
Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik

Professur für Raumfahrttechnik
Lehrstuhl für Informatik VIII Prof. Dr.-Ing. Hakan Kayal

Bachelorarbeit

Entwicklung, Implementierung und Test von

Algorithmen zur Erkennung von

Unregelmäßigkeiten in den Bilddaten von

Meteosat Wettersatelliten

Vorgelegt von:

Peter Kettig

Matrikelnummer: 1876978

Prüfer: Prof. Dr.-Ing. Hakan Kayal

Betreuer: M.-Space Tech. Borja Garcia

Würzburg, den 10.08.2015

Danksagung

Hiermit möchte ich mich bei allen herzlich bedanken, die mich während der Anfertigung

meiner Bachelorarbeit unterstützt haben.

Mein Dank gilt Prof. Dr.-Ing. Hakan Kayal, der mir die Bearbeitung dieses interessan-

ten Themas ermöglicht hat. Ich danke Ihm auch für die freundliche und konstruktive

Unterstützung während der Bearbeitungszeit. Des Weiteren möchte ich M.-Space Tech.

Borja Garcia danken, der mich während der gesamten Bearbeitungszeit als Betreuer

mit seiner herausragenden Expertise bei der Recherche und Fragen unterstützt hat.

Vielen Dank für Zeit und Mühen, die Sie in meine Arbeit investiert haben.

Auch muss ich mich bei meinen Korrekturlesern Frederik und Sophia Meissner sowie

meinen Eltern bedanken, die viel Zeit in die Korrektur meiner Arbeit investiert haben.

Zahlreiche Kommata, Satzstellungen und Rechtschreibfehler flogen dank ihrer Hilfe hin-

aus.

Meinen Eltern und meiner Freundin Sophia möchte ich darüber hinaus für die im-

merwährende Unterstützung in jeglicher Form während meines gesamten Studium dan-

ken.

Inhaltsverzeichnis

Abkürzungsverzeichnis 4

1 Kurzfassung 5

2 Einleitung 6

2.1 Wetterbeobachtung mit Satelliten . 6

2.2 Überblick über Meteosat-10 und Eumetcast-System 6

2.3 Vorstellung des Lehrstuhls und dessen Bodenstation 8

2.4 Hintergrund der Arbeit . 9

3 Aufgabenstellung 9

4 Stand der Technik 10

4.1 Lunar Transient Phenomena Observation 10

4.2 ESA Solar and Heliospheric Observatory 11

4.3 SkyCAM . 11

5 Betrachtung einzelner Elemente in den Aufnahmen von Wettersatelliten 13

5.1 Regelmäßig auftretende Vorgänge . 14

5.2 Unregelmäßigkeiten mit Beispiel und Herkunft einzelner Ereignisse . . . 16

5.2.1 Bildfehler des optischen Systems 16

5.2.2 NEOs und andere Körper . 17

5.2.3 Leuchterscheinungen in der Atmosphäre 17

5.3 Nicht erklärbare Erscheinungen und SETI 18

6 Grundlagen der Digitalen Bildverarbeitung 18

6.1 Vorgehensweise beim Arbeiten mit Computer Vision 19

6.2 Arbeiten mit OpenCV . 22

7 Randbedingungen und Anforderungen an das Programm 24

8 Konzept 26

8.1 Überblick . 26

8.2 Vorstellung und Entwicklung der Algorithmen zur Erkennung von Unre-

gelmäßigkeiten . 26

8.2.1 Helle- und Dunkle-Flecken-Erkennung 27

8.2.2 Formen-Erkennung . 28

8.3 Algorithmen zur Filterung von Sonnenreflexionen 32

8.4 GUI und Worker Thread Prinzip . 32

9 Implementierung 34

9.1 Anwendung der Algorithmen zur Erkennung von Unregelmäßigkeiten . 35

9.1.1 Formen-Algorithmen . 35

3

9.1.2 Heller- und Dunkler-Fleck-Algorithmus 37

9.2 Erkennung von Regelmäßigkeiten . 37

9.3 Aufbau der GUI . 43

9.4 Aufbau der Worker-Threads . 45

9.5 Routineablauf beim Eintreffen eines neuen Bildes 47

9.6 Implementierung auf bestehender Bodenstation 48

10 Evaluation 49

10.1 Überblick . 49

10.2 Performancetests des Programms auf der Testumgebung und der Boden-

station . 49

10.3 Evaluation der Treffergenauigkeit der Algorithmen 51

10.4 Minimale Größe der Formen und Flecken für eine Detektion 54

10.5 Übersicht über gefundene Unregelmäßigkeiten 56

11 Diskussion und Ausblick 57

11.1 Diskussion der Evaluation . 57

11.2 Ausblick und Erweiterbarkeit . 58

Abbildungsverzeichnis 59

Tabellenverzeichnis 59

Literaturverzeichnis 62

4

Abkürzungsverzeichnis

CNES Centre national d’études spatiales

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites

FOV Field of View

GSD Ground Sampling Distance

GUI Graphical User Interface

IFOV Instantaneous Field of View

LTP Lunar Transient Phenomena

LUT Look Up Table

MSG Meteosat Second Generation

NASA National Aeronautics and Space Administration

NEO Near Earth Object

NOAA National Oceanic and Atmospheric Administration

OpenCV Open Source Computer Vision

SETI Search for extraterrestrial Intelligence

SOHO Solar and Heliospheric Observatory

SSA Space Situational Awareness

UTC Universal Time Coordinated

5

1 Kurzfassung

Ziel dieser Arbeit ist die Entwicklung einer Arbeit, die mit Hilfe der Open Source

Computer Vision und anderen C++ Bibliotheken die Bilddaten des EUMETSAT Wet-

tersatelliten Meteosat-10 selbstständig auf Unregelmäßigkeiten auswertet. Dazu wurden

fünf Algorithmen entwickelt, die den Kern der Arbeit darstellen: Zwei Algorithmen, die

auf helle bzw. dunkle Flecken reagieren und drei, die geometrische Formen innerhalb

des Bildes erkennen können.

Gefundene Ereignisse der Algorithmen werden lokal gespeichert und innerhalb einer

Benutzeroberfläche angezeigt, die darüber hinaus Einstellmöglichkeiten für die Algo-

rithmen bietet, sowie aktuelle Programmparameter anzeigt. Ebenso wurde ein Email

Client eingebunden, der bei einer Detektion automatisch eine Nachricht mit dem Bild

im Anhang versendet. Das System soll die bisherigen Programme in der Bodenstati-

on der Universität Würzburg ergänzen und wurde für diesen Anwendungsfall optimiert.

In der Evaluierung des Systems wird gezeigt, dass es dazu in der Lage ist die Bil-

der autonom auszuwerten und damit Unregelmäßigkeiten zu erkennen. Weiterhin wird

die Treffergenauigkeit im regulären Betrieb untersucht. Hier braucht es jedoch auf-

grund der wenigen Vorkommnisse während der Entwicklung weitere Untersuchungen

bzw. reale Ereignisse um das Programm diesbezüglich einer genaueren Evaluation zu

unterziehen.

6

2 Einleitung

2.1 Wetterbeobachtung mit Satelliten

Viele Bereiche in unserer heutigen Gesellschaft wurden im Laufe der Zeit durch techni-

sche Erfindungen revolutioniert. So ist die Wettervorhersage per Smartphone aber ein

nicht mehr wegzudenkender Bestandteil des täglichen Lebens. Um die Genauigkeit und

Reichweite solcher Vorhersagen zu erhöhen wurden in den letzten Jahren eine Vielzahl

von Satelliten in den Weltraum gesendet, die für die unterschiedlichen Regionen der

Welt Daten sammeln und zur Erde schicken.

Aber Wettervorhersagen sind nur ein kleiner Teil des vielfältigen Aufgabengebietes von

Umweltsatelliten. Auch die Veränderung des Erdklimas, der Erdgeographie, der Einfluss

des Menschen auf das Klima und die Folgen des globalen Klimawandels sind Anwen-

dungen, die heutzutage mit Satellitendaten erforscht werden.

Daraus werden beispielsweise weitere Charakteristiken von Vegetationen oder Landver-

messungen ([Conway, 1997], S. 1) abgeleitet. Vor allem der Blick ”von außen” auf die

Erde, in diesem Fall aus einer Bahnhöhe von 400 bis hin zu etwa 36000 km, hilft Wissen-

schaftlern Systeme besser zu verstehen. Außerdem können Satelliten je nach gewähltem

Orbit Bereiche der Erde über einen längeren Zeitraum verfolgen und so Veränderungen

besser sichtbar machen. Mit dem neu gewonnenen Wissen über unseren Heimatplane-

ten wurden viele Bereiche der Wissenschaft erst möglich und Zusammenhänge zwischen

Ozeanen, der Atmosphäre und Landmassen erstmalig sichtbar. Das hilft wiederum bei

Entscheidungen und Vorhersagen bezüglich dieser Systeme. Darüber hinaus zeichnet

sich seit einigen Jahren ein weiterer Trend ab:

Waren die Daten der Satelliten früher ausschließlich den Raumfahrtorganisationen und

einer begrenzten Anzahl Wissenschaftlern vorenthalten, ist es Dank immer schneller

werdender Verbreitung von Daten heute jedem möglich diese Fakten Einzusehen und

mit ihnen zu arbeiten. Auf diese Weise können auch Lehranstalten und private For-

schungseinrichtungen davon profitieren.

2.2 Überblick über Meteosat-10 und Eumetcast-System

Da der Betrieb von Satelliten aber auch heute noch teuer, zeitaufwändig und risikoreich

ist, gibt es bisher wenige Betreiber. So werden Europa und Afrika hauptsächlich von

Eumetsat bzw. deren Satelliten abgedeckt, einer zwischenstaatlichen Organisation, die

1986 gegründet wurde und zur Zeit 30 Mitgliedsstaaten hat, darunter auch Deutsch-

7

land1. Die Spitze ihrer Satellitenflotte besteht dabei aus vier geostationären Meteosat

Wettersatelliten, unterstützt von drei Metop Satelliten in Polaren Orbits sowie Jason-2,

einem gemeinsamen Projekt von Eumetsat, NOAA, CNES und der NASA zur Meeres-

beobachtung.

Meteosat-10 ist dabei zusammen mit dem erst kürzlich gestarteten MSG-42 der Mod-

ernste aus dieser Reihe. An Bord befinden sich mehrere Nutzlasten, wobei als Primär-

Nutzlast das SEVIRI-System mitgeführt wird. Dahinter verbirgt sich ein hochauflösender

Bildgeber, der in insgesamt 12 Spektralbereichen Aufnahmen der Erde macht.

Tabelle 1: Eigenschaften der Kanäle von
Meteosat-10 (Quelle: Eumetsat)

Meteosat-10 sendet kontinuierlich alle 15

Minuten 13 neue Bilder zur Erde, was im

Folgenden als ein ’Bilderset’ (bzw. kurz

’Set’) bezeichnet wird. Der Satellit arbei-

tet dabei in UTC (Universal Time Coordi-

nated, koordinierte Weltzeit), weshalb im

Folgenden ebenso diese Zeitskala einge-

halten wird. In diesem Set enthalten sind

elf Bilder mit einer Ground-Sampling-

Distance (GSD, Bodenauflösung eines Pi-

xels) von 3 km und 2 Bilder mit einer GSD

von 1 km (HRV-Kanal, High-Resolution-

Visible Spectrum). Die elf Bilder teilen

sich wiederum in zwei Bilder im sicht-

baren (VIS, visible) Bereich, sowie neun

Aufnahmen im Infrarot (IR) Bereich auf.

Die neun Kanäle im IR-Band sind so ein-

gestellt, dass zwei den Wasserdampf (WV,

water vaporous) in der Atmosphäre zwischen 5 und 10 km und jeweils einer den Ozon-

und Kohlenstoffdioxidgehalt messen. Tabelle 1 gibt einen Überblick über die Kanäle,

sowie ihren charakteristischen Wellenlängen. Durch seine Position in einem geostati-

onären Orbit bei 0◦E ist der Satellit in der Lage zu jeder Tages- und Nachtzeit Bilder

1Siehe: http://www.eumetsat.int/website/home/AboutUs/WhoWeAre/index.html, Auf-
gerufen am: 17.07.15

2Siehe http://www.eumetsat.int/website/home/News/DAT_2696903.html, Aufgerufen
am: 01.08.2015

8

http://www.eumetsat.int/website/home/AboutUs/WhoWeAre/index.html
http://www.eumetsat.int/website/home/News/DAT_2696903.html

vom europäischen und afrikanischen Kontinent, Teilen des Atlantiks, Südamerikas so-

wie der arabischen Halbinsel aufzunehmen. Ein Bild wird zeilenweise zusammengesetzt,

wobei das Nachführen von SEVIRI automatisch durch die Eigendrehung des Satelliten

geschieht, die ihn gleichzeitig spinstabilisiert. Die Aufnahmen von Meteosat-10 werden

zunächst an das zentrale Rechenzentrum von Eumetsat in Darmstadt geschickt, wo

die Bilder zur sog. Level-1.5-Data prozessiert werden (siehe [Müller, 2007]). Dazu wird

der Teil des Bildes weggeschnitten, der nicht die Erdscheibe darstellt, ebenso wie ein

Zentrieren der Erde auf dem Bild. So wird sichergestellt, dass dem Endnutzer jederzeit

der gleiche Bildausschnitt bereitgestellt wird. Anschließend werden die Bilder an das

EumetCast-System übertragen, welches die Aufnahmen über ein Netz von Kommuni-

kationssatelliten global verteilen kann.

2.3 Vorstellung des Lehrstuhls und dessen Bodenstation

Um die vom Eumetcast System vesandten Daten empfangen zu können benötigt jeder

Nutzer eine Bodenstation, wie sie der Lehrstuhl für Informatik VIII an der Universität

Würzburg besitzt. Diese besteht grundlegend aus einer Parabolantenne mit LNB (Low-

Noise-Block, Rauscharmer Signalumsetzer) sowie einem Empfangs-PC mit DVB-Karte,

auf dem die Daten entschlüsselt und angezeigt werden können.

Da für den Empfang der Daten keinerlei Restriktionen gesetzt sind (Jeder der eine

Sat-Antenne hat, kann mit passender Ausrichtung auch Eumetcast-Signale empfan-

gen), muss für eine kontrollierte Verteilung der Bilder eine Verschlüsselung eingesetzt

werden, die es an dieser Stelle wieder zu entschlüsseln gilt. Dafür setzt Eumetcast auf

eine Autorisierungs-Software (TelliCast), die an einen physikalischen Datenträger (dem

Eumetcast Uni Key) gekoppelt ist. Damit ist jedoch nur gewährleistet, dass die Bilder

entschlüsselt werden - tatsächlich zusammengesetzt werden sie von David Taylor’s MSG

Data Manager.

Dieser setzt die einzelnen Datenpakete, die kontinuierlich während der 15 Minuten für

ein Set kommen, zu einem Bild zusammen und löscht anschließend die Source-Dateien.

Ebenso kann dort eingestellt werden, welche der Kanäle bzw. Satelliten empfangen

werden sollen, denn er ist ebenso für Meteosat-7 und 9 einsetzbar.

9

2.4 Hintergrund der Arbeit

Zeitweise beinhalten die Aufnahmen dieser Satelliten aber auch Unregelmäßigkeiten.

Zu diesen sog. Himmelsphänomenen gehören beispielsweise die Polarlichter. Das erste

mal erwähnt wurden sie in Schriftstücken um etwa 2600 v. Chr. aus Regionen des heu-

tigen China, während ihr Ursprung erst Anfang des 20. Jahrhunderts eindeutig geklärt

werden konnte3. Doch bis heute gibt es Erscheinungen in der Atmosphäre, die die Wis-

senschaft noch nicht erklären kann. Nicht nur auf unserem Planeten wird nach ihnen

gesucht - auch auf fernen Himmelskörpern, wie dem Zwergplaneten Ceres, dessen helle

Flecken für Raumfahrtorganisation weiterhin rätselhaft sind4. Meistens wird die Suche

nach dem Ursprung aber dadurch erschwert, dass viele Phänomene nur in bestimmten

Situationen auftreten.

Um Klarheit über Unregelmäßigkeiten in der Erdatmosphäre zu schaffen ist es des-

halb sinnvoll, die empfangenen Bilddaten von Meteosat-10 heran zu ziehen und diese

autonom auf Unregelmäßigkeiten zu untersuchen. Dazu sollten unterschiedliche Algo-

rithmen vorliegen, die nach den spezifischen Eigenschaften von Anomalien, wie etwa

hellen Flecken oder bestimmten Formen, suchen und diese in den Bildern markieren, so

dass sie später durch den Menschen untersucht werden können.

