Julius-Maximilians-

Julius-Maximilians-Universitiat Wiirzburg A
Fakultit fiir Mathematik und Informatik UWNUI X; galll é T
Professur fiir Raumfahrttechnik
Lehrstuhl fiir Informatik VIII Prof. Dr.-Ing. Hakan Kayal
R TN
£ KON\
U)
- e
h AT A
'«Zz:a _.:__-.-.'_
Bachelorarbeit

Entwicklung, Implementierung und Test von
Algorithmen zur Erkennung von
UnregelméaBigkeiten in den Bilddaten von

Meteosat Wettersatelliten

Vorgelegt von:
Peter Kettig
Matrikelnummer: 1876978

Priifer: Prof. Dr.-Ing. Hakan Kayal

Betreuer: M.-Space Tech. Borja Garcia

Wiirzburg, den 10.08.2015

Danksagung

Hiermit mochte ich mich bei allen herzlich bedanken, die mich wéihrend der Anfertigung
meiner Bachelorarbeit unterstiitzt haben.

Mein Dank gilt Prof. Dr.-Ing. Hakan Kayal, der mir die Bearbeitung dieses interessan-
ten Themas ermdoglicht hat. Ich danke Thm auch fiir die freundliche und konstruktive
Unterstiitzung wéahrend der Bearbeitungszeit. Des Weiteren méchte ich M.-Space Tech.
Borja Garcia danken, der mich wahrend der gesamten Bearbeitungszeit als Betreuer
mit seiner herausragenden Expertise bei der Recherche und Fragen unterstiitzt hat.
Vielen Dank fiir Zeit und Miihen, die Sie in meine Arbeit investiert haben.

Auch muss ich mich bei meinen Korrekturlesern Frederik und Sophia Meissner sowie
meinen Eltern bedanken, die viel Zeit in die Korrektur meiner Arbeit investiert haben.
Zahlreiche Kommata, Satzstellungen und Rechtschreibfehler flogen dank ihrer Hilfe hin-
aus.

Meinen Eltern und meiner Freundin Sophia mochte ich dariiber hinaus fiir die im-
merwahrende Unterstiitzung in jeglicher Form wahrend meines gesamten Studium dan-
ken.

Inhaltsverzeichnis

[Abktuirzungsverzeichnis| 4
I Kurzfassung| 5
[2 Einleitung] 6
2.1 Wetterbeobachtung mit Satelliten| 6

2.2 Uberblick iiber Meteosat-10 und Eumetcast-System| 6
[2.3 Vorstellung des Lehrstuhls und dessen Bodenstationl 8
2.4 Hintergrund der Arbeit|. L. 9

[3 Aufgabenstellung| 9
4__Stand der Technik| 10
4.1 Lunar Iransient Phenomena Observationl 10
4.2 ESA Solar and Heliospheric Observatoryl 11
4.3 SkyCAM|. 11

6 Betrachtung einzelner Elemente in den Aufnahmen von Wettersatelliten] 13
[b.1 Regelmafiig auftretende Vorgange] 14
(5.2 Unregelmafligkeiten mit Beispiel und Herkunft einzelner Ereignisse/. . . 16
[>.2.1 Bildtehler des optischen Systems|. 16

[6.2.2 NEOs und andere Korper| 17

[>.2.3 Leuchterscheinungen in der Atmosphare] 17

(5.3 Nicht erklarbare Erscheinungen und SETI 18

[0 Grundlagen der Digitalen Bildverarbeitung| 18
[6.1 Vorgehensweise beim Arbeiten mit Computer Vision|. 19
(6.2 Arbeiten mit OpenCV| L. 22

(/ Randbedingungen und Anforderungen an das Programm| 24
[Konzept 26
8.1 Uberblickl 26
(8.2 Vorstellung und Entwicklung der Algorithmen zur Erkennung von Unre- |

| gelméabigkeiten|. o 26
[8.2.1 Helle- und Dunkle-Flecken-Erkennung|. 27

[8.2.2 Formen-Erkennung| 28

[8.3 Algorithmen zur Filterung von Sonnenreflexionen| 32
8.4 GUI und Worker Thread Prinzip| 32

[9 Implementierung| 34
9.1 Anwendung der Algorithmen zur Erkennung von Unregelmafiigkeiten| . 35
[9.1.1 Formen-Algorithmen| 35

[9.1.2 Heller- und Dunkler-Fleck-Algorithmus|

9.2 Erkennung von Regelmafigkeiten| 37
9.3 Aufbaunder GUIl. 43
9.4 Autbau der Worker-Threads| 45
9.5 Routineablauf beim Fintreffen eines neuen Bildes 47
[9.6 Implementierung auf bestehender Bodenstation| 48
(10 Evaluation| 49
(0.1 Uberblicd 49
(10.2 Pertormancetests des Programms aut der Testumgebung und der Boden- |
[stationl 49
(10.3 Evaluation der Treftergenauigkeit der Algorithmen|. o1
(10.4 Minimale Grofie der Formen und Flecken fiir eine Detektion| 54
[10.5 Ubersicht iiber gefundene UnregelmiBigkeiten| 56
M1 Diskussi [Ausblick 57
(11.1 Diskussion der Evaluation| 57
(11.2 Ausblick und Erweiterbarkeit| 58
[Abbildungsverzeichnis| 59
(Tabellenverzeichnis| 59
G hnis 62

Abkiirzungsverzeichnis

CNES Centre national d’études spatiales

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
FOV Field of View

GSD Ground Sampling Distance

GUI Graphical User Interface

IFOV Instantaneous Field of View

LTP Lunar Transient Phenomena

LUT Look Up Table

MSG Meteosat Second Generation

NASA National Aeronautics and Space Administration
NEO Near Earth Object

NOAA National Oceanic and Atmospheric Administration
OpenCV Open Source Computer Vision

SETI Search for extraterrestrial Intelligence

SOHO Solar and Heliospheric Observatory

SSA Space Situational Awareness

UTC Universal Time Coordinated

1 Kurzfassung

Ziel dieser Arbeit ist die Entwicklung einer Arbeit, die mit Hilfe der Open Source
Computer Vision und anderen C++ Bibliotheken die Bilddaten des EUMETSAT Wet-
tersatelliten Meteosat-10 selbststéindig auf UnregelméfBigkeiten auswertet. Dazu wurden
fiinf Algorithmen entwickelt, die den Kern der Arbeit darstellen: Zwei Algorithmen, die
auf helle bzw. dunkle Flecken reagieren und drei, die geometrische Formen innerhalb

des Bildes erkennen konnen.

Gefundene Ereignisse der Algorithmen werden lokal gespeichert und innerhalb einer
Benutzeroberfliche angezeigt, die dariiber hinaus Einstellmoglichkeiten fiir die Algo-
rithmen bietet, sowie aktuelle Programmparameter anzeigt. Ebenso wurde ein Email
Client eingebunden, der bei einer Detektion automatisch eine Nachricht mit dem Bild
im Anhang versendet. Das System soll die bisherigen Programme in der Bodenstati-

on der Universitdt Wiirzburg ergéinzen und wurde fiir diesen Anwendungsfall optimiert.

In der Evaluierung des Systems wird gezeigt, dass es dazu in der Lage ist die Bil-
der autonom auszuwerten und damit UnregelméfBigkeiten zu erkennen. Weiterhin wird
die Treffergenauigkeit im reguldren Betrieb untersucht. Hier braucht es jedoch auf-
grund der wenigen Vorkommnisse wéihrend der Entwicklung weitere Untersuchungen
bzw. reale Ereignisse um das Programm diesbeziiglich einer genaueren Evaluation zu

unterziehen.

2 Einleitung

2.1 Wetterbeobachtung mit Satelliten

Viele Bereiche in unserer heutigen Gesellschaft wurden im Laufe der Zeit durch techni-
sche Erfindungen revolutioniert. So ist die Wettervorhersage per Smartphone aber ein
nicht mehr wegzudenkender Bestandteil des téglichen Lebens. Um die Genauigkeit und
Reichweite solcher Vorhersagen zu erh6hen wurden in den letzten Jahren eine Vielzahl
von Satelliten in den Weltraum gesendet, die fiir die unterschiedlichen Regionen der
Welt Daten sammeln und zur Erde schicken.

Aber Wettervorhersagen sind nur ein kleiner Teil des vielfdaltigen Aufgabengebietes von
Umweltsatelliten. Auch die Verdnderung des Erdklimas, der Erdgeographie, der Einfluss
des Menschen auf das Klima und die Folgen des globalen Klimawandels sind Anwen-
dungen, die heutzutage mit Satellitendaten erforscht werden.

Daraus werden beispielsweise weitere Charakteristiken von Vegetationen oder Landver-
messungen ([Conway, 1997], S. 1) abgeleitet. Vor allem der Blick "von aufien” auf die
Erde, in diesem Fall aus einer Bahnhohe von 400 bis hin zu etwa 36000 km, hilft Wissen-
schaftlern Systeme besser zu verstehen. Aulerdem kénnen Satelliten je nach gewéhltem
Orbit Bereiche der Erde iiber einen ldngeren Zeitraum verfolgen und so Verdnderungen
besser sichtbar machen. Mit dem neu gewonnenen Wissen {iber unseren Heimatplane-
ten wurden viele Bereiche der Wissenschaft erst moglich und Zusammenhinge zwischen
Ozeanen, der Atmosphére und Landmassen erstmalig sichtbar. Das hilft wiederum bei
Entscheidungen und Vorhersagen beziiglich dieser Systeme. Dariiber hinaus zeichnet
sich seit einigen Jahren ein weiterer Trend ab:

Waren die Daten der Satelliten frither ausschliellich den Raumfahrtorganisationen und
einer begrenzten Anzahl Wissenschaftlern vorenthalten, ist es Dank immer schneller
werdender Verbreitung von Daten heute jedem moglich diese Fakten Einzusehen und
mit ihnen zu arbeiten. Auf diese Weise kénnen auch Lehranstalten und private For-

schungseinrichtungen davon profitieren.

2.2 Uberblick iiber Meteosat-10 und Eumetcast-System

Da der Betrieb von Satelliten aber auch heute noch teuer, zeitaufwandig und risikoreich
ist, gibt es bisher wenige Betreiber. So werden Europa und Afrika hauptséchlich von
Eumetsat bzw. deren Satelliten abgedeckt, einer zwischenstaatlichen Organisation, die

1986 gegriindet wurde und zur Zeit 30 Mitgliedsstaaten hat, darunter auch Deutsch-

landﬂ Die Spitze ihrer Satellitenflotte besteht dabei aus vier geostationdren Meteosat
Wettersatelliten, unterstiitzt von drei Metop Satelliten in Polaren Orbits sowie Jason-2,
einem gemeinsamen Projekt von Eumetsat, NOAA, CNES und der NASA zur Meeres-
beobachtung.

Meteosat-10 ist dabei zusammen mit dem erst kiirzlich gestarteten MSG-47| der Mod-
ernste aus dieser Reihe. An Bord befinden sich mehrere Nutzlasten, wobei als Primér-
Nutzlast das SEVIRI-System mitgefiihrt wird. Dahinter verbirgt sich ein hochauflésender
Bildgeber, der in insgesamt 12 Spektralbereichen Aufnahmen der Erde macht.

Meteosat-10 sendet kontinuierlich alle 15

Minuten 13 neue Bilder zur Erde, was im | Channel | Bands :,:‘f“m Spermaliang
avel.. (99% energy limits)
Folgenden als ein 'Bilderset’ (bzw. kurz
"Set’) bezeichnet wird. Der Satellit arbei- = E
HRV Visible (0.75) broadband (peak
tet dabei in UTC (Universal Time Coordi- g within 0.6 - 0.9)
nated, koordinierte Weltzeit), weshalb im | VIS0.6 0.635 0.56-0.71
. . . VIS(O.8 | Near 0.81 0.74-0.88
Folgenden ebenso diese Zeitskala einge- Ri6 | r T T
halten wird. In diesem Set enthalten sind [[R3.9 392 348-4.36
(98% energy limits)
elf Bilder mit einer Ground-Sampling- |IR87 | Window [870 8.30-9.10
(98% energy limits)
Distance (GSD, Bodenauflosung eines Pi- | IR10.8 10.80 9.80 - 11.80
(98% energy limits)
xels) von 3 km und 2 Bilder mit einer GSD | IR12.0 1.5 H.00-13.00
(98% energy limits)
von 1 km (HRV-Kanal, High-Resolution- | IR6.2 b | o 535-7.15
apour
Visible Spectrum). Die elf Bilder teilen | IR7.3 7.35 6.85-785
(98% energy limits)
sich wiederum in zwei Bilder im sicht- |IR9.7 | Ozne | 966 9.38-9.94
. . . IR13.4 | Carbon- | 13.40 12.40 - 14.40
baren (VIS, visible) Bereich, sowie neun dioxide (96% energy limits)

Aufnahmen im Infrarot (IR) Bereich auf. Tabelle 1: Eigenschaften der Kanile von
Die neun Kanile im IR-Band sind so ein- Meteosat-10 (Quelle: Eumetsat)

gestellt, dass zwei den Wasserdampf (WV,

water vaporous) in der Atmosphére zwischen 5 und 10 km und jeweils einer den Ozon-
und Kohlenstoffdioxidgehalt messen. Tabelle [I| gibt einen Uberblick iiber die Kanile,
sowie ihren charakteristischen Wellenldngen. Durch seine Position in einem geostati-

ondren Orbit bei 0°E ist der Satellit in der Lage zu jeder Tages- und Nachtzeit Bilder

Siehe: http://www.eumetsat.int/website/home/AboutUs/WhoWeAre/index.html, Auf-
gerufen am: 17.07.15

2Siehe http://www.eumetsat.int/website/home/News/DAT_2696903.html, Aufgerufen
am: 01.08.2015

http://www.eumetsat.int/website/home/AboutUs/WhoWeAre/index.html
http://www.eumetsat.int/website/home/News/DAT_2696903.html

vom europdischen und afrikanischen Kontinent, Teilen des Atlantiks, Stidamerikas so-
wie der arabischen Halbinsel aufzunehmen. Ein Bild wird zeilenweise zusammengesetzt,
wobei das Nachfiihren von SEVIRI automatisch durch die Eigendrehung des Satelliten
geschieht, die ihn gleichzeitig spinstabilisiert. Die Aufnahmen von Meteosat-10 werden
zunédchst an das zentrale Rechenzentrum von Eumetsat in Darmstadt geschickt, wo
die Bilder zur sog. Level-1.5-Data prozessiert werden (siehe [Miller, 2007]). Dazu wird
der Teil des Bildes weggeschnitten, der nicht die Erdscheibe darstellt, ebenso wie ein
Zentrieren der Erde auf dem Bild. So wird sichergestellt, dass dem Endnutzer jederzeit
der gleiche Bildausschnitt bereitgestellt wird. Anschliefend werden die Bilder an das
EumetCast-System iibertragen, welches die Aufnahmen iiber ein Netz von Kommuni-

kationssatelliten global verteilen kann.

2.3 Vorstellung des Lehrstuhls und dessen Bodenstation

Um die vom Eumetcast System vesandten Daten empfangen zu kénnen benotigt jeder
Nutzer eine Bodenstation, wie sie der Lehrstuhl fiir Informatik VIII an der Universitéat
Wiirzburg besitzt. Diese besteht grundlegend aus einer Parabolantenne mit LNB (Low-
Noise-Block, Rauscharmer Signalumsetzer) sowie einem Empfangs-PC mit DVB-Karte,
auf dem die Daten entschliisselt und angezeigt werden konnen.

Da fiir den Empfang der Daten keinerlei Restriktionen gesetzt sind (Jeder der eine
Sat-Antenne hat, kann mit passender Ausrichtung auch Eumetcast-Signale empfan-
gen), muss fiir eine kontrollierte Verteilung der Bilder eine Verschliisselung eingesetzt
werden, die es an dieser Stelle wieder zu entschliisseln gilt. Dafiir setzt Eumetcast auf
eine Autorisierungs-Software (TelliCast), die an einen physikalischen Datentréiger (dem
Eumetcast Uni Key) gekoppelt ist. Damit ist jedoch nur gewihrleistet, dass die Bilder
entschliisselt werden - tatséchlich zusammengesetzt werden sie von David Taylor’s MSG
Data Manager.

Dieser setzt die einzelnen Datenpakete, die kontinuierlich wahrend der 15 Minuten fiir
ein Set kommen, zu einem Bild zusammen und 16scht anschlieBend die Source-Dateien.
Ebenso kann dort eingestellt werden, welche der Kanéle bzw. Satelliten empfangen

werden sollen, denn er ist ebenso fiir Meteosat-7 und 9 einsetzbar.

2.4 Hintergrund der Arbeit

Zeitweise beinhalten die Aufnahmen dieser Satelliten aber auch UnregelmafBigkeiten.
Zu diesen sog. Himmelsphénomenen gehoren beispielsweise die Polarlichter. Das erste
mal erwdhnt wurden sie in Schriftstiicken um etwa 2600 v. Chr. aus Regionen des heu-
tigen China, wahrend ihr Ursprung erst Anfang des 20. Jahrhunderts eindeutig gekléart
werden konnterﬂ. Doch bis heute gibt es Erscheinungen in der Atmosphére, die die Wis-
senschaft noch nicht erkldren kann. Nicht nur auf unserem Planeten wird nach ihnen
gesucht - auch auf fernen Himmelskorpern, wie dem Zwergplaneten Ceres, dessen helle
Flecken fiir Raumfahrtorganisation weiterhin rétselhaft sind’] Meistens wird die Suche
nach dem Ursprung aber dadurch erschwert, dass viele Phédnomene nur in bestimmten
Situationen auftreten.

Um Klarheit iiber Unregelméfigkeiten in der Erdatmosphére zu schaffen ist es des-
halb sinnvoll, die empfangenen Bilddaten von Meteosat-10 heran zu ziehen und diese
autonom auf Unregelméfigkeiten zu untersuchen. Dazu sollten unterschiedliche Algo-
rithmen vorliegen, die nach den spezifischen Eigenschaften von Anomalien, wie etwa
hellen Flecken oder bestimmten Formen, suchen und diese in den Bildern markieren, so

dass sie spater durch den Menschen untersucht werden koénnen.

