendenzbäume des Parsers sind in Abbildung (6) zu erkennen. Trainiert ist
Mate auf der Tiger Treebank, einem Dokument mit handmarkierten Sätzen im
Umfang von 650.000 Wörtern, Satz- und Sonderzeichen, sogenannten

”
Tokens“.

Die von Mate Parser verwendeten Dependenz Relations-Tags sind in Tabelle (8)
und (9) im Anhang dieser Arbeit aufgeführt. Zusätzlich zur Parser Funktion,
kommt Mate mit seinem eigenen Part-of-Speech Tagger, welcher zusammen mit
den Hauptfunktionen ausgeführt wird.

Neben dem Modell für Tagger und Shift-Reduce Algorithmus, trainiert Mate,
wie eine konstraintbasierte Dependenz Grammatik, zusätzlich ein Einschränkungs-
lexikon, mit Hilfe dessen der Parser die Wahrscheinlichkeit der grammatikali-
schen Abhängigkeit von Worten bewerten, und so bessere Aussagen über die
syntaktische Satzstruktur treffen kann.

Eine weitere Zusatzfunktion nutzt Mate mit der Verwendung von sog.
”
Wort

Clustern“ im Einschränkungslexikon, welche passende Worte in Übergruppen
zusammenfassen und so die Leistungsfähigkeit des Parsers bei Auftritt von sel-
tenen oder unbekannten Wörtern verbessern.

Mit dieser Struktur erreichte die englische Version des Mate Parser in einer
2015 veröffentlichten Leistungsuntersuchung von Choi et. Al. [3] herausragende
Ergebnisse.

Lydia bewegte die Lippen .

ROOT

SB

OA

NK - -

Abbildung 6: Hier wird ein Satz annotiert von Mate Parser dargestellt.

10Dies und das Folgende nach [1]
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4.2 Malt Parser
11 Malt Parser wird von seinen Entwicklern als

”
Parser Generator“ bezeichnet.

Von der Grundlage eines transitionsbasierten Shift-Reduce Parsers aus, wer-
den dem Benutzer sowohl vorprogrammierte Protokolle und Algorithmen, als
auch die Möglichkeit der Umsetzung eines eigenen Lösungsweges zur Verfügung
gestellt. Während die Art der Maschine durch die Shift-Reduce Architektur
festgelegt ist, kann der Benutzer Eingaben, Lern- und Parser-Algorithmen, so-
wie die Klassifikatoren des Parsers selbst umsetzen, um so Malt bestmöglich an
das benötigte Einsatzgebiet anzupassen. Zusatzfunktionen, sowie die ermöglich-
te Anpassung an eine gegebene Domäne wurden in unserem Experiment aller-
dings bewusst ungenutzt gelassen, da die Leistung des Parsers auf einer ihm
unbekannten Domäne untersucht werden soll.

Da Malt Parser kein standardmäßiges deutsches Modell für seinen Parser
liefert, wurde das für unser Experiment verwendete Modell auf der TüBa-D/Z
Treebank der Universität Tübingen nach Standardeinstellungen des Parsers trai-
niert. Auch besitzt Malt Parser keinen integrierten Tagger und macht demnach
sowohl von den von uns generierten Part-of-Speech Tags, als auch benötigten
Morphology Tags Gebrauch, welche dem Parser zusammen mit den zu parsen-
den Sätzen im CoNLL Format als Eingabe übergeben werden. Die von Malt
Parser verwendeten Dependenz Relations-Tags der TüBa-D/Z Treebank sind
in Tabelle (8) und (9) im Anhang dieser Arbeit aufgeführt. Die Ausgabe des
TüBa-D/Z Models des Parsers ist in Abbildung (7) dargestellt.

Malt Parser erziehlte in der Vergangenheit mit frühen Iterationen seines
englischen Parsers herausragende Parsing Ergebnisse, beispielsweise im bereits
erwähnten 2007er CoNLL shared task on Dependency Parsing [11], in welchem
Iterationen des Malt Parsers mit angepassten Trainings- und Parsealgorithmen
den ersten und fünften Platz für generelle Scores belegten. Zusätzlich zeigt der
Parser solide Werte in 2010 erstellten Tests von Cer et. Al. [2].

Lydia bewegte die Lippen .

ROOT

SUBJ

OBJA

DET -PUNCT-

Abbildung 7: Hier wird ein Satz annotiert von Malt Parser dargestellt.

4.3 ParZu Parser
12 Der von Mitarbeitern der Universität Zürich entwickelte ParZu Parser basiert
auf der Architektur des englischen Pro3Gres Parser und bildet einen Hybrid

11Dies und das Folgende nach [12]
12Dies und das Folgende nach [16]

14



zwischen datengetriebenem und grammatikbasiertem Dependenz Parser. Zum
Parsen eines Satzes werden sowohl eine handgeschriebene, einschränkungsba-
sierte Dependenz Grammatik, also auch ein, durch Maschinenlernen auf der
TüBa-D/Z Treebank mit Umfang von ca. 30.000 Sätzen gewonnenes, Lexikon
verwendet. Eine Liste der von ParZu verwendeten Dependenz Relations-Tags
der TüBa-D/Z Treebank sind ebenfalls in Tabelle (8) und (9) im Anhang dieser
Arbeit aufgeführt. Eine Ausgabe des Parsers ist in Abbildung (8) zu sehen.

Über die Leistungsfähigkeit des Parsers sind nur wenige Aussagen zu finden,
allerdings zeigt ein Vergleich der Entwickler des Parsers in Sennrich et. Al. [16]
ähnliche Ergebnisse zwischen ParZu und Malt Parser.

Lydia bewegte die Lippen .

ROOT

subj

obja

det

ROOT

Abbildung 8: Hier wird ein Satz annotiert von ParZu Parser dargestellt.

4.4 Berkeley Parser
13 Berkeley Parser ist ein, auf einer wahrscheinlichkeitsbasierten kontext-freien
Grammatik (PCFG) basierter Konstituenz Parser, welcher starken Gebrauch
von Lexika macht. Im Gegensatz zu anderen Ansätzen, werden nicht nur ein-
zelne Eigenschaften von Wörtern betrachtet, sondern es wird ein Lexikon mit
Informationen über die drei nächst wahrscheinlich folgenden Elemente für je-
des Wort erstellt. Dieses Lexikon berücksichtigt jeweils das Wort selbst, sowie
Part-of-Speech Tags und Nichtterminale (Konstituenzen), um den Zusammen-
hang zweier Wörter nach Wahrscheinlichkeiten zu bewerten. Zusätzlich besitzt
die von uns verwendete Version des Berkeley Parsers, im Gegensatz zu den be-
trachteten Dependenz Parsern, keine Relationstags (Subjekt, Akkusativobjekt,
etc.), weshalb die Auswertung des Parsers auf das Gesamtergebnis, und nicht
etwa auf einzeln betrachtete Phrasen, bezogen werden muss. Diese Art der Aus-
wertung bezeichnet man als

”
unlabeled attachment score“ (UAS), im Gegensatz

zu LAS (labeled attachment score), nachlesbar in Kübler et. Al. [10] Kap.6.1.
Die Struktur eines solchen UAS Konstituenzbaums ist in Abbildung (9) dar-
gestellt. Zusätzlich sind die verwendeten Phrasenbezeichnungen des Parsers in
Tabelle (10), sowie die Part-of-Speech Tags in Tabelle (6) und (7) im Anhang
dieser Arbeit aufgeführt.

Die englische Version des Berkeley Parsers zeigt gute Leistungen in 2010
veröffentlichten Tests von Cer et. Al. [2].

13Dies und das Folgende nach [13]
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PSEUDO

S

NE
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VVFIN
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NP

ART

die

NN

Lippen

$.

.

Abbildung 9: Hier wird ein Satz annotiert von Berkeley Parser dargestellt.

4.5 Stanford Parser
14 Stanford Constituency Parser ist ein Hybrid Parser, welcher sich sowohl der
Dependenz, als auch der Konstituenz Struktur bedient. Während seine Ausgabe
in Form einer Konstituenz Grammatik erfolgt, benutzt der Parser allerdings mit
dem Shift-Reduce Algorithmus den transitionsbasierten Ansatz eines Dependenz
Parsers. Stanford Constituency Parser bearbeitet einen eingegebenen Satz wie
ein Shift-Reduce Parser, mit Hilfe von

”
Wort Clustering“ und einem Dependenz

Lexikon, ähnlich wie Mate Parser. Wenn die wahrscheinlichste Lösung für den
eingegebenen Satz gefunden ist, wird diese in Konstituenz Struktur gebracht und
ausgegeben. Wie bei Berkeley Parser, besitzt die im Experiment verwendete
Version des Stanford Parsers keine Relationstags und erfordert deshalb eine
Auswertung ohne Labels (UAS). Wie für Berkeley Parser sind die verwendeten
Phrasenbezeichnungen des Parsers in Tabelle (10), sowie die Part-of-Speech Tags
in Tabelle (6) und (7) im Anhang dieser Arbeit aufgelistet. Abbildung (10)
enthält die Ausgabe des Parsers für einen Satz als Konstituenzbaum.