3 Aufgabenstellung

Entwicklung, Implementierung und Test von Algorithmen zur Erkennung

von Unregelmäßigkeiten in den Bilddaten von Meteosat Wettersatelliten

Ziel dieser Arbeit ist es, ein Programm zu entwickeln, welches auf der Bodenstation

des Lehrstuhls für Informatik VIII betrieben werden kann und die empfangenen Bilder

von Meteosat-10 automatisch auf Unregelmäßigkeiten untersucht. Dazu sollen verschie-

dene Algorithmen entwickelt, implementiert und getestet werden, die die Aufnahmen

anhand festgelegter Eigenschaften untersuchen. Darüber hinaus soll bei einer Detektion

eine Meldung ausgegeben werden, die den Nutzer darüber informiert. Ebenso ist für das

Programm eine grafische Oberfläche (GUI) zu implementieren, die die Ergebnisse und

3Siehe: https://www.nasa.gov/mission_pages/themis/auroras/aurora_history.html,
Aufgerufen am: 17.07.15

4Siehe https://www.nasa.gov/jpl/dawn/ceres-bright-spots-come-back-into-view,
Aufgerufen am 01.08.2015

10

https://www.nasa.gov/mission_pages/themis/auroras/aurora_history.html
https://www.nasa.gov/jpl/dawn/ceres-bright-spots-come-back-into-view

den aktuellen Zustand adäquat präsentiert. Damit die Algorithmen korrekt ausgeführt

werden, sind diese möglichst effizient in das Programm einzubauen.

Die Arbeit an der Entwicklung ist ausführlich zu dokumentieren und evaluieren. Da-

zu gehört ebenso eine Betrachtung bereits existierender Systeme und Methoden. In

der Evaluation wird zudem verglichen, inwiefern die gestellten Anforderungen erreicht

wurden.

4 Stand der Technik

Da die Suche nach Himmelsphänomenen bereits seit längerem existiert, werden im Rah-

men dieser Arbeit unterschiedliche Projekte dargestellt, die sich ebenfalls damit befas-

sen und mit dem zu Entwickelnden verglichen. Dazu wird zuerst auf die Observation

von Lunar Transient Phenomena auf dem Mond eingegangen, anschließend werden das

SOHO-Projekt der ESA sowie die SkyCam der Universität Würzburg näher betrachtet.

Diese Projekte beschäftigen sich zwar alle mit den Entdeckung von Unregelmäßigkeiten

auf bzw. bei Himmelskörpern, jedoch ist die SkyCam das einzige Instrument, welches

ebenso wie die geplante Software für den Einsatz bei Aufnahmen der Erde konzipiert

wurde.

4.1 Lunar Transient Phenomena Observation

Lunar Transient Phenomena (LTP) sind Leuchterscheinungen auf der Oberfläche des

Mondes. Charakteristisch für ein solches Phänomen sind gelbe bis rot erscheinende

Punkte, die von einigen Sekunden bis hin zu mehreren Stunden teilweise sogar für das

bloße Auge sichtbar sind ([Roa und Felipe, 2012]).

Ihre Entstehung ist bis heute nicht eindeutig geklärt, deshalb wird die Detektion die-

ser Anomalien weiterhin vorangetrieben. Ein Beispiel für ein solches Projekt ist die im

Rahmen eines Praktikums am Lehrstuhl für Informatik VIII der Universität Würzburg

von Helge Mohn entwickelte ”Moonspy”-Software. Grundlage für die Beobachtung der

LTP ist eine hochauflösende Kamera, deren Field of View (FOV, Sichtfeld des Aufnah-

megeräts) so gewählt wurde, dass sie den gesamten Mond, egal ob im Apogäum oder

Perigäum, aufnehmen kann.5. Kombiniert mit einer Sternenkamera auf der Vorrichtung

wird das System exakt auf den Mond ausgerichtet. Es ergibt sich eine Anordnung, die

5Siehe http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayal0/studentisc

he_aktivitaeten/tlp_observation/, Aufgerufen am 02.08.2015

11

http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayal0/studentische_aktivitaeten/tlp_observation/
http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayal0/studentische_aktivitaeten/tlp_observation/

den Mond mit 50 Bildern pro Sekunde und einer GSD von 5 km aufnehmen kann.

Die entwickelte ”Moonspy”-Software erhält die Daten des Systems und prüft anhand

mehrerer Frames (Bilder), ob eine unregelmäßige Helligkeitsänderung vorliegt und nimmt

in diesem Fall automatisch das Videomaterial auf, um es so später analysieren zu

können.

4.2 ESA Solar and Heliospheric Observatory

Aber Unregelmäßigkeiten existieren nicht nur auf der Erde und ihrem Trabanten, viel

häufiger kommen sie auf der Sonne vor und beeinflussen in vielerlei Hinsicht unser All-

tagsleben, etwa wenn durch erhöhte Sonnenaktivität Kommunikationssysteme gestört

werden. Um solche und weitere unregelmäßig vorkommende Ereignisse auf und inner-

halb der Sonne sichtbar zu machen, wurde 1995 das Solar and Heliospheric Observatory

(SOHO) aus einer Kooperation von ESA und NASA gestartet. Es umkreist die Sonne

im erdzugewandten Teil in 1.5 Millionen Kilometer Entfernung im Lagrange-Punkt L1.

An Bord befinden sich zwölf Instrumente, die kontinuierlich den Zustand der Sonne auf-

zuzeichnen und zu analysieren, darunter mehrere Spektrometer und ein Teleskop. Auf

Basis dieser Daten können unter anderem Vorhersagen für das Sonnenwetter gegeben

werden.

Neun dieser 12 Instrumente entstanden dabei aus einer Kollaboration von Europäischen

Wissenschaftlern. Mit ihnen konnte erstmals die Struktur von Sonnenflecken unter der

Oberfläche sichtbar gemacht werden [Fleck, 2013].

Die Liste an Erkenntnissen aus den Daten von SOHO soll aber noch nicht enden, denn

trotz seiner relativ langen Lebenszeit soll es noch bis 2016 operativ bleiben6.

4.3 SkyCAM

Dass die Beobachtung von Himmelsphänomenen nicht immer vom Weltraum aus ge-

schehen muss, zeigt die SkyCAM des Lehrstuhls für Informationstechnik für Luft- und

Raumfahrt der JMU-Würzburg. Sie ist eine autonome Observationsplattform, um sich

bewegende Objekte am Himmel zu detektieren. Dazu gehören sowohl Flugobjekte (z.B.

Vögel, Flugzeuge) bzw. Wolken, als auch unregelmäßige Ereignisse, wie etwa Meteori-

ten oder Leuchterscheinungen in der Atmosphäre.

6Siehe http://sci.esa.int/director-desk/51944-esa-science-missions-continue-

in-overtime, Aufgerufen am 02.08.2015

12

http://sci.esa.int/director-desk/51944-esa-science-missions-continue-in-overtime
http://sci.esa.int/director-desk/51944-esa-science-missions-continue-in-overtime

Basis für die Untersuchung ist eine einfache Webcam, die an einen Windows XP Com-

puter angeschlossen ist und Richtung Himmel zeigt. Sie hat eine Auflösung von 1280x720

Pixeln bei einer Bildwiederholrate von 30fps und ein FOV von 68.5◦ (Siehe [Kayal, 2015],

S. 19). Die SkyCAM ist Basis für mehrere Algorithmen, die anhand von mehreren cha-

rakteristiken bewegende Objekte erkennen und analysieren können. Wird eine Unre-

gelmäßigkeit entdeckt, so gibt die implementierte Software automatisch eine Meldung

aus.

Hintergrund dieser Arbeit ist das Space Situational Awareness (SSA) Programm der

ESA und anderer Raumfahrtorganisationen zur Überwachung und Verfolgung von Welt-

raumobjekten, hauptsächlich im Nahfeld der Erde. Dazu zählen drei Komponenten (vgl.

[Kayal, 2015], S.20):

• Weltraumschrott

• Weltraumwetter

• Near Earth Objects (NEOs)

Abbildung 1: Die
SkyCAM der Universität
Würzburg (Quelle: JMU
Würzburg)

Diese stellen für operative Satelliten und die Erde selbst ei-

ne konstante Bedrohung dar, weshalb jedes gefundene Ob-

jekt katalogisiert und dessen Risiken für andere Objekte

ermittelt werden. Ein großes Problem bei der Verfolgung

solcher Objekte ist, dass es mehrere Millionen gibt. Da-

von haben die meisten einen Durchmesser unter 10cm, die

aber nur sehr schwierig von der Erde aus zu entdecken sind.

Doch auch größere Objekte sind noch nicht vollständig ana-

lysiert und erfordern deshalb, dass der Himmel kontinuier-

lich nach ihnen abgesucht wird. Einen Beitrag dazu leistet

die SkyCAM, die in der Lage ist Tag und Nacht nach sol-

chen Objekten zu suchen, die etwa beim Verglühen ähnlich

in Erscheinung treten wie Meteoriten.

Diese Plattform stellt für die in dieser Arbeit entwickelte Software eine gute Grund-

lage dar, an der sich das in dieser Arbeit Entwickelte Konzept orientiert - Ziel beider

ist es, mit eigens entwickelten und implementierten Algorithmen unbekannte Elemente

auf Bilddaten auszumachen. Jedoch wird diese Arbeit sich mit der entgegengesetzen

Perspektive beschäftigen - der aus dem Weltraum.

13

5 Betrachtung einzelner Elemente in den Aufnahmen

von Wettersatelliten

Um überhaupt Unregelmäßigkeiten zu erkennen, muss zunächst klar sein, welche Objek-

te auf Aufnahmen von Wettersatelliten vorzufinden sind. So können Regelmäßigkeiten

erkannt und später gezielt gefiltert werden7.

Es ist aufgrund der gegebenen GSD möglich, eine Grenze anzugeben, ab der Ge-

genstände nur noch teilweise oder gar nicht mehr dargestellt werden können. Dazu

gilt Gleichung 1 (nach [Ley et al., 2009]):

GSD = 2 ∗H0 ∗ tan

(
IFOV

2

)
(1)

Und für so für die GSD in Abhängigkeit von einer Höhe H:

GSD(H) = 2 ∗ (H0 −H) ∗ tan

(
IFOV

2

)
(2)

Für das Instantaneous Field of View (IFOV) - der Winkel, den ein Pixel vom gesamten

FOV einnimmt (vgl. [Ley et al., 2009]) gilt:

IFOV =
FOV

NPix
(3)

Wobei NPix die Breite/Höhe des Bildes in Pixeln darstellt. Da die Aufnahmen von

Meteosat-10 quadratisch sind, ist keine weitere Unterscheidung nötig. Wird nun Gl. 3

in 2 eingestzt, so ergibt sich für die GSD in Abhängigkeit von der Höhe:

GSD(H) = 2 ∗ (H0 −H) ∗ tan

(
FOV

2 ∗NPix

)
(4)

Zu beachten ist zudem, dass der Nullpunkt von H der senkrechten Schnittebene des

Nadir, dem Fußpunkt gegenüber dem Zenit, entspricht - Die GSD eines Punktes am

äußeren Rand der Erdscheibe am Äquator entspricht also nicht der eines Punktes genau

in der Mitte dieser, da ihr Höhenunterschied zueinander dem Erdradius8 entspricht.

Besser beobachtbar wird ein Objekt, je weiter es sich von der Erdoberfläche entfernt

befindet. So könnte es durchaus möglich sein etwa große Flugzeuge, die 20km über dem

Boden fliegen oder die ISS in 400km Höhe bzw. sogar andere Satelliten zu entdecken.

7Dabei sei jedoch angemerkt, dass der Umfang dieser Arbeit nicht ausreicht, um alles auf-
zuzählen, was sich darin finden lässt

8rE = 6.378 km (nach WGS-84)

14

Für alle Fälle wurde dabei von der GSD des zwölften Kanals, also 1 km auf Meereshöhe

am Äquator, ausgegangen.

Aufschluss über die Ergebnisse gibt Tabelle 2. Es ist zu erkennen, dass die GSD bei

geringer werdendem Abstand größer wird. Jedoch reicht sie bei Weitem nicht aus, um

kleine Gegenstände, wie Flugzeuge oder sogar die ISS mit einer strukturellen Länge von

109m (9) erkennbar zu machen. Auch Satelliten bieten nicht die geforderte Größe, um

überhaupt als ein Pixel sichtbar zu sein, sofern sie sich nicht direkt vor dem Satelliten

befinden.

Objekt Höhe [km] GSD(H) [km]

Flugzeug 20 1.00

ISS 400 0.99

GPS-Satellit 20200 0.43

Tabelle 2: GSD in der Höhe von Flugzeugen, der der ISS sowie GPS-Satelliten

5.1 Regelmäßig auftretende Vorgänge

Die wohl am häufigsten auffindbaren Elemente in den Aufnahmen von Meteosat-10 sind

Tabelle 3: Approximiertes Albedo für verschiedene
Oberflächen der Erde (Quelle: [Conway, 1997])

die drei Bestandteile aus

Ozeanen bzw. anderen

Gewässern, Landmassen

sowie Wolkengebilden. Im

Folgenden soll nicht auf

deren meteorologische In-

terpretation eingegangen

werden, sondern viel-

mehr auf Eigenschaf-

ten, die dazu führen

können, dass sie als

”regelmäßig” bzw. ”un-

regelmäßig” eingestuft wer-

den können. Dazu wird

mit Abbildung 2 exem-

plarisch ein Satelliten-

bild auf den Kanälen 1-11 gezeigt und verglichen, wie sich die drei Elemente auf den
9Siehe http://www.nasa.gov/mission_pages/station/main/onthestation/facts_and

_figures.html, Aufgerufen am 03.08.2015

15

http://www.nasa.gov/mission_pages/station/main/onthestation/facts_and_figures.html
http://www.nasa.gov/mission_pages/station/main/onthestation/facts_and_figures.html

unterschiedlichen Wellenlängen der Kanäle verhalten:

Abbildung 2: Zusammengesetztes Bild vom 23.05. 20:00h aus Kanälen 1-11 mit
skizzierter Kontur der Landmassen sowie möglichen Ursachen für (Un-)
Regelmäßigkeiten (1-4)

Punkt 1 zeigt auf eine Sonnenreflexion auf Wasser und Wolken, die vor allem im sicht-

baren Bereich erkennbar ist (Kanal 1-2). Ihre Position ist abhängig von Uhrzeit und

aktueller Deklination der Sonne. Da dies eine Regelmäßigkeit darstellt, sollten sie nicht

durch einen Algorithmus, der helle Flecken erkennen kann, fälschlicherweise als Unre-

gelmäßigkeit eingestuft werden. Dazu ist es sinnvoll ihre Ausmaße und Position exakt

zu berechnen. Jedoch ist eine Berechnung ihrer Größe und Helligkeit technisch nicht

möglich, da die verschiedenen Oberflächen, an denen das Licht reflektiert wird, unter-

schiedliche Eigenschaften haben. Einerseits ist das Albedo, also das Reflexionsvermögen

von z.B. Vegetationen, Wasser und Wolken unterschiedlich (Tabelle 3) und für den Be-

trachter nicht immer eindeutig erkennbar, um welchen Untergrund es sich bei einer

Reflexion handelt.

Andererseits ist die Brechung der Lichtstrahlen diffus. Meistens ist die Oberfläche von

Ozeanen oder Wolken rau. Dadurch ergibt sich ein Rückwerfen der Strahlen in verschie-

denste Richtungen, weshalb eine genaue Berechnung der zurückgeworfenen Strahlen, als

Vektoren interpretiert, nicht möglich ist. Es sollte deshalb bei der Implementierung ei-

16

nes Helle-Flecken-Algorithmus darauf geachtet werden, dass er zwar helle Flecken wie

eine Sonnenreflexion erkennt, jedoch diese anschließend auch wieder zu filtern weiß.

Punkt 2 in Abb. 2 zeigt auf eine Wolkenformation. Es ist deutlich erkennbar, dass sie in

mehreren Kanälen sichtbar ist, aber überall andere Helligkeitswerte besitzt. Hauptsächlich

sind Wolken eine Regelmäßigkeit, jedoch kann es vorkommen, dass Wolken ungewöhnliche

Formen annehmen - etwa, wenn sie die Form einer geometrischen Figur besitzen. Es

wäre deshalb sinnvoll, die Bilder auf bestimmte Formen zu untersuchen.

Punkt 3 liegt auf der Landfläche von Afrika. Aufgrund der GSD von 1 bzw. 3 km

müssen Objekte, die sich auf dem Boden befinden eine große Fläche haben, um als Un-

regelmäßigkeit erkannt zu werden. Deshalb ist ihre Möglichkeit Anomalien aufzuzeigen

ebenfalls relativ gering, aber nicht ausgeschlossen. Darüber hinaus emittieren Land-

flächen vor allem in den WV-Kanälen praktisch nichts, weshalb sie auf deren Bildern

als dunkle Fläche erscheinen (Ebenso Punkt 4). Ein Algorithmus, der dunkle Flecken

findet, sollte diese deshalb ähnlich wie die Sonnenreflexionen herausfiltern können.

5.2 Unregelmäßigkeiten mit Beispiel und Herkunft einzelner

Ereignisse

Nachdem erläutert wurde, welche regelmäßigen Vorgänge es in den Bildern von

Abbildung 3: Midnight
Effect auf einem Bild von
Meteosat-6 von ’97
(Quelle: Eumetsat 2015)

Meteosat-10 gibt, sollen nun einige Unregelmäßigkeiten und

deren Herkunft dargestellt werden. Diese stellen aber nur

eine Auswahl an Objekten dar, die im Bild vorkommen

können. Es existieren noch viele weitere Anomalien, die

aber nur sehr selten dokumentiert wurden und deshalb noch

weitgehend unerforscht sind. Auf solche Ereignisse wird im

letzten Teilkapitel dieses Abschnittes eingegangen.