3 Aufgabenstellung

Entwicklung, Implementierung und Test von Algorithmen zur Erkennung

von Unregelmifligkeiten in den Bilddaten von Meteosat Wettersatelliten

Ziel dieser Arbeit ist es, ein Programm zu entwickeln, welches auf der Bodenstation
des Lehrstuhls fiir Informatik VIII betrieben werden kann und die empfangenen Bilder
von Meteosat-10 automatisch auf Unregelméafligkeiten untersucht. Dazu sollen verschie-
dene Algorithmen entwickelt, implementiert und getestet werden, die die Aufnahmen
anhand festgelegter Eigenschaften untersuchen. Dariiber hinaus soll bei einer Detektion
eine Meldung ausgegeben werden, die den Nutzer dariiber informiert. Ebenso ist fiir das

Programm eine grafische Oberfliche (GUI) zu implementieren, die die Ergebnisse und

3Siehe: https://www.nasa.gov/mission_pages/themis/auroras/aurora_history.html,
Aufgerufen am: 17.07.15

4Siehe https://www.nasa.gov/jpl/dawn/ceres-bright-spots-come-back-into-view,
Aufgerufen am 01.08.2015

10

https://www.nasa.gov/mission_pages/themis/auroras/aurora_history.html
https://www.nasa.gov/jpl/dawn/ceres-bright-spots-come-back-into-view

den aktuellen Zustand addquat préasentiert. Damit die Algorithmen korrekt ausgefiihrt
werden, sind diese moglichst effizient in das Programm einzubauen.

Die Arbeit an der Entwicklung ist ausfiihrlich zu dokumentieren und evaluieren. Da-
zu gehort ebenso eine Betrachtung bereits existierender Systeme und Methoden. In
der Evaluation wird zudem verglichen, inwiefern die gestellten Anforderungen erreicht

wurden.

4 Stand der Technik

Da die Suche nach Himmelsphénomenen bereits seit ldngerem existiert, werden im Rah-
men dieser Arbeit unterschiedliche Projekte dargestellt, die sich ebenfalls damit befas-
sen und mit dem zu Entwickelnden verglichen. Dazu wird zuerst auf die Observation
von Lunar Transient Phenomena auf dem Mond eingegangen, anschlieBend werden das
SOHO-Projekt der ESA sowie die SkyCam der Universitdt Wiirzburg ndher betrachtet.
Diese Projekte beschéftigen sich zwar alle mit den Entdeckung von Unregelméfigkeiten
auf bzw. bei Himmelskorpern, jedoch ist die SkyCam das einzige Instrument, welches
ebenso wie die geplante Software fiir den Einsatz bei Aufnahmen der Erde konzipiert

wurde.

4.1 Lunar Transient Phenomena Observation

Lunar Transient Phenomena (LTP) sind Leuchterscheinungen auf der Oberfliche des
Mondes. Charakteristisch fiir ein solches Phénomen sind gelbe bis rot erscheinende
Punkte, die von einigen Sekunden bis hin zu mehreren Stunden teilweise sogar fiir das
bloBe Auge sichtbar sind ([Roa und Felipe, 2012]).

Ihre Entstehung ist bis heute nicht eindeutig geklért, deshalb wird die Detektion die-
ser Anomalien weiterhin vorangetrieben. Ein Beispiel fiir ein solches Projekt ist die im
Rahmen eines Praktikums am Lehrstuhl fiir Informatik VIII der Universitdat Wiirzburg
von Helge Mohn entwickelte ”Moonspy”-Software. Grundlage fiir die Beobachtung der
LTP ist eine hochauflésende Kamera, deren Field of View (FOV, Sichtfeld des Aufnah-
megerits) so gewahlt wurde, dass sie den gesamten Mond, egal ob im Apogaum oder
Perigdum, aufnehmen kannE]. Kombiniert mit einer Sternenkamera auf der Vorrichtung

wird das System exakt auf den Mond ausgerichtet. Es ergibt sich eine Anordnung, die

Siche http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayalO/studentisc
he_aktivitaeten/tlp_observation/, Aufgerufen am 02.08.2015

11

http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayal0/studentische_aktivitaeten/tlp_observation/
http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayal0/studentische_aktivitaeten/tlp_observation/

den Mond mit 50 Bildern pro Sekunde und einer GSD von 5 km aufnehmen kann.

Die entwickelte "Moonspy”-Software erhélt die Daten des Systems und priift anhand
mehrerer Frames (Bilder), ob eine unregelméfige Helligkeitsdnderung vorliegt und nimmt
in diesem Fall automatisch das Videomaterial auf, um es so spéter analysieren zu

konnen.

4.2 ESA Solar and Heliospheric Observatory

Aber Unregelméfligkeiten existieren nicht nur auf der Erde und ihrem Trabanten, viel
héufiger kommen sie auf der Sonne vor und beeinflussen in vielerlei Hinsicht unser All-
tagsleben, etwa wenn durch erhohte Sonnenaktivitdt Kommunikationssysteme gestort
werden. Um solche und weitere unregelméflig vorkommende Ereignisse auf und inner-
halb der Sonne sichtbar zu machen, wurde 1995 das Solar and Heliospheric Observatory
(SOHO) aus einer Kooperation von ESA und NASA gestartet. Es umkreist die Sonne
im erdzugewandten Teil in 1.5 Millionen Kilometer Entfernung im Lagrange-Punkt L1.
An Bord befinden sich zwolf Instrumente, die kontinuierlich den Zustand der Sonne auf-
zuzeichnen und zu analysieren, darunter mehrere Spektrometer und ein Teleskop. Auf
Basis dieser Daten konnen unter anderem Vorhersagen fiir das Sonnenwetter gegeben
werden.

Neun dieser 12 Instrumente entstanden dabei aus einer Kollaboration von Européischen
Wissenschaftlern. Mit ihnen konnte erstmals die Struktur von Sonnenflecken unter der
Oberflidche sichtbar gemacht werden [Fleck, 2013].

Die Liste an Erkenntnissen aus den Daten von SOHO soll aber noch nicht enden, denn

trotz seiner relativ langen Lebenszeit soll es noch bis 2016 operativ bleiben

4.3 SkyCAM

Dass die Beobachtung von Himmelsph&nomenen nicht immer vom Weltraum aus ge-
schehen muss, zeigt die SkyCAM des Lehrstuhls fiir Informationstechnik fiir Luft- und
Raumfahrt der JMU-Wiirzburg. Sie ist eine autonome Observationsplattform, um sich
bewegende Objekte am Himmel zu detektieren. Dazu gehoren sowohl Flugobjekte (z.B.
Vogel, Flugzeuge) bzw. Wolken, als auch unregelméflige Ereignisse, wie etwa Meteori-

ten oder Leuchterscheinungen in der Atmosphére.

6Sieche http://sci.esa.int/director-desk/51944-esa-science-missions-continue-
in-overtime, Aufgerufen am 02.08.2015

12

http://sci.esa.int/director-desk/51944-esa-science-missions-continue-in-overtime
http://sci.esa.int/director-desk/51944-esa-science-missions-continue-in-overtime

Basis fiir die Untersuchung ist eine einfache Webcam, die an einen Windows XP Com-
puter angeschlossen ist und Richtung Himmel zeigt. Sie hat eine Auflésung von 1280x720
Pixeln bei einer Bildwiederholrate von 30fps und ein FOV von 68.5° (Siehe [Kayal, 2015,
S. 19). Die SkyCAM ist Basis fiir mehrere Algorithmen, die anhand von mehreren cha-
rakteristiken bewegende Objekte erkennen und analysieren kénnen. Wird eine Unre-
gelméafBigkeit entdeckt, so gibt die implementierte Software automatisch eine Meldung
aus.

Hintergrund dieser Arbeit ist das Space Situational Awareness (SSA) Programm der
ESA und anderer Raumfahrtorganisationen zur Uberwachung und Verfolgung von Welt-

raumobjekten, hauptséchlich im Nahfeld der Erde. Dazu zihlen drei Komponenten (vgl.

[Kayal, 2015], S.20):

e Weltraumschrott
e Weltraumwetter

e Near Earth Objects (NEOs)

Diese stellen fiir operative Satelliten und die Erde selbst ei-
ne konstante Bedrohung dar, weshalb jedes gefundene Ob-
jekt katalogisiert und dessen Risiken fiir andere Objekte
ermittelt werden. Ein grofles Problem bei der Verfolgung
solcher Objekte ist, dass es mehrere Millionen gibt. Da-
von haben die meisten einen Durchmesser unter 10cm, die
aber nur sehr schwierig von der Erde aus zu entdecken sind.

Doch auch grofiere Objekte sind noch nicht vollstéindig ana-

lysiert und erfordern deshalb, dass der Himmel kontinuier-
lich nach ihnen abgesucht wird. Einen Beitrag dazu leistet Abbildung 1: Die

die SkyCAM, die in der Lage ist Tag und Nacht nach sol- SkyCAM der Universitit
Wirzburg (Quelle: JMU

chen Objekten zu suchen, die etwa beim Verglithen &hnlich .
Wiirzburg)

in Erscheinung treten wie Meteoriten.

Diese Plattform stellt fiir die in dieser Arbeit entwickelte Software eine gute Grund-
lage dar, an der sich das in dieser Arbeit Entwickelte Konzept orientiert - Ziel beider
ist es, mit eigens entwickelten und implementierten Algorithmen unbekannte Elemente
auf Bilddaten auszumachen. Jedoch wird diese Arbeit sich mit der entgegengesetzen

Perspektive beschéftigen - der aus dem Weltraum.

13

5 Betrachtung einzelner Elemente in den Aufnahmen

von Wettersatelliten

Um iiberhaupt UnregelméBigkeiten zu erkennen, muss zunéchst klar sein, welche Objek-
te auf Aufnahmen von Wettersatelliten vorzufinden sind. So kénnen Regelméafligkeiten
erkannt und spéter gezielt gefiltert Werdenm

Es ist aufgrund der gegebenen GSD moglich, eine Grenze anzugeben, ab der Ge-
genstande nur noch teilweise oder gar nicht mehr dargestellt werden konnen. Dazu
gilt Gleichung [1] (nach [Ley et al., 2009]):

(1)

GSD = 2% Hy * tan <]FOV>

Und fiir so fiir die GSD in Abhéngigkeit von einer Héhe H:

GSD(H) =2 (Hy — H) * tan (IFOV>

(2)

Fiir das Instantaneous Field of View (IFOV) - der Winkel, den ein Pixel vom gesamten
FOV einnimmt (vgl. [Ley et al., 2009]) gilt:

FOV

= 3)
Pix

Wobei Np;, die Breite/Hohe des Bildes in Pixeln darstellt. Da die Aufnahmen von

IFOV =

Meteosat-10 quadratisch sind, ist keine weitere Unterscheidung notig. Wird nun GI.
in [2| eingestzt, so ergibt sich fiir die GSD in Abhéngigkeit von der Hohe:

GSD(H):2*(H0—H)*tan(Fov)

2% Npjy (4)
Zu beachten ist zudem, dass der Nullpunkt von H der senkrechten Schnittebene des
Nadir, dem FuBpunkt gegeniiber dem Zenit, entspricht - Die GSD eines Punktes am
duBeren Rand der Erdscheibe am Aquator entspricht also nicht der eines Punktes genau
in der Mitte dieser, da ihr Hohenunterschied zueinander dem Erdradiusﬁ entspricht.
Besser beobachtbar wird ein Objekt, je weiter es sich von der Erdoberfliche entfernt

befindet. So kénnte es durchaus moglich sein etwa grofie Flugzeuge, die 20km iiber dem

Boden fliegen oder die ISS in 400km Hohe bzw. sogar andere Satelliten zu entdecken.

"Dabei sei jedoch angemerkt, dass der Umfang dieser Arbeit nicht ausreicht, um alles auf-
zuzéhlen, was sich darin finden lasst
8rp = 6.378 km (nach WGS-84)

14

Fiir alle Falle wurde dabei von der GSD des zwolften Kanals, also 1 km auf Meereshohe
am Aquator, ausgegangen.

Aufschluss iiber die Ergebnisse gibt Tabelle 2| Es ist zu erkennen, dass die GSD bei
geringer werdendem Abstand gréfler wird. Jedoch reicht sie bei Weitem nicht aus, um
kleine Gegenstiande, wie Flugzeuge oder sogar die ISS mit einer strukturellen Lénge von
109m (EI) erkennbar zu machen. Auch Satelliten bieten nicht die geforderte Grofle, um

iiberhaupt als ein Pixel sichtbar zu sein, sofern sie sich nicht direkt vor dem Satelliten

befinden.

Objekt Hohe [km] GSD(H) [km]
Flugzeug 20 1.00
ISS 400 0.99
GPS-Satellit | 20200 0.43

Tabelle 2: GSD in der Héhe von Flugzeugen, der der ISS sowie GPS-Satelliten

5.1 RegelmaBig auftretende Vorgange

Die wohl am haufigsten auffindbaren Elemente in den Aufnahmen von Meteosat-10 sind

die drei Bestandteile aus

Ozeanen bZW. anderen ! |n;ld§. Surfnr:?g fenturr.—»:—l,-m'u: urwuff-iul-;
Cumulonimbus, large a2 Snow, freshly fallen T80
5 and tall Snow, 3 to 7 days old 40=T0
Gewassern’ Landmassen f_-um |,|.||’:-|'|.":"||,'|'.|.i.. $|1]E|.!:]._ B “—"!lilc K:lnd_ Na;:x'.' Mm-.n:r: &0
. . tops at &6 km Sand dune, dry 3543
sowie Wolkengebilden. Tm | v, mick. 74 Soil, dry light sand 2545
. with lower clouds Soil, dry clay or gray 2035
FOlgenden soll nicht auf Cumulus with stratocumulus i) Sand dune, wet 20-30
. Stratocomulus [+ Concrede, dry 17-20
deren meteorologlsche In- Stratus, thick (0.5 km), it Soil, moist gray 1020
OVET ocean Soal, dark 5-15
terpretatjon eingegangen Stratocumulus masses, &l Road, blacktop 5-14
with cloud sheet,
werden, sondern viel- over ocean Vegetative zones
Stratus, thin, over ocean 42 Diesert 25-30
mehr auf Eigenschaf— Cirrus, alone, over land _if- Savanna, dry season EE j']
Cirrostratus, alone, 32 Crops 1525
: N aver land Savanna. wet season 13-20
ten, die dazu fithren Cumulus, fair weather 29 Turdra 15-20
.. . Chapasral 15=-20)
konnen, dass sie als Wakic Geitiiea Meadivis, ek 10270
” P ” Sunglint on Gulf of Mexico 17 Forest, deciducus 10-20
regelméfig” bzw. ”un- Lake, Great Salt lake, Utah 9 Forest, coniferous 5-15
. 3 Oicean, Gulf of Mexico Q
regelméflig” eingestuft werq ocean, Pacific 7

den konnen. Dazu wird

Tabelle 3: Approximiertes Albedo fiir verschiedene

mit Abbildung [2| exem- Operfiichen der Erde (Quelle: [Conway, 1997])

plarisch ein Satelliten-

bild auf den Kanélen 1-11 gezeigt und verglichen, wie sich die drei Elemente auf den

9Siehe http://www.nasa.gov/mission_pages/station/main/onthestation/facts_and

_figures.html, Aufgerufen am 03.08.2015

15

http://www.nasa.gov/mission_pages/station/main/onthestation/facts_and_figures.html
http://www.nasa.gov/mission_pages/station/main/onthestation/facts_and_figures.html

unterschiedlichen Wellenldngen der Kanéle verhalten:

Abbildung 2: Zusammengesetztes Bild vom 23.05. 20:00h aus Kanélen 1-11 mit
skizzierter Kontur der Landmassen sowie moglichen Ursachen fiir (Un-)
Regelmafigkeiten (1-4)

Punkt 1 zeigt auf eine Sonnenreflexion auf Wasser und Wolken, die vor allem im sicht-
baren Bereich erkennbar ist (Kanal 1-2). Thre Position ist abhéingig von Uhrzeit und
aktueller Deklination der Sonne. Da dies eine Regelméfigkeit darstellt, sollten sie nicht
durch einen Algorithmus, der helle Flecken erkennen kann, filschlicherweise als Unre-
gelméafigkeit eingestuft werden. Dazu ist es sinnvoll ihre Ausmafle und Position exakt
zu berechnen. Jedoch ist eine Berechnung ihrer Gréfle und Helligkeit technisch nicht
moglich, da die verschiedenen Oberflichen, an denen das Licht reflektiert wird, unter-
schiedliche Eigenschaften haben. Einerseits ist das Albedo, also das Reflexionsvermégen
von z.B. Vegetationen, Wasser und Wolken unterschiedlich (Tabelle [3) und fiir den Be-
trachter nicht immer eindeutig erkennbar, um welchen Untergrund es sich bei einer
Reflexion handelt.

Andererseits ist die Brechung der Lichtstrahlen diffus. Meistens ist die Oberfliche von
Ozeanen oder Wolken rau. Dadurch ergibt sich ein Riickwerfen der Strahlen in verschie-
denste Richtungen, weshalb eine genaue Berechnung der zuriickgeworfenen Strahlen, als

Vektoren interpretiert, nicht moglich ist. Es sollte deshalb bei der Implementierung ei-

16

nes Helle-Flecken-Algorithmus darauf geachtet werden, dass er zwar helle Flecken wie
eine Sonnenreflexion erkennt, jedoch diese anschliefend auch wieder zu filtern weif3.
Punkt 2 in Abb. 2| zeigt auf eine Wolkenformation. Es ist deutlich erkennbar, dass sie in
mehreren Kanélen sichtbar ist, aber iiberall andere Helligkeitswerte besitzt. Hauptséachlich
sind Wolken eine Regelméafigkeit, jedoch kann es vorkommen, dass Wolken ungewhnliche
Formen annehmen - etwa, wenn sie die Form einer geometrischen Figur besitzen. Es
wére deshalb sinnvoll, die Bilder auf bestimmte Formen zu untersuchen.

Punkt 3 liegt auf der Landfliche von Afrika. Aufgrund der GSD von 1 bzw. 3 km
miissen Objekte, die sich auf dem Boden befinden eine grofie Fléche haben, um als Un-
regelméfigkeit erkannt zu werden. Deshalb ist ihre Moglichkeit Anomalien aufzuzeigen
ebenfalls relativ gering, aber nicht ausgeschlossen. Dariiber hinaus emittieren Land-
flichen vor allem in den WV-Kanélen praktisch nichts, weshalb sie auf deren Bildern
als dunkle Fliache erscheinen (Ebenso Punkt 4). Ein Algorithmus, der dunkle Flecken

findet, sollte diese deshalb dhnlich wie die Sonnenreflexionen herausfiltern kénnen.

5.2 UnregelmaBigkeiten mit Beispiel und Herkunft einzelner

Ereignisse

Nachdem erldutert wurde, welche regelméfligen Vorgénge es in den Bildern von
Meteosat-10 gibt, sollen nun einige Unregelméfigkeiten und
deren Herkunft dargestellt werden. Diese stellen aber nur
eine Auswahl an Objekten dar, die im Bild vorkommen
konnen. Es existieren noch viele weitere Anomalien, die
aber nur sehr selten dokumentiert wurden und deshalb noch
weitgehend unerforscht sind. Auf solche Ereignisse wird im

letzten Teilkapitel dieses Abschnittes eingegangen.