Für die Shift-Reduce Konstituenz Architektur des Stanford Parsers zeigen
die Entwickler des Parsers in Zhu et. Al. [23] gute Messwerte für Englisch und
Chinesisch.

S-ROOT

NE

Lydia

VVFIN

bewegte

NP

ART

die

NN

Lippen

$.

.

Abbildung 10: Hier wird ein Satz annotiert von Stanford Parser dargestellt.

14Dies und das Folgende nach [23]
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5 Aufbau des Experiments

In diesem Kapitel sollen Motivation, Struktur, sowie die detailierte Vorgehens-
weise unseres Experiments zur Evaluation von State of the Art Syntaxparsern
auf deutschen Romanen des 16. bis 20. Jahrhunderts vorgestellt werden.

5.1 Problemstellung

Traditionellerweise werden Syntax Parser auf die zu bearbeitenden Texte an-
gepasst. Dies geschieht meist durch Verwenden einer passenden Treebank bei
datengetriebenen Parsern und Lexika, oder manuelle Anpassung der Regeln von
grammatikbasierten Parsern. Meist werden Parser also für eine bestimmte Art
von Texten, die sog.

”
Domäne“, trainiert, um optimale Ergebnisse zu liefern.

Dies erfordert allerdings genauere Vorkenntnisse über die Beschaffenheit der
zu parsenden Texte in Sachen Satzbau, Vokabular und ähnlichem, sowie ei-
ne Spezialisierung des Parsermodells. Da das Anpassen eines Parsers auf eine
Domäne also nicht immer möglich und/oder sinnvoll ist, sollen im Folgenden
fünf verschiedene bereits beschriebenen State of the Art Syntax Parser auf ih-
re korrekten Ausgaben auf einer ihnen unbekannten Domäne getestet werden.
Während die Parser auf unterschiedlichen Treebanks und/oder Grammatiken
trainiert wurden, sind doch alle Parser Modelle auf per Hand annotierten Zei-
tungsartikeln basiert. Getestet werden sollen die Parser im Gegenzug auf deut-
schen Romanen des 16. bis 20. Jahrhunderts, welche sich im Allgemeinen durch
eine andere Satzstruktur, sowie altertümliche, und so den Parsern unbekannte,
Wörter von Zeitungsartikeln unterscheiden können.

Betrachtet wird die Treffsicherheit der Parser bezogen auf Nominalphrasen
für unsere Konstituenz Parser, sowie einzelne Subjekt-, Dativobjekt-, Akkusativ-
objekt- und Präpositionalphrasen für unsere Dependenz Parser. Genitivobjekte
werden mangels statistisch signifikanter Häufigkeitsmenge in unseren Dokumen-
ten nicht betrachtet. Insbesondere soll eine manuelle Fehleranalyse der Ergeb-
nisse der einzelnen Parser Aufschluss über die Problematik des Parsens auf einer
unbekannten Domäne geben.

5.2 Struktur des Experiments

Das Experiment versucht einen Überblick über die Leistungsfähigkeit der einzel-
nen Parser in fremden Domänen zu verschaffen. Deshalb werden, falls vorhan-
den, die mitgelieferten Standardmodelle der Parser, trainiert auf Zeitungsarti-
keln, verwendet. Die zentrale Steuerung des Experiments erfolgt über Eclipse,
weswegen nach Möglichkeit alle Parser über ihre Java API bedient werden.

Die zugrundeliegende Testmenge besteht aus 22 unterschiedlichen, deutsch-
sprachigen Textausschnitten aus Romanen des 16. bis 20. Jahrhunderts mit
insgesamt 10.045 Tokens. Die Länge, sowie Komplexität der Texte variiert.

Zu Begin des Experiments wurden sämtliche verwendeten Parser nach Möglich-
keit an die Java API angeschlossen. Anschließend wurden für jeden Parser Me-
thoden für die Umwandlung der Dokumente in ein passendes Eingabeformat
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erstellt. Für nicht an Java anbindbare Parser wurden die Eingaben als passende
.txt Dateien generiert und Methoden für die Übertragung der Ausgabewerte in
die einzelnen Dokumente geschrieben.

Zusätlich zu diesen Maßnahmen musste für diejenigen Parser, welche kein
vorhandenes deutsches Standardmodell besitzen, ein passendes Modell auf Basis
der TüBa-D/Z Treebank der Universität Tübingen erstellt werden.

Die einzelnen Romanausschnitte, welche von den Parsern bearbeitet werden
sollen, befinden sich in vorbearbeiteten .xmi Dateien, welche bereits Part-of-
Speech und Morphology Tags besitzen, die von den Parsern bei Bedarf verwen-
det werden können. Das Auslesen, bzw. Schreiben auf diesen .xmi Dateien erfolgt
über eine, von der Universität Würzburg selbst geschriebene, Java Schnittstelle
in Eclipse. Geparste Sätze werden unter Kennzeichnung des Parsers über selbst
geschriebene Methoden in der .xmi Datei gespeichert und können von dort je-
derzeit zur Analyse wieder aufgerufen werden.

Diese .xmi Dateien mussten nun zunächst mit Musterlösungen für unse-
re Phrasen, dem sog.

”
Gold Standard“, per Hand annotiert werden. Dies er-

folgte über einen von Markus Krug erstellten, bisher unveröffentlichten Editor,
verfügbar Online [9]. Der Editor speichert die resultierenden Annotationen di-
rekt in den .xmi Dateien.

Als nächstes wurden für jede untersuchte Art von Phrasen Methoden erstellt,
die für jedes der Parser Ergebnisse, sowie für den Gold Standard, falls möglich
eine Liste mit den in der Lösung vorhandenen Phrasen ausgeben. Hier müssen
also für jeden Parser Methoden zur korrekten Erstellung der Phrasen angelegt
werden. Dies beinhaltet bei Dependenz Parsern die Zusammensetzung der Phra-
sen nach den für unseren Gold Standard ausgelegten Regeln. Für Konstituenz
Parser muss die Ebene der zu vergleichenden Nominalphrasen im Konstituenz-
baum festgelegt werden. Es existieren für Parser und Gold Standard jeweils
Listen für Subjekte, Dativobjekte, Akkusativobjekte und Präpositionalphrasen.

Diese Listen von Phrasen ermöglichen anschließend einen direkten Vergleich
von Parser und Gold Standard. Es werden für jedes einzelne Dokument die
Anzahl der exakt getroffenen Phrasen als

”
Hits“, die Anzahl der nicht exakt

getroffenen Phrasen als
”
Misses“, und die Anzahl der fälschlich korrekt mar-

kierten Phrasen als
”
False Positives“ gezählt. Durch diese Elemente kann für je-

den Phrasentyp eines Dokuments eine Übersicht durch Genauigkeit(precision),
Trefferquote(recall) und den aus beiden Werten berechneten F1 Score ermittelt
werden, welche so ein Maß für die Treffsicherheit des Parsers geben.

Abschließend wurden die im Vergleich zum Gold Standard falsch markierten,
sowie die nicht getroffenen Phrasen per Hand überprüft, um einen Eindruck über
die größten Fehlerquellen der einzelnen Parser zu erhalten.

5.3 Anschließen der Parser

Bis auf ParZu Parser besitzen alle verwendeten Parser eine Java API, welche für
das Anschließen genutzt wurde. ParZu selbst wurde über die Kommandozeile ei-
nes Linux Rechners bedient. Als Modell des Parsers wurde, falls vorhanden, ein
mitgeliefertes Standardmodell verwendet. Bei nicht vorhandenem Standardmo-
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dell wurde der Parser über die Kommandozeile auf seinen Standardeinstellungen
mit Hilfe der TüBa-D/Z Treebank trainiert.

Nach korrekter Initialisierung eines Parsers, muss der zu parsende Text im
korrekten Format eingegeben werden. Auch das Format des Outputs ist von
Parser zu Parser verschieden, und muss gegebenenfalls für das Schreiben in die
.xmi Datei umgewandelt werden.

Das Erhalten, sowie das Abspeichern der Daten wird über eine Java Schnitt-
stelle der Universität Würzburg abgehandelt, welche Lesen und Schreiben auf
den zu Grunde liegenden .xmi Dateien ermöglicht.

Stanford Constituency Parser, trainiert auf der Negra Treebank, wurde mit
einem deutschen Standard Modell verwendet. Der Parser benötigt die einzelnen
Sätze als Input. Part-of-Speech Tags, sowie Morphology Tags werden von St-
anford selbst ausgeführt. Stanford erstellt als Konstituenz Parser sein Ergebnis
als Phrasenbaum, welcher anschließend vollständig durchlaufen wird, um sämt-
liche Knoten einzeln mit Begin und Ende der Wörter oder Phrasen, sowie dem
Phrasentyp in die .xmi Datei zu überschreiben.