5.2.1 Bildfehler des optischen Systems

Optische Bildfehler stellen im Bereich der Anomalien ein

noch relativ häufiges Vorkommnis dar. Unter ihnen ver-

steht man Fehler, die bei der Bildverarbeitung und -aufnahme stattgefunden haben

sowie im weitesten Sinne auch durch Übertragungsfehler hervorgerufene Änderungen

im Bild. Häufig handelt es sich aber um aus direkter oder indirekter Sonneneinstrah-

17

lung resultierende Strukturen. Das SEVIRI-Instrument ist zwar relativ gut innerhalb

von Meteosat-10 vor diesen Effekte geschützt und bedingt durch die Eigendrehung des

Satelliten entsteht ein automatischer Schutz vor sog. Streulicht. Es kann dennoch vor-

kommen, dass Sonnenstrahlen in das Instrument treffen und so ungewöhnliche Struk-

turen hervorrufen. Ein Beispiel für ein solches Ereignis zeigt eine Meteosat Aufnahme

von 1997, als durch den Midnight-Effekt mehrere dunkle und helle Flecken sowie bo-

genartige Strukturen entstanden sind10. Der Effekt entsteht, wenn die Sonne für den

Satelliten noch teilweise hinter der Erde sichtbar ist, was immer um Mitternacht der

Fall ist. In dieser Konstellation fällt Sonnenlicht direkt in das Radiometer und wird

durch die mechanische Struktur mehrfach reflektiert, bis es irgendwann auf den Sensor

trifft (Abbildung 3).

5.2.2 NEOs und andere Körper

Ein weiterer Grund für Anomalien können Near-Earth-Objects (NEOs) sein, die sich

Abbildung 4: Meteor auf
einem Bild von
Meteosat-10 (Quelle:
Eumetsat 2015)

in der näheren Erdumgebung befinden und beim Wieder-

eintritt verglühen, wodurch ein charakteristischer Schweif

entsteht. Es ist bereits bekannt, dass Meteoriten ein solches

Verhalten zeigen, jedoch gilt dies auch für Weltraumschrott.

Ein Beispiel für ein solches Ereignis zeigt den Eintritt des

Meteors von Tscheljabinsk am 15.Februar 2013 (Abbildung

4). Meteosat-10 konnte mit seinem 15-Minütigem Intervall

den Eintritt des Meteors festhalten, wobei ein Schweif deut-

lich erkennbar ist. Da dieser immer gerade entlang der Ein-

trittsbahn des Meteoriten verläuft, ist es ein Ziel für das zu

entwickelnde Programm, Bilder auf gerade Strukturen zu

prüfen.

5.2.3 Leuchterscheinungen in der Atmosphäre

Unter Leuchterscheinungen am Himmel fallen bereits be-

kannte Phänomene, wie Gewitterblitze, Regenbögen sowie die bereits erwähnten Po-

larlichter. Es gibt darüber hinaus weitere Beobachtungen, die nicht in dieses Schema

passen. Dazu gehören die sog. Sprites (dt.: Kobolde), als Blitze aus einer Gewitterwolke

10Siehe http://www.eumetsat.int/website/home/Data/ServiceStatus/AnomaliesonMe

teosatImages/index.html, Aufgerufen am 03.08.2015

18

http://www.eumetsat.int/website/home/Data/ServiceStatus/AnomaliesonMeteosatImages/index.html
http://www.eumetsat.int/website/home/Data/ServiceStatus/AnomaliesonMeteosatImages/index.html

in Richtung Weltraum. Sie können bis zu mehreren hundert Kilometern hoch reichen

und dabei unterschiedliche Farben annehmen. Sie wurden erst 1994 durch Zufall ent-

deckt11.

Es gibt darüber hinaus noch andere Ereignisse, die ebenfalls eine Leuchterscheinung in

der Atmosphäre darstellen. Allen ist aber gemeinsam, dass sie nur von sehr kurzer Dau-

er und deshalb schwer festzuhalten sind. Meteosat-10 besitzt für dieses Einsatzgebiet

eigentlich nicht die richtige Aufnahmestuktur12 - dennoch sollte dieses Szenario nicht

ausgeschlossen werden, da ein Fund einer solchen Anomalie durchaus wissenschaftlich

relevant wäre.

5.3 Nicht erklärbare Erscheinungen und SETI

Im weiteren Zusammenhang gibt es auch Phänomene, für die es weder Erklärungen

noch genug Bildmaterial gibt, um sie näher zu untersuchen. Dazu gehören Sichtungen

von UFO-ähnlichen Strukturen am Himmel. Um die eher subjektiven Schilderungen von

Ereignissen zu untersuchen, wurden in den vergangenen Jahrzehnten mehrere Organisa-

tionen gegründet, die sich mit dem Thema SETI (Search for extraterrestrial Intelligence)

beschäftigen.

Häufig ist ein als UFO betitelter Fund nur eine spezielle Wolkenformation, die in Kom-

bination mit Sonnenlicht eine seltsame Struktur annimmt, wie in einem erst kürzlich

aufgenommenen Beispiel zu sehen13. Manche dieser Fälle lassen sich mit der Hilfe von

Satellitenaufnahmen aufklären, andererseits können so auch neue Objekte gefunden

werden. Dadurch stellen Satelliten ein wichtiges Instrument bei der Suche nach Er-

scheinungen dar.

6 Grundlagen der Digitalen Bildverarbeitung

Um die Bilder von Meteosat-10 analysieren zu können, müssen die Bilder digital verar-

beitet werden. Was darunter zu verstehen ist, soll in diesem Kapitel erläutert werden.

Es ist allgemein schwierig eine einheitliche Begriffsdefinition für die digitale Bildver-

arbeitung zu finden, da die Schwelle, ab wann ein Bild verarbeitet wird und wann
11Siehe http://www.nasa.gov/mission_pages/sunearth/news/gallery/BigRed-Sprite

.html, Aufgerufen am 03.08.2015
12Die Bilder werden zeilenweise aufgenommen. Das führt dazu, dass kurzzeitige Ereignisse

nur selten sichtbar werden
13Siehe http://metro.co.uk/2015/07/07/is-this-a-ufo-disguised-as-a-cloud-vide

o-shows-it-behaving-very-oddly-5284677/, Aufgerufen am 03.08.2015

19

http://www.nasa.gov/mission_pages/sunearth/news/gallery/BigRed-Sprite.html
http://www.nasa.gov/mission_pages/sunearth/news/gallery/BigRed-Sprite.html
http://metro.co.uk/2015/07/07/is-this-a-ufo-disguised-as-a-cloud-video- shows-it-behaving-very-oddly-5284677/
http://metro.co.uk/2015/07/07/is-this-a-ufo-disguised-as-a-cloud-video- shows-it-behaving-very-oddly-5284677/

nicht unterschiedlich interpretiert werden kann. Letztlich umfasst der Begriff aber nach

[Erhardt, 2008] (S.2)

”eine Vielzahl von Prozessen, deren gemeinsames Ziel es ist, die Gewin-

nung nützlicher Parameter aus einem Bild oder einer Folge von Bildern zu

ermöglichen.”

Digitale Bildverabeitung lässt sich in drei Unterkategorien einteilen (vgl. [Erhardt, 2008],

S.2):

• Bildbearbeitung:

Darunter wird auch die Bildaufbereitung verstanden. Diese wird angewandt,

wenn das Bild für den Betrachter in einem nicht optimalen Zustand vorliegt,

also etwa zu Dunkel oder verrauscht ist. Um dies zu verbessern, wird das Bild

künstlich aufgehellt oder ein Filter verwendet. Das Ergebnis der Operation

bei optimaler Anwendung ist ein Bild, welches die gewünschten Informationen

besser darstellt und sich so besser weiterverarbeiten lässt.

• Bildtransformation:

Das Ziel der Bildtransformation ist es, die Aufnahme in einen für den Computer

intepretierbaren Zustand zu bringen. Dazu gehört etwa die Fouriertransforma-

tion oder auch eine Vergrößerung oder Verkleinerung des Bildes.

• Bildauswertung

Nachdem das Foto mehrere Stufen der Vorprozessierung durchlaufen hat, wer-

den in diesem Schritt die relevanten Parameter entnommen. Im Falle eines

Satellitenbildes mit einem hellen Fleck als Unregelmäßigkeit sind das die Hel-

ligkeitswerte des Bildes im Bereich, wo der Fleck sich befindet oder auch die

Größe von diesem; also der größte und kleinste x bzw. y-Wert mit einer be-

stimmten Helligkeit größer als ein festgelegter Schwellwert.

6.1 Vorgehensweise beim Arbeiten mit Computer Vision

In der Bildverarbeitung wird “Computer Vision” als Teilbereich angesehen und frei als

”Bildverstehen oder Bilderkennen” ([Erhardt, 2008], S.3) übersetzt. Der Begriff kommt

vor allem aus dem Bereich der Roboter (Robotik), da diese oftmals auf ein optisches

20

System angewiesen sind und entsprechend zuverlässige Algorithmen zur Erkennung der

jeweiligen Zielobjekte brauchen.

Es ist hierbei elementar, dass der zu beschreibende Algorithmus die Beschaffenheit

seines Ziels bzw. bestimme Parameter von eben diesem kennt. Ein roter Fleck auf einem

Bild charakterisiert sich zum Beispiel durch seine Größe, eine bestimmte Helligkeit in

den drei Kanälen R,G,B sowie seine Position in kartesischen Koordinaten. Damit der

Algorithmus diesen und ähnliche Flecken findet, müssen entsprechende Operationen

ausgeführt werden, um diesen Bildbereich von den anderen zu unterscheiden. Meistens

greift man dabei auf sogenannte Threshold-Operationen zurück. Diese Methode stellt

eine der Grundideen der digitalen Bildverarbeitung dar und wird auch in dieser Arbeit

für die Entwicklung der Algorithmen mehrfach verwendet. Aus diesem Grund wird

dieses Verfahren kurz erläutert.

Die Anwendung eines ”Thresholds” (zu deutsch: Schwellwert) entscheidet für jeden

Punkt bzw. Bereich eines Bildes, ob der Wert einer bestimmten Ausprägung (also z.B.

Sättigung oder Helligkeit eines Kanals) größer oder kleiner als eine gewählte Grenze ist

(Gl. 5).

Pixel.at(x, y).Brightness > ThresholdBrightness (5)

Nun gibt es insgesamt sechs Threshold Anwendungen, um mit Werten größer bzw.

kleiner als der Schwellwert zu verfahren (nach [Bradski und Kaehler, 2008], S. 136):

• Binary Threshold:

Alle Werte größer als der Schwellwert werden auf einen Maximalwert max

gesetzt, alle kleiner gleich werden zu 0. Da es nur zwei Ergebnisse gibt, wird

diese Methode entsprechend als binäre-Schwellwertoperation bezeichnet (Gl.

6).

if(Pixel.at(x, y).Brightness > ThresholdBrightness)val = 1

else val = max
(6)

• Binary Threshold Inverted:

Wie oben beschrieben ist lediglich die Wertezuweisung vertauscht. Also alle

21

Werte größer als der Schwellwert werden zu 0, der Rest zu max (Gl. 7).

if(Pixel.at(x, y).Brightness > ThresholdBrightness)val = 0

else val = max
(7)

• Truncate:

Bei ”Truncate” (zu deutsch: abschneiden) werden Werte größer als der Schwell-

wert gleich dem Schwellwert gesetzt. So wird die maximale Ergebnismenge

gekürzt, die die Werte innerhalb eines Bildes annehmen können. Es gilt Gl. 8.

if(Pixel.at(x, y).Brightness > ThresholdBrightness)val = ThresholdBrightness

else val = Pixel.at(x, y)

(8)

• Threshold to Zero Inverted:

Hier werden sämtliche Werte größer als der Schwellwert auf 0 gesetzt, der Rest

wird beibehalten. Auch hier wird wie bei Truncate die Ergebnismenge reduziert

(Gl. 9).

if(Pixel.at(x, y).Brightness > ThresholdBrightness)val = 0

else val = Pixel.at(x, y)
(9)

• Threshold to Zero:

Die letzte Methode stellt eine Inversion der oben vorgestellten dar. Alle Pixel

kleiner als der Schwellwert, werden auf 0 gesetzt, der Rest wird ohne Bearbei-

tung weitergegeben. Diese Methode wird in dieser Arbeit am Häufigsten von

den eben genannten verwendet. Sie stellt zum Beispiel den Ausgangspunkt für

die Helle-Flecken-Erkennung dar (Siehe Kapitel 8.2.1). Es gilt Gl. 10.

if(Pixel.at(x, y).Brightness > ThresholdBrightness)val = Pixel.at(x, y)

else val = 0

(10)

Nachdem eines dieser Verfahren durchgeführt wurde, wird die bearbeitete Aufnahme

22

weiteren Operationen unterzogen, bis ausschließlich der gewünschte Bereich herausge-

filtert ist. Häufig ist dabei der Extraktionsprozess der Daten nur ein Teilaspekt. Das

finale Ergebnis ist meistens ein Anderes: Etwa ein Roboter, der einen farbigen Ball

(roter Fleck) erst erkennen muss, um ihm dann zu folgen.

Die Herausforderungen bei dieser Arbeitsmethode sind einerseits korrekte Schwellwerte

für die besagten Threshold-Operationen zu finden und andererseits die richtigen Ope-

rationen aneinander zu reihen, sodass am Ende ausschließlich der gewünschte Bereich

extrahiert wird.

6.2 Arbeiten mit OpenCV

Die im vorherigen Kapitel beschriebenen Techniken gelten allgemein für jede CV-

Bibliothek bzw. generell für die meisten Bildverarbeitungsprogramme. Da in dieser

Arbeit aber speziell mit OpenCV in der Version 3.0.0-rc1 gearbeitet wird, soll im Fol-

genden auf die Arbeitsweise mit dieser C++ Library eingegangen werden.

Die Basis von OpenCV ist mathematisch geprägt, denn alle internen Datenstrukturen

repräsentieren mathematische Objekte. Die beiden am häufigsten verwendeten sollen

nun erläutert werden.

• Matrix

Damit Bilder verarbeitet werden können, besitzt OpenCV seit Version 2.0 den

Datentyp Mat. Er speichert Bilder in einem n ×m großen, zweidimensionalen

Array, wobei n die Anzahl der Spalten und m die Anzahl der Reihen darstel-

len. Je nach dem, wie viele Kanäle ein Bild hat wird in jedes Feld entweder ein

uchar oder ein Vektor (siehe unten) geschrieben. Um Bilder der Reihe nach

durchzugehen, sind also einfach zwei for-Schleifen notwendig, die die Anzahl

der Reihen bzw. Spalten inkrementieren. Da dieses zeilenweise Durchgehen

auch in C++ eine schnelle Operation darstellt, ist das Durchgehen eines Bildes

von (0, 0) bis (n,m) entsprechend effizient.

Jede Matrix besteht dazu noch aus einem Header, ohne den die Datenstruktur

nicht als solche identifizierbar ist. Er beinhaltet wichtige Informationen über

den Zustand der Matrix, etwa die Anzahl der Kanäle, die Bittiefe und Ausma-

ße eines Bildes. Um ein neues, schwarzes Bild zu erstellen legt OpenCV also

zunächst ein Objekt Mat mit den im Konstruktor definierten Werten im Header

an und füllt diese dann mit Nullen (für die Farbe ’schwarz’) auf.

23

Ein wichtiger Vorteil bei der Verwendung dieses Datentyps ist, dass der benötigte

Speicher automatisch belegt und bei Nichtbenutzung auch wieder freigegeben

wird, was ein Überlaufen (overflow) des Arbeitsspeichers und den Absturz des

Programms verhindert. Darüber hinaus sind alle Bilder gleich handhabbar bzw.

können sogar miteinander interagieren, wie z.B. das Anwenden eines Masken-

Bildes auf ein Anderes.

• Vektor

Der zweite wichtige Datencontainer ist der sog. Vektor. Er stellt eine Spezial-

form der Matrix mit einer Größe von n× 1 dar. Er wird immer dann benötigt,

sobald in einem Feld einer Matrize mehr als ein Wert gespeichert werden muss,

die Anzahl der Kanäle also > 1 ist. Bei RGB-Bildern benötigt man demnach

einen 3×1 Vektor, der je nach Bittiefe Daten vom Typ uchar bis hin zu uint64

enthält. So ist es sehr einfach möglich, die einzelnen Werte einer Matrix zu

adressieren ohne aufwändige Rechenoperationen durchführen zu müssen.

OpenCV bietet darüber hinaus bereits ein integriertes I/O-Modul mit dem Namen

HighGUI zum Öffnen und Speichern von Bildern, weshalb auf einen externen Code

verzichtet werden kann. Da die zu verarbeitenden Aufnahmen lediglich 2D-Bilder und

kein Videomaterial sind, kann auf einen Großteil des Umfangs von OpenCV verzichtet

werden. So reduziert sich die Bibliothek letzten Endes auf die Module Core, welches

die Basisfunktionalität bietet, ImgProc zum Prozessieren der Bilder sowie HighGUI

mit ImgCodecs zum Öffnen und Speichern der Bilder mit jeweiligem Codec.

24

7 Randbedingungen und Anforderungen an das

Programm

Da das zu entwickelnde Programm auf einer bereits bestehenden Bodenstation laufen

soll, welche bereits eine Reihe von Programmen enthält, sind die Rahmenbedingungen,

dieser Bodenstation unter allen Umständen einzuhalten (Siehe Tabelle 4). So kommen

die Bilder mit demselben Zeitstempel wie in Kapitel 2.2 erwähnt alle 15 Minuten (C010)

auf jeweils 12 Kanälen an (C020) und sind stets im .jpeg Format gespeichert (C030).