Abbildung 3: Midnight
Effect auf einem Bild von
Meteosat-6 von '97
(Quelle: Eumetsat 2015)

5.2.1 Bildfehler des optischen Systems

Optische Bildfehler stellen im Bereich der Anomalien ein
noch relativ haufiges Vorkommnis dar. Unter ihnen ver-
steht man Fehler, die bei der Bildverarbeitung und -aufnahme stattgefunden haben
sowie im weitesten Sinne auch durch Ubertragungsfehler hervorgerufene Anderungen

im Bild. Héufig handelt es sich aber um aus direkter oder indirekter Sonneneinstrah-

17

lung resultierende Strukturen. Das SEVIRI-Instrument ist zwar relativ gut innerhalb
von Meteosat-10 vor diesen Effekte geschiitzt und bedingt durch die Eigendrehung des
Satelliten entsteht ein automatischer Schutz vor sog. Streulicht. Es kann dennoch vor-
kommen, dass Sonnenstrahlen in das Instrument treffen und so ungewdhnliche Struk-
turen hervorrufen. Ein Beispiel fiir ein solches Ereignis zeigt eine Meteosat Aufnahme
von 1997, als durch den Midnight-Effekt mehrere dunkle und helle Flecken sowie bo-
genartige Strukturen entstanden sindm Der Effekt entsteht, wenn die Sonne fiir den
Satelliten noch teilweise hinter der Erde sichtbar ist, was immer um Mitternacht der
Fall ist. In dieser Konstellation féllt Sonnenlicht direkt in das Radiometer und wird
durch die mechanische Struktur mehrfach reflektiert, bis es irgendwann auf den Sensor
trifft (Abbildung [3)).

5.2.2 NEOs und andere Koérper

Ein weiterer Grund fiir Anomalien kénnen Near-Earth-Objects (NEOs) sein, die sich
in der ndheren Erdumgebung befinden und beim Wieder-
eintritt verglithen, wodurch ein charakteristischer Schweif
entsteht. Es ist bereits bekannt, dass Meteoriten ein solches
Verhalten zeigen, jedoch gilt dies auch fiir Weltraumschrott.
Ein Beispiel fiir ein solches Ereignis zeigt den Eintritt des
Meteors von Tscheljabinsk am 15.Februar 2013 (Abbildung
. Meteosat-10 konnte mit seinem 15-Miniitigem Intervall
den Eintritt des Meteors festhalten, wobei ein Schweif deut-
lich erkennbar ist. Da dieser immer gerade entlang der Ein-

trittsbahn des Meteoriten verlauft, ist es ein Ziel fiir das zu

entwickelnde Programm, Bilder auf gerade Strukturen zu

priifen. Abbildung 4: Meteor auf
einem Bild von
Meteosat-10 (Quelle:

5.2.3 Leuchterscheinungen in der Atmosphére Eumetsat 2015)

Unter Leuchterscheinungen am Himmel fallen bereits be-

kannte Phanomene, wie Gewitterblitze, Regenbtgen sowie die bereits erwahnten Po-
larlichter. Es gibt dariiber hinaus weitere Beobachtungen, die nicht in dieses Schema

passen. Dazu gehoren die sog. Sprites (dt.: Kobolde), als Blitze aus einer Gewitterwolke

10Giehe http://www.eumetsat.int/website/home/Data/ServiceStatus/AnomaliesonMe
teosatImages/index.html, Aufgerufen am 03.08.2015

18

http://www.eumetsat.int/website/home/Data/ServiceStatus/AnomaliesonMeteosatImages/index.html
http://www.eumetsat.int/website/home/Data/ServiceStatus/AnomaliesonMeteosatImages/index.html

in Richtung Weltraum. Sie kénnen bis zu mehreren hundert Kilometern hoch reichen
und dabei unterschiedliche Farben annehmen. Sie wurden erst 1994 durch Zufall ent-
decktt]

Es gibt dariiber hinaus noch andere Ereignisse, die ebenfalls eine Leuchterscheinung in
der Atmosphire darstellen. Allen ist aber gemeinsam, dass sie nur von sehr kurzer Dau-
er und deshalb schwer festzuhalten sind. Meteosat-10 besitzt fiir dieses Einsatzgebiet
eigentlich nicht die richtige AufnahmestuktuIiT_ZI - dennoch sollte dieses Szenario nicht
ausgeschlossen werden, da ein Fund einer solchen Anomalie durchaus wissenschaftlich

relevant ware.

5.3 Nicht erklarbare Erscheinungen und SETI

Im weiteren Zusammenhang gibt es auch Phédnomene, fiir die es weder Erklarungen
noch genug Bildmaterial gibt, um sie ndher zu untersuchen. Dazu gehoren Sichtungen
von UFO-dhnlichen Strukturen am Himmel. Um die eher subjektiven Schilderungen von
Ereignissen zu untersuchen, wurden in den vergangenen Jahrzehnten mehrere Organisa-
tionen gegriindet, die sich mit dem Thema SETT (Search for extraterrestrial Intelligence)
beschéftigen.

Héufig ist ein als UFO betitelter Fund nur eine spezielle Wolkenformation, die in Kom-
bination mit Sonnenlicht eine seltsame Struktur annimmt, wie in einem erst kiirzlich
aufgenommenen Beispiel zu sehenﬁ. Manche dieser Félle lassen sich mit der Hilfe von
Satellitenaufnahmen aufklidren, andererseits kénnen so auch neue Objekte gefunden
werden. Dadurch stellen Satelliten ein wichtiges Instrument bei der Suche nach Er-

scheinungen dar.

6 Grundlagen der Digitalen Bildverarbeitung

Um die Bilder von Meteosat-10 analysieren zu konnen, miissen die Bilder digital verar-
beitet werden. Was darunter zu verstehen ist, soll in diesem Kapitel erldutert werden.
Es ist allgemein schwierig eine einheitliche Begriffsdefinition fiir die digitale Bildver-

arbeitung zu finden, da die Schwelle, ab wann ein Bild verarbeitet wird und wann

Giehe http://www.nasa.gov/mission_pages/sunearth/news/gallery/BigRed-Sprite
.html] Aufgerufen am 03.08.2015

2Djie Bilder werden zeilenweise aufgenommen. Das fithrt dazu, dass kurzzeitige Ereignisse
nur selten sichtbar werden

13Giehe http://metro.co.uk/2015/07/07/is-this-a-ufo-disguised-as-a-cloud-vide
o-shows-it-behaving-very-oddly-5284677/, Aufgerufen am 03.08.2015

19

http://www.nasa.gov/mission_pages/sunearth/news/gallery/BigRed-Sprite.html
http://www.nasa.gov/mission_pages/sunearth/news/gallery/BigRed-Sprite.html
http://metro.co.uk/2015/07/07/is-this-a-ufo-disguised-as-a-cloud-video- shows-it-behaving-very-oddly-5284677/
http://metro.co.uk/2015/07/07/is-this-a-ufo-disguised-as-a-cloud-video- shows-it-behaving-very-oddly-5284677/

nicht unterschiedlich interpretiert werden kann. Letztlich umfasst der Begriff aber nach

[Erhardt, 2008] (S.2)

“eine Vielzahl von Prozessen, deren gemeinsames Ziel es ist, die Gewin-
nung niitzlicher Parameter aus einem Bild oder einer Folge von Bildern zu

ermoglichen.”

Digitale Bildverabeitung lisst sich in drei Unterkategorien einteilen (vgl. [Erhardt, 2008],
S.2):

e Bildbearbeitung:

Darunter wird auch die Bildaufbereitung verstanden. Diese wird angewandt,
wenn das Bild fiir den Betrachter in einem nicht optimalen Zustand vorliegt,
also etwa zu Dunkel oder verrauscht ist. Um dies zu verbessern, wird das Bild
kiinstlich aufgehellt oder ein Filter verwendet. Das Ergebnis der Operation
bei optimaler Anwendung ist ein Bild, welches die gewiinschten Informationen

besser darstellt und sich so besser weiterverarbeiten lasst.

e Bildtransformation:

Das Ziel der Bildtransformation ist es, die Aufnahme in einen fiir den Computer
intepretierbaren Zustand zu bringen. Dazu gehort etwa die Fouriertransforma-

tion oder auch eine Vergroflerung oder Verkleinerung des Bildes.

e Bildauswertung

Nachdem das Foto mehrere Stufen der Vorprozessierung durchlaufen hat, wer-
den in diesem Schritt die relevanten Parameter entnommen. Im Falle eines
Satellitenbildes mit einem hellen Fleck als UnregelméfBigkeit sind das die Hel-
ligkeitswerte des Bildes im Bereich, wo der Fleck sich befindet oder auch die
Grofle von diesem; also der grofite und kleinste x bzw. y-Wert mit einer be-

stimmten Helligkeit grofler als ein festgelegter Schwellwert.

6.1 Vorgehensweise beim Arbeiten mit Computer Vision

In der Bildverarbeitung wird “Computer Vision” als Teilbereich angesehen und frei als
” Bildverstehen oder Bilderkennen” ([Erhardt, 2008], S.3) iibersetzt. Der Begriff kommt

vor allem aus dem Bereich der Roboter (Robotik), da diese oftmals auf ein optisches

20

System angewiesen sind und entsprechend zuverlissige Algorithmen zur Erkennung der
jeweiligen Zielobjekte brauchen.

Es ist hierbei elementar, dass der zu beschreibende Algorithmus die Beschaffenheit
seines Ziels bzw. bestimme Parameter von eben diesem kennt. Fin roter Fleck auf einem
Bild charakterisiert sich zum Beispiel durch seine Gréfle, eine bestimmte Helligkeit in
den drei Kanélen R,G,B sowie seine Position in kartesischen Koordinaten. Damit der
Algorithmus diesen und &hnliche Flecken findet, miissen entsprechende Operationen
ausgefiihrt werden, um diesen Bildbereich von den anderen zu unterscheiden. Meistens
greift man dabei auf sogenannte Threshold-Operationen zuriick. Diese Methode stellt
eine der Grundideen der digitalen Bildverarbeitung dar und wird auch in dieser Arbeit
fiir die Entwicklung der Algorithmen mehrfach verwendet. Aus diesem Grund wird
dieses Verfahren kurz erldutert.

Die Anwendung eines ”Thresholds” (zu deutsch: Schwellwert) entscheidet fiir jeden
Punkt bzw. Bereich eines Bildes, ob der Wert einer bestimmten Ausprigung (also z.B.

Séttigung oder Helligkeit eines Kanals) grofier oder kleiner als eine gewéhlte Grenze ist

(GLB).

Pixel.at(z,y).Brightness > Thresholdpyighiness (5)

Nun gibt es insgesamt sechs Threshold Anwendungen, um mit Werten gréfer bzw.
kleiner als der Schwellwert zu verfahren (nach [Bradski und Kaehler, 2008], S. 136):
e Binary Threshold:

Alle Werte groler als der Schwellwert werden auf einen Maximalwert max
gesetzt, alle kleiner gleich werden zu 0. Da es nur zwei Ergebnisse gibt, wird

diese Methode entsprechend als binédre-Schwellwertoperation bezeichnet (Gl

0).

if (Pixel.at(z,y).Brightness > Thresholdpyighiness)val = 1 ©

else val = max

e Binary Threshold Inverted:

Wie oben beschrieben ist lediglich die Wertezuweisung vertauscht. Also alle

21

Werte groler als der Schwellwert werden zu 0, der Rest zu max (Gl. .

if (Pixel.at(x,y).Brightness > Thresholdpyightness)val = 0 ™

else val = max

e Truncate:

Bei " Truncate” (zu deutsch: abschneiden) werden Werte groler als der Schwell-
wert gleich dem Schwellwert gesetzt. So wird die maximale Ergebnismenge

gekiirzt, die die Werte innerhalb eines Bildes annehmen konnen. Es gilt G1. [§

if (Pizel.at(z,y).Brightness > Thresholdpyightness)val = Thresholdpyighness

else val = Pixel.at(x,y)

(8)

e Threshold to Zero Inverted:

Hier werden sdmtliche Werte grofler als der Schwellwert auf 0 gesetzt, der Rest

wird beibehalten. Auch hier wird wie bei Truncate die Ergebnismenge reduziert

(GL).

if (Pixel.at(x,y).Brightness > Thresholdpyighiness)val = 0

else val = Pizel.at(x,y)

e Threshold to Zero:

Die letzte Methode stellt eine Inversion der oben vorgestellten dar. Alle Pixel
kleiner als der Schwellwert, werden auf 0 gesetzt, der Rest wird ohne Bearbei-
tung weitergegeben. Diese Methode wird in dieser Arbeit am H&aufigsten von

den eben genannten verwendet. Sie stellt zum Beispiel den Ausgangspunkt fiir
die Helle-Flecken-Erkennung dar (Siehe Kapitel [8.2.1)). Es gilt GL. [10]

if (Pixel.at(x,y).Brightness > Thresholdpyighiness)val = Pizel.at(x,y)

elseval =0

(10)

Nachdem eines dieser Verfahren durchgefiithrt wurde, wird die bearbeitete Aufnahme

22

weiteren Operationen unterzogen, bis ausschliellich der gewiinschte Bereich herausge-
filtert ist. Héufig ist dabei der Extraktionsprozess der Daten nur ein Teilaspekt. Das
finale Ergebnis ist meistens ein Anderes: Etwa ein Roboter, der einen farbigen Ball
(roter Fleck) erst erkennen muss, um ihm dann zu folgen.

Die Herausforderungen bei dieser Arbeitsmethode sind einerseits korrekte Schwellwerte
fiir die besagten Threshold-Operationen zu finden und andererseits die richtigen Ope-
rationen aneinander zu reihen, sodass am Ende ausschliefSlich der gewiinschte Bereich

extrahiert wird.

6.2 Arbeiten mit OpenCV

Die im vorherigen Kapitel beschriebenen Techniken gelten allgemein fiir jede CV-
Bibliothek bzw. generell fiir die meisten Bildverarbeitungsprogramme. Da in dieser
Arbeit aber speziell mit OpenCV in der Version 3.0.0-rcl gearbeitet wird, soll im Fol-
genden auf die Arbeitsweise mit dieser C++ Library eingegangen werden.

Die Basis von OpenCV ist mathematisch geprigt, denn alle internen Datenstrukturen
reprasentieren mathematische Objekte. Die beiden am héufigsten verwendeten sollen

nun erlautert werden.

o Matrix

Damit Bilder verarbeitet werden konnen, besitzt OpenCV seit Version 2.0 den
Datentyp Mat. Er speichert Bilder in einem n x m grofien, zweidimensionalen
Array, wobei n die Anzahl der Spalten und m die Anzahl der Reihen darstel-
len. Je nach dem, wie viele Kanéle ein Bild hat wird in jedes Feld entweder ein
uchar oder ein Vektor (siche unten) geschrieben. Um Bilder der Reihe nach
durchzugehen, sind also einfach zwei for-Schleifen notwendig, die die Anzahl
der Reihen bzw. Spalten inkrementieren. Da dieses zeilenweise Durchgehen
auch in C++ eine schnelle Operation darstellt, ist das Durchgehen eines Bildes
von (0,0) bis (n, m) entsprechend effizient.

Jede Matrix besteht dazu noch aus einem Header, ohne den die Datenstruktur
nicht als solche identifizierbar ist. Er beinhaltet wichtige Informationen iiber
den Zustand der Matrix, etwa die Anzahl der Kanéile, die Bittiefe und Ausma-
Be eines Bildes. Um ein neues, schwarzes Bild zu erstellen legt OpenCV also
zunéchst ein Objekt Mat mit den im Konstruktor definierten Werten im Header

an und fillt diese dann mit Nullen (fiir die Farbe ’schwarz’) auf.

23

Ein wichtiger Vorteil bei der Verwendung dieses Datentyps ist, dass der benétigte
Speicher automatisch belegt und bei Nichtbenutzung auch wieder freigegeben
wird, was ein Uberlaufen (overflow) des Arbeitsspeichers und den Absturz des
Programms verhindert. Dariiber hinaus sind alle Bilder gleich handhabbar bzw.
konnen sogar miteinander interagieren, wie z.B. das Anwenden eines Masken-

Bildes auf ein Anderes.

e Vektor

Der zweite wichtige Datencontainer ist der sog. Vektor. Er stellt eine Spezial-
form der Matrix mit einer Grofle von n x 1 dar. Er wird immer dann benétigt,
sobald in einem Feld einer Matrize mehr als ein Wert gespeichert werden muss,
die Anzahl der Kanéle also > 1 ist. Bei RGB-Bildern bené6tigt man demnach
einen 3 x 1 Vektor, der je nach Bittiefe Daten vom Typ uchar bis hin zu uint64
enthélt. So ist es sehr einfach moglich, die einzelnen Werte einer Matrix zu

adressieren ohne aufwéndige Rechenoperationen durchfiihren zu miissen.

OpenCV bietet dariiber hinaus bereits ein integriertes I/O-Modul mit dem Namen
HighGUI zum Offnen und Speichern von Bildern, weshalb auf einen externen Code
verzichtet werden kann. Da die zu verarbeitenden Aufnahmen lediglich 2D-Bilder und
kein Videomaterial sind, kann auf einen Grofiteil des Umfangs von OpenCV verzichtet
werden. So reduziert sich die Bibliothek letzten Endes auf die Module Core, welches
die Basisfunktionalitat bietet, ImgProc zum Prozessieren der Bilder sowie HighGUI

mit ImgCodecs zam Offnen und Speichern der Bilder mit jeweiligem Codec.

24

7 Randbedingungen und Anforderungen an das

Programm

Da das zu entwickelnde Programm auf einer bereits bestehenden Bodenstation laufen
soll, welche bereits eine Reihe von Programmen enthélt, sind die Rahmenbedingungen,
dieser Bodenstation unter allen Umsténden einzuhalten (Siehe Tabelle [4). So kommen
die Bilder mit demselben Zeitstempel wie in Kapitel [2.2]erwéihnt alle 15 Minuten (C010)
auf jeweils 12 Kanilen an (C020) und sind stets im .jpeg Format gespeichert (C030).
Ebenso bearbeitet Eumetsat die Bilder bereits soweit, dass nur noch die Erdscheibe zu
schen ist (C040) und durch die Konstruktion des SEVIRI Instruments liegen alle Bilder
nur in Graustufen mit 8-bit Tiefe (1 Kanal) vor (C060).