Berkeley Parser besitzt, wie Stanford, ein deutsches Standard Modell. ähn-
lich wie Stanford, benötigt der Parser einzelne Sätze als Input und formt diese
zu einem Phrasenbaum als Ausgabe. Dieser Baum wird wiederum vollständig
in die .xmi Datei übertragen.

Mate Parser war bereits, wie Part-of-Speech und Morphology Tags in der
.xmi Datei vorhanden. Informationen in der Datei beinhalten für jedes Wort
Begin und Ende im Dokument, den zugehörigen Head der Dependenz Struktur,
sowie ein Tag, welches die syntaktische Rolle des Wortes im Satz beschreibt.
Das Modell des Parsers ist ebenfalls das Standardmodell, welches auf der Tiger
Treebank trainiert wurde.

Malt Parser wurde mangels eines Standardmodells von uns mit einem auf
der TüBa-D/Z Treebank trainieren Modell versehen und benötigte Input im
CoNLL Format, was eine Satzweise Erstellung einer passenden Eingabe durch
korrektes Formatieren der in den .xmi Dokumenten vorhandenen Sätze zu einer
Liste aus Wörtern, Part-of-Speech, sowie Morphology Tags erforderte. Auch
mussten die Morphology Tags in ein dem Parser bekanntes Format umgewandelt
werden. Die resultierende Ausgabe des Parsers wird im Format eines Dependenz
Graphen geliefert, welcher anschließend Wort für Wort mit Begin und Ende im
Dokument, sowie dem Head des Wortes und der Dependenzrelation in die .xmi
Datei übertragen wurde.

ParZu war als Linux basierter Parser nicht für die Bedienung mit unserem
Windows Java System geeignet, und musste deshalb auf einem Linux System
über die Kommandozeile ausgeführt und mit passendem Input versorgt werden.
Für jedes zu parsende Dokument wurde ein Textdokument mit den einzelnen
Wörtern und deren Part-of-Speech Tags erstellt. Als Ausgabe erstellte ParZu
eine Textdatei mit den Informationen über Wortstamm, Wortart, Form, Head
in der Dependenz Struktur, und syntaktischer Rolle im Satz für jedes einzelne
Wort. Diese Informationen wurden anschließend per Eclipse eingelesen und in
die .xmi Datei eingetragen.
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5.4 Annotieren des Gold Standards

Der Testsatz des Experiments besteht aus 22 Dokumenten von verschiedenen
Romanautoren des 16. bis 20. Jahrhunderts. Der Umfang einzelner Dokumente
schwankt zwischen 250 und 1000 Tokens und addiert sich letztendlich zu einem
Gesamtumfange von rund 10.000 Tokens. Die Anzahl der von Hand markierten
Phrasen im Testsatz sind Tabelle (1) zu entnehmen.

Die zu parsenden Dokumente wurden über Markus Krug’s bisher unveröffent-
lichten Kallimachos Annotation Editor per Hand mit folgenden Tags versehen:

Subjekt: Als Subjekt wird hier die gesamte Phrase angesehen, die im Mittel-
punkt des Satzes steht. Dies bedeutet, dass alle Worte, die sich direkt auf das
zentrale Subjekt beziehen, Teil des als

”
Subjekt“ markierten Parts sind. Insbe-

sondere müssen Aufzählungen, Genitivmodifikatoren und direkt an das Subjekt
anschließende Appositionen wie Namen oder Titel berücksichtigt werden. Nicht
zu einer Subjekt Phrase gezählt werden allerdings durch Kommas getrennte
Appositionen.

Genitivobjekt, Dativobjekt, Akkusativobjekt: Für alle Objektphrasen verhält
sich die Regelung gleich wie bei Subjekten. Genitivphrasen werden zwar für die
Evaluation der Konstituenz Parser markiert, werden in dieser Arbeit allerdings
nicht genauer betrachtet, da die beobachtete Menge an Dokumenten keine stati-
stisch signifikante Anzahl solcher allein stehenden Genitivphrasen zur Verfügung
stellte.

Präpositionalphrasen: Bei Präpositionalphrasen muss zunächst geprüft wer-
den, ob es sich um alleinstehende, oder zu einem Subjekt/Objekt gehörende
Phrasen handelt, da letztere zu den Subjekten/Objekten selbst hinzugezählt
werden. Ferner muss, zusätzlich zu den Zusammenhangsregeln, welche bei Sub-
jekten und Objekten gelten, geprüft werden, ob eine weitere Präpositionalphrase
existiert, die sich auf die vorherige bezieht und somit Teil von ihr ist.

Nominalphrasen: Mit dem Tag
”
NP“ werden sämtliche Nominalphrasen ver-

sehen, welche nicht in die bisher beschriebenen Kategorien der Subjekt-, Dativ-,
Akkusativ-, oder Präpositionalphrasen passen. Diese werden insbesondere mar-
kiert, um den Vergleich unserer Konstituenz Parser mit unserem Gold Standard
zu ermöglichen, da sowohl Stanford als auch Berkeley Parser in der von uns
verwendeten Version keine Relationstags besitzen.

Phrasentyp Subjekt Dativobjekt Akkusativobjekt Präpositionalphrase
Anzahl 790 153 488 615

Tabelle 1: Hier wird die Anzahl der in der Testmenge manuell markierten Phra-
sen des Gold Standards aufgeführt.
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5.5 Umwandlung der Parserergebnisse in Gold Standard
Phrasen

Da die in unserem Gold Standard annotierten Phrasen nicht direkt aus den von
unseren Parsern erstellten Bäumen herauslesbar sind, müssen die Phrasen der
Parser zunächst in die für unseren Gold Standard definierten Formate gebracht
werden.

Während Berkeley und Stanford Parser beide keine Relationstags besitzen
und deshalb nicht über einzelne Phrasen evaluiert werden können, versuchen wir
für Mate, Malt und ParZu die entstandenen Parses Phrase für Phrase mit unse-
rem Gold Standard zu vergleichen. Da es sich allerdings bei diesen drei Parsern
um Dependenz Parser handelt, müssen zuerst die Phrasen, wie in Abbildung
(11) ersichtlich, aus der Satzstruktur heraus korrekt bestimmt werden.

Mit der Feinheit eines Hofmanns sprach der Baron seine Meinung aus

ROOT

pp

det

pn
det

gmod

det

subj
det

obja

adv

Abbildung 11: Hier wird die Unterteilung eines Dependenz Graphen in Gold
Standard Phrasen dargestellt.

Wir betrachten die Parses Satz für Satz. Es müssen, nach unserer Definition
der Phrasen im Gold Standard, für jeden erkannten Mittelpunkt einer Phrase -
Subjekt, Dativ-, Akkusativobjekt und Präposition - die diesem Wort zugehöri-
gen Elemente gefunden werden, um so eine Phrase zu bilden. Wir suchen also
dem entsprechend für jedes Wort mit passendem Relationstag sämtliche Worte
im Satz, die sich auf unser Ursprungswort beziehen, dieses also zum

”
Head“

haben. Anschließend müssen wir allerdings noch überprüfen, ob ein gefundenes
Wort tatsächlich zu unserer Phrase dazugezählt werden kann, oder ob es sich
um eine, im Gold Standard definierte, Ausnahme handelt.

Da für unterschiedliche Phrasen verschiedene Ausnahmen berücksichtigt wer-
den müssen, benötigt jeder Phrasentyp eine eigene Methode zur Evaluation.

Der Ansatz der Evaluation allerdings ist bei allen drei Parsern gleich und
kann somit übernommen werden. Es müssen lediglich die Relationstags an den
entsprechenden Parser angepasst werden, da diese sich durch das Training auf
verschiedenen Treebanks unterscheiden. Beispielsweise werden Subjekte von Par-
Zu mit dem Tag

”
subj“, von Mate mit

”
SB“ und Malt mit

”
SUBJ“ versehen.

Zur Phrase hinzuzufügen sind bei allen Phrasen die bereits erwähnten Aufzäh-
lungen, Genitivmodifikatoren und direkt an das Subjekt anschließenden Ap-
positionen. Zusätzlich muss hier allerdings berücksichtigt werden, dass Ketten
entstehen können, deren Elemente wiederum auch zur Phrase gehören müssen.
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Abbildung (12) zeigt beispielsweise eine Genitivkette, welche durch unseren Al-
gorithmus erkannt werden muss.

Ausgenommen sind allerdings durch Kommas getrennte Appositionen, die
als eigener Satzteil von ihrem Bezugswort getrennt behandelt werden sollen.