Ebenso bearbeitet Eumetsat die Bilder bereits soweit, dass nur noch die Erdscheibe zu

sehen ist (C040) und durch die Konstruktion des SEVIRI Instruments liegen alle Bilder

nur in Graustufen mit 8-bit Tiefe (1 Kanal) vor (C060).

Nr. Randbedingung Wert Prio-

rität1
Flexi-

bilität1
Quelle

C010 Meteosat-10 Bilder kommen konti-

nuierlich alle 15-Minuten

- 1 10 Titel d.

Arbeit2

C020 Bilder derselben Uhrzeit kommen

auf 12 Kanälen

- 1 10 Titel d.

Arbeit2

C030 Bilder sind in im .jpeg Format und

haben eindeutigen Namen

[Date]

[Hour]

-msg-

ch[Ch-Nr]

.jpg

1 10 C010

C040 Bilder sind bereits bearbeitet wor-

den

L1.5 Data 2 8 MSG

Data

Format

Desc.3

C050 Bilder eines Tages werden in gemein-

samem Ordner gespeichert

- 3 5 C010

C060 Bilder sind in Graustufen gespei-

chert und haben 8-bit Tiefe

- 3 6 C010

1 1 = Höchste; 10 = Niedrigste
2 siehe Kapitel 3
3 siehe: [Müller, 2007]

Tabelle 4: Randbedingungen

Als Hauptanforderung (Tabelle 5) an das Programm wird die grundsätzliche Lauffähigkeit

25

auf der Bodenstation vorgegeben (R010), während die Benutzeroberfläche und der in-

terne Programmablauf weitgehend unspezifiziert bleiben. Dies erleichtert den späteren

Entwicklungsprozess insofern, dass lediglich die Algorithmen effizient in das System

eingebunden werden müssen (R040 und R050) und dabei automatisch die Bilder öffnet

und nach Bedarf speichert (R020). Da es sich bei der Bodenstation nicht um ein Echt-

zeitsystem handelt, wird auf Angaben zur Ressourcennutzung und des Speicherbedarfs

verzichtet. Weitere Aufschlüsse darüber wird erst die Evaluation zeigen.

Nr. Anforderung Wert Prio-

rität1
Flexi-

bilität1
Quelle

R010 Lauffähigkeit auf Bodenstation - 1 10 Titel d.

Arbeit2

R030 Software soll Meteosat-10 Bilder au-

tomatisch erkennen und verarbeiten

und gefundene Ereignisse in eigenem

Ordner speichern

- 1 10 C010

R040 Software soll helle Flecken erkennen

können

Helligkeit

> 250

1 10 Titel d.

Arbeit2

R050 Software soll Formen erkennen

können

Kreise,

Vier-,

Fünf- und

Sechsecke

sowie

Linien

1 10 Titel d.

Arbeit2

R060 Start und Stopp sowie Neustart

Funktion ohne Programm beenden

zu müssen

- 3 5 R010

R070 Ausgabe von Dateiname des

geöffneten Bildes auf interner

Konsole mit Zeitstempel

- 3 7 R010

R080 Aktuelles und letztes Bild mit Un-

regelmäßigkeit sollen innerhalb des

Programms zu öffnen sein

- 2 8 R010

1 1 = Höchste; 10 = Niedrigste
2 siehe Kapitel 3

Tabelle 5: Anforderungen

26

8 Konzept

8.1 Überblick

Abbildung 5: Verarbeitungsweg eines Bildes

Um Unregelmäßigkeiten (vgl. Kapitel 5.2) finden zu können, soll ein Programm entwi-

ckelt werden, welches auf der Bodenstation die Bilder autonom öffnet und auswertet.

Dazu werden eine Reihe unterschiedlicher Algorithmen erstellt, die am Ausgangsbild mit

mehreren Operationen Anomalien herausfiltern. Damit Regelmäßigkeiten, wie die aus

Kapitel 5.1 nicht erkannt werden, werden mehrere Korrekturalgorithmen angewandt, die

eine möglichst hohe Trefferrate bei gleichzeitig wenigen Falschmeldungen haben sollen,

um gefundene Phänomene nicht zu verwerfen. Eine Falschmeldung wird im Folgenden

als eine Detektion definiert, die aufgrund fehlender Unregelmäßigkeit als Grundlage

dennoch als solche erkannt wird.

Damit alle Algorithmen korrekt ausgeführt werden, ist ein Thread-Konzept zu ent-

werfen, welches mit User-Interface auf dem Zielcomputer läuft und auf die Bilddaten

zugreifen kann, sowie gefundene Bilder speichert. Abbildung 5 skizziert für das Kon-

zept den Verlauf eines Bildes innerhalb des Programms. Es ist darüber hinaus auf den

Ablauf und Kontrollfluss des Programms sowie auf möglichst effiziente Algorithmen zu

achten. Dies ist notwendig, um die Rechenleistung beim Verarbeiten minimal zu halten,

wodurch eine Auswertung der Bilder gewährleistet wird.

8.2 Vorstellung und Entwicklung der Algorithmen zur Erkennung

von Unregelmäßigkeiten

Nachdem dargestellt wurde, woher die Aufnahmen kommen, welche Eigenschaften sie

aufweisen (Siehe Kapitel 2.2) und welche Elemente sich in den Bildern vorfinden lassen

27

(Siehe Kapitel 5), geht es im Folgenden darum, Algorithmen zu konstruieren, die die

Unregelmäßigkeiten zuverlässig finden. Dazu wurden insgesamt fünf Vorgehensweisen

entworfen, die teilweise auf denselben Operationen beruhen.

8.2.1 Helle- und Dunkle-Flecken-Erkennung

Zunächst wird ein ungewichteter Algorithmus konstruiert, der Ansammlungen von hel-

len Pixeln auf kleinem Raum (im Folgenden: heller Fleck) erkennen soll. Der Ansatz

ist hier, wie in Kapitel 6.1 erklärt eine Threshold-to-Zero Operation. Der Algorithmus

scannt das Bild zeilenweise von (0, 0) bis (xn, yn) (siehe Abb. 6) ab und entscheidet

für jeden Punkt, ob dieser über dem Schwellwert liegt. Da ein einzelner Pixel noch

nicht hinreichend aussagekräftig und evtl. ein Fehler des optischen Systems ist, werden

für diesen Fall zusätzlich die Nachbarpixel untersucht. Die Anzahl heller bzw. dunkler

Nachbarpixel, die das Zentrum benötigt, um als heller bzw. dunkler Pixel durchzugehen,

wird dynamisch berechnet. Das bedeutet, dass für einen hellen Zentrumspixel bereits

wenige benachbarte helle Pixel ausreichend sind, während für einen, der nur knapp über

dem Schwellwert liegt, mehrere Pixel.

Abbildung 6: Durchlauf
eines Bildes

Ebenfalls wird eine Gewichtung der Pixel durchgeführt.

Dazu wird zunächst der Bereich definiert, der helle oder

dunkle Pixel enthält und dessen optischer Schwerpunkt

ermittelt (Abb. 7). Um den Schwerpunkt herauszufinden,

verläuft der Algorithmus entlang der Kontur des Berei-

ches und speichert Konturpixel in einem Array dynami-

scher Größe, da der Umfang der Kontur vorab nicht be-

kannt ist. Anschließend wird der Mittelwert über alle Hel-

ligkeitswerte der im Bereich liegenden Pixel gebildet und

geprüft, ob dieser größer, kleiner bzw. gleich dem Schwell-

wert ist.

Beide Varianten reduzieren die Fleck-Findung auf einen Pixel und Helligkeitswert. Da-

bei ergibt sich in beiden Fällen das Problem, dass sie in der nächsten Zeile erneut auf

dieselbe Pixelformation treffen, wie in der Zeile zuvor. Um doppelte Treffer zu vermei-

den, ist daher der zuvor bereits bearbeitete Bereich zu maskieren - also für weitere

Betrachtung ausgeschlossen. Die erste Methode ist dabei einfach zu implementieren.

Variante zwei ist zwar etwas komplexer und benötigt mehr Rechenleistung, verspricht

28

Abbildung 7: Konturenmethode mit Mittelpunkt

aber eine höhere Treffergenauigkeit.

8.2.2 Formen-Erkennung

Formen-Erkennung stellt neben der Hellen- bzw. Dunklen-Fleck-Erkennung die zwei-

te Art von Algorithmen dar, um Unregelmäßigkeiten zu erkennen. Dabei gibt es für

jede Form unterschiedliche Herangehensweisen, weshalb diese hier gesondert betrach-

tet werden. Da alle von derselben Operation ausgehen, dem Canny-Operator (nach

[Canny, 1986], S.679-698), wird dieser im Folgenden kurz erläutert. Das Ziel dieses Algo-

rithmus ist es, Kanten innerhalb eines Bildes zu finden. Diese sind vorhanden, wenn auf

kurzem Raum ein abrupter Farb- bzw. Helligkeitswechsel stattfindet. Zunächst wird ein

Gauß-Filter auf das Bild angewandt, der dazu dient Rauschen zu minimieren. Daraufhin

berechnet der Algorithmus die partiellen Ableitungen mit Hilfe zweier Faltungsmatrizen

einzelner Pixel in x- und y-Richtung, wodurch horizontale und vertikale Kanten betont

werden. Daraus entstehen zwei Bilder, wobei eines die Kanten in y-Richtung und das

andere die in x-Richtung enthält. Mit Hilfe dieser partiellen Ableitungen gx und gy lässt

sich die Richtung θ des Gradienten einer Kante durch Gl. 11 ausdrücken.

θ = arctan

(
gy
gx

)
(11)

Da die Richtung benachbarter Pixel aber nur ein Vielfaches von 45◦ betragen kann

wird der Winkel auf einen dieser Werte gerundet. Es wird anschließend die absolute

Kantenstärke G mittels der euklidischen Norm berechnet. Um Rechenzeit zu minimieren

verwendet OpenCV aber eine Approximation:

G = |gx(x, y)|+ |gy(x, y)| (12)

29

Um im entstehenden Binärbild eine Linie mit der Dicke von einem Pixel zu erhalten,

wird die sog. Non-Maximum-Suppresion angewandt, die die benachbarten Pixel entlang

des Gradienten vergleicht und nur den größten der Werte herausnimmt. Im letzten

Schritt wird die sog. Hystere angewandt, die wieder eine Threshold-Operation mit zwei

Schwellwerten darstellt. Die empfohlene Einstellung hierfür ist lt. Canny ein Verhältnis

von 2:1 bis maximal 3:1 (siehe [Canny, 1986]) von oberem zu unterem Schwellwert.

Liegt ein Pixel über beiden Schwellwerten, so wird er immer als Konturpixel akzeptiert.

Dazwischen nur, wenn er mit einem Pixel verbunden ist, der bereits akzeptiert wurde.

Alles was darunter ist wird zurückgewiesen.

Ein so entstandenes Binärbild mit Schwellwerten von 700 bzw. 1400 wird in Abbildung 8

dargestellt. Es ist anzumerken, dass für die folgenden Algorithmen stets unterschiedliche

Schwellwerte für den Canny-Operator genommen wurden, da die Bilder wegen ihres

hohen Detailgrades bei niedrigen Schwellwerten sehr viele Kanten enthalten. Dies führt

in den meisten Fällen aber zu Falschmeldungen. Wie die Schwellwerte ermittelt wurden,

soll in der Implementierung gezeigt werden.

Abbildung 8: Canny-Algorithmus auf Satellitenbild angewandt

• Vier-, Fünf- und Sechseckerkennung

Dieser Algorithmus dient der Erkennung elementarer geometrischer Formen in

einem Bild und ist der Einzige, der keine Eigenentwicklung darstellt (Siehe

[Nash, 2012]). Die Formen charakterisieren sich einerseits durch ihre Anzahl

an Kanten und andererseits über den Betrag jeder ihrer Innenwinkel (nach

[Nash, 2012]):

30

– Viereck:

Betrag jedes Innenwinkels zwischen 85◦ und 97◦

– Fünfeck:

Betrag jedes Innenwinkels zwischen 105◦ und 110◦

– Sechseck:

Betrag jedes Innenwinkels zwischen 116◦ und 123◦

Um nun die Form erkennen zu können, wird zunächst, wie oben genannt, der

Canny-Operator angewandt. Innerhalb des Binärbildes wird daraufhin nach

geschlossenen polygonalen Konturen gesucht14 und für jede dieser Konturen

alle Innenwinkel berechnet. Ist die Anzahl der Ecken gleich den jeweiligen für

ein Mehreck und sind dazu noch alle Innenwinkel im oben angegebenen Bereich,

wird die Kontur gespeichert und später markiert.

Ein Problem für die spätere Implementierung stellt die Winkelmessung dar:

Je kleiner eine Form wird, desto stärker kann die Winkelmessung verfälscht

werden, bis es schließlich zu so großen Abweichungen kommt, dass sie gar nicht

mehr erkannt werden kann. Dies ist auch der Grund, warum keine Formen mit

mehr als sechs Ecken geprüft werden: Die Fehler bei Winkelmessungen lassen

die Form schnell als eine andere erscheinen, ebenso wie die Tatsache, dass der

Betrag der Winkel nahezu gleich groß ist. Wie groß eine Form sein muss, um

sie sicher erkennen zu können, wird eine der Aufgaben für die Evaluation sein.

• Linienerkennung

Die Linienerkennung basiert auf dem 1962 von Paul V.C. Hough entwickelten

Hough-Algorithmus (Siehe [Dawson-Howe, 2014], S. 109). Dieser geht ebenfalls

vom Canny-Algorithmus aus, arbeitet demnach auch mit einem Binärbild. Der

Grundgedanke ist dabei, dass eine Gerade in Polarkoordinaten dargestellt wird

(Gleichung 13).

y =

(
−cos θ

sin θ
x+

r

sin θ

)
(13)

Und so für jede Linie durch die Punkte x,y:

rθ = x0 ∗ cos θ + y0 ∗ sin θ (14)

14Die Innenwinkelsumme darf also maximal (n− 2) ∗ 180◦ betragen, wobei n die Anzahl der
Kanten ist

31

Abbildung 9: Die Hough Transformation von vier Punkten vom (x,y)-Raum in den
(θ,rθ)-Raum. Die Schnittpunkte der Kurven stellen die Geraden dar, die durch alle
vier Punkte geht. Es gibt deshalb zwei Schnittpunkte, weil eine volle 360◦ Drehung
angenommen wurde (Und Geraden, die im 180◦ Winkel liegen sind effektiv die
Gleichen, [Dawson-Howe, 2014])

Da es unendlich viele Geraden durch einen Punkt gibt und es rechnerisch nicht

effizient ist für jedes Punktepaar zu prüfen, wie viele Punkte auf der Gerade

liegen, werden x- und y-Werte eines Punktes nicht mehr als Variable, sondern

als Parameter behandelt. Stattdessen wird θ als variabel angesehen, ebenso wie

das daraus folgende rθ. So kann für jeden Punkt auf einer Kontur rθ berechnet

(Abbildung 9) und an der Stelle (θ, rθ) einer Matrix, die der Größe des Bildes

entspricht, der Wert um eins imkrementiert werden. Eine Gerade ist dann ge-

geben, wenn an einer Stelle der Matrix die Anzahl der Inkrementierungen über

einem festgelegten Schwellwert liegt.15

Nachdem erfolgreich Linien gefunden wurden, werden diese gespeichert und

durch eine Subroutine im Zielbild markiert.

• Kreis-Detektion

Dieser Algorithmus dient der Identifizierung einer Kontur als Kreis. Dazu wird

eine Variante des bereits erklärten Hough-Algorithmus angewandt, diesmal je-

doch für Kreise. Demnach lässt sich ein Kreis C durch seinen Mittelpunkt in

kartesischen Koordinaten sowie den Radius beschreiben:

C : (xzentrum, yzentrum, r) (15)

Ansonsten gilt wie zuvor, dass ein Kreis gegeben ist, wenn eine bestimmte An-

zahl an Punkten auf dessen Bogen liegt. Eine Stärke der Methode ist, dass

15Die Einstellung der Schwellwerte für Canny und Hough-Transformation werden im Kapitel
9 behandelt.

32

der Kreis nicht komplett im Bild enthalten sein muss, es reicht bereits der Teil

eines Kreisbogens.

Auch hier sind die Schwellwerte für die Canny- und Hough-Algorithmen zu

finden. Ebenso ist es für die Implementierung eine Aufgabe, Kreise mit unrea-

listischer Größe herauszufiltern. Dazu gehören etwa Kreise mit r ≤ 1Px oder

r > rErde.

8.3 Algorithmen zur Filterung von Sonnenreflexionen

Damit die in Kapitel 8.2.1 vorgestellten Algorithmen eine möglichst geringe Zahl an

Falschmeldungen herausgeben, müssen Regelmäßigkeiten ausgeblendet werden (vgl. Ka-

pitel 5.1). Eine Hauptquelle für Falschmeldungen stellen Sonnenreflexionen an der Erd-

oberfläche dar, die aufgrund der diffusen Brechung von Licht an dieser und den Wolken

schwierig zu berechnen sind. Es ist eine andere - möglichst effiziente - Lösung zu finden

und implementieren.