Nr. | Randbedingung Wert Prio- | Flexi- | Quelle
ritit! | bilitéit}
C010 | Meteosat-10 Bilder kommen konti- | - 1 10 Titel d.
nuierlich alle 15-Minuten Arbeit?
C020 | Bilder derselben Uhrzeit kommen | - 1 10 Titel d.
auf 12 Kanélen Arbeit?
C030 | Bilder sind in im .jpeg Format und | [Date] 1 10 C010
haben eindeutigen Namen [Hour]
-msg-
ch[Ch-Nr]
Jpg
C040 | Bilder sind bereits bearbeitet wor- | L1.5 Data | 2 8 MSG
den Data
Format
Desc.3
C050 | Bilder eines Tages werden in gemein- | - 3 5 C010
samem Ordner gespeichert
C060 | Bilder sind in Graustufen gespei- | - 3 6 C010
chert und haben 8-bit Tiefe

1'1 = Hochste; 10 = Niedrigste
2 siehe Kapitel
3 siehe: [Miiller, 2007]

Tabelle 4: Randbedingungen

Als Hauptanforderung (Tabelle an das Programm wird die grundsétzliche Lauffahigkeit

25

auf der Bodenstation vorgegeben (R010), wihrend die Benutzeroberfliche und der in-
terne Programmablauf weitgehend unspezifiziert bleiben. Dies erleichtert den spéteren
Entwicklungsprozess insofern, dass lediglich die Algorithmen effizient in das System
eingebunden werden miissen (R040 und R050) und dabei automatisch die Bilder 6ffnet
und nach Bedarf speichert (R020). Da es sich bei der Bodenstation nicht um ein Echt-
zeitsystem handelt, wird auf Angaben zur Ressourcennutzung und des Speicherbedarfs

verzichtet. Weitere Aufschliisse dariiber wird erst die Evaluation zeigen.

Nr. | Anforderung Wert Prio- | Flexi- | Quelle
ritét! | bilitdt}
RO10 | Lauffahigkeit auf Bodenstation - 1 10 Titel d.
Arbeit?
RO30 | Software soll Meteosat-10 Bilder au- | - 1 10 C010

tomatisch erkennen und verarbeiten
und gefundene Ereignisse in eigenem
Ordner speichern

R040 | Software soll helle Flecken erkennen | Helligkeit | 1 10 Titel d.
kénnen > 250 Arbeit?
RO050 | Software soll Formen erkennen | Kreise, 1 10 Titel d.
konnen Vier-, Arbeit?
Fiinf- und
Sechsecke
sowie
Linien
R060 | Start und Stopp sowie Neustart | - 3 5 RO10
Funktion ohne Programm beenden
7Zu missen
RO70 | Ausgabe von Dateiname des | - 3 7 RO10

geoffneten Bildes auf interner
Konsole mit Zeitstempel

RO80 | Aktuelles und letztes Bild mit Un- | - 2 8 RO10
regelméfigkeit sollen innerhalb des
Programms zu 6ffnen sein

1'1 = Hochste; 10 = Niedrigste
2 siehe Kapitel

Tabelle 5: Anforderungen

26

8 Konzept

8.1 Uberblick

Neues Bild Bild 6ffnen Auf Unregelmifigkeit

erkennen priifen

Abbildung 5: Verarbeitungsweg eines Bildes

Um UnregelméBigkeiten (vgl. Kapitel finden zu konnen, soll ein Programm entwi-
ckelt werden, welches auf der Bodenstation die Bilder autonom o6ffnet und auswertet.
Dazu werden eine Reihe unterschiedlicher Algorithmen erstellt, die am Ausgangsbild mit
mehreren Operationen Anomalien herausfiltern. Damit Regelméfigkeiten, wie die aus
Kapitel 5.1 nicht erkannt werden, werden mehrere Korrekturalgorithmen angewandt, die
eine moglichst hohe Trefferrate bei gleichzeitig wenigen Falschmeldungen haben sollen,
um gefundene Phédnomene nicht zu verwerfen. Eine Falschmeldung wird im Folgenden
als eine Detektion definiert, die aufgrund fehlender Unregelméfigkeit als Grundlage
dennoch als solche erkannt wird.

Damit alle Algorithmen korrekt ausgefiihrt werden, ist ein Thread-Konzept zu ent-
werfen, welches mit User-Interface auf dem Zielcomputer lduft und auf die Bilddaten
zugreifen kann, sowie gefundene Bilder speichert. Abbildung [5| skizziert fiir das Kon-
zept den Verlauf eines Bildes innerhalb des Programms. Es ist dariiber hinaus auf den
Ablauf und Kontrollfluss des Programms sowie auf moglichst effiziente Algorithmen zu
achten. Dies ist notwendig, um die Rechenleistung beim Verarbeiten minimal zu halten,

wodurch eine Auswertung der Bilder gewahrleistet wird.

8.2 Vorstellung und Entwicklung der Algorithmen zur Erkennung

von UnregelmaBigkeiten

Nachdem dargestellt wurde, woher die Aufnahmen kommen, welche Eigenschaften sie
aufweisen (Siehe Kapitel und welche Elemente sich in den Bildern vorfinden lassen

27

(Siehe Kapitel , geht es im Folgenden darum, Algorithmen zu konstruieren, die die
Unregelméfigkeiten zuverléssig finden. Dazu wurden insgesamt fiinf Vorgehensweisen

entworfen, die teilweise auf denselben Operationen beruhen.

8.2.1 Helle- und Dunkle-Flecken-Erkennung

Zunéchst wird ein ungewichteter Algorithmus konstruiert, der Ansammlungen von hel-
len Pixeln auf kleinem Raum (im Folgenden: heller Fleck) erkennen soll. Der Ansatz
ist hier, wie in Kapitel erklart eine Threshold-to-Zero Operation. Der Algorithmus
scannt das Bild zeilenweise von (0,0) bis (zp,yn) (siche Abb. [f)) ab und entscheidet
fiir jeden Punkt, ob dieser iiber dem Schwellwert liegt. Da ein einzelner Pixel noch
nicht hinreichend aussagekriiftig und evtl. ein Fehler des optischen Systems ist, werden
fiir diesen Fall zusétzlich die Nachbarpixel untersucht. Die Anzahl heller bzw. dunkler
Nachbarpixel, die das Zentrum bendétigt, um als heller bzw. dunkler Pixel durchzugehen,
wird dynamisch berechnet. Das bedeutet, dass fiir einen hellen Zentrumspixel bereits
wenige benachbarte helle Pixel ausreichend sind, wéhrend fiir einen, der nur knapp iiber
dem Schwellwert liegt, mehrere Pixel.

Ebenfalls wird eine Gewichtung der Pixel durchgefiihrt.

Dazu wird zunéchst der Bereich definiert, der helle oder

dunkle Pixel enthélt und dessen optischer Schwerpunkt . o
ermittelt (Abb. [7)). Um den Schwerpunkt herauszufinden, :
verlauft der Algorithmus entlang der Kontur des Berei-
ches und speichert Konturpixel in einem Array dynami- Bild
scher Grofle, da der Umfang der Kontur vorab nicht be- p
v

kannt ist. AnschlieSend wird der Mittelwert {iber alle Hel-
ligkeitswerte der im Bereich liegenden Pixel gebildet und
gepriift, ob dieser grofler, kleiner bzw. gleich dem Schwell- Abbildung 6: Durchlauf

wert ist. eines Bildes

Beide Varianten reduzieren die Fleck-Findung auf einen Pixel und Helligkeitswert. Da-
bei ergibt sich in beiden Féllen das Problem, dass sie in der néchsten Zeile erneut auf
dieselbe Pixelformation treffen, wie in der Zeile zuvor. Um doppelte Treffer zu vermei-
den, ist daher der zuvor bereits bearbeitete Bereich zu maskieren - also fiir weitere
Betrachtung ausgeschlossen. Die erste Methode ist dabei einfach zu implementieren.

Variante zwei ist zwar etwas komplexer und benétigt mehr Rechenleistung, verspricht

28

t B Pixel innerhalb Kontur

E Zentrum

Abbildung 7: Konturenmethode mit Mittelpunkt

aber eine hohere Treffergenauigkeit.

8.2.2 Formen-Erkennung

Formen-Erkennung stellt neben der Hellen- bzw. Dunklen-Fleck-Erkennung die zwei-
te Art von Algorithmen dar, um UnregelméBigkeiten zu erkennen. Dabei gibt es fiir
jede Form unterschiedliche Herangehensweisen, weshalb diese hier gesondert betrach-
tet werden. Da alle von derselben Operation ausgehen, dem Canny-Operator (nach
[Canny, 1986], S.679-698), wird dieser im Folgenden kurz erldutert. Das Ziel dieses Algo-
rithmus ist es, Kanten innerhalb eines Bildes zu finden. Diese sind vorhanden, wenn auf
kurzem Raum ein abrupter Farb- bzw. Helligkeitswechsel stattfindet. Zunéchst wird ein
GauB-Filter auf das Bild angewandt, der dazu dient Rauschen zu minimieren. Darauthin
berechnet der Algorithmus die partiellen Ableitungen mit Hilfe zweier Faltungsmatrizen
einzelner Pixel in x- und y-Richtung, wodurch horizontale und vertikale Kanten betont
werden. Daraus entstehen zwei Bilder, wobei eines die Kanten in y-Richtung und das
andere die in x-Richtung enthalt. Mit Hilfe dieser partiellen Ableitungen g, und g, lasst
sich die Richtung 6 des Gradienten einer Kante durch Gl. [L1] ausdriicken.

0 = arctan (@> (11)

gz

Da die Richtung benachbarter Pixel aber nur ein Vielfaches von 45° betragen kann
wird der Winkel auf einen dieser Werte gerundet. Es wird anschliefend die absolute
Kantenstérke G mittels der euklidischen Norm berechnet. Um Rechenzeit zu minimieren

verwendet OpenCV aber eine Approximation:

G = [ga(z, y)| + gy (2,)] (12)

29

Um im entstehenden Binérbild eine Linie mit der Dicke von einem Pixel zu erhalten,
wird die sog. Non-Maximum-Suppresion angewandt, die die benachbarten Pixel entlang
des Gradienten vergleicht und nur den grofiten der Werte herausnimmt. Im letzten
Schritt wird die sog. Hystere angewandt, die wieder eine Threshold-Operation mit zwei
Schwellwerten darstellt. Die empfohlene Einstellung hierfiir ist 1t. Canny ein Verhéltnis
von 2:1 bis maximal 3:1 (siche [Canny, 1986]) von oberem zu unterem Schwellwert.
Liegt ein Pixel iiber beiden Schwellwerten, so wird er immer als Konturpixel akzeptiert.
Dazwischen nur, wenn er mit einem Pixel verbunden ist, der bereits akzeptiert wurde.
Alles was darunter ist wird zuriickgewiesen.

Ein so entstandenes Binérbild mit Schwellwerten von 700 bzw. 1400 wird in Abbildung|g]
dargestellt. Es ist anzumerken, dass fiir die folgenden Algorithmen stets unterschiedliche
Schwellwerte fiir den Canny-Operator genommen wurden, da die Bilder wegen ihres
hohen Detailgrades bei niedrigen Schwellwerten sehr viele Kanten enthalten. Dies fiihrt

in den meisten Féllen aber zu Falschmeldungen. Wie die Schwellwerte ermittelt wurden,

soll in der Implementierung gezeigt werden.

Abbildung 8: Canny-Algorithmus auf Satellitenbild angewandt

e Vier-, Fiinf- und Sechseckerkennung

Dieser Algorithmus dient der Erkennung elementarer geometrischer Formen in
einem Bild und ist der Einzige, der keine Eigenentwicklung darstellt (Siehe
[Nash, 2012]). Die Formen charakterisieren sich einerseits durch ihre Anzahl
an Kanten und andererseits iiber den Betrag jeder ihrer Innenwinkel (nach

[Nash, 2012]):

30

— Viereck:

Betrag jedes Innenwinkels zwischen 85° und 97°

— Finfeck:

Betrag jedes Innenwinkels zwischen 105° und 110°

— Sechseck:

Betrag jedes Innenwinkels zwischen 116° und 123°

Um nun die Form erkennen zu koénnen, wird zunéchst, wie oben genannt, der
Canny-Operator angewandt. Innerhalb des Binérbildes wird daraufhin nach
geschlossenen polygonalen Konturen gesucht{lzf] und fiir jede dieser Konturen
alle Innenwinkel berechnet. Ist die Anzahl der Ecken gleich den jeweiligen fiir
ein Mehreck und sind dazu noch alle Innenwinkel im oben angegebenen Bereich,
wird die Kontur gespeichert und spéater markiert.

Ein Problem fiir die spéitere Implementierung stellt die Winkelmessung dar:
Je kleiner eine Form wird, desto stidrker kann die Winkelmessung verfilscht
werden, bis es schliefSlich zu so grolen Abweichungen kommt, dass sie gar nicht
mehr erkannt werden kann. Dies ist auch der Grund, warum keine Formen mit
mehr als sechs Ecken gepriift werden: Die Fehler bei Winkelmessungen lassen
die Form schnell als eine andere erscheinen, ebenso wie die Tatsache, dass der
Betrag der Winkel nahezu gleich grof§ ist. Wie grof§ eine Form sein muss, um

sie sicher erkennen zu konnen, wird eine der Aufgaben fiir die Evaluation sein.

e Linienerkennung

Die Linienerkennung basiert auf dem 1962 von Paul V.C. Hough entwickelten
Hough-Algorithmus (Siehe [Dawson-Howe, 2014], S. 109). Dieser geht ebenfalls
vom Canny-Algorithmus aus, arbeitet demnach auch mit einem Binérbild. Der

Grundgedanke ist dabei, dass eine Gerade in Polarkoordinaten dargestellt wird

(Gleichung [13)).
cos 6 r
v (_Sinﬁx—'—sin@) (13)

Und so fiir jede Linie durch die Punkte x,y:

r9 = X0 * cos O + yo * sin O (14)

4Die Innenwinkelsumme darf also maximal (n — 2) * 180° betragen, wobei n die Anzahl der
Kanten ist

31

Y
ritheta)

4 180 216

324 380

-15
® _ Theta in ®
6

),] P3 P 4

Abbildung 9: Die Hough Transformation von vier Punkten vom (x,y)-Raum in den
(0,rg)-Raum. Die Schnittpunkte der Kurven stellen die Geraden dar, die durch alle
vier Punkte geht. Es gibt deshalb zwei Schnittpunkte, weil eine volle 360° Drehung
angenommen wurde (Und Geraden, die im 180° Winkel liegen sind effektiv die
Gleichen, [Dawson-Howe, 2014])

Da es unendlich viele Geraden durch einen Punkt gibt und es rechnerisch nicht
effizient ist fiir jedes Punktepaar zu priifen, wie viele Punkte auf der Gerade
liegen, werden x- und y-Werte eines Punktes nicht mehr als Variable, sondern
als Parameter behandelt. Stattdessen wird 6 als variabel angesehen, ebenso wie
das daraus folgende ry. So kann fiir jeden Punkt auf einer Kontur ry berechnet
(Abbildung [0) und an der Stelle (6, r¢) einer Matrix, die der Grofe des Bildes
entspricht, der Wert um eins imkrementiert werden. Eine Gerade ist dann ge-
geben, wenn an einer Stelle der Matrix die Anzahl der Inkrementierungen iiber
einem festgelegten Schwellwert liegtE

Nachdem erfolgreich Linien gefunden wurden, werden diese gespeichert und

durch eine Subroutine im Zielbild markiert.

e Kreis-Detektion

Dieser Algorithmus dient der Identifizierung einer Kontur als Kreis. Dazu wird
eine Variante des bereits erklarten Hough-Algorithmus angewandt, diesmal je-
doch fiir Kreise. Demnach ldsst sich ein Kreis C' durch seinen Mittelpunkt in

kartesischen Koordinaten sowie den Radius beschreiben:

C: (xzentrum7 Yzentrum, 7’) (15)

Ansonsten gilt wie zuvor, dass ein Kreis gegeben ist, wenn eine bestimmte An-

zahl an Punkten auf dessen Bogen liegt. Eine Stédrke der Methode ist, dass

15Die Einstellung der Schwellwerte fiir Canny und Hough-Transformation werden im Kapitel
9] behandelt.

32

der Kreis nicht komplett im Bild enthalten sein muss, es reicht bereits der Teil
eines Kreisbogens.

Auch hier sind die Schwellwerte fiir die Canny- und Hough-Algorithmen zu
finden. Ebenso ist es fiir die Implementierung eine Aufgabe, Kreise mit unrea-
listischer Grofle herauszufiltern. Dazu gehoren etwa Kreise mit » < 1Pz oder

"> TErde-

8.3 Algorithmen zur Filterung von Sonnenreflexionen

Damit die in Kapitel vorgestellten Algorithmen eine moglichst geringe Zahl an
Falschmeldungen herausgeben, miissen Regelméfigkeiten ausgeblendet werden (vgl. Ka-
pitel . Eine Hauptquelle fiir Falschmeldungen stellen Sonnenreflexionen an der Erd-
oberflache dar, die aufgrund der diffusen Brechung von Licht an dieser und den Wolken
schwierig zu berechnen sind. Es ist eine andere - moglichst effiziente - Losung zu finden
und implementieren.

Hierzu wird ein Bereich innerhalb einer temporiren Schwarz-Weiss-Matrix konstruiert,
in dem fiir Tag im Jahr, Uhrzeit sowie pro Kanal die hdufigsten Sonnenreflexionen finden
lassen. Dieser Bereich ist moglichst klein zu halten, um dennoch Unregelméafligkeiten
jederzeit erkennen zu konnen. So wird er in den Morgen- und Abendstunden am Rand
der Erdscheibe zu finden sein und tagsiiber zentral, aber stets mit der Uhrzeit wan-
dernd.

Auch wenn Heller- und Dunkler-Fleck-Algorithmus sich dhneln, so benétigen sie trotz-
dem unterschiedliche Routinen oder zumindest andere Ausgangs- bzw. Schwellwerte,
um Reflexionen zu erkennen. Um die Schwellwerte zur Laufzeit anpassen zu konnen,

benotigt das Programm ein User Interface, welches im folgenden Kapitel erlautert wird.