Das Haus der Feuerwehr der Stadt Berlin

det
det

gmod

det

gmod

app

Abbildung 12: Hier wird die benoetigte Erkennung von Genitivketten als zu-
sammengehoerige Phrase dargestellt.

Zusätzlich benötigen die einzelnen Phrasen gegebenenfalls noch spezielle
Ausnahmeregeln, die sich direkt auf den Phrasentyp beziehen. So muss bei-
spielsweise für Subjektphrasen eine Ausnahme für das

”
expletive es“ erstellt

werden, da dieses im Tagset unserer Parser ein eigenes Tag
”
EXPL“ besitzt.

Die gesamte Evaluation wird für jede unserer vier Phrasen, sowie für sämt-
liche Dependenz Parser einzeln ausgeführt und liefert für alle Dokumente eine
Liste mit Begin und Ende der einzelnen Phrasen.

5.6 Evaluation der Dependenz Parser

Die Auswertung unserer Dependenz Parser erfolgt im direkten Vergleich mit
den per Hand markierten Phrasen des Gold Standards. Für jeden Parser wer-
den die unterschiedlichen Phrasentypen einzeln ausgewertet, indem über alle
Dokumente iteriert wird. Um also beispielsweise die Leistung des Malt Par-
sers beim markieren von Subjekten in einem Dokument zu untersuchen, werden
zunächst zwei Listen erstellt, welche Begin und Ende der entsprechenden Phra-
sen nach Gold Standard und Malt Parser enthalten. Nun werden beide Listen
abgeglichen. Ein Treffer bezeichnet hierbei eine Phrase, für die Begin und Ende
in beiden Listen übereinstimmen. Aus der Länge der einzelnen Listen, zusam-
men mit der Anzahl der Treffer, lassen sich nun als Qualitätsmaße der Parser
Precision (Genauigkeit) und Recall (Trefferquote) für jedes einzelne Dokument
ermitteln, die wie folgt berechnet werden:

Precision (Genauigkeit) bezeichnet die Treffsicherheit des Parsers und wird
berechnet durch das Teilen der tatsächlich korrekten Treffer mit den vom Parser
Vermuteten. Es beschreibt also wie oft ein Parser mit seiner Lösung richtig liegt.

Recall (Trefferquote) bezeichnet die Rate an korrekt gefundenen Phrasen
und wird durch das Teilen der korrekten Treffer durch die in der Musterlösung
vorhandenen Phrasen berechnet. Es beschreibt also wie viele korrekte Phrasen
ein Parser gefunden hat.

Beide Maße können durch bilden des harmonischen Mittelwerts miteinan-
der verrechnet werden um so ein Maß für die Leistung des Parsers auf beiden
Gebieten zu erhalten. Diese Verrechnung nennt sich

”
F1 score“.
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Diese Maße werden für alle 22 vorhandenen Dokumente erstellt. Für unsere
Ergebnisse werden sie schließlich, gewichtet mit der Anzahl der vorkommenden
Phrasen im Gold Standard, verrechnet, um einen gewichteten Durchschnitt (Mi-
kro Average) der Treffsicherheit des Parsers für den entsprechenden Phrasentyp
zu erhalten.

5.7 Evaluation der Konstituenz Parser

Da beide unserer verwendeten Konstituenz Parser keine Tags besitzen, welche
die Funktion der Phrasen im Satz beschreiben, müssen wir für die Evaluation
dieser Parser auf andere Vergleichsmöglichkeiten zurückgreifen.

Es werden alle verfügbaren Phrasen des Gold Standards zusammengelegt
und als Nominalphrasen (NP) betrachtet. Zusätzlich werden hierfür noch in der
Musterlösung alle bisher nicht abgedeckten Nominalphrasen, wie zum Beispiel
Konjunktionalgruppen, Zeitangaben, etc. mit dem Tag

”
NP“ versehen, um so

die Lösungen der Parser auf Basis ihrer Nominalphrasen vergleichen zu können.
Um nun aus den Lösungsbäumen der Parser die passenden Nominalphrasen

zur Überprüfung auszulesen, gehen wir wie folgt vor:
Für jedes Wort innerhalb eines Satzes wird die kleinstmögliche Phrase be-

trachtet, welche dieses Wort enthält und ein Tag besitzt, das nicht
”
S“,

”
CS“,

”
PSEUDO“,

”
“, oder

”
VP“ lautet. Für den Fall, dass sich Phrasen überlappen,

wird nur die längste Phrase behalten. Es wird also die jeweils kleinste gültige
Unterteilung aller Nominalphrasen als Lösung des Parsers angesehen. Dies ist
die am häufigsten zutreffende Annahme, welche wir über die Lösungsbäume der
geparsten Dokumente treffen konnten.

Für jedes Dokument wird anschließend eine Liste mit den so entstehenden
Phrasen angelegt, welche somit sämtliche gefundenen Nominalphrasen des Par-
sers enthält. Aus unserem Gold Standard wird eine ähnliche Liste für jedes Do-
kument erstellt, die lediglich Begin und Ende jeder markierten Nominalphrase
enthält. Dies ermöglicht im Anschluss einen direkten Vergleich der beiden Li-
sten auf korrekt markierte Phrasen, nicht erkannte Phrasen, sowie fälschlich
markierte Phrasen und die resultierende Erstellung von Precision, Recall und
F1 Score.

6 Ergebnisse des Experiments

Im Folgenden soll auf die Ergebnisse unseres Experimentes eingegangen wer-
den. Berücksichtigt werden sollen die Durchschnittstrefferquoten der Parser, die
überzeugendsten Ergebnisse für die verschiedenen Phrasentypen, sowie die Tref-
ferraten auf unterschiedlichen Dokumenten.

Tabelle (2) zeigt den Gesamtdurchschnitt der Ergebnisse von Precision, Re-
call und F1 Score für unsere beiden Konstituenz Parser, deren sog.

”
Makro

Average“, sowie den anhand der einzelnen Phrasen gewichteten Gesamtdurch-
schnitt der Dependenz Parser, den sog.

”
Mikro Average“.
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Parser Average Berkeley Stanford Mate Malt ParZu
Precision p 56,00% 59,00% 65,72% 67,22% 74,40%

Recall r 46,00% 48,00% 62,71% 61,78% 70,77%
F1 score 51,00% 51,00% 64,07% 64,29% 72,36%

Tabelle 2: Hier wird der sog.
”
Weighted Average“ aller Parser auf unserer Test-

menge aufgelistet.

Auf den ersten Blick kann zunächst festgestellt werden, dass ParZu einen
enormen Vorsprung zu sämtlichen anderen Parsern besitzt. Dies bedeutet, dass
ParZu für die betrachteten Dokumente eindeutig bessere Ergebnisse liefert, so-
fern man genau nach Subjekten, Dativ-, Akkusativobjekten und Präpositional-
phrasen unterteilen will. Für weitere Rückschlüsse müssen allerdings die ein-
zelnen Parser genauer betrachtet werden, da im Falle unserer Abbildung bei-
spielsweise ein schlechter Wert bei der Erkennung von Akkusativobjekten das
Ergebnis stark verzerrt.

Auch fällt auf, dass beide unserer Konstituenz Parser weit hinter den De-
pendenz Parsern zurückliegen. Dies kann allerdings keinesfalls ausschließlich auf
die Architektur der Parser zurückgeführt werden, sondern ist mit höherer Wahr-
scheinlichkeit der Tatsache zuzuschreiben, dass sowohl Berkeley, als auch Stan-
ford Parser in ihrer hier verwendeten Form keine Syntax Relationen vermerken,
und so die Auswertung anders erfolgen musste.

Um diese Ergebnisse nun weiter auszuwerten und allgemeinere Schlüsse zu
ziehen, wollen wir die Resultate auf die einzelnen Parser bezogen, und nach
Möglichkeit auf die einzelnen Phrasen aufgeteilt betrachten. Auch sollen die Er-
gebnisse einiger interessanter Dokumente betrachtet werden, bei denen beispiels-
weise deutliche Schwankungen der Parsereffizienz beobachtet werden können.

Dependenz
Mikro

Average
Subjekt Dativobjekt Akkusativobjekt

Präpositional
phrase

Mate
p 72,64% 44,92% 55,31% 70,28%
r 67,22% 34,64% 60,86% 65,37%
F1 69,82% 39,11% 57,95% 67,73%

Malt
p 75,62% 55,14% 58,28% 66,55%
r 69,87% 38,56% 58,40% 59,84%
F1 72,63% 45,38% 58,34% 63,01%

ParZu
p 80,45% 72,39% 71,50% 69,45%
r 72,93% 87,58% 61,68% 71,71%
F1 76,22% 79,26% 66,23% 70,56%

Tabelle 3: Hier werden die Ergebnisse der Dependenz Parser auf die verschiede-
nen betrachteten Phrasen aufgeteilt. Die Tabelle zeigt die sog.