Hierzu wird ein Bereich innerhalb einer temporären Schwarz-Weiss-Matrix konstruiert,

in dem für Tag im Jahr, Uhrzeit sowie pro Kanal die häufigsten Sonnenreflexionen finden

lassen. Dieser Bereich ist möglichst klein zu halten, um dennoch Unregelmäßigkeiten

jederzeit erkennen zu können. So wird er in den Morgen- und Abendstunden am Rand

der Erdscheibe zu finden sein und tagsüber zentral, aber stets mit der Uhrzeit wan-

dernd.

Auch wenn Heller- und Dunkler-Fleck-Algorithmus sich ähneln, so benötigen sie trotz-

dem unterschiedliche Routinen oder zumindest andere Ausgangs- bzw. Schwellwerte,

um Reflexionen zu erkennen. Um die Schwellwerte zur Laufzeit anpassen zu können,

benötigt das Programm ein User Interface, welches im folgenden Kapitel erläutert wird.

8.4 GUI und Worker Thread Prinzip

Um sämtliche Algorithmen aus Abschnitt 8.2 und 8.3 aufrufen zu können, wird eine

Programmstruktur benötigt, die eine effiziente Bearbeitung der Tasks erlaubt. Hier-

zu wird das GUI- und Worker-Thread-Prinzip angewandt. Threads sind in Betrieb-

systemen eine der Grundideen der Parallelverarbeitung ([Mandl, 2014], S. 83). Deren

übergeordnete Recheneinheit stellt der Prozess dar. Alle Threads teilen sich den gemein-

samen Adressraum eines Prozesses und greifen damit auf dieselben globalen Variablen

zu, während Threads untereinander nur über definierte Interfaces kommunizieren. Der

33

Worker Thread stellt dabei einen Thread dar, der die für das Programm notwendigen

Rechenoperationen durchführt. Als Beispiel dafür sei das Öffnen und Verarbeiten der

Bilder genannt. Die ermittelten Daten werden über ein Interface an den GUI-Thread

weitergegeben, der die Daten adäquat präsentiert und so z.B. das gerade verarbeitete

Bild anzeigt. Um eine klare Unterteilung zwischen beiden Objekten zu schaffen, werden

Datenstrukturen so konstruiert, dass sie nur von einer der beiden Parteien interpretiert

werden können. Diese sind aber nicht zu verwechseln mit den globalen Variablen, auf

die beide zugreifen können.

Abbildung 10: Skizziertes UML-Sequenzdiagramm zum Verhalten von GUI und
Worker Thread beim Verarbeiten von Bildern

Abbildung 10 zeigt, wie die interne Kommunikation bei diesem Konzept gestaltet ist.

Einen weiteren Vorteil bei diesem Vorgehen stellt die Modularität dar, mit der es

dem Entwickler einfach gemacht wird dem bestehenden System schnell neue Worker-

Threads hinzuzufügen. Jedoch besitzt dieses Konzept auch Grenzen. Dazu gehört, dass

bei aufwändigen Rechenoperationen der GUI-Thread nicht schnell genug auf Anfra-

gen reagieren kann und Kommandos erst mit erheblicher zeitlicher Verzögerung abge-

arbeitet werden. Ist darüber hinaus alles innerhalb eines Threads, müssten keinerlei

Kommunikationsschnittstellen implementiert werden, was zu einer geringeren Anzahl

an Lines-of-Code (LOC) führt.

34

Ebenso können mehrere Threads auf dieselbe Variablen zugreifen und ungewollte Zustände

provozieren16. Hierzu wird das Mutex-Konzept implementiert, welches um die Stelle der

Variablenänderung einen sog. kritischen Abschnitt definiert. Betritt ein Thread diesen

Abschnitt wird er für die Anderen gesperrt (mutex.lock()) und beim Verlassen wieder

geöffnet (mutex.unlock()). Dadurch wird gewährleistet, dass sämtliche Änderungen ei-

ner Variable angewandt werden ohne, dass eine davon verloren geht.

9 Implementierung

Abbildung 11: Interner Nachrichtenverlauf der Threads für den Fall, dass der User das
aktuelle Bild anzeigen lässt

Nachdem die Struktur des Programms und der Algorithmen im Konzept erarbeitet

wurde, ist es an dieser Stelle die Aufgabe des Entwicklers diese mit der Struktur von

OpenCV und C++ zu vereinen. Der Fokus dieses Kapitels liegt auf den Problemen,

die während der Implementierung auftraten und wie sie gelöst wurden sowie auf der

Parametereinstellung der Algorithmen, wie z.B. Schwellwerte.

Als Richtlinie für die Einstellung der Parameter gilt dabei, dass alle tatsächlichen Un-

regelmäßigkeiten erkannt werden. Somit ist stets darauf zu achten, dass Schwellwerte

und maskierte Bereiche minimal einzustellen sind.

Dafür wird zunächst auf die Implementierung der Algorithmen eingegangen bzw. deren

Methoden zum Filtern von Regelmäßigkeiten. Anschließend werden das User-Interface

16Es kann beispielsweise vorkommen, dass zwei Threads gleichzeitig dieselben Variablen be-
schreiben und sie anschließend wieder abfragen. Dabei wird eine der beiden Änderungen
zwangsweise verloren gehen. Dies kann bei gleicher Ausgangssituation zu einem unter-
schiedlichen Ergebnis führen. Diese Art von Zufall ist aber unerwünscht.

35

und die einzelnen Threads erläutert, die einen reibungslosen Ablauf aller Funktionen

bieten sollen. In dieser Sektion wird auch auf die interne Kommunikation der Threads

eingegangen, welche in Abbildung 11 dargestellt ist. Um die grafische Benutzerober-

fläche und das Thread Konzept zu realisieren wird für diese Zwecke die C++ Bibliothek

QT 5.2.0 in der Community-Version verwendet17.

9.1 Anwendung der Algorithmen zur Erkennung von

Unregelmäßigkeiten

9.1.1 Formen-Algorithmen

Der erste implementierte Formendetektions-Algorithmus ist der zur Erkennung von

Vier- bzw. Fünf- und Sechsecken. Die Grundlage hierfür stellt ein bereits existieren-

der Algorithmus dar, der aus der OpenCV-Tutorial Sektion entstammt. Ursprünglich

konnte dieser Algorithmus nur Vierecke erkennen, jedoch wurde er von der OpenCV-

Community so erweitert, dass er zustäzlich noch Fünf- und Sechsecke erkennen kann

(Siehe [Nash, 2012]).

Da ein Satellitenbild aufgrund der hohen Auflösung und seines dementsprechend hohen

Detailgrades viele Möglichkeiten zur Erkennung von Formen bietet, sind die Schwell-

werte zur Konturfindung festzulegen. Dabei werden diese so lange erhöht, bis innerhalb

der Testbilder keine Falschmeldungen mehr vorkommen. Dadurch wird gewährleistet,

dass die Methode möglichst alle Formen erkennt und gleichzeitig nur wenige falsche

Treffer meldet. Abbildung 8 zeigt bereits, wie ein Konturbild aussieht, welches mit

dem Canny-Algorithmus und einem Schwellwert von 700 zu 1400 erstellt wurde. Es ist

zu erkennen, dass aufgrund einiger Wolkenformationen noch viele Konturen erkennbar

sind, die potenzielle Falschtreffer hervorrufen können. Damit sich auch diese Bereiche

auflösen, ist der Schwellwert weiter anzuheben. Dadurch ergibt sich die Gefahr, dass

Konturen der zu findenden Formen nur noch als Teil erkennbar sind und somit nicht

erkannt werden. Aufschluss darüber, wie gut die Detektion damit noch funktioniert, ist

Teil der Evaluation.

Anschließend ist die Liniendetektion einzubauen. Dazu wird zunächst der Standard-

Hough Algorithmus aus der OpenCV Bibliothek implementiert. Dieser besitzt jedoch

die Eigenschaft, dass er für eine Linie nicht den Start und Endpunkt in kartesischen Ko-

ordinaten speichert, sondern die Parameter rθ und θ. So eingestellt werden nur Tangen-

17Siehe: http://www.qt.io/download/, aufgerufen am 25.07.15

36

http://www.qt.io/download/

ten an der Erdscheibe und keine Linien innerhalb dieser entdeckt. Deshalb wird der sog.

probabilistische Hough-Algorithmus angewandt. Er ist aufgrund einiger Vereinfachun-

gen bei der Linienberechnung nicht nur effizienter als der Standard-Hough-Algorithmus,

sondern gibt darüber hinaus auch die Extrema (x0, y0, x1, y1) der detektierten Linien

als Vec4i (4 × 1 Int-Vektor) aus. So kann für Start- und Endpunkt der Linie getestet

werden, ob die Linie aus der Erdscheibe herausreicht. Ist dies der Fall, so wird die Linie

verworfen, wenn nicht, wird sie akzeptiert und ins Zielbild eingezeichnet. Abbildung 12

zeigt Linien, die mit dem Algorithmus erkannt wurden.

Abbildung 12: Fund einer Linie am Rand
eines Bildes von Kanal 12

Abbildung 13: Maske für Ränder von
Kanal 12 in diesem Bereich (weiß =
maskierter Bereich)

Der Fund dieser Linien stellt ein kritisches Ereignis dar, denn ihr Ursprung resultiert

daraus, dass in den Bildern auf Kanal 12 nur die Kontinente aus zwei großen Bildteilen

zusammengesetzt sind. An den Kanten dieser Stücke wird deshalb immer eine Linie

vorliegen. Da die Bildteile stets an derselben Stelle aufhören, wird der Konturbereich

für Kanal 12 maskiert. Die so entstandene Maske ist in Abbildung 13 für diesen Aus-

schnitt erkennbar.

Der Kreisdetektor ist der letzte zu implementierende Formenalgorithmus. Hier wird das

Standard-Hough-Verfahren für Kreise angewandt und keine erweiterte Version. Das ers-

te Ergebnis liefert für die meisten Bilder die Erdscheibe als Kreis. Da dies ebenfalls eine

Regelmäßigkeit darstellt, ist dieser und andere ungewollte Kreise gezielt zu verwerfen:

i f (rKreis ≥ rErde | | rKreis < 5Px) skipCurrentElement ()

Im obigen Codeausschnitt ist darüber hinaus zu erkennen, dass Kreise mit einem Radius

kleiner 5 Pixel verworfen werden, da sonst zu viele Falschmeldungen gefunden werden.

Damit ist auch bereits eine untere Grenze für den Kreisalgorithmus festgelegt: Ist der

Radius eines Kreises kleiner als 5 Pixel, wird er nicht als solcher markiert.

37

9.1.2 Heller- und Dunkler-Fleck-Algorithmus

Zunächst wird der Helle-Fleck-Algorithmus implementiert. Dazu werden zuerst die in

Kapitel 8.2.1 vorgestellten Methoden zur Markierung der hellen Flecken ausgewählt.

Bei einem Vergleich der Gewichteten gegenüber der Ungewichteten zeigt sich, dass

beide dieselbe Treffergenauigkeit aufweisen. Dies ist bei genauerer Untersuchung nicht

überraschend: Die Methoden arbeiten bis zu dem Punkt, an dem geprüft wird, ob ein

heller Fleck vorliegt unterschiedlich, aber arbeiten danach gleich weiter. Die kritische

Threshold Operation, die für eine hohe Treffergenauigkeit verantwortlich ist, kommt

erst während der Prüfung bzw. danach zur Ausführung. Deshalb sind beide Methoden

im Grunde gleich, was die Wahl auf die ungewichtete Methode fallen lässt, da sie etwas

weniger Rechenaufwand benötigt als die Gewichtete.

Für den dunklen Fleck kann dieselbe Methode angewandt werden. Dazu wird das Bild

vorher mit einem Look-Up-Table (LUT) pixelweise invertiert. So erscheinen sehr dunkle

Pixel als helle Pixel, wodurch der Helle-Fleck-Algorithmus wieder angewandt werden

kann. Es sind zuletzt einige Schwellwerte für diesen Fall anzupassen, so dass die Anzahl

der Falschmeldungen gering bleibt, aber immer noch alle dunklen Flecken gefunden

werden können. Dabei besitzt der Helle-Fleck-Algorithmus einen Standardschwellwert

für weiße Flecken von 250, der Dunkle-Fleck-Algorithmus minimal höher bei 253.

Ebenso ergibt sich für den Dunklen-Fleck-Algorithmus ein Problem: Auf Bildern der

VIS-Kanäle reflektieren viele Teile von Land und Wasser nur sehr wenig Licht dieser

Wellenlänge, so dass der Bereich auf dem Bild schwarz erscheint. Da diese Bereiche

nicht vorhersagbar sind und der Algorithmus damit in diesen Kanälen ausschließlich

Falschmeldungen liefert, besteht lediglich die Möglichkeit diese Kanäle wegzulassen. So

operiert der Algorithmus nur im Infrarot-Bereich.

Darüber hinaus liefern beide Algorithmen eine große Zahl an Falschmeldungen für Son-

nenreflexionen, vor allem in den Morgen- und Abendstunden. Aus diesem Grund soll

im nächsten Kapitel erläutert werden, wie damit umgegangen wurde.

9.2 Erkennung von Regelmäßigkeiten

Damit Heller- und Dunker-Fleck Algorithmus korrekt funktionieren und gleichzeitig die

Fehlerrate minimal bleibt, muss ein Mechanismus eingebaut werden, der für beide Al-

gorithmen die Einflüsse der Sonne erkennt und sie herausfiltert. Ein Problem bei der

Suche nach einer Lösung stellt die OpenCV-Bibliothek dar: Sie ist hauptsächlich für

38

zweidimensionale Bilder ausgelegt, obwohl der Ursprung des Problems jedoch aus dem

dreidimensionalen Raum kommt und letzten Endes auf ein zweidimensionales Bild pro-

jiziert wird. Aus diesem Grund wird es einen Genauigkeitskompromiss geben müssen,

um mit OpenCV weiterarbeiten zu können. Ob die Präzision dennoch ausreicht wird

sich erst im Verlauf der Arbeit zeigen.

Es gibt Ansätze, die trotz der eben genannten Einschränkungen Erfolg versprechen. Es

ist bekannt, dass die Sonne im Laufe eines Jahres von 23,45◦, dem nördlichen Wen-

dekreis (am 21.6.), auf -23,45◦ am südlichen Wendekreis (am 21.12.) wandert. Daraus

kann man für die der Deklination δ an einem Tag im Jahr (dayOfY ear, 01.01. = 1)

Gleichung 16 aufstellen.

δ = −23, 45 ∗ cos

(
2 ∗ π
365

∗ (dayOfY ear + 10)

)
(16)

Der Verlauf einer Sonnenrelexion lässt sich empirisch ermitteln und wird in Abbildung

14 für den 23.05.2015 sowie 09. und 10.06.2015 dargestellt. Der Vergleich der Positi-

on der Punkte derselben Uhrzeit macht sichtbar, dass die Deklination innerhalb dieses

Zeitintervalls um einige Grad gestiegen ist - so liegen die Punkte des 23.05. deutlich

weiter von denen des 10.06. entfernt, auch wenn bei der Beobachtung dieser Reflexionen

eine Streuung durch Messungenauigkeit vorhanden ist. Von weitaus größerer Relevanz

ist die Erkenntnis, dass der Verlauf der Reflexion tagsüber durch einen Ellipsenbogen

beschrieben werden kann, auch wenn zum Rand der Erde hin, in den Morgen- und

Abendstunden, eine starke Verfälschung erkennbar ist. Zunächst werden aber nur Re-

flexionen, die tagsüber entstanden sind betrachtet.

Abbildung 14: Sonnenreflexionen an drei unterschiedlichen Tagen: 23.05. (rot), 09.06.
(blau) und 10.06. (grün)

39

Abbildung 15: Annäherung des Pfades der Sonnenreflexion am Tag durch einen
Ellipsenbogen für den 10.06.

OpenCV besitzt die Möglichkeit Ellipsen(-bögen) zu zeichnen und benötigt dazu fol-

gende Parameter:

• Den Mittelpunkt der Ellipse in kartesischen Koordinaten

• Die Größe der beiden Halbachsen

• Den Start- und Endwinkel des Ellipsenbogens (0◦ bis 360◦ bei einer vollen Ellipse),

ausgehend vom Punkt auf der Ellipse mit dem größten x-Wert.

Nachdem für die drei Tage jeweils eine passende Ellipse gefunden (Siehe Abb.15) wer-

den konnte, sollte sich ebenso für den Rest der Tage im Jahr eine Vorhersage für den

Bogenverlauf ermitteln lassen, da dafür keine Aufnahmen vorliegen. Es ist dazu hilfreich

die Extremsituationen zu betrachten, wenn die Deklination gleich 0◦ bzw. ± 23,45◦ ist.

So ergibt sich für die Tagundnachtgleiche im Frühling bzw. Herbst eine Position genau

im Mittelpunkt des Bildes. Dies ist aber nur möglich, da dank der Vorverarbeitung

von Meteosat (Siehe [Müller, 2007]) bereits gegeben ist, dass die Erde zentriert im Bild

liegt. Darüber hinaus entspricht die große Halbachse der Hälfte des Erddurchmessers,

die Kleine wird zu 0. Da der Verlauf der Reflexion nur ein halber Ellipsenbogen ist,

geht die Ellipse von 0◦ bis 180◦.

Für die beiden Wendekreise gilt eine ähnliche Überlegung. Die Position ändert sich le-

diglich in positive bzw. negative x-Richtung um einen Wert ∆x, der von der Deklination

bzw. des Tages im Jahr abhängt, entlang der y-Achse hat sie einen konstanten Wert.