8.4 GUI und Worker Thread Prinzip

Um sémtliche Algorithmen aus Abschnitt und aufrufen zu konnen, wird eine
Programmstruktur benotigt, die eine effiziente Bearbeitung der Tasks erlaubt. Hier-
zu wird das GUI- und Worker-Thread-Prinzip angewandt. Threads sind in Betrieb-
systemen eine der Grundideen der Parallelverarbeitung ([Mandl, 2014], S. 83). Deren
iibergeordnete Recheneinheit stellt der Prozess dar. Alle Threads teilen sich den gemein-
samen Adressraum eines Prozesses und greifen damit auf dieselben globalen Variablen

zu, wihrend Threads untereinander nur iiber definierte Interfaces kommunizieren. Der

33

Worker Thread stellt dabei einen Thread dar, der die fiir das Programm notwendigen
Rechenoperationen durchfiihrt. Als Beispiel dafiir sei das Offnen und Verarbeiten der
Bilder genannt. Die ermittelten Daten werden iiber ein Interface an den GUI-Thread
weitergegeben, der die Daten addquat préasentiert und so z.B. das gerade verarbeitete
Bild anzeigt. Um eine klare Unterteilung zwischen beiden Objekten zu schaffen, werden
Datenstrukturen so konstruiert, dass sie nur von einer der beiden Parteien interpretiert
werden konnen. Diese sind aber nicht zu verwechseln mit den globalen Variablen, auf

die beide zugreifen kénnen.

Thread:GUI Thread:Work
er

offneBilal)

verarbeiteBild()

%——?_BigeBiIdAufGUI[}
___________________ >

Abbildung 10: Skizziertes UML-Sequenzdiagramm zum Verhalten von GUI und
Worker Thread beim Verarbeiten von Bildern

Abbildung [10| zeigt, wie die interne Kommunikation bei diesem Konzept gestaltet ist.
Einen weiteren Vorteil bei diesem Vorgehen stellt die Modularitat dar, mit der es
dem Entwickler einfach gemacht wird dem bestehenden System schnell neue Worker-
Threads hinzuzufiigen. Jedoch besitzt dieses Konzept auch Grenzen. Dazu gehort, dass
bei aufwéndigen Rechenoperationen der GUI-Thread nicht schnell genug auf Anfra-
gen reagieren kann und Kommandos erst mit erheblicher zeitlicher Verzogerung abge-
arbeitet werden. Ist dariiber hinaus alles innerhalb eines Threads, miissten keinerlei

Kommunikationsschnittstellen implementiert werden, was zu einer geringeren Anzahl

an Lines-of-Code (LOC) fiihrt.

34

Ebenso konnen mehrere Threads auf dieselbe Variablen zugreifen und ungewollte Zusténde
provozieren@. Hierzu wird das Mutex-Konzept implementiert, welches um die Stelle der
Variablendnderung einen sog. kritischen Abschnitt definiert. Betritt ein Thread diesen
Abschnitt wird er fiir die Anderen gesperrt (mutex.lock()) und beim Verlassen wieder
gedffnet (mutex.unlock()). Dadurch wird gewihrleistet, dass simtliche Anderungen ei-

ner Variable angewandt werden ohne, dass eine davon verloren geht.

9 Implementierung

(| :Dialog | :FilenameMa :ImageProce :MailSender | | :Showimage
nager ssor

I |

\

!
|
r |
|
User |
|
|
| |:|
|

o Bild anzeigen
|
|

|
|—Bild schlieBen

Abbildung 11: Interner Nachrichtenverlauf der Threads fiir den Fall, dass der User das
aktuelle Bild anzeigen lésst

Nachdem die Struktur des Programms und der Algorithmen im Konzept erarbeitet
wurde, ist es an dieser Stelle die Aufgabe des Entwicklers diese mit der Struktur von
OpenCV und C++ zu vereinen. Der Fokus dieses Kapitels liegt auf den Problemen,
die wihrend der Implementierung auftraten und wie sie gelost wurden sowie auf der
Parametereinstellung der Algorithmen, wie z.B. Schwellwerte.

Als Richtlinie fiir die Einstellung der Parameter gilt dabei, dass alle tatsdchlichen Un-
regelméBigkeiten erkannt werden. Somit ist stets darauf zu achten, dass Schwellwerte
und maskierte Bereiche minimal einzustellen sind.

Dafiir wird zunéchst auf die Implementierung der Algorithmen eingegangen bzw. deren

Methoden zum Filtern von Regelméafligkeiten. AnschlieBend werden das User-Interface

16Es kann beispielsweise vorkommen, dass zwei Threads gleichzeitig dieselben Variablen be-
schreiben und sie anschlieBend wieder abfragen. Dabei wird eine der beiden Anderungen
zwangsweise verloren gehen. Dies kann bei gleicher Ausgangssituation zu einem unter-
schiedlichen Ergebnis fithren. Diese Art von Zufall ist aber unerwiinscht.

35

und die einzelnen Threads erldutert, die einen reibungslosen Ablauf aller Funktionen
bieten sollen. In dieser Sektion wird auch auf die interne Kommunikation der Threads
eingegangen, welche in Abbildung dargestellt ist. Um die grafische Benutzerober-
flache und das Thread Konzept zu realisieren wird fiir diese Zwecke die C++ Bibliothek
QT 5.2.0 in der Community-Version VerwendetE].

9.1 Anwendung der Algorithmen zur Erkennung von

UnregelmaBigkeiten
9.1.1 Formen-Algorithmen

Der erste implementierte Formendetektions-Algorithmus ist der zur Erkennung von
Vier- bzw. Fiinf- und Sechsecken. Die Grundlage hierfiir stellt ein bereits existieren-
der Algorithmus dar, der aus der OpenCV-Tutorial Sektion entstammt. Urspriinglich
konnte dieser Algorithmus nur Vierecke erkennen, jedoch wurde er von der OpenCV-
Community so erweitert, dass er zustézlich noch Fiinf- und Sechsecke erkennen kann
(Siehe [Nash, 2012]).

Da ein Satellitenbild aufgrund der hohen Auflésung und seines dementsprechend hohen
Detailgrades viele Moglichkeiten zur Erkennung von Formen bietet, sind die Schwell-
werte zur Konturfindung festzulegen. Dabei werden diese so lange erhoht, bis innerhalb
der Testbilder keine Falschmeldungen mehr vorkommen. Dadurch wird gewéhrleistet,
dass die Methode moglichst alle Formen erkennt und gleichzeitig nur wenige falsche
Treffer meldet. Abbildung [§| zeigt bereits, wie ein Konturbild aussieht, welches mit
dem Canny-Algorithmus und einem Schwellwert von 700 zu 1400 erstellt wurde. Es ist
zu erkennen, dass aufgrund einiger Wolkenformationen noch viele Konturen erkennbar
sind, die potenzielle Falschtreffer hervorrufen kénnen. Damit sich auch diese Bereiche
auflosen, ist der Schwellwert weiter anzuheben. Dadurch ergibt sich die Gefahr, dass
Konturen der zu findenden Formen nur noch als Teil erkennbar sind und somit nicht
erkannt werden. Aufschluss dariiber, wie gut die Detektion damit noch funktioniert, ist
Teil der Evaluation.

Anschlieffend ist die Liniendetektion einzubauen. Dazu wird zunéchst der Standard-
Hough Algorithmus aus der OpenCV Bibliothek implementiert. Dieser besitzt jedoch
die Eigenschaft, dass er fiir eine Linie nicht den Start und Endpunkt in kartesischen Ko-

ordinaten speichert, sondern die Parameter ry und 6. So eingestellt werden nur Tangen-

17Siehe: http://www.qt.io/download/, aufgerufen am 25.07.15

36

http://www.qt.io/download/

ten an der Erdscheibe und keine Linien innerhalb dieser entdeckt. Deshalb wird der sog.
probabilistische Hough-Algorithmus angewandt. Er ist aufgrund einiger Vereinfachun-
gen bei der Linienberechnung nicht nur effizienter als der Standard-Hough-Algorithmus,
sondern gibt dariiber hinaus auch die Extrema (xq,yo,x1,y1) der detektierten Linien
als Vec4i (4 x 1 Int-Vektor) aus. So kann fiir Start- und Endpunkt der Linie getestet
werden, ob die Linie aus der Erdscheibe herausreicht. Ist dies der Fall, so wird die Linie
verworfen, wenn nicht, wird sie akzeptiert und ins Zielbild eingezeichnet. Abbildung

zeigt Linien, die mit dem Algorithmus erkannt wurden.

Abbildung 12: Fund einer Linie am Rand Abbildung 13: Maske fiir Rédnder von
eines Bildes von Kanal 12 Kanal 12 in diesem Bereich (weif§ =
maskierter Bereich)

Der Fund dieser Linien stellt ein kritisches Ereignis dar, denn ihr Ursprung resultiert
daraus, dass in den Bildern auf Kanal 12 nur die Kontinente aus zwei grofien Bildteilen
zusammengesetzt sind. An den Kanten dieser Stiicke wird deshalb immer eine Linie
vorliegen. Da die Bildteile stets an derselben Stelle aufhéren, wird der Konturbereich
fiir Kanal 12 maskiert. Die so entstandene Maske ist in Abbildung [13] fiir diesen Aus-
schnitt erkennbar.

Der Kreisdetektor ist der letzte zu implementierende Formenalgorithmus. Hier wird das
Standard-Hough-Verfahren fiir Kreise angewandt und keine erweiterte Version. Das ers-
te Ergebnis liefert fiir die meisten Bilder die Erdscheibe als Kreis. Da dies ebenfalls eine

RegelméBigkeit darstellt, ist dieser und andere ungewollte Kreise gezielt zu verwerfen:
if (rireis > TErde || Tireis < 5Pz) skipCurrentElement ()

Im obigen Codeausschnitt ist dariiber hinaus zu erkennen, dass Kreise mit einem Radius
kleiner 5 Pixel verworfen werden, da sonst zu viele Falschmeldungen gefunden werden.
Damit ist auch bereits eine untere Grenze fiir den Kreisalgorithmus festgelegt: Ist der

Radius eines Kreises kleiner als 5 Pixel, wird er nicht als solcher markiert.

37

9.1.2 Heller- und Dunkler-Fleck-Algorithmus

Zunéchst wird der Helle-Fleck-Algorithmus implementiert. Dazu werden zuerst die in
Kapitel vorgestellten Methoden zur Markierung der hellen Flecken ausgewihlt.
Bei einem Vergleich der Gewichteten gegeniiber der Ungewichteten zeigt sich, dass
beide dieselbe Treffergenauigkeit aufweisen. Dies ist bei genauerer Untersuchung nicht
iiberraschend: Die Methoden arbeiten bis zu dem Punkt, an dem gepriift wird, ob ein
heller Fleck vorliegt unterschiedlich, aber arbeiten danach gleich weiter. Die kritische
Threshold Operation, die fiir eine hohe Treffergenauigkeit verantwortlich ist, kommt
erst wihrend der Priifung bzw. danach zur Ausfithrung. Deshalb sind beide Methoden
im Grunde gleich, was die Wahl auf die ungewichtete Methode fallen lésst, da sie etwas
weniger Rechenaufwand benotigt als die Gewichtete.

Fiir den dunklen Fleck kann dieselbe Methode angewandt werden. Dazu wird das Bild
vorher mit einem Look-Up-Table (LUT) pixelweise invertiert. So erscheinen sehr dunkle
Pixel als helle Pixel, wodurch der Helle-Fleck-Algorithmus wieder angewandt werden
kann. Es sind zuletzt einige Schwellwerte fiir diesen Fall anzupassen, so dass die Anzahl
der Falschmeldungen gering bleibt, aber immer noch alle dunklen Flecken gefunden
werden konnen. Dabei besitzt der Helle-Fleck-Algorithmus einen Standardschwellwert
fiir weifle Flecken von 250, der Dunkle-Fleck-Algorithmus minimal hoher bei 253.
Ebenso ergibt sich fiir den Dunklen-Fleck-Algorithmus ein Problem: Auf Bildern der
VIS-Kanile reflektieren viele Teile von Land und Wasser nur sehr wenig Licht dieser
Wellenldnge, so dass der Bereich auf dem Bild schwarz erscheint. Da diese Bereiche
nicht vorhersagbar sind und der Algorithmus damit in diesen Kanélen ausschliellich
Falschmeldungen liefert, besteht lediglich die Moglichkeit diese Kanéle wegzulassen. So
operiert der Algorithmus nur im Infrarot-Bereich.

Dariiber hinaus liefern beide Algorithmen eine groie Zahl an Falschmeldungen fiir Son-
nenreflexionen, vor allem in den Morgen- und Abendstunden. Aus diesem Grund soll

im néchsten Kapitel erldutert werden, wie damit umgegangen wurde.

9.2 Erkennung von RegelmaBigkeiten

Damit Heller- und Dunker-Fleck Algorithmus korrekt funktionieren und gleichzeitig die
Fehlerrate minimal bleibt, muss ein Mechanismus eingebaut werden, der fiir beide Al-
gorithmen die Einfliilsse der Sonne erkennt und sie herausfiltert. Ein Problem bei der

Suche nach einer Losung stellt die OpenCV-Bibliothek dar: Sie ist hauptséchlich fiir

38

zweidimensionale Bilder ausgelegt, obwohl der Ursprung des Problems jedoch aus dem
dreidimensionalen Raum kommt und letzten Endes auf ein zweidimensionales Bild pro-
jiziert wird. Aus diesem Grund wird es einen Genauigkeitskompromiss geben miissen,
um mit OpenCV weiterarbeiten zu konnen. Ob die Prézision dennoch ausreicht wird
sich erst im Verlauf der Arbeit zeigen.

Es gibt Ansétze, die trotz der eben genannten Einschrinkungen Erfolg versprechen. Es
ist bekannt, dass die Sonne im Laufe eines Jahres von 23,45°, dem noérdlichen Wen-
dekreis (am 21.6.), auf -23,45° am siidlichen Wendekreis (am 21.12.) wandert. Daraus
kann man fiir die der Deklination § an einem Tag im Jahr (dayOfYear, 01.01. = 1)
Gleichung [16] aufstellen.

* T

2
0 =—23,45
, *COS<365

* (dayO fYear + 10)) (16)

Der Verlauf einer Sonnenrelexion ldsst sich empirisch ermitteln und wird in Abbildung
fiir den 23.05.2015 sowie 09. und 10.06.2015 dargestellt. Der Vergleich der Positi-
on der Punkte derselben Uhrzeit macht sichtbar, dass die Deklination innerhalb dieses
Zeitintervalls um einige Grad gestiegen ist - so liegen die Punkte des 23.05. deutlich
weiter von denen des 10.06. entfernt, auch wenn bei der Beobachtung dieser Reflexionen
eine Streuung durch Messungenauigkeit vorhanden ist. Von weitaus groflerer Relevanz
ist die Erkenntnis, dass der Verlauf der Reflexion tagsiiber durch einen Ellipsenbogen
beschrieben werden kann, auch wenn zum Rand der Erde hin, in den Morgen- und
Abendstunden, eine starke Verfdlschung erkennbar ist. Zunédchst werden aber nur Re-

flexionen, die tagsiiber entstanden sind betrachtet.

Abbildung 14: Sonnenreflexionen an drei unterschiedlichen Tagen: 23.05. (rot), 09.06.
(blau) und 10.06. (griin)

39

Abbildung 15: Annéherung des Pfades der Sonnenreflexion am Tag durch einen
Ellipsenbogen fiir den 10.06.

OpenCV besitzt die Moglichkeit Ellipsen(-bogen) zu zeichnen und benétigt dazu fol-

gende Parameter:
e Den Mittelpunkt der Ellipse in kartesischen Koordinaten

e Die Grofle der beiden Halbachsen

e Den Start- und Endwinkel des Ellipsenbogens (0° bis 360° bei einer vollen Ellipse),

ausgehend vom Punkt auf der Ellipse mit dem grofiten x-Wert.

Nachdem fiir die drei Tage jeweils eine passende Ellipse gefunden (Siehe Abb wer-
den konnte, sollte sich ebenso fiir den Rest der Tage im Jahr eine Vorhersage fiir den
Bogenverlauf ermitteln lassen, da dafiir keine Aufnahmen vorliegen. Es ist dazu hilfreich

die Extremsituationen zu betrachten, wenn die Deklination gleich 0° bzw. + 23,45° ist.

So ergibt sich fiir die Tagundnachtgleiche im Friihling bzw. Herbst eine Position genau
im Mittelpunkt des Bildes. Dies ist aber nur moglich, da dank der Vorverarbeitung
von Meteosat (Siehe [Miiller, 2007]) bereits gegeben ist, dass die Erde zentriert im Bild
liegt. Dartiber hinaus entspricht die grofie Halbachse der Hélfte des Erddurchmessers,
die Kleine wird zu 0. Da der Verlauf der Reflexion nur ein halber Ellipsenbogen ist,
geht die Ellipse von 0° bis 180°.

Fiir die beiden Wendekreise gilt eine dhnliche Uberlegung. Die Position #ndert sich le-
diglich in positive bzw. negative x-Richtung um einen Wert Ax, der von der Deklination
bzw. des Tages im Jahr abhéngt, entlang der y-Achse hat sie einen konstanten Wert.
Die grofie Halbachse wird kleiner, je weiter man sich vom Aquator entfernt, wihrend

die Kleine sich vergroflert. Der Bogen der Ellipse bleibt fiir die nordliche Hemisphére

40

weiterhin bei 0° bis 180° &ndert sich bei der Uberschreitung des Aquators nach Siiden

aber auf 180° bis 360°, da nun die obere Hilfte des Bogens dargestellt werden muss.

Fiir die Tage, die zwischen den vier Extrempunkten liegen wird ein linearer Anstieg
bzw. Abfall der jeweiligen Werte angenommen. Hier sind die bereits vorliegenden Bil-
der hilfreich, denn sie wurden zwischen Friihlings-Tagundnachtgleiche sowie Sommer-
sonnenwende aufgenommen, liegen damit genau in diesem Bereich und dienen somit als
Testfall. Es ergeben sich somit fiir die unterschiedlichen Tage folgende Gleichungen fiir
die x-Position der Ellipse in Abhéngigkeit des Tages im Jahr (dayyeq,). Innerhalb des
Intervalls von 21.03. (81. Tag) bis 21.06. (172. Tag):

day —=80;

. Sizejma 6/27M'inz—Position
x(dayyear) = Slzelmage/2 - dayyear * (917278171)

Sowie zwischen 22.06. (173. Tag) und 23.09. (266. Tag):
day —=172;

. Sizelma e 2_M7:nasfposition
:L'(dayyear) = Ming_ position + dayyeaT * (g26/6—173—1)

Zuletzt zwischen 24.09. (267. Tag) und 20.03. (80. Tag), wobei der 356. Tag den Wen-

depunkt des Sonnenstandes im Winter markiert:

if (day > 356){
day = 356 — (day — 356);
telse if(day > 0 && day < 81){
day += 365;
day = 356 — (day — 356);
h
day —=266;

- Size mage 27M71n1‘7 osition
r(day = Sizermage/2 + dayyear * (! 935/6726771 Posit)

Analog zu diesem Schema werden die Gleichungen fiir die Gréfle der Halbachsen for-
muliert und implementiert. Um nun mit Hilfe dieser Gleichungen ein geeignetes Aus-
schlusskriterium fiir eine Sonnenreflexion zu finden, ist zunéchst zu beriicksichtigen,
dass der Bereich, der fiir Sonnenreflexionen infrage kommt, méoglichst klein gehalten
werden muss, um eventuelle Unregelméfigkeiten auch innerhalb der Bahn der Sonnen-
reflexion erkennen zu kénnen. Es ist an dieser Stelle moglich iiber den ganzen Tag den
Bereich des Ellipsenbogens einer gewissen Dicke auszugrenzen.

