

Institut für Informatik Lehrstuhl VII Robotik und Telematik Prof. Dr. Klaus Schilling

FORMATIONS OF AUTONOMOUS GROUND AND AIR VEHICLES

by Prof. Dr. Dan S. Necsulescu Director, Engineering Management Program Full professor, Member of the Faculty of Graduate and Postdoctoral Studies, PEng.

University of Ottawa necsu@uottawa.ca

Course Details:

Vorlesungszeitraum: Blockvorlesung, 2 SWS anrechenbarer Vorlesungsumfang

Startveranstaltung: 29.04.2010 um 10 Uhr in Raum B202.

Kontakt: Prof. Dr. Klaus Schilling (schi@informatik.uni-wuerzburg.de)

Course Contents:

REVIEW: MODELING AND CONTROL OF MOBILE ROBOTS (2 hrs)

- Direct kinematic and dynamic models, model inversion and control of mobile robots with front wheel driving & steering and driving with differential rear wheels subject to velocity constraints
- Kinematic and dynamic models, control of uninhabited air vehicles (UAV)
- Output feedback linearization and state feedback control of motion with non-holonomic constraints.

FORMATIONS MOTION MODELING AND INDIVIDUAL ROBOTS CONTROLLERS DESIGN (4 hrs)

- Dynamic model based on relative distance: inter-robots and to the formation center
- Desired formation representation: straight front line, platoon, V-shape, arc of circle, ellipse, curved, etc.
- Formation motion coordination using virtual leaders, master-slave and distributed authority controllers
- Individual robot controller design using formation model inversion, output linearization, predictive controllers and fuzzy logic
- Collision avoidance and formation holding constraints verification

SIMULATION USING ENCAPSULATED SUBSYSTEMS (6 hrs)

- Encapsulated Matlab/Simulink models for:
 - o Front wheel drive and steering robots, real-wheels differential driving robots
 - o Fixed wing UAV
 - o Dynamic inversion, state feedback linearization, predictive controllers
 - o Formations using virtual leaders, master-slave and distributed authority controllers, desired formations geometry

ISSUES REGARDING SELF-ORGANIZING EMERGENT FORMATIONS OF AUTONOMOUS ROBOTS (6 hrs)

- Characteristics of self-organizing emergent systems: natural and engineered systems
- Extended Kalman filter sensor fusion of signals from accelerometers, wheel encoders, digital compasses and range sensors on each robot
- Inter-robot communication and sensor information integration
- Real-time control issues: same for each robot, for different desired geometries of the formations in case of stabilization and tracking missions
- Formation stability subject to various initial conditions, mission complexity and component failures.