Die große Halbachse wird kleiner, je weiter man sich vom Äquator entfernt, während

die Kleine sich vergrößert. Der Bogen der Ellipse bleibt für die nördliche Hemisphäre

40

weiterhin bei 0◦ bis 180◦ ändert sich bei der Überschreitung des Äquators nach Süden

aber auf 180◦ bis 360◦, da nun die obere Hälfte des Bogens dargestellt werden muss.

Für die Tage, die zwischen den vier Extrempunkten liegen wird ein linearer Anstieg

bzw. Abfall der jeweiligen Werte angenommen. Hier sind die bereits vorliegenden Bil-

der hilfreich, denn sie wurden zwischen Frühlings-Tagundnachtgleiche sowie Sommer-

sonnenwende aufgenommen, liegen damit genau in diesem Bereich und dienen somit als

Testfall. Es ergeben sich somit für die unterschiedlichen Tage folgende Gleichungen für

die x-Position der Ellipse in Abhängigkeit des Tages im Jahr (dayyear). Innerhalb des

Intervalls von 21.03. (81. Tag) bis 21.06. (172. Tag):

day −=80;

x(dayyear) = SizeImage/2− dayyear ∗
(
SizeImage/2−Minx−Position

172−81−1

)
Sowie zwischen 22.06. (173. Tag) und 23.09. (266. Tag):

day −=172;

x(dayyear) = Minx−Position + dayyear ∗
(
SizeImage/2−Minx−Position

266−173−1

)
Zuletzt zwischen 24.09. (267. Tag) und 20.03. (80. Tag), wobei der 356. Tag den Wen-

depunkt des Sonnenstandes im Winter markiert:

i f (day > 356){
day = 356 − (day − 356) ;

} else i f (day > 0 && day < 81){
day += 365 ;

day = 356 − (day − 356) ;

}
day −=266;

x(day = SizeImage/2 + dayyear ∗
(
SizeImage/2−Minx−Position

356−267−1

)
Analog zu diesem Schema werden die Gleichungen für die Größe der Halbachsen for-

muliert und implementiert. Um nun mit Hilfe dieser Gleichungen ein geeignetes Aus-

schlusskriterium für eine Sonnenreflexion zu finden, ist zunächst zu berücksichtigen,

dass der Bereich, der für Sonnenreflexionen infrage kommt, möglichst klein gehalten

werden muss, um eventuelle Unregelmäßigkeiten auch innerhalb der Bahn der Sonnen-

reflexion erkennen zu können. Es ist an dieser Stelle möglich über den ganzen Tag den

Bereich des Ellipsenbogens einer gewissen Dicke auszugrenzen.

Da die Reflexionen derselben Uhrzeit aber immer im selben Bereich der Erde erscheinen,

41

kann der Ellipsenbogen auf einen geringen Teil seiner selbst reduziert werden, sodass je

nach aktueller Uhrzeit nur ein bestimmter Bereich der Ellipse angezeigt wird. Hierzu

wird der Punkt in Polarkoordinaten (dP (x,y), α) transformiert und eine Korridorgröße

definiert, die angibt, wie groß der Bereich vom Bogen für die Maskierung der Refle-

xion ist. Dessen obere und untere Grenze wandern im Laufe eines Tages von Osten

nach Westen abhängig von der aktuellen Uhrzeit. Damit eine Sonnenreflexion erkannt

wird, muss der Winkel α des Punktes gegenüber dem Ellipsenmittelpunkt innerhalb der

Grenzen liegen, genauso wie die Distanz dP (x,y) innerhalb der Ellipsenkontur.

Zuletzt wird noch eine Dicke der Ellipse d definiert, die in die temporäre Masken-Matrix

gezeichnet wird, so dass letzten Endes eine einfache Vergleichsoperation Aufschluss

darüber gibt, ob der eben gefundene helle Fleck innerhalb des Bereichs liegt und somit

eine Sonnenreflexion ist. So ergeben sich folgende Aussagen, die für eine Sonnenreflexion

alle wahr sein müssen:

• d− r < dP (x,y) < r

• GrenzeUnten[◦] < α < GrenzeOben[◦]

• Bild ist zwischen 2:00h und 22:00h aufgenommen

Abbildung 16: isOnSunTrajectory()-Test für eine fiktive Reflexion im Winter um
11:00 Uhr

Abbildung 16 zeigt die Funktionsweise der resultierenden isOnSunTrajectory()-Methode

für eine fiktive Reflexion im Winter/Herbst bei 11:00 Uhr. Es ist zu erkennen, dass

der Ellipsenbogen nur einen für diese Uhrzeit charakteristischen Ausschnitt anzeigt.

42

Darüber hinaus liegt der Bogen aufgrund der Deklination in der südlichen Hemisphäre

und zeigt so nur Ausschnitte von 180◦ bis 360◦.

Für Reflexionen morgens und abends kann ein ähnliches Verfahren angewandt werden,

jedoch wird hier als Referenz die Erdkontur angenommen. Dazu wird zunächst mit ei-

nem PointPolygonTest() geprüft, ob der Punkt innerhalb der Erdkontur liegt und

wenn ja, wie groß seine Distanz zu dieser ist. Ist sie mehr als die Dicke d vom Schei-

benrand entfernt, so kann es sich um keine Reflexion handeln. Ebenso wird wieder ein

Korridor festgelegt, in dem sich der Winkel α befinden muss, um als Sonnenreflexion

eingestuft zu werden.

Abbildung 17: isSunReflection()-Test für einen Punkt P am Rand der Erdscheibe
um 1:15 Uhr

Abbildung 17 zeigt die Parameter und die aus ihnen aufgespannte Fläche am Rand der

Erdscheibe für einen Test einer Reflexion um 1:15h im Sommer. Es ist anzumerken,

dass auch hier die Deklination auf die Lage von oberer und unterer Grenze addiert wird

und sich somit eine Abhängigkeit von den Parametern

• Datum (DayOfYear und damit Deklination δ)

• Uhrzeit (Stunden und Minuten, keine Sekunden)

• sowie (x, y)- bzw. (dP (x,y), α)-Position der Reflexion

ergibt.

Damit der Algorithmus nur Regelmäßigkeiten am Morgen und Abend filtert ist festge-

legt, dass er von 19:00h bis 5:00h morgens aktiv ist. Eine Unterscheidung von Sommer-

und Winterzeit ist nicht notwendig, da die UTC als Standard-Zeitskala angenommen

43

wird. Den Rest des Tages übernimmt die isOnSunTrajectory()-Methode.

Damit können helle Flecken, die durch eine Sonnenreflexion entstanden sind, gefiltert

werden. Für den Dunklen-Fleck-Algorithmus gelten allerdings andere Voraussetzungen.

Da dieser nur im Infrarot- bzw. WV-Bereich arbeitet, ergeben sich häufig über Land-

massen (speziell Wüsten) dunkle Flecken. Ursache dafür ist der geringe Wassergehalt

über trockenen Flächen und somit ein geringes Reflexions-Potential im WV-Bereich.

Hier liegt erneut eine Regelmäßigkeit vor, die es von Unregelmäßigkeiten zu unter-

scheiden gilt. Die Lösung stellt eine Maske dar, die nur Landflächen enthält und je

nach aktueller Uhrzeit und Tag im Jahr (siehe oben) einen Teil davon zur Prüfung zur

Verfügung stellt. Ebenso wie bei den Methoden zuvor gibt es dazu variable Parame-

ter, die nachträglich noch anpassbar sind. Durch deren Variation kann die Größe des

Bereichs beliebig verändert werden. Möglich ist dies durch die XML-Datei, die die ent-

sprechenden Parameter enthält (Siehe Kapitel 9.3).

Jedoch führt die Anwendung der Land-Maske dazu, dass ein sehr großer Bereich der Ka-

nal 5-8 Bilder maskiert wird, der aber nicht die in Kapitel 9.2 beschriebenen dunklen

Bereiche besitzt. Somit wird für diese vier Kanäle die isLandmass()-Filtermethode

weggelassen, was einen höheren Bereich für Unregelmäßigkeiten und somit eine bessere

Trefferwahrscheinlichkeit bedeutet.

9.3 Aufbau der GUI

Abbildung 18: Konfigurations-Tab der GUI

Um dem Benutzer des Programms einen möglichst intuitiven Umgang mit der Suche

44

nach Unregelmäßigkeiten zu ermöglichen wird im Folgenden auf den Aufbau des Gra-

phical User Interface (GUI) eingegangen. Dazu wird, wie schon erwähnt, die Bibliothek

QT 5.2.0 verwendet. Sie bietet für C++ einen großen Umfang an Bausteinen für Be-

nutzeroberflächen, darunter auch das Anzeigen von Bildern im OpenCV-Format Mat,

wodurch es für diesen Einsatzfall geeignet ist. Aus Lizenzgründen muss das Programm

darüber hinaus dynamisch kompiliert werden und innerhalb des Programms eine Refe-

renz auf die QT Website vorhanden sein.

Das User Interface ist dabei die Schnittstelle zwischen Eingaben des Benutzers und den

Worker Threads, wie aus Abbildung 11 zu entnehmen ist. So soll ein geordneter Ab-

lauf beim Arbeiten mit dem Programm gewährleistet sein. Das Einstellen von Parame-

tern zur Laufzeit läuft grundsätzlich so ab, dass der GUI-Thread die Eingabe entgegen

nimmt und anschließend an den eigentlichen Empfänger weitergibt. Ebenso stellt der

GUI-Thread den Main-Thread dar, der alle Worker Threads beinhaltet. Dadurch erben

aber die Worker nicht vom Main-Thread, sondern der Main-Thread hat volle Kontrol-

le über untergeordnete Instanzen. So wird es überhaupt möglich, dass beispielsweise

Bilder dem Benutzer angezeigt werden können, die eigentlich aus einem Sub-Thread

kommen.

Das Programm wird in nur einem Fenster konzipiert, in dem alle Einstellungen und

Daten sichtbar sind. Dabei ist die Oberfläche in sog. ”Tab”-Seiten unterteilt wie man

sie aus Browsern kennt. Im ersten Tab sollen dabei grundlegende Konfigurationspara-

meter eingestellt werden (Abbildung 18), damit das Programm gestartet werden kann.

Dazu sind der Pfad zu einem Bildverzeichnis beliebigen Datums von Meteosat-10 sowie

das Zielverzeichnis für gespeicherte Bilder und log-Files, in dem auch die Masken und

eine Parameter-Datei auffindbar sind, notwendig. Ebenso kann hier optional das Erstel-

len von log-Files bzw. der Mailversand (de-)aktiviert werden. Zuletzt befindet sich auf

dieser Seite noch der Startbutton, der erst aktiviert ist, wenn die beiden Pfadeingaben

korrekt sind und sämtliche Konfigurationsdateien und Ordner gefunden wurden.

Darüber hinaus beinhaltet das User Interface zwei Konsolen. Eine, um Debug-Nachrichten

zu lesen und eine, um Namen, Pfad und Datum einer gespeicherten Datei anzuzeigen.

Nachrichten innerhalb der Konsolen fangen stets mit dem Zeitstempel an, an dem sie

veröffentlicht wurden, um Ereignisse besser zuordnen zu können. In diesen beiden Tabs

finden sich dazu noch Counter für die gesamte Anzahl der verarbeiteten sowie gespei-

cherten Bilder und ein zunächst roter Radio-Button, der bei einem Fund für eine Dauer

von 24 Stunden grün wird und so eine Unregelmäßigkeit signalisieren soll, sich nach 24

45

Stunden aber wieder zurücksetzt. Zuletzt ist auf den beiden Seiten noch ein unterge-

ordnetes User-Interface eingebaut, welches das aktuelle bzw. zuletzt gespeicherte Bild

in einem neuen Anzeigefenster darstellt (ShowImage-Thread, siehe Kapitel 9.4).

Ebenso findet sich eine Seite mit Informationen über den aktuellen Zustand des Pro-

gramms. Dazu gehört etwa die Laufzeit seit Programmstart und die Windows-spezifische

Prozess ID. Darüber hinaus existiert eine zweite Informationsseite, die etwas weniger

Parameter enthält, dafür aber auch das aktuell verarbeitete Bild anzeigt. Diese Seite

soll im regulären Betrieb als Hauptanzeigeseite verwendet werden, da sie alle relevanten

Daten auf einer Seite vereint.

Ergänzt wird das User Interface noch von einem Tab, in dem zentrale Parameter der

Algorithmen zur Laufzeit geändert werden können. Dazu existiert eine XML-Datei, die

diese Parameter speichert und so die Daten auch über einen Neustart des Programms

hinaus speichern und wieder öffnen kann. Damit soll gewährleistet sein, dass stets ei-

ne Optimierung des Programms stattfindet. Ebenso können durch einen Abgleich mit

einem XML-Schema, welches nach der Richtlinie des W3C18 angefertigt wurde, auch

andere XML-Dateien mit gleicher Struktur eingelesen werden. So können unterschied-

liche Programmkonfigurationen geladen und gespeichert werden, wodurch eine höhere

Flexibilität gegenüber Anpassungen ermöglicht wird.

9.4 Aufbau der Worker-Threads

Da das Programm mit dem Öffnen, Speichern und dem Verarbeiten von Bildern sowie

der Anzeige aktueller Daten einen recht großen Umfang besitzt, ist es sinnvoll einzelne

Aufgabengebiete zu unterteilen. Damit diese Aufgaben schnell erledigt werden können

wird das in Kapitel 8.4 angekündigte GUI-Worker-Thread Prinzip angewandt. Zunächst

werden der ImageProcessor-Thread und der FilenameManager-Thread implementiert.

Ersterer ist dient dazu das Bild zu öffnen, transformiert es in einen für die Algorith-

men interpretierbaren Zustand und ruft anschließend sämtliche Algorithmen auf. Bei

der Transformation (siehe Kapitel 6) ist zu erwähnen, dass dabei sämtliche Bilder in

ein Bild der Größe 3712 × 3712 übertragen werden, welches der Standardgröße der

Bilder von Kanal 1-11 entspricht. Der FilenameManager überprüft in einem einstellba-

ren Intervall, ob ein neues Bilderset eingetroffen ist und öffnet die Bilder sukzessiv. Da

es vorkommen kann, dass die Bilder eines Zeitpunkts etwa aufgrund von Wartungsar-

beiten nicht übertragen werden, besitzt der Thread eine Timeout-Funktion, die nach

18 Siehe http://www.w3.org/XML/Schema, aufgerufen am 28.07.2015

46

http://www.w3.org/XML/Schema

15-Minuten automatisch die Uhrzeit, zu der nach Bildern gesucht wird, inkrementiert.

So wird sichergestellt, dass das Programm nicht zu lange auf Bilder einer Uhrzeit wartet

und stattdessen dort weiterarbeitet, wo wieder Bilder empfangen wurden. Somit liegt

die Maximalgrenze des Intervalls für die nach einem Bild gesucht wird bei

b 15min

13Bilder
c = 69

sec

Bild
. (17)

Ein Problem bei der Suche nach neuen Dateinamen stellt die in den Randbedingun-

gen spezifizierte Namenkonvention (Tabelle 4, C030) dar. Da sich solche Konventionen

ändern können, wird versucht Dateinamen-unabhängig zu arbeiten. Dazu wird mit ei-

ner weiteren externen Bibliothek Boost19, die einen integrierten Filesystem-Manager

mitbringt, sowie mittels der QFilesystemWatcher-Klasse von QT getestet, wie sich das

Überwachen von Dateisystemen verhält. Beide Methoden funktionieren fehlerfrei bei

wenigen Änderungen über eine Zeitspanne. Dieses Verhalten ändert sich jedoch, wenn

viele Änderungen über einen kurzen Zeitraum stattfinden. Dies ist der Fall, wenn die

Bilder eines neuen Sets fertig sind und bedeutet, dass innerhalb von einer Sekunde 13

Dateien mit Größen zwischen einigen hundert KB und mehreren MB ins Verzeichnis

geschrieben werden. Beide Dateisysteme erkennen zwar, dass Dateien hinzugefügt wur-

den, aber nicht, wie viele und vor allem nicht welche Dateien20. Das führt zwangsweise

dazu, dass anhand der festgelegten Namensrichtlinie geprüft werden muss, welche Da-

teien hinzugefügt wurden.

Somit verlieren die Dateisysteme ihre Wirkung, da für ein Prüfen der Dateien mit dem-

selben Namensschema kein Dateimanager mehr benötigt wird. Im weiteren Verlauf der

Arbeit wird deshalb darauf verzichtet und eine unabhängige Version geschaffen, die le-

diglich auf Dateinamen beruht.

Für zwei weitere Nebenoperationen wurden ebenfalls Threads geschaffen: Mailversand

und Bildanzeige. Ersterer organisiert das Versenden der Mail mit dem von Jakub Pi-

wowarczyk und David Johns entwickelten CSMTP-Mail Client mit SSL/TLS (siehe

[Piwowarczyk und Johns, 2012]). Der zweite Thread wird dann instanziert, wenn der

Benutzer ein Bild im Programm anzeigen lassen möchte. Daraufhin wird die angegebene

Datei geöffnet und in einem separaten Fenster angezeigt. Beim Schließen des Fensters

wird die aktuelle Instanz des Threads zerstört und der belegte Arbeitsspeicher freige-

19Siehe http://www.boost.org/, aufgerufen am 25.07.2015
20Siehe hierzu http://doc.qt.io/qt-4.8/qfilesystemwatcher.html, aufgerufen am

25.07.2015

47

http://www.boost.org/
http://doc.qt.io/qt-4.8/qfilesystemwatcher.html

Abbildung 19: Aktivitätsdiagramm für FilenameManager und ImageProcessor

geben. Dies optimiert die Speichernutzung.