”
Mikro Averages“

des Experiments.
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6.1 Ergebnisse der einzelnen Parser

Da wir die Informationen über die Treffsicherheit der Dependenz Parser bei
einzelnen Phrasentypen, dargestellt in Tabelle (3), besitzen, können wir diese
getrennt betrachten und so einen Rückschluss auf deren gesamten Weighted
Average aus Tabelle (2) ziehen.

Zunächst stellen wir fest, dass die Ergebniswerte der Subjekte durchgehend
höher als andere Phrasen sind. Auch sehen wir hier, insbesondere bei der Be-
trachtung der Genauigkeit (Precision p), einen deutlichen Leistungsunterschied
der Parser.

Besonders interessant sind die Ergebnisse der Dativobjekte, die von Parser
zu Parser stark variieren und bei Mate und Malt sehr schwach, bei ParZu je-
doch vergleichsweise hervorragend ausfallen. Dies kann zunächst einmal daran
liegen, dass die Menge der Dativobjekte in unseren Testdokumenten einiger-
maßen gering ausfällt (150 Dativobjekte im Gegensatz zu 790 Subjekten), und
diese Phrasen hauptsächlich in längeren, und dadurch für die Parser kompli-
zierteren Sätzen auftreten. Die Ergebnisse des ParZu Parsers hier sind beein-
druckend, stemmen allerdings hauptsächlich von einigen wenigen Dokumenten,
welche viele Dativobjekte der selben Form enthalten.

Weiterhin erstaunlich ist das schwache Resultat aller Parser für Akkusativ-
objekte, speziell im Gegensatz zu den deutlich höheren Werten der Subjekte.
Selbst der andernfalls hervorragende ParZu Parser trifft hier, anhand der Tref-
ferquote (Recall r) zu erkennen, einen recht großen Teil der markierten Phrasen
nicht.

Für Präpositionalphrasen scheinen sämtliche Parser wieder deutlich effizien-
ter zu arbeiten und liefern teils mit den Resultaten für Subjekte vergleichbare
Ergebnisse.

Generell kann durch diese Ergebnisse vermerkt werden, dass ParZu auf un-
serer Testmenge in sämtlichen Kategorien mit den besten Durchschnittswerten
(F1 score) aufwartet. Interessant ist zudem, dass unterschiedliche Parser Pro-
bleme an verschiedenen Stellen zeigen. So stellt beispielsweise für ParZu die Er-
kennung von Akkusativobjekten die größte Herausforderung dar, wärend Malt
und Mate ihre Tiefstwerte bei Dativobjekten besitzen.

6.2 Ergebnisse einzelner erwähnenswerter Dokumente

In beiden bereits analysierten Tabellen konnten große Schwankungen und Un-
terschiede zwischen den einzelnen Parsern festgestellt werden. Um den Ursprung
dieser Unregelmäßigkeiten zu finden, möchten wir nun auf einige der erwähnten
Ursachen eingehen, indem wir unter diesen Aspekten Precision, Recall und F1
Score einzelner Dokumente betrachten.

Für unsere Konstituenz Parser ist zunächst zu beobachten, dass sich für
sämtliche Dokumente alle Werte ähneln. Es können durchschnittlich Unterschie-
de von 5% im F1 Score festgestellt werden, was ähnliche Schwierigkeiten beim
Parsen für Stanford und Berkeley vermuten lässt. Auch schwanken die Gesamt-
werte von einem Maximum von rund 70% bei syntaktisch simplen Dokumenten
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bis hinunter zu rund 38% für Dokumente mit langen, kompliziert verschachtelten
Sätzen. Dieses Phänomen kann bei beiden Parsern beobachtet werden. Generell
bleiben die Ergebnisse allerdings in relativer Nähe zum Gesamtdurchschnitt aus
Tabelle (2).

F1 Score
Gotthelf,-Jeremias
Uli der Pächter

Knigge,-Adolph-Freiherr-von
Josephs von Wurmbrands ...

politisches Glaubensbekenntnis
SB DA OA PP SB DA OA PP

Mate 85% 60% 50% 73% 70% 30% 48% 52%
Malt 85% 67% 57% 50% 75% 22% 50% 53%
ParZu 86% 96% 78% 71% 70% 67% 57% 69%

Tabelle 4: Hier wird der F1 Score der Dependenz Parser für zwei ausgewählte
Dokumente der Testmenge dargestellt.

Für die genauere Betrachtung der Dependenz Parser fokusieren wir uns an
dieser Stelle auf einige Dokumente, welche in ihren Ergebnissen der einzelnen
Phrasen große Schwankungen zwischen den Parsern enthalten. Generell kann
festgestellt werden, dass die Treffsicherheit der Parser mit der Länge und Kom-
plexität der zu parsenden Sätze deutlich abnimmt. Ein Beispiel dieses Verhaltens
weisen die in Tabelle (4) abgebildeten Dokumente auf. Während der Textaus-
schnitt von

”
Uli der Pächter“ eine simple Satzstruktur in direkter Rede aufweist,

ist der zweite Text mit Nebensätzen und Semicola deutlich komplizierter for-
muliert. Wie dies, in Verbindung mit der Nutzung von den Parser Lexika unbe-
kannten Worten, auf das Ergebnis zurückzuführen ist, soll im folgenden Kapitel
der genaueren Fehleranalyse an den erwähnten Dokumente erläutert werden.

Für die Untersuchung der Konstituenz Parser werden ebenfalls beide bereits
verwendeten Dokumente betrachtet. Während Stanford Parser, in Tabelle (5)
ersichtlich, vergleichsweise gute Werte für Dokument 1 vorweisen kann, kann eine
enorm schwache Trefferquote (Recall) von nur 28% für Dokument 2 beobachtet
werden. Auch Berkeley Parser gibt mit 40% eine sehr schwache Trefferquote

Gotthelf,-Jeremias
Uli der Pächter

Knigge,-Adolph-Freiherr-von
Josephs von Wurmbrands ...

politisches Glaubensbekenntnis

Berkeley
p 69% 64%
r 58% 40%
F1 63% 49%

Stanford
p 81% 60%
r 70% 28%
F1 74% 38%

Tabelle 5: Hier werden Precision p, Recall r, und F1 Score F1 der Konstituenz
Parser für zwei ausgewählte Dokumente der Testmenge dargestellt.
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an. Dies weißt auf enorme Schwierigkeiten für beide Parser bei kompliziertem,
langem Satzbau hin und soll im Folgenden ebenfalls genauer analysiert werden.

6.3 Fehleranalyse

Wir möchten nun die in Tabelle (4) und (5) dargestellten Ergebnisse genauer
betrachten und gegebene Schwankungen auf ihren Ursprung zurückführen. Dies
soll insbesondere dafür genutzt werden, um zu entscheiden, wie sinnvoll der
Einsatz eines bestimmten Parsers für ein gegebenes Dokument ist.

6.3.1 Fehleranalyse: Dependenz Parser

Zuerst wollen wir die Dependenz Parser genauer untersuchen, welche durch ih-
re Relationstags einen genaueren Einblick in die Treffsicherheit bei einzelnen
Phrasentypen ermöglichen.

Bei genauerer Untersuchung der Subjekte wird ersichtlich, dass die Lösun-
gen unserer Parser von Grund auf verschieden sind. Zwar sind Fehler auf den
selben Phrasen erkennbar, doch scheinen die gelieferten Lösungsbäume sich bei
komplizierteren Phrasen oftmals deutlich zu unterscheiden.

[...] , dir das Gut ohne Buergen zu verpachten ;

ROOT

DA

NK

DA !

MO

NK
PM

Abbildung 13: Diese Abbildung zeigt einen Fehler des Parsers im Markieren
inkorrekter Relationen. (Markiert mit !)

Ein häufig auftretender Fehler bei Mate und Malt Parser ist das Setzen des
falschen Dependenz Relationen. So werden oftmals Subjekte als Akkusativob-
jekte, aber auch Dativobjekte als Subjekte bezeichnet. Dieser Fehler tritt zwar
bei allen drei Parsern ein, bei ParZu allerdings in geringerem Ausmaß. Die in
Abbildung (13) dargestellte Markierung eines Akkusativobjekts als Dativob-
jekt beispielsweise, scheint bei ParZu nicht gehäuft vorzukommen. Dies ist ein
besonders herausragender Fehler, da viele Dativobjekte anhand ihrer Endung
eindeutig zu identifizieren sind. Im Falle der Abbildung (13) bedeutet dies, dass
Mate und Malt Parser für die Phrase

”
das Gut“ die Entscheidung über die Art

der Phrase ohne genaue Berücksichtigung der morphologischen Daten beider
Wörter treffen. ParZu allerdings scheint sich stärker an die morphologischen
Informationen anzulehnen und markiert die Phrase korrekt.