Da die Reflexionen derselben Uhrzeit aber immer im selben Bereich der Erde erscheinen,

41

kann der Ellipsenbogen auf einen geringen Teil seiner selbst reduziert werden, sodass je
nach aktueller Uhrzeit nur ein bestimmter Bereich der Ellipse angezeigt wird. Hierzu
wird der Punkt in Polarkoordinaten (dp(,), @) transformiert und eine Korridorgrée
definiert, die angibt, wie grofl der Bereich vom Bogen fiir die Maskierung der Refle-
xion ist. Dessen obere und untere Grenze wandern im Laufe eines Tages von Osten
nach Westen abhingig von der aktuellen Uhrzeit. Damit eine Sonnenreflexion erkannt
wird, muss der Winkel a des Punktes gegeniiber dem Ellipsenmittelpunkt innerhalb der
Grenzen liegen, genauso wie die Distanz dp(, ,) innerhalb der Ellipsenkontur.

Zuletzt wird noch eine Dicke der Ellipse d definiert, die in die temporire Masken-Matrix
gezeichnet wird, so dass letzten Endes eine einfache Vergleichsoperation Aufschluss
dariiber gibt, ob der eben gefundene helle Fleck innerhalb des Bereichs liegt und somit
eine Sonnenreflexion ist. So ergeben sich folgende Aussagen, die fiir eine Sonnenreflexion

alle wahr sein miissen:
® d—T<dp(m7y) <r
o Grenzeppten|’] < a < Grenzeppen[°]

e Bild ist zwischen 2:00h und 22:00h aufgenommen

Abbildung 16: isOnSunTrajectory()-Test fiir eine fiktive Reflexion im Winter um
11:00 Uhr

Abbildung[16]zeigt die Funktionsweise der resultierenden isOnSunTrajectory ()-Methode
fiir eine fiktive Reflexion im Winter/Herbst bei 11:00 Uhr. Es ist zu erkennen, dass

der Ellipsenbogen nur einen fiir diese Uhrzeit charakteristischen Ausschnitt anzeigt.

42

Dariiber hinaus liegt der Bogen aufgrund der Deklination in der siidlichen Hemisphére
und zeigt so nur Ausschnitte von 180° bis 360°.

Fiir Reflexionen morgens und abends kann ein dhnliches Verfahren angewandt werden,
jedoch wird hier als Referenz die Erdkontur angenommen. Dazu wird zunéchst mit ei-
nem PointPolygonTest() gepriift, ob der Punkt innerhalb der Erdkontur liegt und
wenn ja, wie grofl seine Distanz zu dieser ist. Ist sie mehr als die Dicke d vom Schei-
benrand entfernt, so kann es sich um keine Reflexion handeln. Ebenso wird wieder ein
Korridor festgelegt, in dem sich der Winkel a befinden muss, um als Sonnenreflexion

eingestuft zu werden.

Obere
Grenze

Abbildung 17: isSunReflection()-Test fiir einen Punkt P am Rand der Erdscheibe
um 1:15 Uhr

Abbildung (17| zeigt die Parameter und die aus ihnen aufgespannte Fliache am Rand der
Erdscheibe fiir einen Test einer Reflexion um 1:15h im Sommer. Es ist anzumerken,
dass auch hier die Deklination auf die Lage von oberer und unterer Grenze addiert wird

und sich somit eine Abhéngigkeit von den Parametern
e Datum (Day0fYear und damit Deklination ¢)
e Uhrzeit (Stunden und Minuten, keine Sekunden)
e sowie (r,y)- bzw. (dp(y), a)-Position der Reflexion

ergibt.
Damit der Algorithmus nur Regelméfigkeiten am Morgen und Abend filtert ist festge-
legt, dass er von 19:00h bis 5:00h morgens aktiv ist. Eine Unterscheidung von Sommer-

und Winterzeit ist nicht notwendig, da die UTC als Standard-Zeitskala angenommen

43

wird. Den Rest des Tages {ibernimmt die isOnSunTrajectory()-Methode.

Damit kénnen helle Flecken, die durch eine Sonnenreflexion entstanden sind, gefiltert
werden. Fiir den Dunklen-Fleck-Algorithmus gelten allerdings andere Voraussetzungen.
Da dieser nur im Infrarot- bzw. WV-Bereich arbeitet, ergeben sich héufig iiber Land-
massen (speziell Wiisten) dunkle Flecken. Ursache dafiir ist der geringe Wassergehalt
iiber trockenen Flidchen und somit ein geringes Reflexions-Potential im WV-Bereich.
Hier liegt erneut eine Regelméafigkeit vor, die es von Unregelméfligkeiten zu unter-
scheiden gilt. Die Losung stellt eine Maske dar, die nur Landflichen enthélt und je
nach aktueller Uhrzeit und Tag im Jahr (siehe oben) einen Teil davon zur Priifung zur
Verfiigung stellt. Ebenso wie bei den Methoden zuvor gibt es dazu variable Parame-
ter, die nachtréaglich noch anpassbar sind. Durch deren Variation kann die Gréfle des
Bereichs beliebig verdndert werden. Moglich ist dies durch die XML-Datei, die die ent-
sprechenden Parameter enthélt (Siehe Kapitel [9.3)).

Jedoch fiithrt die Anwendung der Land-Maske dazu, dass ein sehr grofler Bereich der Ka-
nal 5-8 Bilder maskiert wird, der aber nicht die in Kapitel beschriebenen dunklen
Bereiche besitzt. Somit wird fiir diese vier Kanile die isLandmass()-Filtermethode
weggelassen, was einen hoheren Bereich fiir Unregelméfigkeiten und somit eine bessere

Trefferwahrscheinlichkeit bedeutet.

9.3 Aufbau der GUI

@ Meteosat-10 Phenomena Detector @

Run Config | Parameters | Overview I Debug Console I Saved Files Statistics I About |

File Configuration

C:MSG-1/Images/HRIT/2015/07/02/201507020430-msg-ch 10.jpg

C:/PhenomenaDetector [DetectedImages/
Open

Status
[l |+ File Detector Watchdog Intervallin Seconds &

Rrunning
With .Log-Files @
. 4 : Start
[¥] with Emails o

Running Opening: C:/MSG-1/Tmages/HRIT/2015/07/02/201507020430-msg-ch11.jpg

Abbildung 18: Konfigurations-Tab der GUI

Um dem Benutzer des Programms einen moglichst intuitiven Umgang mit der Suche

44

nach UnregelméBigkeiten zu ermoglichen wird im Folgenden auf den Aufbau des Gra-
phical User Interface (GUI) eingegangen. Dazu wird, wie schon erwéhnt, die Bibliothek
QT 5.2.0 verwendet. Sie bietet fiir C++ einen groflen Umfang an Bausteinen fiir Be-
nutzeroberflichen, darunter auch das Anzeigen von Bildern im OpenCV-Format Mat,
wodurch es fiir diesen Einsatzfall geeignet ist. Aus Lizenzgriinden muss das Programm
dariiber hinaus dynamisch kompiliert werden und innerhalb des Programms eine Refe-
renz auf die QT Website vorhanden sein.

Das User Interface ist dabei die Schnittstelle zwischen Eingaben des Benutzers und den
Worker Threads, wie aus Abbildung [L1] zu entnehmen ist. So soll ein geordneter Ab-
lauf beim Arbeiten mit dem Programm gewéhrleistet sein. Das Einstellen von Parame-
tern zur Laufzeit lauft grundsétzlich so ab, dass der GUI-Thread die Eingabe entgegen
nimmt und anschliefend an den eigentlichen Empfanger weitergibt. Ebenso stellt der
GUI-Thread den Main-Thread dar, der alle Worker Threads beinhaltet. Dadurch erben
aber die Worker nicht vom Main-Thread, sondern der Main-Thread hat volle Kontrol-
le {iber untergeordnete Instanzen. So wird es iiberhaupt moglich, dass beispielsweise
Bilder dem Benutzer angezeigt werden konnen, die eigentlich aus einem Sub-Thread
kommen.

Das Programm wird in nur einem Fenster konzipiert, in dem alle Einstellungen und
Daten sichtbar sind. Dabei ist die Oberfliche in sog. " Tab”-Seiten unterteilt wie man
sie aus Browsern kennt. Im ersten Tab sollen dabei grundlegende Konfigurationspara-
meter eingestellt werden (Abbildung [18), damit das Programm gestartet werden kann.
Dazu sind der Pfad zu einem Bildverzeichnis beliebigen Datums von Meteosat-10 sowie
das Zielverzeichnis fiir gespeicherte Bilder und log-Files, in dem auch die Masken und
eine Parameter-Datei auffindbar sind, notwendig. Ebenso kann hier optional das Erstel-
len von log-Files bzw. der Mailversand (de-)aktiviert werden. Zuletzt befindet sich auf
dieser Seite noch der Startbutton, der erst aktiviert ist, wenn die beiden Pfadeingaben
korrekt sind und sdmtliche Konfigurationsdateien und Ordner gefunden wurden.
Dariiber hinaus beinhaltet das User Interface zwei Konsolen. Eine, um Debug-Nachrichten
zu lesen und eine, um Namen, Pfad und Datum einer gespeicherten Datei anzuzeigen.
Nachrichten innerhalb der Konsolen fangen stets mit dem Zeitstempel an, an dem sie
verOffentlicht wurden, um Ereignisse besser zuordnen zu kénnen. In diesen beiden Tabs
finden sich dazu noch Counter fiir die gesamte Anzahl der verarbeiteten sowie gespei-
cherten Bilder und ein zunéchst roter Radio-Button, der bei einem Fund fiir eine Dauer

von 24 Stunden griin wird und so eine Unregelméfigkeit signalisieren soll, sich nach 24

45

Stunden aber wieder zuriicksetzt. Zuletzt ist auf den beiden Seiten noch ein unterge-
ordnetes User-Interface eingebaut, welches das aktuelle bzw. zuletzt gespeicherte Bild
in einem neuen Anzeigefenster darstellt (Showlmage-Thread, siehe Kapitel .
Ebenso findet sich eine Seite mit Informationen iiber den aktuellen Zustand des Pro-
gramms. Dazu gehort etwa die Laufzeit seit Programmstart und die Windows-spezifische
Prozess ID. Dariiber hinaus existiert eine zweite Informationsseite, die etwas weniger
Parameter enthélt, dafiir aber auch das aktuell verarbeitete Bild anzeigt. Diese Seite
soll im reguldaren Betrieb als Hauptanzeigeseite verwendet werden, da sie alle relevanten
Daten auf einer Seite vereint.

Ergianzt wird das User Interface noch von einem Tab, in dem zentrale Parameter der
Algorithmen zur Laufzeit gedindert werden konnen. Dazu existiert eine XML-Datei, die
diese Parameter speichert und so die Daten auch iiber einen Neustart des Programms
hinaus speichern und wieder 6ffnen kann. Damit soll gewahrleistet sein, dass stets ei-
ne Optimierung des Programms stattfindet. Ebenso kénnen durch einen Abgleich mit
einem XML-Schema, welches nach der Richtlinie des WBCF_gI angefertigt wurde, auch
andere XML-Dateien mit gleicher Struktur eingelesen werden. So kénnen unterschied-
liche Programmkonfigurationen geladen und gespeichert werden, wodurch eine hohere

Flexibilitat gegeniiber Anpassungen ermoglicht wird.

9.4 Aufbau der Worker-Threads

Da das Programm mit dem Offnen, Speichern und dem Verarbeiten von Bildern sowie
der Anzeige aktueller Daten einen recht grofien Umfang besitzt, ist es sinnvoll einzelne
Aufgabengebiete zu unterteilen. Damit diese Aufgaben schnell erledigt werden kénnen
wird das in Kapitel [8.4]angekiindigte GUI-Worker-Thread Prinzip angewandt. Zunéchst
werden der ImageProcessor-Thread und der FilenameManager-Thread implementiert.
Ersterer ist dient dazu das Bild zu 6ffnen, transformiert es in einen fiir die Algorith-
men interpretierbaren Zustand und ruft anschliefend sdmtliche Algorithmen auf. Bei
der Transformation (siehe Kapitel @ ist zu erwédhnen, dass dabei samtliche Bilder in
ein Bild der Grofle 3712 x 3712 iibertragen werden, welches der Standardgréfe der
Bilder von Kanal 1-11 entspricht. Der FilenameManager iiberpriift in einem einstellba-
ren Intervall, ob ein neues Bilderset eingetroffen ist und 6ffnet die Bilder sukzessiv. Da
es vorkommen kann, dass die Bilder eines Zeitpunkts etwa aufgrund von Wartungsar-

beiten nicht iibertragen werden, besitzt der Thread eine Timeout-Funktion, die nach

18 Siehe http://www.w3.org/XML/Schema, aufgerufen am 28.07.2015

46

http://www.w3.org/XML/Schema

15-Minuten automatisch die Uhrzeit, zu der nach Bildern gesucht wird, inkrementiert.
So wird sichergestellt, dass das Programm nicht zu lange auf Bilder einer Uhrzeit wartet
und stattdessen dort weiterarbeitet, wo wieder Bilder empfangen wurden. Somit liegt

die Maximalgrenze des Intervalls fiir die nach einem Bild gesucht wird bei

L 15min | = sec
13Bilder® " Bild’

Ein Problem bei der Suche nach neuen Dateinamen stellt die in den Randbedingun-

(17)

gen spezifizierte Namenkonvention (Tabelle [, C030) dar. Da sich solche Konventionen
andern konnen, wird versucht Dateinamen-unabhéngig zu arbeiten. Dazu wird mit ei-
ner weiteren externen Bibliothek BoostIT_gL die einen integrierten Filesystem-Manager
mitbringt, sowie mittels der QFilesystemWatcher-Klasse von QT getestet, wie sich das
Uberwachen von Dateisystemen verhilt. Beide Methoden funktionieren fehlerfrei bei
wenigen Anderungen iiber eine Zeitspanne. Dieses Verhalten dndert sich jedoch, wenn
viele Anderungen iiber einen kurzen Zeitraum stattfinden. Dies ist der Fall, wenn die
Bilder eines neuen Sets fertig sind und bedeutet, dass innerhalb von einer Sekunde 13
Dateien mit Groflen zwischen einigen hundert KB und mehreren MB ins Verzeichnis
geschrieben werden. Beide Dateisysteme erkennen zwar, dass Dateien hinzugefiigt wur-
den, aber nicht, wie viele und vor allem nicht welche Dateien@. Das fiihrt zwangsweise
dazu, dass anhand der festgelegten Namensrichtlinie gepriift werden muss, welche Da-
teien hinzugefiigt wurden.

Somit verlieren die Dateisysteme ihre Wirkung, da fiir ein Priifen der Dateien mit dem-
selben Namensschema kein Dateimanager mehr benétigt wird. Im weiteren Verlauf der
Arbeit wird deshalb darauf verzichtet und eine unabhingige Version geschaffen, die le-
diglich auf Dateinamen beruht.

Fiir zwei weitere Nebenoperationen wurden ebenfalls Threads geschaffen: Mailversand
und Bildanzeige. Ersterer organisiert das Versenden der Mail mit dem von Jakub Pi-
wowarczyk und David Johns entwickelten CSMTP-Mail Client mit SSL/TLS (siehe
[Piwowarczyk und Johns, 2012]). Der zweite Thread wird dann instanziert, wenn der
Benutzer ein Bild im Programm anzeigen lassen méchte. Darauthin wird die angegebene
Datei geoffnet und in einem separaten Fenster angezeigt. Beim Schlielen des Fensters

wird die aktuelle Instanz des Threads zerstort und der belegte Arbeitsspeicher freige-

Giehe http://www.boost .org/, aufgerufen am 25.07.2015
2Giehe hierzu http://doc.qt.io/qt-4.8/qfilesystemwatcher.html, aufgerufen am
25.07.2015

47

http://www.boost.org/
http://doc.qt.io/qt-4.8/qfilesystemwatcher.html

—
FilenameManager Image Processor
—_— =Re 0 (1] S

get current Filename i S

‘)K/ >ﬂn Image Processed emit Image Processed >

increase Filename : ‘:
Process Image
[On Program closed P&

% emit Filename \ k Open Image
4 il oas il

) Hlnl

Abbildung 19: Aktivitdtsdiagramm fiir FilenameManager und ImageProcessor

geben. Dies optimiert die Speichernutzung.

0.5 Routineablauf beim Eintreffen eines neuen Bildes

Dadurch, dass das Programm dauerhaft auf der Bodenstation problemlos betrieben wer-
den soll, kommt dem Routineablauf beim Eintreffen eines neuen Bildes eine wichtige

Rolle zu, welcher im folgenden anhand von Aktivitdtsdiagrammen erldutert werden soll.

Zunéchst muss das Bild gedffnet werden, was wiederum erfordert, dass dessen Name
bekannt ist. Dazu arbeitet das Programm bei der Suche nach neuen Dateien mit ei-
ner internen Datenstruktur, die Datum, Uhrzeit und Kanal enthélt und so abhingig
vom Namen des Vorgéngerbildes jeweils eine der Groflen inkrementiert. Darauthin wird
der Dateiname aus den drei Parametern zusammengesetzt und an den ImageProcessor-
Thread iibergeben. Dieser versucht mit dem iibergebenen Namen diese Datei zu 6ffnen.
Schlagt die Operation fehl, gibt der FilenameManager zunéchst keine weiteren Da-
teinamen aus, sodass auf das aktuelle Bild gewartet wird. Wie oben erwdhnt miissen
aber zeitweise ganze Bildersets iibersprungen werden, da diese nicht empfangen werden
konnten. Dazu existiert ein Timeout, sodass entweder nach 15-Minuten oder nach dem
erfolgreichen Verarbeiten der Datei wieder ein neuer Dateiname ausgegeben wird. Ab-

bildung [19] zeigt diesen Ablauf in einem Aktivitdtsdiagramm.