9.5 Routineablauf beim Eintreffen eines neuen Bildes

Dadurch, dass das Programm dauerhaft auf der Bodenstation problemlos betrieben wer-

den soll, kommt dem Routineablauf beim Eintreffen eines neuen Bildes eine wichtige

Rolle zu, welcher im folgenden anhand von Aktivitätsdiagrammen erläutert werden soll.

Zunächst muss das Bild geöffnet werden, was wiederum erfordert, dass dessen Name

bekannt ist. Dazu arbeitet das Programm bei der Suche nach neuen Dateien mit ei-

ner internen Datenstruktur, die Datum, Uhrzeit und Kanal enthält und so abhängig

vom Namen des Vorgängerbildes jeweils eine der Größen inkrementiert. Daraufhin wird

der Dateiname aus den drei Parametern zusammengesetzt und an den ImageProcessor-

Thread übergeben. Dieser versucht mit dem übergebenen Namen diese Datei zu öffnen.

Schlägt die Operation fehl, gibt der FilenameManager zunächst keine weiteren Da-

teinamen aus, sodass auf das aktuelle Bild gewartet wird. Wie oben erwähnt müssen

aber zeitweise ganze Bildersets übersprungen werden, da diese nicht empfangen werden

konnten. Dazu existiert ein Timeout, sodass entweder nach 15-Minuten oder nach dem

erfolgreichen Verarbeiten der Datei wieder ein neuer Dateiname ausgegeben wird. Ab-

bildung 19 zeigt diesen Ablauf in einem Aktivitätsdiagramm.

48

Abbildung 20: Aktivitätsdiagramm für die Bildverarbeitung im ImageProcessor

Innerhalb des ImageProcessors werden die Operationen sequentiell abgearbeitet (Sie-

he Abbildung 20). In Abhängigkeit davon, ob bei einem der Algorithmen eine Unre-

gelmäßigkeit gefunden wurde, ist die Validität des Fundes zu überprüfen, indem die

Ergebnisse u.a. durch die Sonnenreflexion-Methoden gefiltert werden. Wird einer dieser

Tests bestanden, müssen die Daten für einen Mailversand gespeichert werden. Handelt

es sich zusätzlich um das letzte Bild in einem Set wird ein Signal mit den Informationen

über die Unregelmäßigkeiten an den Mail Thread emittiert.

Das User Interface wird nach einem erfolgreichen Durchlauf aktualisiert. Dazu gehört

ein Update der Anzeigen in sämtlichen Tabs sowie der Übernahme von geänderten

Parametern, wie etwa die für die Algorithmen. Ebenso können anschließend wieder

Nutzereingaben getätigt werden, beispielsweise Start und Stop des Programms.

9.6 Implementierung auf bestehender Bodenstation

Da im Laufe der Entwicklung eine Testumgebung geschaffen wurde, die der Bodenstati-

on gleicht, kann eine schnelle Portierung auf diese möglich gemacht werden. Um die Soft-

ware einzurichten benötigt es zwei Komponenten. Diese bestehen aus dem Programm

selbst, inklusive zusätzlicher Bibliotheken und dem Konfigurations- bzw. Arbeitsver-

zeichnis. Während des Betriebes muss gewährleistet sein, dass diese Daten noch dort

liegen, wo sie bei der Initialisierung gespeichert waren - sonst kommt es zu unkontrollier-

baren Fehlermeldungen und Abstürzen. Darüber hinaus ist der Ort des Zusatzverzeich-

49

nisses jedoch variabel, sodass das Programm auch auf Bilder von anderen Festplatten

oder sogar über das Netzwerk zugreifen bzw. speichern kann.

Ebenso ist zu erwähnen, dass die Bodenstation neben diesem Programm auch noch

Andere betreibt, was zu einer hohen Ressourcennutzung im Normalbetrieb führt. Dass

das Programm in diesem Betrieb lauffähig ist, wird in der Evaluation gezeigt.

10 Evaluation

10.1 Überblick

In der Evaluation wird zunächst auf die Ressourcennutzung und Laufzeit einzelner

Funktionen eingegangen. Danach wird die Treffergenauigkeit der Algorithmen getes-

tet und erläutert, warum darunter auch Falschmeldungen zu finden sind und auf die

Hypothese eingegangen, ob Algorithmen mit gleichen Vorgehensweisen auch dieselben

Ergebnisse hervorbringen. Dabei wird auch auf die Minimalgröße für Detektionen der

jeweiligen Algorithmen eingegangen. Zuletzt werden die tatsächlichen Funde im Laufe

der Entwicklungszeit ausgewertet und geprüft, ob die in der Implementierung gesetzte

Richtlinie, dass Unregelmäßigkeiten immer gefunden werden sollen, auch wenn dies be-

deutet, dass dadurch auch mehr Regelmäßigkeiten nicht gefiltert werden, eingehalten

werden konnte.

10.2 Performancetests des Programms auf der Testumgebung und

der Bodenstation

Die Laufzeit der Bildprozessierung wurde mit Hilfe eines Timers gemessen, der Milli-

sekunden erfasst. Dabei wurde der Stand des Timers vor dem Aufrufen der Funktion

in einer Variable gespeichert und nach dem Ende der Funktion die Differenz zwischen

dem gespeicherten Timerstand und dem aktuellen Timerstand gebildet. Somit ergibt

sich eine valide Schätzung für die Laufzeit der jeweiligen Funktionen. Tabelle 6 zeigt

die minimale, maximale, die durchschnittliche Zeit sowie den Anteil am Durchschnitt

einer Funktion im ImageProcessor.

Es ist erkennbar, dass ein sehr großer Teil der Laufzeit auf die Transformation des Bil-

des fällt, während die Algorithmen samt Filterfunktionen dennoch den größten Anteil

an der Gesamtzeit haben. Für den Fall, dass ein Algorithmus nichts findet, ist die Zeit

50

zum Speichern eines Bildes entsprechend 0, sodass der Gesamtanteil aufgrund der Bil-

dung des arithmetischen Mittelwerts gering bleibt, aber in Einzelfällen zu signifikanter

Verzögerung führen kann. Auch die Gesamtlaufzeit kann mit 2,13 Sekunden zu 4,70 Se-

kunden um mehr als das Doppelte variieren, was auf den erhöhten Aufwand bei Bildern

von Kanal 12 zurückzuführen ist.

Funktion Min [ms] Mittel

[ms]

Max [ms] Anteil

[%]

Öffnen 157 158.2 167 5.2

Transformation 611 1048.8 1241 34.3

Heller Fleck 100 114.0 250 3.7

Dunkler Fleck 120 135.1 317 4.4

Formenerkennung 407 540.2 821 17.6

Linienerkennung 482 671.4 1046 21.9

Kreiserkennung 253 344.0 614 11.2

Speichern 0 50.1 241 1.6

Gesamt 2130 3061.8 4697 100.0

Tabelle 6: Laufzeit des ImageProcessors

Ebenso wurde die Ressourcennutzung für das gesamte Programm ermittelt. Eine Be-

trachtung der einzelnen Funktionen ist hier nicht möglich, da Windows die Speicher-

und CPU-Nutzung lediglich für das gesamte Programm angibt. Ermittelt wurden diese

mit dem Windows-internen Resource Monitor, der vor dem Start des Programms initia-

lisiert wurde. Abbildung 21 zeigt den Verlauf von CPU-Nutzung in % für den gesamten

Prozessor und die Belegung des physikalischen Speichers in MB. Als Testsystem wurden

ein AMD Phenom II X4 965 BE mit 4 × 3.0GHz sowie 10GB 1333MHz DDR3 RAM

auf Windows 8.1 Pro 64-bit verwendet.

Für den Zeitpunkt t=0 ist das Programm bereits geöffnet, jedoch nicht initialisiert bzw.

gestartet. Nachdem dies geschehen ist, kann ein deutlicher Anstieg beider Kurven beob-

achtet werden, der daraus resultiert, dass das Programm in diesem Moment sämtliche

Masken, den Konfigurationsfile sowie Threads öffnet bzw. initialisiert. Im Anschluss

pendelt sich der Verbrauch bei ca. 230MB Arbeitsspeicher und 20% CPU Nutzung ein

und erhöht sich für kurze Zeit, wenn ein neues Bild geöffnet wird, abhängig davon

wie groß das Bild ist. Beim direkten Vergleich beider Graphen ist deutlich zu erken-

nen, dass die Häufigkeit der Peaks bei 20s gegenüber denen bei 10s beim Doppelten

liegt. Das bedeutet, dass das Programm in beiden Fällen die meiste Zeit im Idle-Modus

51

Abbildung 21: CPU- und RAM-Auslastung bei einem Watchdog-Intervall von 10s
bzw. 20s

verbringt und diesen nur für neue Bilder verlässt. Eine Optimierung gerade für den

Idle-Modus würde dem Programm einen deutlichen Performanceschub bei gleichzeiti-

ger Ressourcenschonung geben. Jedoch ist der auf der Bodenstation verbaute Prozessor

leistungsfähiger gegenüber dem in diesem Test verwendeten, sodass der verbrauchte

Anteil an der gesamten Rechenleistung für den Einsatzfall noch gesenkt wird.

10.3 Evaluation der Treffergenauigkeit der Algorithmen

Im Folgenden soll anhand der aufgezeichneten Bilddaten ermittelt werden, wie gut die

Algorithmen Unregelmäßigkeiten finden. Dabei sind von den insgesamt 12.825 Dateien

aus insgesamt vier Monaten zwei der Bildersets mit Unregelmäßigkeiten behaftet, die

von hellen bzw. dunklen Flecken resultieren. Um eine bessere Aussage über die Trefferge-

nauigkeit zu geben werden deshalb noch artifiziell angelegte Testszenarien durchlaufen

und geprüft, ob die Algorithmen diese erkennen. Solche Aufnahmen werden mit der

Bildverarbeitungssoftware GIMP bearbeitet.

Zunächst wird der Helle-Fleck-Algorithmus näher betrachtet. Dieser konnte, wie auch

der Dunkle-Fleck-Algorithmus mit echten Unregelmäßigkeiten getestet werden. Wie zu

52

Abbildung 22: Detektion zweier Flecken,
wobei der zweite wieder verworfen wird
(blau = Bahn der Sonnenreflexion)

Abbildung 23: Sonnenreflexion einer Wolke
als Falschmeldung

erwarten zeigt sich, dass der Fleck bei Annäherung an die Sonnenreflexionsbahn ent-

sprechend herausgefiltert wird. In Abbildung 22 ist zu erkennen, wie zwei künstlich

hinzugefügte Flecken auf den Bild erkannt bzw. wieder gefiltert werden, da einer der

beiden auf der aktuellen Reflexionsbahn dieses Tages bzw. dieser Uhrzeit liegt.

Insbesondere in den Morgen- und Abendstunden war das Ziel die auftretenden Son-

nenreflexionen gezielt auszulassen. Dies konnte teilweise erreicht werden. Jedoch kann

aufgrund fehlender Testaufnahmen eines Jahres nicht immer gewährleistet sein, dass

die Ellipse auch tatsächlich dort anliegt, wo der aktuelle Pfad der Sonnenreflexion ist.

So ergeben sich zeitweise Falschmeldungen, wie in Abbildung 23 dargestellt.

Abbildung 24: Detektion
von dunklen Flecken am
Rand eines Bildes von
Kanal 5

Die Hypothese, dass der Dunkle-Fleck-Algorithmus auf-

grund seiner Ähnlichkeit zum Hellen-Fleck-Algorithmus

auch ähnliche Ergebnisse liefert, bestätigt sich. Die Anwen-

dung der Land-Maske führt jedoch dazu, dass ein großer

Bereich entsteht, in dem potenzielle Unregelmäßigkeiten

als Sonnenreflexion gefiltert werden. Eine Verkleinerung des

Bereichs durch Variation der isLandmass()-Parameter ist

deshalb für die Zukunft erforderlich. Abbildung 24 zeigt

eine künstliche Detektion in einem hellen und dunklen Be-

reich, wobei diese sich weit am Rand befinden. Beide wer-

den erkannt, was zeigt, dass der Algorithmus für die meisten

Uhrzeiten auch Pixel am Rand erkennen kann, kontrastu-

nabhängig ist und bis zu einem gewissen Grad auch unabhängig von den umgebenden

Pixeln arbeitet. Dabei ist zu erwähnen, dass die direkten Nachbarpixel einer Detek-

tion ebenfalls stets in die Threshold-Operation mit einbezogen werden und niemals

53

ausschließlich der zentrale Pixel betrachtet wird. Wären die Punkte außerdem zu ei-

ner anderen Uhrzeit vorgekommen, so könnte die isSunReflection()-Funktion dazu

führen, dass beide nicht als Unregelmäßigkeit erkannt werden.

Abbildung 25:
Erfolgreiche und
fehlgeschlagene Detektion
eines Rechtecks

Der Formenalgorithmus besitzt, wie auch die Folgenden

keinerlei reale Aufnahmen zum Testen, weshalb dieser aus-

schließlich auf künstlich produzierten Bildern beruht und

auch für diese optimiert wurde. Damit der Algorithmus

Formen findet, aber gleichzeitig wenige Fehlmeldungen lie-

fert, ist der Schwellwert für den Canny-Operator während

der Implementierung angehoben worden. Die Evaluierung

dieses Schrittes zeigt, der Schwellwert teilweise noch höher

hätte liegen können. Darauf wurde verzichtet, um mögliche

Unregelmäßigkeiten nicht zu übersehen. Abbildung 25 zeigt

ein Beispiel für eine günstige Detektion bei kontrastreichem Hintergrund, während

rechts davon ein Fehlschlag in einem kontrastschwachen Bereich dokumentiert wird.

In Ersterer deutlich erkennbar ist die Farben- und Größenunabhängigkeit des Algorith-

mus, was ihn ebenso für andere Einsatzgebiete potenziell interessant macht.

Abbildung 26: Detektion
zweier Geraden an einer
dunklen Linie

Der Linienalgorithmus kann nach seiner Optimierung zu

einem probabilistischen Hough-Algorithmus zwischen Li-

nien innerhalb und außerhalb der Erdscheibe unterschei-

den. Dies ist wichtig, da damit ein großer Teil der

fälschlicherweise gefundenen Linien wegfällt. Er ist in der

Lage Linien innerhalb der Erdscheibe zu erkennen, wie

exemplarisch in Abbildung 26 zu erkennen ist. Dabei ist

er auch kontrastabhängig, jedoch aufgrund seines signi-

fikant geringeren Canny-Schwellwertes (von 200:600) ge-

genüber dem Formenalgorithmus (1000:2000) deutlich we-

niger anfällig auf Kontraständerungen. Dabei kann es dazu

kommen, dass der Algorithmus Geraden an Stellen erkennt,

an denen aber keine vorliegen.

Die Ursache dieses Problems stellt die grundlegende Herangehensweise an die Lini-

ensuche dar. Der Hough-Algorithmus sucht innerhalb eines Bildes Linien, auf denen

möglichst viele Konturpunkte liegen, egal woher diese Kontur stammt. Für den Ein-

54

satzfall ist diese Herangehensweise zwar auch zielführend, jedoch wäre eine Suche nach

geraden Konturen (wie sie entlang einer Linie vorkommen) vorteilhafter gewesen. Diese

Problematik äußert sich vor allem dann, wenn Sonnenreflexionen innerhalb des Bildes

existieren, die hohe Kontraständerungen auf einem kleinen Bereich und damit viele

harte Kanten hervorrufen. Dann registriert der Algorithmus diese und findet mehrere

Linien entlang dieser Konturen.

Um die Häufigkeit solcher Falschmeldungen gering zu halten, sind die Schwellwerte

angepasst worden, was wiederum dazu führt, dass manche Geraden gar nicht erkannt

werden. Dadurch, dass die Parameter des Programms aber anpassbar sind können die

zwei zentralen Schwellwerte dennoch so eingestellt werden, dass es weniger Falschmel-

dungen gibt. Der Erste ist dabei deutlich kleiner, als etwa der für die Formenerkennung

(siehe Oben), wodurch grundsätzlich, wie in Abbildung 8 erkennbar, mehr Konturen

gefunden werden. Um dabei die Anzahl der gefundenen Linien gering zu halten wird

der zweite Schwellwert21 erhöht. So ergibt sich, dass eine Linie erst dann gefunden wird,

wenn fast alle Punkte auf dieser auch vorhanden sind - wie es bei einer geraden Kontur

immer der Fall ist.

Der Kreis-Algorithmus besitzt aufgrund seiner strukturellen Ähnlichkeit zur Liniener-

kennung dasselbe Problem, jedoch nicht ganz so stark ausgeprägt, da selbst Binärbilder

mit vielen Kanten nur selten so viele Punkte auf einem Kreisbogen haben, wie der

Schwellwert des Algorithmus (Standardeinstellung des Programms sind 50 Punkte) es

vorgibt. Ein Vorteil dieses Algorithmus ist dabei auch, dass er Kreise finden kann, die

nicht komplett sichtbar sind, so lange zumindest ein Teil der Kontur erkannt wird. Dies

ist aber nur bei einer gewissen Mindestgröße gegeben, worauf im folgenden Kapitel

eingegangen wird.