Ebenfalls eine häufige Fehlerquelle, speziell für unsere Domäne, stellt das
Vorkommen unbekannter Wörter dar. Die in unseren Dokumenten zwar nur
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[...] , da stund der Alte auf , [...]

CP !

DA !

NK

AG !

MO !

Abbildung 14: Diese Abbildung zeigt Folgefehler des Parsers durch Nichterken-
nen des Wortes im Satzmittelpunkt. (Falsche Relationen markiert mit !)

eingeschränkt vorkommenden, aber dennoch vorhandenen altertümlichen oder
umgangssprachlichen Wörter befinden sich nicht in den Lexika der Parser, und
erfordern somit eine Bearbeitung ohne nützliche Zusatzinformationen. Das Bei-
spiel in Abbildung (14) zeigt das den Parsern nicht bekannte Wort

”
stund“,

welches allerdings einen zentralen Bestandteil des Satzes darstellt. Während
Mate das Wort

”
stund“ selbst, trotz Kleinschreibweise, als Dativobjekt mar-

kiert, setzen sowohl Malt als auch ParZu das
”
ROOT“ Tag für Prädikate im

Satzmittelpunkt zwar korrekt, weisen
”
der Alte“ allerdings Demselben als Ge-

nitivmodifikator zu. Dies lässt vermuten, dass das
”
ROOT“ Tag aufgrund des

Nichterkennen des Wortes, und nicht wegen korrekter Identifikation desselben
als Satzmittelpunkt gesetzt wurde. Die entstehenden Probleme sind ebenfalls
in Abbildung (14) ersichtlich. Der gesamte, auf dem Prädikat

”
stund“ basieren-

de Nebensatz wird in Abhängigkeit eines anderen, nicht zum Satz gehörenden
Prädikats gestellt und enthält deshalb viele fälschlich markierte, hier mit

”
!“ ver-

deutlichte Tags. Darüber hinaus zeigt die Abbildung deutlich, dass die falsche
Etikettierung eines Wortes zu Folgefehlern führen, und sich so negativ auf das
Gesamtergebnis auswirken kann.

[...] , wenn dieser Mann , [...]

ROOT ROOT

det

Abbildung 15: Diese Abbildung zeigt einen Fehler des Parsers im Setzen der
Relation

”
ROOT“ bei nicht kategorisierbarem Wort.

Ein häufig gesehener Fehler bei ParZu und Malt Parser ist das Setzen des

”
ROOT“ Tags Anstelle von erwarteten Tags für Subjekte oder Objekte. Dies

kann mehrere Gründe haben. Zum einen kann ein
”
ROOT“ Tag gesetzt werden,

falls das Wort dem Lexikon des Parsers gänzlich unbekannt ist und dieses eben-
falls nicht in die Struktur des Satzes zu bringen ist. Zum anderen sind

”
ROOT“

Tags auch möglich, falls das Wort aus anderen Gründen nicht in die Struktur
des Satzes eingegliedert werden kann, beispielsweise da die Struktur des Sat-

28



zes zu kompliziert ist. In Abbildung (15), werden sowohl das Wort
”
wenn“, als

auch das Wort
”
Mann“ von ParZu als

”
ROOT“ markiert. Der mutmaßliche

Grund für diesen Fehler ist hier die Position des Textausschnittes in Mitten
von mehreren Nebensätzen, welche ParZu die syntaktische Analyse erschweren.
Der Ausschnitt steht an Tokenstelle 220 des Satzes, während der gesamte Satz
eine Länge von knapp 300 Tokens besitzt. Generell scheint ParZu sehr schnell
unsichere Elemente mit

”
ROOT“ Tags zu versehen, während im Gegensatz Ma-

te für sämtliche Elemente ein passendes Tag zu finden versucht. Dies kann für
Mate zum Erfolg führen, senkt allerdings bei falscher Einordnung zusätzlich die
Genauigkeit des Parsers für die entsprechend fälschlich gesetzte Phrase. Dies
kann auch in den Ergebnissen der Parser beobachtet werden, bei denen ParZu
deutlich höhere Durchschnittswerte für Genauigkeit zeigt, als andere Parser.

Bei näherer Betrachtung der Dativobjekte wird die bereits besprochene feh-
lende Berücksichtigung der Morphology Tags bei Mate und Malt noch deut-
licher. Hier ist bei beiden Parsern eine massive Senkung der Trefferquote zu
erkennen, was hauptsächlich auf die bereits in Abbildung (13) aufgeführte Pro-
blematik zurückzuführen ist. Es werden Dative fälschlich als Subjekte und Akku-
sative markiert. Auch sind einige fälschlicherweiße als Dative markierte Subjekte
und Akkusative auffindbar. Während Malt durch das setzen von

”
ROOT“ Tags

bei einigen Phrasen noch eine bessere Genauigkeit aufweisen kann, scheint Ma-
te enorme Schwierigkeiten mit Dativen zu besitzen. ParZu zeigt im Gegensatz
zu den anderen Parsern, keine großartigen Probleme mit der Verwechslung von
Dativen, Subjekten und Akkusativen, und behält die vergleichsweise hervorra-
genden Werte der Subjektphrasen bei. Auch ist, gerade im Vergleich der beiden
in Tabelle 4 abgebildeten Dokumente, ein sehr starker Abfall der Treffsicherheit
der Parser bei komplizierterem Satzbau zu erkennen. Viele Fehler entstehen hier
nicht nur aus der Morphology Problematik, sondern auch aus einer falschen Zu-
ordnung der Phrasen zu nicht vorhandenen Aufzählungen, Appositionen, oder
ähnlichen Konstruktionen. Hier zeigen die Parser deutliche Schwierigkeiten mit
verschachtelten Nebensätzen.

Akkusativobjekte weisen ähnliche Probleme wie unsere Dativobjekte auf.
Die Problematik des Vertauschens von Tags besteht weiterhin, was ParZu durch
die Tendenz zum Setzen der

”
ROOT“ Tags deutlich bessere Treffsicherheit ein-

bringt. Für unser zweites Dokument allerdings zeigt selbst ParZu starke Schwie-
rigkeiten mit der Zuweisung der Phrasen, was auch hier wieder auf den kompli-
zierten Satzbau zurückgeführt werden kann.

Für Präpsitionalphrasen besitzt Dokument 1 insgesamt nur 5 Phrasen, was
das Ergebnis somit relativiert. Erkennbar sind hier allerdings leichte Schwie-
rigkeiten der Parser im Umgang mit altertümlicher direkter Rede, da hier un-
bekannte Worte in Kombination mit Semicola und anderweitig ungewöhnlicher
Satzstruktur zu fälschlich markierten Funden, sog.

”
false positives“ führen. Für

Dokument 2 sind, bei größerer Testmenge von 32 zu findenden Phrasen, wie-
derum aufs Neue die Probleme der anderen Objekte bei Vertauschen von Tags,
sowie die generelle Problematik der komplizierten Satzstruktur zu erkennen.

Abschließend kann gesagt werden, dass sämtliche Dependenz Parser für un-
sere Domäne verwendbare Ergebnisse liefern. Die Resultate, allerdings, zeigen
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deutlich schlechtere Ergebnisse im Vergleich zu bereits erwähnten Messungen
der einzelnen Parser auf korrekt angepassten Domänen. Für das Parsen von
Dativobjekten scheint allein ParZu verlässliche Ergebnisse zu liefern. Auch ins-
gesamt scheint ParZu, insbesondere durch die korrekte Verwendung von Mor-
phology Tags, sowie das häufige Setzen von

”
ROOT“ Tags die verlässlichsten

Ergebnisse des Experiments zu liefern. Darüber hinaus besonders zu beachten
sind bei Wahl eines passenden Parsers, oder auch bei gezieltem Trainieren eines
Parsers auf eine Domäne, die Komplexität, sowie generelle Länge der Satzstruk-
tur.

6.3.2 Fehleranalyse: Konstituenz Parser

Die in unserem Experiment verwendeten Konstituenz Parser besitzen keine Re-
lationstags und können somit nicht direkt zwischen einzelnen Nominalphrasen-
typen unterscheiden. Die Evaluation erfolgt daher nur allgemein unter Berück-
sichtigung aller Nominalphrasen.