48

ImageProcessor routine

Image opened
.—> transform Image

detect Lines detecl Circles
filter Shapes

set Finished

Detections found % draw Detections to ?

filter Bright Spots

detect Bright Spots
filter Dark Spots

emit Mail Permission

target Image

f

Abbildung 20: Aktivitatsdiagramm fiir die Bildverarbeitung im ImageProcessor

Innerhalb des ImageProcessors werden die Operationen sequentiell abgearbeitet (Sie-
he Abbildung . In Abhéngigkeit davon, ob bei einem der Algorithmen eine Unre-
gelméafigkeit gefunden wurde, ist die Validitdt des Fundes zu iiberpriifen, indem die
Ergebnisse u.a. durch die Sonnenreflexion-Methoden gefiltert werden. Wird einer dieser
Tests bestanden, miissen die Daten fiir einen Mailversand gespeichert werden. Handelt
es sich zusétzlich um das letzte Bild in einem Set wird ein Signal mit den Informationen

iiber die Unregelméfigkeiten an den Mail Thread emittiert.

Das User Interface wird nach einem erfolgreichen Durchlauf aktualisiert. Dazu gehort
ein Update der Anzeigen in simtlichen Tabs sowie der Ubernahme von geinderten
Parametern, wie etwa die fiir die Algorithmen. Ebenso kénnen anschlieend wieder

Nutzereingaben getétigt werden, beispielsweise Start und Stop des Programms.

9.6 Implementierung auf bestehender Bodenstation

Da im Laufe der Entwicklung eine Testumgebung geschaffen wurde, die der Bodenstati-
on gleicht, kann eine schnelle Portierung auf diese moglich gemacht werden. Um die Soft-
ware einzurichten benotigt es zwei Komponenten. Diese bestehen aus dem Programm
selbst, inklusive zusétzlicher Bibliotheken und dem Konfigurations- bzw. Arbeitsver-
zeichnis. Wahrend des Betriebes muss gewéhrleistet sein, dass diese Daten noch dort
liegen, wo sie bei der Initialisierung gespeichert waren - sonst kommt es zu unkontrollier-

baren Fehlermeldungen und Abstiirzen. Dariiber hinaus ist der Ort des Zusatzverzeich-

49

nisses jedoch variabel, sodass das Programm auch auf Bilder von anderen Festplatten
oder sogar iiber das Netzwerk zugreifen bzw. speichern kann.

Ebenso ist zu erwidhnen, dass die Bodenstation neben diesem Programm auch noch
Andere betreibt, was zu einer hohen Ressourcennutzung im Normalbetrieb fithrt. Dass

das Programm in diesem Betrieb lauffahig ist, wird in der Evaluation gezeigt.

10 Evaluation

10.1 Uberblick

In der Evaluation wird zunéchst auf die Ressourcennutzung und Laufzeit einzelner
Funktionen eingegangen. Danach wird die Treffergenauigkeit der Algorithmen getes-
tet und erldutert, warum darunter auch Falschmeldungen zu finden sind und auf die
Hypothese eingegangen, ob Algorithmen mit gleichen Vorgehensweisen auch dieselben
Ergebnisse hervorbringen. Dabei wird auch auf die Minimalgrofie fiir Detektionen der
jeweiligen Algorithmen eingegangen. Zuletzt werden die tatséchlichen Funde im Laufe
der Entwicklungszeit ausgewertet und gepriift, ob die in der Implementierung gesetzte
Richtlinie, dass Unregelméfigkeiten immer gefunden werden sollen, auch wenn dies be-
deutet, dass dadurch auch mehr RegelmafBigkeiten nicht gefiltert werden, eingehalten

werden konnte.

10.2 Performancetests des Programms auf der Testumgebung und

der Bodenstation

Die Laufzeit der Bildprozessierung wurde mit Hilfe eines Timers gemessen, der Milli-
sekunden erfasst. Dabei wurde der Stand des Timers vor dem Aufrufen der Funktion
in einer Variable gespeichert und nach dem Ende der Funktion die Differenz zwischen
dem gespeicherten Timerstand und dem aktuellen Timerstand gebildet. Somit ergibt
sich eine valide Schitzung fiir die Laufzeit der jeweiligen Funktionen. Tabelle [0] zeigt
die minimale, maximale, die durchschnittliche Zeit sowie den Anteil am Durchschnitt
einer Funktion im ImageProcessor.

Es ist erkennbar, dass ein sehr grofler Teil der Laufzeit auf die Transformation des Bil-
des fallt, wahrend die Algorithmen samt Filterfunktionen dennoch den grofiten Anteil

an der Gesamtzeit haben. Fiir den Fall, dass ein Algorithmus nichts findet, ist die Zeit

20

zum Speichern eines Bildes entsprechend 0, sodass der Gesamtanteil aufgrund der Bil-
dung des arithmetischen Mittelwerts gering bleibt, aber in Einzelfillen zu signifikanter
Verzogerung fithren kann. Auch die Gesamtlaufzeit kann mit 2,13 Sekunden zu 4,70 Se-
kunden um mehr als das Doppelte variieren, was auf den erhohten Aufwand bei Bildern

von Kanal 12 zuriickzufiihren ist.

Funktion Min [ms] | Mittel Max [ms| | Anteil
[ms] [%0]
Offnen 157 158.2 167 5.2
Transformation | 611 1048.8 1241 34.3
Heller Fleck 100 114.0 250 3.7
Dunkler Fleck 120 135.1 317 4.4
Formenerkennung | 407 540.2 821 17.6
Linienerkennung | 482 671.4 1046 21.9
Kreiserkennung | 253 344.0 614 11.2
Speichern 0 50.1 241 1.6
Gesamt 2130 3061.8 4697 100.0

Tabelle 6: Laufzeit des ImageProcessors

Ebenso wurde die Ressourcennutzung fiir das gesamte Programm ermittelt. Eine Be-
trachtung der einzelnen Funktionen ist hier nicht moglich, da Windows die Speicher-
und CPU-Nutzung lediglich fiir das gesamte Programm angibt. Ermittelt wurden diese
mit dem Windows-internen Resource Monitor, der vor dem Start des Programms initia-
lisiert wurde. Abbildung [21] zeigt den Verlauf von CPU-Nutzung in % fiir den gesamten
Prozessor und die Belegung des physikalischen Speichers in MB. Als Testsystem wurden
ein AMD Phenom II X4 965 BE mit 4 x 3.0GHz sowie 10GB 1333MHz DDR3 RAM
auf Windows 8.1 Pro 64-bit verwendet.

Fiir den Zeitpunkt t=0 ist das Programm bereits getffnet, jedoch nicht initialisiert bzw.
gestartet. Nachdem dies geschehen ist, kann ein deutlicher Anstieg beider Kurven beob-
achtet werden, der daraus resultiert, dass das Programm in diesem Moment sdmtliche
Masken, den Konfigurationsfile sowie Threads 6ffnet bzw. initialisiert. Im Anschluss
pendelt sich der Verbrauch bei ca. 230MB Arbeitsspeicher und 20% CPU Nutzung ein
und erhoht sich fiir kurze Zeit, wenn ein neues Bild gedffnet wird, abhéngig davon
wie grofl das Bild ist. Beim direkten Vergleich beider Graphen ist deutlich zu erken-
nen, dass die Haufigkeit der Peaks bei 20s gegeniiber denen bei 10s beim Doppelten

liegt. Das bedeutet, dass das Programm in beiden Féllen die meiste Zeit im Idle-Modus

51

Intervall = 20s

60

(L]
-

50

o
E=)

40

30

I

bl
2 5

20

wirtueller RAM inMB
g
&

s

10

Gesamte CPU Nutmung In%

e[} 20 El] 40 0 =) ED 80 10 110

(=]
=l
[=]

=—RAM (MB)

CPU[%)

Intervall = 10s

wirtueller RAM in MB
™
a

Gesamte CPU Nutzung in %

=—RAM |{MB) =—==CPU{%]

Abbildung 21: CPU- und RAM-Auslastung bei einem Watchdog-Intervall von 10s
bzw. 20s

verbringt und diesen nur fiir neue Bilder verldsst. Eine Optimierung gerade fiir den
Idle-Modus wiirde dem Programm einen deutlichen Performanceschub bei gleichzeiti-
ger Ressourcenschonung geben. Jedoch ist der auf der Bodenstation verbaute Prozessor
leistungsfahiger gegeniiber dem in diesem Test verwendeten, sodass der verbrauchte

Anteil an der gesamten Rechenleistung fiir den Einsatzfall noch gesenkt wird.

10.3 Evaluation der Treffergenauigkeit der Algorithmen

Im Folgenden soll anhand der aufgezeichneten Bilddaten ermittelt werden, wie gut die
Algorithmen Unregelméfligkeiten finden. Dabei sind von den insgesamt 12.825 Dateien
aus insgesamt vier Monaten zwei der Bildersets mit UnregelméBigkeiten behaftet, die
von hellen bzw. dunklen Flecken resultieren. Um eine bessere Aussage iiber die Trefferge-
nauigkeit zu geben werden deshalb noch artifiziell angelegte Testszenarien durchlaufen
und gepriift, ob die Algorithmen diese erkennen. Solche Aufnahmen werden mit der
Bildverarbeitungssoftware GIMP bearbeitet.

Zunéchst wird der Helle-Fleck-Algorithmus néher betrachtet. Dieser konnte, wie auch

der Dunkle-Fleck-Algorithmus mit echten UnregelméBigkeiten getestet werden. Wie zu

52

Abbildung 22: Detektion zweier Flecken, Abbildung 23: Sonnenreflexion einer Wolke
wobei der zweite wieder verworfen wird als Falschmeldung
(blau = Bahn der Sonnenreflexion)

erwarten zeigt sich, dass der Fleck bei Annédherung an die Sonnenreflexionsbahn ent-
sprechend herausgefiltert wird. In Abbildung ist zu erkennen, wie zwei kiinstlich
hinzugefiigte Flecken auf den Bild erkannt bzw. wieder gefiltert werden, da einer der
beiden auf der aktuellen Reflexionsbahn dieses Tages bzw. dieser Uhrzeit liegt.

Insbesondere in den Morgen- und Abendstunden war das Ziel die auftretenden Son-
nenreflexionen gezielt auszulassen. Dies konnte teilweise erreicht werden. Jedoch kann
aufgrund fehlender Testaufnahmen eines Jahres nicht immer gewéhrleistet sein, dass
die Ellipse auch tatséchlich dort anliegt, wo der aktuelle Pfad der Sonnenreflexion ist.

So ergeben sich zeitweise Falschmeldungen, wie in Abbildung 23] dargestellt.

Die Hypothese, dass der Dunkle-Fleck-Algorithmus auf-
grund seiner Ahnlichkeit zum Hellen-Fleck-Algorithmus
auch dhnliche Ergebnisse liefert, bestétigt sich. Die Anwen-
dung der Land-Maske fithrt jedoch dazu, dass ein grofler
Bereich entsteht, in dem potenzielle UnregelmiBigkeiten
als Sonnenreflexion gefiltert werden. Eine Verkleinerung des
Bereichs durch Variation der isLandmass ()-Parameter ist
deshalb fiir die Zukunft erforderlich. Abbildung zeigt
eine kiinstliche Detektion in einem hellen und dunklen Be- 5114 dung 24: Detektion

reich, wobei diese sich weit am Rand befinden. Beide wer- von dunklen Flecken am
Rand eines Bildes von

den erkannt, was zeigt, dass der Algorithmus fiir die meisten
Kanal 5

Uhrzeiten auch Pixel am Rand erkennen kann, kontrastu-
nabhéngig ist und bis zu einem gewissen Grad auch unabhéngig von den umgebenden
Pixeln arbeitet. Dabei ist zu erwidhnen, dass die direkten Nachbarpixel einer Detek-

tion ebenfalls stets in die Threshold-Operation mit einbezogen werden und niemals

23

ausschliellich der zentrale Pixel betrachtet wird. Wéren die Punkte auflerdem zu ei-
ner anderen Uhrzeit vorgekommen, so kénnte die isSunReflection()-Funktion dazu
fithren, dass beide nicht als Unregelméfigkeit erkannt werden.

Der Formenalgorithmus besitzt, wie auch die Folgenden
keinerlei reale Aufnahmen zum Testen, weshalb dieser aus-
schlielich auf kiinstlich produzierten Bildern beruht und
auch fiir diese optimiert wurde. Damit der Algorithmus

Formen findet, aber gleichzeitig wenige Fehlmeldungen lie-

fert, ist der Schwellwert fiir den Canny-Operator wihrend

der Implementierung angehoben worden. Die Evaluierung Abbildung 25:
Erfolgreiche und

fehlgeschlagene Detektion
hétte liegen kénnen. Darauf wurde verzichtet, um mogliche gines Rechtecks

dieses Schrittes zeigt, der Schwellwert teilweise noch héher

Unregelméfigkeiten nicht zu iibersehen. Abbildung [25|zeigt

ein Beispiel fiir eine giinstige Detektion bei kontrastreichem Hintergrund, wéhrend
rechts davon ein Fehlschlag in einem kontrastschwachen Bereich dokumentiert wird.
In Ersterer deutlich erkennbar ist die Farben- und GroBlenunabhéngigkeit des Algorith-

mus, was ihn ebenso fiir andere Einsatzgebiete potenziell interessant macht.

Der Linienalgorithmus kann nach seiner Optimierung zu
einem probabilistischen Hough-Algorithmus zwischen Li-
nien innerhalb und aufBerhalb der Erdscheibe unterschei-
den. Dies ist wichtig, da damit ein grofler Teil der
falschlicherweise gefundenen Linien wegféllt. Er ist in der
Lage Linien innerhalb der Erdscheibe zu erkennen, wie
exemplarisch in Abbildung [26] zu erkennen ist. Dabei ist
er auch kontrastabhéngig, jedoch aufgrund seines signi-

fikant geringeren Canny-Schwellwertes (von 200:600) ge-

geniiber dem Formenalgorithmus (1000:2000) deutlich we-
niger anfillig auf Kontrastdnderungen. Dabei kann es dazu Abbildung 26: Detektion

kommen, dass der Algorithmus Geraden an Stellen erkennt, zweier Geraden an einer
an denen aber keine vorliegen. dunklen Linie

Die Ursache dieses Problems stellt die grundlegende Herangehensweise an die Lini-
ensuche dar. Der Hough-Algorithmus sucht innerhalb eines Bildes Linien, auf denen

moglichst viele Konturpunkte liegen, egal woher diese Kontur stammt. Fiir den Ein-

54

satzfall ist diese Herangehensweise zwar auch zielfithrend, jedoch wire eine Suche nach
geraden Konturen (wie sie entlang einer Linie vorkommen) vorteilhafter gewesen. Diese
Problematik duflert sich vor allem dann, wenn Sonnenreflexionen innerhalb des Bildes
existieren, die hohe Kontrastidnderungen auf einem kleinen Bereich und damit viele
harte Kanten hervorrufen. Dann registriert der Algorithmus diese und findet mehrere
Linien entlang dieser Konturen.

Um die H&ufigkeit solcher Falschmeldungen gering zu halten, sind die Schwellwerte
angepasst worden, was wiederum dazu fiihrt, dass manche Geraden gar nicht erkannt
werden. Dadurch, dass die Parameter des Programms aber anpassbar sind kénnen die
zwei zentralen Schwellwerte dennoch so eingestellt werden, dass es weniger Falschmel-
dungen gibt. Der Erste ist dabei deutlich kleiner, als etwa der fiir die Formenerkennung
(sieche Oben), wodurch grundsétzlich, wie in Abbildung [§| erkennbar, mehr Konturen
gefunden werden. Um dabei die Anzahl der gefundenen Linien gering zu halten wird
der zweite Schwellwer@ erhoht. So ergibt sich, dass eine Linie erst dann gefunden wird,
wenn fast alle Punkte auf dieser auch vorhanden sind - wie es bei einer geraden Kontur
immer der Fall ist.

Der Kreis-Algorithmus besitzt aufgrund seiner strukturellen Ahnlichkeit zur Liniener-
kennung dasselbe Problem, jedoch nicht ganz so stark ausgeprégt, da selbst Binérbilder
mit vielen Kanten nur selten so viele Punkte auf einem Kreisbogen haben, wie der
Schwellwert des Algorithmus (Standardeinstellung des Programms sind 50 Punkte) es
vorgibt. Ein Vorteil dieses Algorithmus ist dabei auch, dass er Kreise finden kann, die
nicht komplett sichtbar sind, so lange zumindest ein Teil der Kontur erkannt wird. Dies
ist aber nur bei einer gewissen Mindestgrofle gegeben, worauf im folgenden Kapitel

eingegangen wird.

10.4 Minimale GroBBe der Formen und Flecken fiir eine Detektion

Um den minimalen Durchmesser d fiir die einzelnen Formen zu ermitteln wurden in ein
Testbild kleiner werdende Formen mit gleicher Orientierung und Helligkeit vor einen
kontrastreichen bzw. -armen Hintergrund gesetzt und getestet, bis zu welchem Durch-
messer d bzw. Radius r die Form als solche erkannt wird. Fiir die hohe Kontrastdifferenz
der Hellwerte (bzw. Dunkelstufen) zwischen Form und Hintergrund wurden dabei 100,
fiir die niedrige 10 angenommen.

Diese Messung ist notwendig, da beispielsweise die Winkelberechnung des Mehreck-

2IFiir die Anzahl der Punkte, die auf einer Linie sein miissen, um als solche erkannt zu werden

95

Algorithmus stérker verféalscht wird, je kleiner die Form wird, da Pixel nur in Winkeln
als Vielfaches von 45° zueinander liegen kénnen. Auch bei den Fleckenalgorithmen
kann es vorkommen, dass bei kleiner werdendem hellen bzw. dunklen Bereich dieser

nicht mehr erkannt wird, weshalb hierfiir ebenfalls der Minimalradius evaluiert wird.

Detektierte Form | Hoher Niedriger
Kontrast [px] | Kontrast [px]
Kreise r =20 r =052

Fiinfecke d= 77 -
Sechsecke d =280 -
Vierecke d =25 -

Heller Fleck r=4 r=4

Dunkler Fleck r=25 r=29

Tabelle 7: Minimale Grofle von Formen bzw. Flecken, um fiir die Algorithmen
detektiert zu werden

Der Kreisalgorithmus liefert, wie bereits in Kapitel angegeben, fiir Radien kleiner
als 5 Pixel keine verwertbaren Ergebnisse mehr, weshalb dieser Bereich ausgegrenzt
wurde. Auch dariiber lasst sich kein Kreis finden, erst bei einem Radius von 20 Pixeln
werden Kreise erkannt. Fiir Teile eines Kreisbogens gilt, dass mindestens 55 Kontur-
punkte auf diesem liegen miissen, um als Kreis detektiert werden zu kénnen, wobei der
Wert nachtriaglich anpassbar ist. Bei geringem Kontrastverhéltnis liefert der Algorith-
mus erst bei mehr als doppelt so grofien Kreisen ein Ergebnis.