Als besonders gravierend wurde bereits bei der Analyse einzelner Dokumente
der starke Einbruch der Trefferquote beider Parser bei komplizierterem Satzbau
betrachtet. Dieses Phänomen stellt bei genauerer Betrachtung ein großes Pro-
blem für die Anwendung beider Parser auf unsere zu testende Domäne dar.
Sowohl Stanford, als auch Berkeley Parser scheinen bei einer zu komplizierten
Satzstruktur fehlerhaft große Mengen an Tokens in eine Nominalphrase zusam-
menzufassen und somit sämtliche innerhalb dieser Menge enthaltene Nominal-
phrasen zu ignorieren. So wurde beispielsweise der komplette erste Satz des
zweiten genauer betrachteten Dokuments als eine Nominalphrase bezeichnet.
Mutmaßlicher Grund für diese falsche Annahme ist hier die enorme Länge des
Satzes von insgesamt 295 Tokens. Dies hat allerdings für die Trefferquote der
Parser gravierende Folgen, da sämtliche Nominalphrasen innerhalb des Satzes
nicht als Lösungen geliefert wurden, was für den Beispielsatz allein einen Ver-
lust von über 30 Nominalphrasen bedeutet, welche dem zur Folge als nicht
korrekt markierte Phrasen (Misses) eingetragen werden müssen. Auch scheint
sich die fälschliche Zuordnung von Nominalphrasen nicht auf gesamte Sätze be-
schränken. So beinhaltet beispielsweise der zweite Satz des Dokuments eine von
Berkeley Parser erstellte Nominalphrase an Stelle eines Nebensatzes. Während
sich dieser Fehler bei vielen der Dokumente nur selten zeigt, ist er dennoch
für einen enormen Verlust an Trefferquote durch die schlechten Ergebnisse bei
komplizierter formulierten Dokumenten verantwortlich.

Darüber hinaus zeigen beide Parser leichte Schwierigkeiten mit ihnen wohl
unbekannten Satzzeichen. Gerade die direkte Rede des ersten Dokuments scheint
ihnen Probleme zu bereiten. Auch hier können wieder fälschlich gesetzte Ver-
knüpfungen zwischen Sonderzeichen zu einem Verlust der zwischen den Zeichen
befindlichen Nominalphrasen führen.

Des weiteren kann noch bemerkt werden, dass Stanford Parser Schwierig-
keiten besitzt, von einander unabhängige, aber dennoch aufeinander folgende
Phrasen zu erkennen. Genauer bezieht sich das Problem auf Präpositionalphra-
sen, die sich auf das Verb des Satzes, nicht etwa auf ein Nomen beziehen. So
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[...] , um dies Volk mit Glueckseligkeit , [...]

!

Abbildung 16: Diese Abbildung zeigt einen Fehler des Parsers im markieren des
falschen Bezugsworts von Praepositonalphrasen.

wird beispielsweise die Präpositionalphrase
”
mit Glückseligkeit“ nicht etwa, wie

in Abbildung (16) durch die Umrandungen korrekt dargestellt als unabhängige
Phrase auf das Verb des Satzes, sondern fälschlicherweise wie durch den Relati-
onspfeil auf das Akkusativobjekt

”
dies Volk“ bezogen.

Abschließend kann beobachtet werden, dass unsere Konstituenz Parser ohne
Relationstags enorme Schwierigkeiten mit komplizierter Satzstruktur und gene-
rell lang ausgeführten Sätzen zeigen. Sie zeigen somit für die Analyse der hier
gewählten Domäne, durch die Durchschnittswerte des Experiments bestätigt,
nur begrenzte Eignung.

7 Zusammenfassung

Während sämtliche in unserem Experiment verwendeten Parser gute Werte in
externen Tests auf einer passenden Domäne vorweisen, ist im Bezug auf die, den
Parsern unbekannte, Domäne der Romane des 16. bis 20. Jahrhunderts deutlich
schwächere Treffsicherheit bei allen Parsern zu erkennen. Als besonders treffsi-
cher stellte sich der ParZu Parser der Universität Zürich heraus, welcher sich mit
veringerter Fehlerhäufigkeit durch das korrekte Nutzen von Morphology Tags,
sowie das bereitwillige Setzen von

”
ROOT“ Tags bei unbekannten, oder generell

nicht zuordenbaren Worten von den anderen Parsern absetzte. Große Schwie-
rigkeiten hingegen zeigten die verwendeten Konstituenz Parser, welche wegen
mangelnder Relationstags einzig basierend auf ihre Nominalphrasen ausgewertet
wurden, und hierbei das fälschliche Markieren einzelner Sätze als Nominalphra-
sen zum Verlust einer großen Menge an erkennbaren Phrasen führte. Allgemein
ist zu beobachten, dass sämtliche Parser deutliche Schwierigkeiten mit langen
und kompliziert verschachtelten Sätzen zeigen, welche in unserer Testmenge an
Romanen eher zahlreich, in den auf Zeitungsausschnitten basierten Trainings-
modellen der Parser allerdings weniger häufig auftreten. Dieser Aspekt, sowie
die Vorkommenshäufigkeit von altertümlichen und umgangssprachlichen, und
so den Parsern meist unbekannten, Worten machen einen Großteil der beobach-
teten Fehler der Testmenge aus und sollten somit bei der Wahl des Parsers für
eine bestimmte Domäne berücksichtigt werden. Eine Verbesserung der Leistung
unserer Parser könnte beispielsweise durch die im CoNLL 2007 shared task dis-
kutierten Ansätze zur automatischen Domänenanpassung erreicht werden. Auch
scheint die Verwendung von Konstituenz Parsern mit vorhandenen Relations-
tags sinnvoll, um so zu versuchen die Fehlerquelle des Markierens ganzer Sätze
als Nominalphrasen zu umgehen.

31



8 Anhang

STTS Tags 1 Beschreibung Erlaeuterung
ADJA attributives Adjektiv [das] große [Haus]

ADJD adverbiales oder praedikatives Adjektiv
[er faehrt] schnell
[er ist] schnell

ADV Adverb schon, bald, doch
APPR Praeposition; Zirkumposition links in [der Stadt], ohne [mich]
APPRART Praeposition mit Artikel im [Haus], zur [Sache]
APPO Postposition [ihm] zufolge, [der Sache] wegen
APZR Zirkumposition rechts [von jetzt] an
ART bestimmter oder unbestimmter Artikel der, die, das, ein, eine, ...
CARD Kardinalzahl zwei [Maenner], [im Jahre] 1994

FM Fremdsprachliches Material
[Er hat das mit

”
“]

A big fish [
”
“ übersetzt]

ITJ Interjektion mhm, ach, tja
ORD Ordinalzahl [der] neunte [August]

KOUI
unterordnende Konjunktion mit

”
zu“ und Infinitiv

um [zu leben], anstatt [zu fragen]

KOUS unterordnende Konjunktion mit Satz weil, daür, damit, wenn, ob
KON nebenordnende Konjunktion und, oder, aber
KOKOM Vergleichskonjunktion als, wie
NN normales Nomen Tisch, Herr, [das] Reisen
NE Eigennamen Hans, Hamburg, HSV
PDS substituierendes Demonstrativpronomen dieser, jener
PDAT attribuierendes Demonstrativpronomen jener [Mensch]
PIS substituierendes Indefinitpronomen keiner, viele, man, niemand

PIAT
attribuierendes Indefinitpronomen
ohne Determiner

kein [Mensch], irgendein [Glas]

PIDAT
attribuierendes Indefinitpronomen
mit Determiner

[ein] wenig [Wasser], [die] beiden [Brueder]

PPER irreflexives Personalpronomen ich, er, ihm, mich, dir
PPOSS substituierendes Possessivpronomen meins, deiner
PPOSAT attribuierendes Possessivpronomen mein [Buch], deine [Mutter]
PRELS substituierendes Relativpronomen [der Hund ,] der
PRELAT attribuierendes Relativpronomen [der Mann ,] dessen [Hund]
PRF reflexives Personalpronomen sich, einander, dich, mir

Tabelle 6: Obige Grafik enthält Teil 1 der Part-of-Speech Tagset Tabelle des
STTS der Universitäten Stuttgart und Tübingen, entnommen Online [21].
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STTS Tags 2 Beschreibung Erlaeuterung
PWS substituierendes Interrogativpronomen wer, was
PWAT attribuierendes Interrogativpronomen welche [Farbe], wessen [Hut]
PWAV adverbiales Interrogativ- oder
Relativpronomen warum, wo, wann, worueber, wobei
PAV Pronominaladverb dafür, dabei, deswegen, trotzdem
PTKZU

”
zu“ vor Infinitiv zu [gehen]

PTKNEG Negationspartikel nicht
PTKVZ abgetrennter Verbzusatz [er kommt] an, [er faehrt] rad
PTKANT Antwortpartikel ja, nein, danke, bitte
PTKA Partikel bei Adjektiv oder Adverb am [schoensten], zu [schnell]
SGML SGML Markup
SPELL Buchstabierfolge S-C-H-W-E-I-K-L
TRUNC Kompositions-Erstglied An- [und Abreise]
VVFIN finites Verb, voll [du] gehst, [wir] kommen [an]
VVIMP Imperativ, voll komm [!]
VVINF Infinitiv, voll gehen, ankommen
VVIZU Infinitiv mit

”
zu“, voll anzukommen, loszulassen

VVPP Partizip Perfekt, voll gegangen, angekommen
VAFIN finites Verb, aux [du] bist, [wir] werden
VAIMP Imperativ, aux sei [ruhig !]
VAINF Infinitiv, aux werden, sein
VAPP Partizip Perfekt, aux gewesen
VMFIN finites Verb, modal duerfen
VMINF Infinitiv, modal wollen
VMPP Partizip Perfekt, modal gekonnt, [er hat gehen] koennen
XY Nichtwort, Sonderzeichen enthaltend 3:7, H2O, D2XW3
$, Komma ,
$. Satzbeendende Interpunktion . ? ! ; :
$( sonstige Satzzeichen; satzintern - [,] ()

Tabelle 7: Obige Grafik enthält Teil 2 der Part-of-Speech Tagset Tabelle des
STTS der Universitäten Stuttgart und Tübingen, entnommen Online [21].
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Dependenz Relation
Bezeichnung

TueBa
-D/Z
(Malt,
ParZu)

Tiger
(Mate)

Beschreibung/Beispiel

Adjektivkomponente ADC
Adverbiale Modifikation ADV
Massangabe eines Adjektivs AMS Eine [Woche] spaeter

Apposition APP APP
verbindet aufeinanderfolgende Worte derselben
NP, falls sie nicht Determiner oder Attribute sind

Attribut ATTR Attribut eines Nomens

Verbgruppe AUX
Verbgruppe aus
Hilfsverb und Vollverb

Adverbialphrasen-Komponente AVC
Getrenntes Verb Praefix AVZ SVP auf, an, ab, aus, ein
Komparatives Komplement CC Teilelement eines Satzes mit komparativer Konjunktion

nebengeordnete Konjunktion CD
Konjuntionen: und, oder ; Teilelemente der Konjunktion
werden als NK und MO markiert

Komplement einer Konjunktion CJ CJ Letztes Wort einer Beiordnung

komparative Konjunktionen CM
Konjunktionen: als, wie ; Teilelemente der Konjunktion
werden als NK und MO markiert

Komplementierer CP ich will wissen, [ob] etwas passiert ist
Funktionsverbgefuege CVC [in] Kraft treten
Determiner eines Nomens DET Artikel und attributive Pronomen
Begin direkter Rede DH
Anfuehrungszeichen DM
Freier Dativ ETH Entspricht nicht dem normalen Verbrahmen
Expletives

”
es“

EXPL

Genitivattribut GMOD AG Der Herr [des Hauses]
Nominalphrase als Maßangabe GRAD Der drei [Jahre] alte Clio
Junktor JU
Vergleichsworte

”
wie“

und
”
als“

KOM

Teil einer Beiordnung KON
Ende der Beiordnung wird as CJ bezeichnet,
alle anderen Teile als KON

untergeordnete Konjunktion KONJ Verbindet Konjunktion mit Bezugswort
Postnominaler Modifikator MNR im Traume, [ohne] Bezug

Modifikator MO
Modifikator eines Bezugsworts,
bspw. eine Praepositionalphrase

Nebensatz NEB
Verbindet das Verb eines Nebensatzes
mit dem uebergeordneten Wort

Negation NG

Tabelle 8: Obige Grafik enthält Teil 1 der Dependenz Relationstabelle der Tiger
und TueBa-D/Z Treebank, entnommen aus Smith et. Al. [18] für Tiger, sowie
Foth et. Al. [7] für TueBa-D/Z.
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Dependenz Relation
Bezeichnung

TueBa
-D/Z
(Malt,
ParZu)

Tiger
(Mate)

Beschreibung/Beispiel

nominales
Kernelement

NK
Markiert saemtliche Nomen, die nicht mittels
DA, GMOD, OA, OC, OG, OP, SB markiert sind

Zahlenkomponente NMC
Zweites Subjekt eines Satzes NP2 Das Wetter war schoen, und der [Himmel] blau.
Akkusativobjekt OBJA OA

Zweites Akkusativobjekt OBJA2 OA
Fuer Verben, die zwei Akkusative verlangen
(lehren, kosten, nennen)

Objektsatz OBJC OC Ich will wissen, was passiert [ist]
Dativobjekt OBJD DA vertrau [mir]
Genitivobjekt OBJG OG des bedarf [dessen] nicht
Objektinfinitiv OBJI ich schlage vor, zu [rasten]
Praepositionalobjekt OBJP OP wir greifen [auf] Standardmethoden zurueck
Parenthese PAR PAR das, [sagte] er, kann nicht sein
Eingeschraenkter Partikel PART von Norden [aus] ; nicht [zu] glauben
Praedikat PD
Phrasengenitiv PG eine Schaar [von] Engeln
Platzhalter PH
morphologisches Partikel PM zum Abendessen [zu] bleiben
Komplement einer Praeposition PN Letztes Wort einer Praepositionalphrase; im [Winter]
Teil eines Nomens PNC [Baron] Alexander
Praepositionalphrase PP Leitet Praepositionalphrase ein; [im] Winter
Praedikative Ergaenzung PRED Wir waren [Helden].
Satzwurzel oder
unidentifizierbares Wort

ROOT ROOT Wir [waren] Helden.

Relativsatz REL RC
Verbindet das Verb eines Relativsatzes
mit dem uebergeordneten Wort

Wiederholtes Element RE
direkte Rede RS
Fragment eines Satzes S
Subjekt SUBJ SB [Wir] waren Helden.
Subjektsatz SUBJC [Gewinnen] ist alles.
passiviziertes Subjekt (PP) SBP [von] der Natur
Subjekt oder Praedikat SP
Teil einer Einheit UC
Vokativ VO
Anrede VOK [Sir], es ist angerichtet
Konjunktionslose Zeitangabe ZEIT Ich fahre jeden [Tag] Fahrrad.

Tabelle 9: Obige Grafik enthält Teil 2 der Dependenz Relationstabelle der Tiger
und TueBa-D/Z Treebank, entnommen aus Smith et. Al. [18] für Tiger, sowie
Foth et. Al. [7] für TueBa-D/Z.
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Phrasenbezeichnung Negra Beschreibung/Beispiel
Superlativphrase mit

”
am“ AA Karl lachte [am lautesten]

Adjektivphrase AP die [an sich netten] Melodien
Adverbialphrase AVP [AVP: gar nicht]

Koordinierte Adpositionen CAC
Verbindung von APPR, APZR, APPO
die Zuege [von und nach] Hamburg

Koordinierte Adjektivphrase CAP [CAVP: [ADV: nur heute] oder nie]
Koordinierte Adverbialphrase CAVP [CAVP: [ADV: nur heute] oder nie]
Koordinierte Komplementizer CCP [ob und wann] er kommt
Chunk CH

Koordinierte Nominalphrase CNP
[CO: [NP: jeden Tag] oder
[PP: zumindest am kommenden Freitag]]

Koordination CO
[CO: [NP: jeden Tag] oder
[PP: zumindest am kommenden Freitag]]

Koordinierte Praepositionalphrase CPP PP+PP: [CPP: [in der Stadt] und [auf dem Lande]]
koordinierter Satz CS [CS: [S: Peter kommt] und [S: Paul geht]]
Koordinierte Verbphrase CVP Er wollte [CVP: [VP: uns besuchen] oder anrufen]
Koordinierter, mit

”
zu“

markierter Infinitiv
CVZ [[zu vergessen] und [zu vergeben]]

Bestandteil direkter Rede DL [ [
”

Lass mich in Ruhe!“] [aergerte sich Peter] ]
Spezifische Einheit
(idiosyncratic unit)

ISU

Mehrwoertiges Nomen MPN Namen: [Karl Schulz]
Multi-Token Adjektiv MTA die [MTA: Bad Godesberger] Buerger
Multi-Token Zahl NM [NP: [NM: eine Million] Menschen]
Nominalphrase NP [NP: der alte Mann]

Adpositonalphrase PP
[PP: in der,Stadt]
[PP: meiner Meinung nach]

Pseudosprache (quasi-language) QL
Satz S [S: Gut, [S: dass du kommst]]
Verbalphrase VP Peter will [VP: uns besuchen]
Mit

”
zu“ markierter Infinitiv VZ Er versucht, uns [VZ: zu taeuschen]

Komma $, ,
Satzbeendende Interpunktion $. . ? ! ; :
sonstige Satzzeichen; satzintern $[ - [ ] ( )

Tabelle 10: Obige Grafik enthält die Phrasentabelle der NEGRA Treebank, en-
tommen Online [22]. Zur gemeinsamen Verwendung mit STTS Part-of-Speech
Tags Abbildung (6+7).
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8 Obige Grafik enthält Teil 1 der Dependenz Relationstabelle der
Tiger und TueBa-D/Z Treebank, entnommen aus Smith et. Al.
[18] für Tiger, sowie Foth et. Al. [7] für TueBa-D/Z. . . . . . . . 34
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