Der Formenalgorithmus fiir Fiinf- und Sechsecke ist derjenige, der am meisten von der
zunehmenden Verpixelung der Formen leidet, da diese auf eine korrekte Winkelmessung
aufbauen. Folgend werden die Formen auch nur bis zu einer Minimalgréfie bis zu 80 Pi-
xeln erkannt. Bei geringem Kontrast kann der Algorithmus aufgrund fehlender Kanten
keine Ergebnisse liefern.

Der Formenalgorithmus fiir Vierecke liefert dagegen bei hohem Kontrast ein besse-
res Ergebnis, da er als Einziger von der Verfdlschung der Winkelmessung weitestge-
hend ausgenommen ist (Seine Innenwinkel betragen im Optimalfall 90°). So werden
die rechtwinkligen Innenwinkel immer erkannt und die minimale Gréfie des Bereichs
lediglich durch die implementierte Flachenbegrenzung limitiert. Allerdings verschlech-
tert sich auch er,wie die anderen Formenalgorithmen, wenn sich das Kontrastverhéltnis

verschlechtert.

26

Dies griindet darauf, dass mit dem Canny-Operator als Ausgangspunkt alle Algorith-
men auf einer korrekten Konturfindung aufbauen. Werden die Kanten unschérfer und
damit das Kontrastverhéltnis kleiner, werden diese nicht mehr gefunden. Da dies ein
grundlegendes Problem darstellt, ist der Formenalgorithmus fiir Vier-, Fiinf- und Sechs-
ecke fiir diesen Anwendungsfall ungeeignet.

Helle und dunkle Flecken sind bei der Gréfle des Bereichs lediglich dadurch limitiert,
dass je nach Helligkeitswert ein Bereich von minimal 4 x 4 Pixeln benotigt wird. Dieser
Bereich ist somit signifikant kleiner als der, der fiir die Formen benotigt wird. Ebenso
arbeitet der Algorithmus kontrastunabhéngig, weshalb er auch bei unscharfen Aufnah-
men noch UnregelméBigkeiten erkennen kann, vorausgesetzt die Helligkeitswerte bleiben

gleich.

10.5 Ubersicht iiber gefundene UnregelmiBigkeiten

Die insgesamt fiinf Bilder der zwei Unregelméfigkeiten sollen in diesem Kapitel vorge-
stellt werden, wobei auch auf deren Ursprung eingegangen wird.

Die erste Unregelméfigkeit stellt die vom 28.04.2015 dar und ist ein heller Fleck auf
den sichtbaren Kanélen 1, 2 sowie dem HRV-Kanal 12f. Seine Position ist {iber dem
ostlichen Teil des afrikanischen Kontinents in einem relativ wolkenarmen Gebiet, was
diese als Ursache unwahrscheinlich macht. Jedoch liegt der Punkt zentriert iiber einem
Flusslauf bzw einem kleineren See, was eine Reflexion an der Wasseroberfliche vermu-
ten ldsst. Durch seine ldngliche Form und schwarze Rénder kann es jedoch ebenso um
einen Bildfehler des optischen Systems handeln. Eine Uberpriifung durch den implemen-
tierten Hellen-Fleck-Algorithmus mit anschlieBender Filterung nach Sonnenreflexionen
zeigt jedoch deutlich, dass der Fleck zentral in dem Bereich fiir Sonnenreflexionen zu
dieser Uhrzeit liegt. Dennoch lassen sich andere Ursachen fiir den Ursprung dieses hel-
len Flecks nicht ausschliefen.

Dariiber hinaus wurden mehrfach dunkle Flecken ebenfalls auf dem &stlichen Teil von
Afrika entdeckt, die alle die gleiche Position und Gréle haben. Ein Vergleich mit einer
Karte macht sichtbar, dass die Kontur des Punktes genau der des ”Lake Tana” ent-
spricht. Es liegt also nahe, dass es sich bei diesem dunklen Fleck um den See handelt,
der bei passendem Sonnenstand nur eine geringe Menge an Licht in einem speziellen
Infrarotbereich reflektiert, wodurch in diesem Bereich des Bildes ein dunkler Fleck ent-

steht.

o7

Warum dies die beiden einzigen UnregelméBigkeiten sind, die wahrend Entwicklung,
Implementierung und Test gefunden werden konnten, soll im Folgenden diskutiert wer-

den.

11 Diskussion und Ausblick

11.1 Diskussion der Evaluation

Die Evaluation hat zunéchst gezeigt, dass das Programm unter den gegebenen Umsténden
in der Lage ist auf der Bodenstation fiir einen lingeren Zeitraum die empfangenen Bil-
der auszuwerten bzw. die Ergebnisse addquat zu présentieren. Dariiber hinaus konnte
festgestellt werden, dass es ebenso auf anderen Betriebssystemen und Architekturen
funktioniert. Dies zeigt, dass das Programm mit geringem Aufwand auch auf weite-
re Systeme portierbar ist. Jedoch konnte durch den grofien Umfang der Software nur
begrenzt sichergestellt werden, dass das Programm optimal resourcensparend arbeitet,
sodass in diesem Bereich eine Optimierung der internen Prozesse gerade fiir kleiner di-
mensionierte Systeme notwendig ist.

Im Weiteren konnte dariiber hinaus belegt werden, dass es moglich ist die Bilder von
Meteosat-10 mit eigens entwickelten Algorithmen auf Unregelméafligkeiten zu unter-
suchen. Die Evaluation der Treffergenauigkeit hat jedoch auch gezeigt, dass es einer-
seits eine schwierige Aufgabe darstellt UnregelméfBigkeiten mit konkreten Werten zu
charakterisieren, wodurch sich ein Zustand der stédndigen Anpassung einstellt. Eine
nachtréigliche Optimierung konnte durch eine Parameterdatei im XML Format reali-
siert werden, die samtliche zentralen Parameter enthélt.

Andererseits wurde die in Kapitel aufgestellte Hypothese belegt, dass die meisten
Himmelsphénomene nur sehr selten auf Bildern festgehalten werden kénnen, was die
geringen Anzahl an Detektionen aus Kapitel belegt. Das macht deutlich, dass eine
genaue Untersuchung der Herkunft und Ausprdgung einzelner Unregelméafligkeiten nur
dann moglich ist, wenn man iiber einen langen Zeitraum unter gleichen Bedingungen

einen moglichst groffen Bereich der Atmosphiére iiberwacht.

o8

11.2 Ausblick und Erweiterbarkeit

Die Software bietet aufgrund ihrer flexibel gestalteten Struktur gleich mehrere Moglichkeiten
diese relativ einfach zu dndern bzw. vergréffern. Es ist deshalb denkbar, dass der MSG-
PhenomenaDetector in zukiinftigen Projekten um Funktionen, wie etwa die Folgenden,
erweitert wird.

So bietet das Programm die optimale Grundlage fiir ein Archivierungssystem der Meteosat-
10 Wetteraufnahmen. Das hierzu notige 10-Interface ist aufgrund der Einbindung von
OpenCV und Qt bereits gegeben, es fehlt lediglich eine Funktion, die den Status der
Festplatte iiberwacht und nach Bedarf alte Bilder 16scht. Ebenso sind samtliche Al-
gorithmen auch auf beliebige andere Aufnahmen von Wettersatelliten anwendbar, wie
etwa Meteosat-7 oder 9. Auch ein Einsatz auf Bildern der NOA A-Satelliten in Polaror-
bits wéire denkbar, jedoch setzt dies eine Anpassung der Sonnenreflexionsalgorithmen
voraus, da diese dann nicht mehr von einer statischen Position des Sonnenstandes aus-
gehen konnen.

Dariiber hinaus kann das Programm mit wenigen Anderungen auf anderen Architektu-
ren bzw. Betriebssystemen lauffihig gemacht werden. Das so entstandene System, etwa
ein Kleinstrechner, wie der Raspberry-Pi, konnte dazu auch iiber ein Netzwerk auf die
Bilder zugreifen, sodass keine direkte Kopplung von Programm und Bodenstationsrech-
ner notwendig ist.

Das im Rahmen dieser Arbeit entwickelte Programm stellt einen ersten Schritt zur Fr-
forschung von Himmelsphénomenen mit Satellitendaten dar und bietet somit eine Basis
zur weiteren Analyse dieser Anomalien. Da es sich hierbei um eine Grundlagenarbeit
handelt, bietet die Software eine Plattform um die Implementierung neuer Algorithmen
moglich zu machen. Dabei ist es dem Entwickler freigestellt, ob er die bestehenden und
erfolgreich angewandten Algorithmen um neue Funktionen ergédnzt oder versucht neue
Ideen einzubauen, um so auf anderem Wege Unregelméfigkeiten sichtbar zu machen.
Zusammenfassend ldsst sich feststellen, dass mit der entwickelten Software “MSG-
PhenomenaDetector” die Auswertung von UnregelméfBigkeiten in den Bilddaten von

Meteosat Wettersatelliten erfolgreich durchfiihrbar ist.

29

Abbildungsverzeichnis

[l Die SkyCAM der Universitit Wiirzburg (Quelle: JMU Wiirzburg)| . . . 12
[2 Zusammengesetztes Bild vom 23.05. 20:00h aus Kanalen 1-11 mit skiz- |
| zierter Kontur der Landmassen sowie moglichen Ursachen fiir (Un-) Re- |
| gelmaBigkeiten (1-4)] oo 15
3 Midnight Effect auf einem Bild von Meteosat-6 von ‘97 (Quelle: Eumetsat |
| DOIB) . o o o o e e 16
4 Meteor auf einem Bild von Meteosat-10 (Quelle: Eumetsat 2015). . . . 17
(5 Verarbeitungsweg eines Bildes| 26
6 Durchlaufeines Bilded 27
[7 Konturenmethode mit Mittelpunkt| 28
8 Canny-Algorithmus aut Satellitenbild angewandt|. 29
9 Die Hough Transformation von vier Punkten vom (x,y)-Raum in den |
| (0,rg)-Raum. Die Schnittpunkte der Kurven stellen die Geraden dar, die |
| durch alle vier Punkte geht. Es gibt deshalb zwei Schnittpunkte, weil |
| eine volle 360° Drehung angenommen wurde (Und Geraden, die im 180° |
| Winkel liegen sind effektiv die Gleichen, [Dawson-Howe, 2014])| 31
(10 Skizziertes UML-Sequenzdiagramm zum Verhalten von GUI und Worker |
[Thread beim Verarbeiten von Bildernl 33
(1T Interner Nachrichtenverlaut der Threads tiir den Fall, dass der User das |
| aktuelle Bild anzeigen lasst[. 34
(12 Fund einer Linie am Rand |
[eines Bildes von Kanal 12 |
P 36
(13 Maske fiir Rinder von Kanal 12 in diesem Bereich (weiff = maskierter |
| Bereich)[. 36
(14 Sonnenreflexionen an drei unterschiedlichen Tagen: 23.05. (rot), 09.06. |
| (blau) und 10.06. (grin)| oo 38
(15 Annaherung des Pfades der Sonnenreflexion am Tag durch einen Ellip- |
| senbogen fur den 10.06.|. 39
[16 isOnSunTrajectory()-lest fiir eine fiktive Reflexion im Winter um 11:00 |
C R - 41
(17 isSunReflection()-Test fiir einen Punkt ~ am Rand der Erdscheibe |

um 116 Uhrl . oo 000 oo 42

60

(18 Konfigurations-Tab der GUI| 43
(19 Aktivitatsdiagramm fiir FilenameManager und ImageProcessor{. 47
20 Aktivitatsdiagramm fiir die Bildverarbeitung im ImageProcessorf 48
21 CPU- und RAM-Auslastung bei einem Watchdog-Intervall von 10s bzw. |
...................................... 51
[22 Detektion zweier Flecken, wobei der zweite wieder verworfen wird (blau |
| = Bahn der Sonnenreflexion)|. 52
[23 Sonnenreflexion einer Wolke als Falschmeldung |
I 52
24 Detektion von dunklen FFecken am Rand eines Bildes von Kanal 5 . 52
[25 Erfolgreiche und tehlgeschlagene Detektion eines Rechtecks 53
26 Detektion zweler Geraden an einer dunklen Liniel 53
Tabellenverzeichnis
il Eigenschaften der Kanile von Meteosat-10 (Quelle: Eumetsat)| 7
[2 GSD 1in der Hohe von Flugzeugen, der der ISS sowie GPS-5atelliten] . . 14
13 Approximiertes Albedo fiir verschiedene Oberflichen der Erde (Quelle: |
| [Conway, 1997])| 14
{4 Randbedingungen| L L oo 24
(5 Anforderungen| 25
(6 Lauizeit des ImageProcessors] 50
[7 Minimale Grofie von Formen bzw. Flecken, um fiir die Algorithmen de- |
[tektiert zu werden|.o 55

61

Literaturverzeichnis

[Bradski und Kaehler, 2008] Bradski, G. und Kaehler, A. (2008). Learning OpenCV -
Computer Vision with the OpenCV Library. O’Reilly Media.

[Canny, 1986] Canny, J. (1986). A computational approach to edge detection. [FEE

Trans. on Pattern Analysis and Machine Intelligence.

[Conway, 1997] Conway, E. D. (1997). An Introduction to Satellite Image Interpretati-
on. The Johns Hopkins University Press.

[Dawson-Howe, 2014] Dawson-Howe, K. (2014). A practical introduction to Computer
Vision with OpenC'V. John Wiley and Sons Ltd.

[Erhardt, 2008] Erhardt, A. (2008). Einfihrung in die digitale Bildverarbeitung. View-
eg+Teubner.

[Fleck, 2013] Fleck, B. (2013). Staring at the sun - soho factsheet. Technical report,
European Space Agency, ESA.

[Kayal, 2015] Kayal, H. (2015). Multi sensor plattform. Lehrstuhl fiir Informatik VIII
(Hrsg.): Presentation about ADS-B, EumetCast, NOAA and SkyCAM.

[Ley et al., 2009] Ley, W., Wittmann, K., und Hallmann, W. (2009). Handbook of Space
Technology. John Wiley and Sons Ltd., 1. auflage edition.

[Mandl, 2014] Mandl, P. (2014). Grundkurs Betriebssysteme, 4. Auflage. Springer
Vieweg.

[Miller, 2007] Miller, J. (2007). MSG Level 1.5 Image Data Format Description.
Eumetsat. Verfiighar auf: http://www.eumetsat.int/website/wcm/idc/idcplg?
IdcService=GET_FILE&dDocName=PDF_TEN_05105_MSG_IMG_DATA&RevisionSelec
tionMethod=LatestReleased&Rendition=Web, version 7, aufgerufen am 18.07.2015.

ash, ash, B. . Detecting simple shapes in an 1mage. Vertiigbar authttp:
Nash, 2012| Nash, B. (2012). D ‘ mple sh ' ' Verfiigh fhttp
//opencv-code.com/tutorials/detecting-simple-shapes-in-an-image/, auf-

gerufen am 19.07.2015.

62

http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_TEN_05105_MSG_IMG_DATA&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_TEN_05105_MSG_IMG_DATA&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_TEN_05105_MSG_IMG_DATA&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://opencv-code.com/tutorials/detecting-simple-shapes-in-an-image/
http://opencv-code.com/tutorials/detecting-simple-shapes-in-an-image/

[Piwowarczyk und Johns, 2012] Piwowarczyk, J. und Johns, D. (2012). SMTP Cli-
ent. Verfiigbar auf http://www.codeproject.com/Articles/98355/SMTP-Client-
with-SSL-TLS, aufgerufen am 25.07.2015.

[Roa und Felipe, 2012] Roa, C. und Felipe, A. (2012). Activity in the lunar surface:
Transient lunar phenomena. Tumbaga journal of the University of Tolima - Vol 1,

No 7.

63

http://www.codeproject.com/Articles/98355/SMTP-Client-with-SSL-TLS
http://www.codeproject.com/Articles/98355/SMTP-Client-with-SSL-TLS

Erklarung der Urheberschaft

Ich erkldare hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus
fremden Quellen direkt oder indirekt {ibernommenen Gedanken sind als solche kenntlich
gemacht. Die Arbeit wurde bisher in gleicher oder dhnlicher Form in keiner anderen

Priifungsbehorde vorgelegt und auch noch nicht verdffentlicht.

Ort, Datum Unterschrift

64

	Abkürzungsverzeichnis
	Kurzfassung
	Einleitung
	Wetterbeobachtung mit Satelliten
	Überblick über Meteosat-10 und Eumetcast-System
	Vorstellung des Lehrstuhls und dessen Bodenstation
	Hintergrund der Arbeit

	Aufgabenstellung
	Stand der Technik
	Lunar Transient Phenomena Observation
	ESA Solar and Heliospheric Observatory
	SkyCAM

	Betrachtung einzelner Elemente in den Aufnahmen von Wettersatelliten
	Regelmäßig auftretende Vorgänge
	Unregelmäßigkeiten mit Beispiel und Herkunft einzelner Ereignisse
	Bildfehler des optischen Systems
	NEOs und andere Körper
	Leuchterscheinungen in der Atmosphäre

	Nicht erklärbare Erscheinungen und SETI

	Grundlagen der Digitalen Bildverarbeitung
	Vorgehensweise beim Arbeiten mit Computer Vision
	Arbeiten mit OpenCV

	Randbedingungen und Anforderungen an das Programm
	Konzept
	Überblick
	Vorstellung und Entwicklung der Algorithmen zur Erkennung von Unregelmäßigkeiten
	Helle- und Dunkle-Flecken-Erkennung
	Formen-Erkennung

	Algorithmen zur Filterung von Sonnenreflexionen
	GUI und Worker Thread Prinzip

	Implementierung
	Anwendung der Algorithmen zur Erkennung von Unregelmäßigkeiten
	Formen-Algorithmen
	Heller- und Dunkler-Fleck-Algorithmus

	Erkennung von Regelmäßigkeiten
	Aufbau der GUI
	Aufbau der Worker-Threads
	Routineablauf beim Eintreffen eines neuen Bildes
	Implementierung auf bestehender Bodenstation

	Evaluation
	Überblick
	Performancetests des Programms auf der Testumgebung und der Bodenstation
	Evaluation der Treffergenauigkeit der Algorithmen
	Minimale Größe der Formen und Flecken für eine Detektion
	Übersicht über gefundene Unregelmäßigkeiten

	Diskussion und Ausblick
	Diskussion der Evaluation
	Ausblick und Erweiterbarkeit

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Literaturverzeichnis