10.4 Minimale Größe der Formen und Flecken für eine Detektion

Um den minimalen Durchmesser d für die einzelnen Formen zu ermitteln wurden in ein

Testbild kleiner werdende Formen mit gleicher Orientierung und Helligkeit vor einen

kontrastreichen bzw. -armen Hintergrund gesetzt und getestet, bis zu welchem Durch-

messer d bzw. Radius r die Form als solche erkannt wird. Für die hohe Kontrastdifferenz

der Hellwerte (bzw. Dunkelstufen) zwischen Form und Hintergrund wurden dabei 100,

für die niedrige 10 angenommen.

Diese Messung ist notwendig, da beispielsweise die Winkelberechnung des Mehreck-

21Für die Anzahl der Punkte, die auf einer Linie sein müssen, um als solche erkannt zu werden

55

Algorithmus stärker verfälscht wird, je kleiner die Form wird, da Pixel nur in Winkeln

als Vielfaches von 45◦ zueinander liegen können. Auch bei den Fleckenalgorithmen

kann es vorkommen, dass bei kleiner werdendem hellen bzw. dunklen Bereich dieser

nicht mehr erkannt wird, weshalb hierfür ebenfalls der Minimalradius evaluiert wird.

Detektierte Form Hoher

Kontrast [px]

Niedriger

Kontrast [px]

Kreise r = 20 r = 52

Fünfecke d= 77 -

Sechsecke d = 80 -

Vierecke d = 25 -

Heller Fleck r = 4 r = 4

Dunkler Fleck r = 5 r = 5

Tabelle 7: Minimale Größe von Formen bzw. Flecken, um für die Algorithmen
detektiert zu werden

Der Kreisalgorithmus liefert, wie bereits in Kapitel 9.1.1 angegeben, für Radien kleiner

als 5 Pixel keine verwertbaren Ergebnisse mehr, weshalb dieser Bereich ausgegrenzt

wurde. Auch darüber lässt sich kein Kreis finden, erst bei einem Radius von 20 Pixeln

werden Kreise erkannt. Für Teile eines Kreisbogens gilt, dass mindestens 55 Kontur-

punkte auf diesem liegen müssen, um als Kreis detektiert werden zu können, wobei der

Wert nachträglich anpassbar ist. Bei geringem Kontrastverhältnis liefert der Algorith-

mus erst bei mehr als doppelt so großen Kreisen ein Ergebnis.

Der Formenalgorithmus für Fünf- und Sechsecke ist derjenige, der am meisten von der

zunehmenden Verpixelung der Formen leidet, da diese auf eine korrekte Winkelmessung

aufbauen. Folgend werden die Formen auch nur bis zu einer Minimalgröße bis zu 80 Pi-

xeln erkannt. Bei geringem Kontrast kann der Algorithmus aufgrund fehlender Kanten

keine Ergebnisse liefern.

Der Formenalgorithmus für Vierecke liefert dagegen bei hohem Kontrast ein besse-

res Ergebnis, da er als Einziger von der Verfälschung der Winkelmessung weitestge-

hend ausgenommen ist (Seine Innenwinkel betragen im Optimalfall 90◦). So werden

die rechtwinkligen Innenwinkel immer erkannt und die minimale Größe des Bereichs

lediglich durch die implementierte Flächenbegrenzung limitiert. Allerdings verschlech-

tert sich auch er,wie die anderen Formenalgorithmen, wenn sich das Kontrastverhältnis

verschlechtert.

56

Dies gründet darauf, dass mit dem Canny-Operator als Ausgangspunkt alle Algorith-

men auf einer korrekten Konturfindung aufbauen. Werden die Kanten unschärfer und

damit das Kontrastverhältnis kleiner, werden diese nicht mehr gefunden. Da dies ein

grundlegendes Problem darstellt, ist der Formenalgorithmus für Vier-, Fünf- und Sechs-

ecke für diesen Anwendungsfall ungeeignet.

Helle und dunkle Flecken sind bei der Größe des Bereichs lediglich dadurch limitiert,

dass je nach Helligkeitswert ein Bereich von minimal 4× 4 Pixeln benötigt wird. Dieser

Bereich ist somit signifikant kleiner als der, der für die Formen benötigt wird. Ebenso

arbeitet der Algorithmus kontrastunabhängig, weshalb er auch bei unscharfen Aufnah-

men noch Unregelmäßigkeiten erkennen kann, vorausgesetzt die Helligkeitswerte bleiben

gleich.

10.5 Übersicht über gefundene Unregelmäßigkeiten

Die insgesamt fünf Bilder der zwei Unregelmäßigkeiten sollen in diesem Kapitel vorge-

stellt werden, wobei auch auf deren Ursprung eingegangen wird.

Die erste Unregelmäßigkeit stellt die vom 28.04.2015 dar und ist ein heller Fleck auf

den sichtbaren Kanälen 1, 2 sowie dem HRV-Kanal 12f. Seine Position ist über dem

östlichen Teil des afrikanischen Kontinents in einem relativ wolkenarmen Gebiet, was

diese als Ursache unwahrscheinlich macht. Jedoch liegt der Punkt zentriert über einem

Flusslauf bzw einem kleineren See, was eine Reflexion an der Wasseroberfläche vermu-

ten lässt. Durch seine längliche Form und schwarze Ränder kann es jedoch ebenso um

einen Bildfehler des optischen Systems handeln. Eine Überprüfung durch den implemen-

tierten Hellen-Fleck-Algorithmus mit anschließender Filterung nach Sonnenreflexionen

zeigt jedoch deutlich, dass der Fleck zentral in dem Bereich für Sonnenreflexionen zu

dieser Uhrzeit liegt. Dennoch lassen sich andere Ursachen für den Ursprung dieses hel-

len Flecks nicht ausschließen.

Darüber hinaus wurden mehrfach dunkle Flecken ebenfalls auf dem östlichen Teil von

Afrika entdeckt, die alle die gleiche Position und Größe haben. Ein Vergleich mit einer

Karte macht sichtbar, dass die Kontur des Punktes genau der des ”Lake Tana” ent-

spricht. Es liegt also nahe, dass es sich bei diesem dunklen Fleck um den See handelt,

der bei passendem Sonnenstand nur eine geringe Menge an Licht in einem speziellen

Infrarotbereich reflektiert, wodurch in diesem Bereich des Bildes ein dunkler Fleck ent-

steht.

57

Warum dies die beiden einzigen Unregelmäßigkeiten sind, die während Entwicklung,

Implementierung und Test gefunden werden konnten, soll im Folgenden diskutiert wer-

den.

11 Diskussion und Ausblick

11.1 Diskussion der Evaluation

Die Evaluation hat zunächst gezeigt, dass das Programm unter den gegebenen Umständen

in der Lage ist auf der Bodenstation für einen längeren Zeitraum die empfangenen Bil-

der auszuwerten bzw. die Ergebnisse adäquat zu präsentieren. Darüber hinaus konnte

festgestellt werden, dass es ebenso auf anderen Betriebssystemen und Architekturen

funktioniert. Dies zeigt, dass das Programm mit geringem Aufwand auch auf weite-

re Systeme portierbar ist. Jedoch konnte durch den großen Umfang der Software nur

begrenzt sichergestellt werden, dass das Programm optimal resourcensparend arbeitet,

sodass in diesem Bereich eine Optimierung der internen Prozesse gerade für kleiner di-

mensionierte Systeme notwendig ist.

Im Weiteren konnte darüber hinaus belegt werden, dass es möglich ist die Bilder von

Meteosat-10 mit eigens entwickelten Algorithmen auf Unregelmäßigkeiten zu unter-

suchen. Die Evaluation der Treffergenauigkeit hat jedoch auch gezeigt, dass es einer-

seits eine schwierige Aufgabe darstellt Unregelmäßigkeiten mit konkreten Werten zu

charakterisieren, wodurch sich ein Zustand der ständigen Anpassung einstellt. Eine

nachträgliche Optimierung konnte durch eine Parameterdatei im XML Format reali-

siert werden, die sämtliche zentralen Parameter enthält.

Andererseits wurde die in Kapitel 5.2 aufgestellte Hypothese belegt, dass die meisten

Himmelsphänomene nur sehr selten auf Bildern festgehalten werden können, was die

geringen Anzahl an Detektionen aus Kapitel 10.5 belegt. Das macht deutlich, dass eine

genaue Untersuchung der Herkunft und Ausprägung einzelner Unregelmäßigkeiten nur

dann möglich ist, wenn man über einen langen Zeitraum unter gleichen Bedingungen

einen möglichst großen Bereich der Atmosphäre überwacht.

58

11.2 Ausblick und Erweiterbarkeit

Die Software bietet aufgrund ihrer flexibel gestalteten Struktur gleich mehrere Möglichkeiten

diese relativ einfach zu ändern bzw. vergrößern. Es ist deshalb denkbar, dass der MSG-

PhenomenaDetector in zukünftigen Projekten um Funktionen, wie etwa die Folgenden,

erweitert wird.

So bietet das Programm die optimale Grundlage für ein Archivierungssystem der Meteosat-

10 Wetteraufnahmen. Das hierzu nötige IO-Interface ist aufgrund der Einbindung von

OpenCV und Qt bereits gegeben, es fehlt lediglich eine Funktion, die den Status der

Festplatte überwacht und nach Bedarf alte Bilder löscht. Ebenso sind sämtliche Al-

gorithmen auch auf beliebige andere Aufnahmen von Wettersatelliten anwendbar, wie

etwa Meteosat-7 oder 9. Auch ein Einsatz auf Bildern der NOAA-Satelliten in Polaror-

bits wäre denkbar, jedoch setzt dies eine Anpassung der Sonnenreflexionsalgorithmen

voraus, da diese dann nicht mehr von einer statischen Position des Sonnenstandes aus-

gehen können.

Darüber hinaus kann das Programm mit wenigen Änderungen auf anderen Architektu-

ren bzw. Betriebssystemen lauffähig gemacht werden. Das so entstandene System, etwa

ein Kleinstrechner, wie der Raspberry-Pi, könnte dazu auch über ein Netzwerk auf die

Bilder zugreifen, sodass keine direkte Kopplung von Programm und Bodenstationsrech-

ner notwendig ist.

Das im Rahmen dieser Arbeit entwickelte Programm stellt einen ersten Schritt zur Er-

forschung von Himmelsphänomenen mit Satellitendaten dar und bietet somit eine Basis

zur weiteren Analyse dieser Anomalien. Da es sich hierbei um eine Grundlagenarbeit

handelt, bietet die Software eine Plattform um die Implementierung neuer Algorithmen

möglich zu machen. Dabei ist es dem Entwickler freigestellt, ob er die bestehenden und

erfolgreich angewandten Algorithmen um neue Funktionen ergänzt oder versucht neue

Ideen einzubauen, um so auf anderem Wege Unregelmäßigkeiten sichtbar zu machen.

Zusammenfassend lässt sich feststellen, dass mit der entwickelten Software “MSG-

PhenomenaDetector” die Auswertung von Unregelmäßigkeiten in den Bilddaten von

Meteosat Wettersatelliten erfolgreich durchführbar ist.

59

Abbildungsverzeichnis

1 Die SkyCAM der Universität Würzburg (Quelle: JMU Würzburg) . . . 12

2 Zusammengesetztes Bild vom 23.05. 20:00h aus Kanälen 1-11 mit skiz-

zierter Kontur der Landmassen sowie möglichen Ursachen für (Un-) Re-

gelmäßigkeiten (1-4) . 15

3 Midnight Effect auf einem Bild von Meteosat-6 von ’97 (Quelle: Eumetsat

2015) . 16

4 Meteor auf einem Bild von Meteosat-10 (Quelle: Eumetsat 2015) 17

5 Verarbeitungsweg eines Bildes . 26

6 Durchlauf eines Bildes . 27

7 Konturenmethode mit Mittelpunkt . 28

8 Canny-Algorithmus auf Satellitenbild angewandt 29

9 Die Hough Transformation von vier Punkten vom (x,y)-Raum in den

(θ,rθ)-Raum. Die Schnittpunkte der Kurven stellen die Geraden dar, die

durch alle vier Punkte geht. Es gibt deshalb zwei Schnittpunkte, weil

eine volle 360◦ Drehung angenommen wurde (Und Geraden, die im 180◦

Winkel liegen sind effektiv die Gleichen, [Dawson-Howe, 2014]) 31

10 Skizziertes UML-Sequenzdiagramm zum Verhalten von GUI und Worker

Thread beim Verarbeiten von Bildern 33

11 Interner Nachrichtenverlauf der Threads für den Fall, dass der User das

aktuelle Bild anzeigen lässt . 34

12 Fund einer Linie am Rand

eines Bildes von Kanal 12

. 36

13 Maske für Ränder von Kanal 12 in diesem Bereich (weiß = maskierter

Bereich) . 36

14 Sonnenreflexionen an drei unterschiedlichen Tagen: 23.05. (rot), 09.06.

(blau) und 10.06. (grün) . 38

15 Annäherung des Pfades der Sonnenreflexion am Tag durch einen Ellip-

senbogen für den 10.06. 39

16 isOnSunTrajectory()-Test für eine fiktive Reflexion im Winter um 11:00

Uhr . 41

17 isSunReflection()-Test für einen Punkt P am Rand der Erdscheibe

um 1:15 Uhr . 42

60

18 Konfigurations-Tab der GUI . 43

19 Aktivitätsdiagramm für FilenameManager und ImageProcessor 47

20 Aktivitätsdiagramm für die Bildverarbeitung im ImageProcessor 48

21 CPU- und RAM-Auslastung bei einem Watchdog-Intervall von 10s bzw.

20s . 51

22 Detektion zweier Flecken, wobei der zweite wieder verworfen wird (blau

= Bahn der Sonnenreflexion) . 52

23 Sonnenreflexion einer Wolke als Falschmeldung

. 52

24 Detektion von dunklen Flecken am Rand eines Bildes von Kanal 5 . . . 52

25 Erfolgreiche und fehlgeschlagene Detektion eines Rechtecks 53

26 Detektion zweier Geraden an einer dunklen Linie 53

Tabellenverzeichnis

1 Eigenschaften der Kanäle von Meteosat-10 (Quelle: Eumetsat) 7

2 GSD in der Höhe von Flugzeugen, der der ISS sowie GPS-Satelliten . . 14

3 Approximiertes Albedo für verschiedene Oberflächen der Erde (Quelle:

[Conway, 1997]) . 14

4 Randbedingungen . 24

5 Anforderungen . 25

6 Laufzeit des ImageProcessors . 50

7 Minimale Größe von Formen bzw. Flecken, um für die Algorithmen de-

tektiert zu werden . 55

61

Literaturverzeichnis

[Bradski und Kaehler, 2008] Bradski, G. und Kaehler, A. (2008). Learning OpenCV -

Computer Vision with the OpenCV Library. O’Reilly Media.

[Canny, 1986] Canny, J. (1986). A computational approach to edge detection. IEEE

Trans. on Pattern Analysis and Machine Intelligence.

[Conway, 1997] Conway, E. D. (1997). An Introduction to Satellite Image Interpretati-

on. The Johns Hopkins University Press.

[Dawson-Howe, 2014] Dawson-Howe, K. (2014). A practical introduction to Computer

Vision with OpenCV. John Wiley and Sons Ltd.

[Erhardt, 2008] Erhardt, A. (2008). Einführung in die digitale Bildverarbeitung. View-

eg+Teubner.

[Fleck, 2013] Fleck, B. (2013). Staring at the sun - soho factsheet. Technical report,

European Space Agency, ESA.

[Kayal, 2015] Kayal, H. (2015). Multi sensor plattform. Lehrstuhl für Informatik VIII

(Hrsg.): Presentation about ADS-B, EumetCast, NOAA and SkyCAM.

[Ley et al., 2009] Ley, W., Wittmann, K., und Hallmann, W. (2009). Handbook of Space

Technology. John Wiley and Sons Ltd., 1. auflage edition.

[Mandl, 2014] Mandl, P. (2014). Grundkurs Betriebssysteme, 4. Auflage. Springer

Vieweg.

[Müller, 2007] Müller, J. (2007). MSG Level 1.5 Image Data Format Description.

Eumetsat. Verfügbar auf: http://www.eumetsat.int/website/wcm/idc/idcplg?

IdcService=GET_FILE&dDocName=PDF_TEN_05105_MSG_IMG_DATA&RevisionSelec

tionMethod=LatestReleased&Rendition=Web, version 7, aufgerufen am 18.07.2015.

[Nash, 2012] Nash, B. (2012). Detecting simple shapes in an image. Verfügbar auf http:

//opencv-code.com/tutorials/detecting-simple-shapes-in-an-image/, auf-

gerufen am 19.07.2015.

62

http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_TEN_05105_MSG_IMG_DATA&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_TEN_05105_MSG_IMG_DATA&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_TEN_05105_MSG_IMG_DATA&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://opencv-code.com/tutorials/detecting-simple-shapes-in-an-image/
http://opencv-code.com/tutorials/detecting-simple-shapes-in-an-image/

[Piwowarczyk und Johns, 2012] Piwowarczyk, J. und Johns, D. (2012). SMTP Cli-

ent. Verfügbar auf http://www.codeproject.com/Articles/98355/SMTP-Client-

with-SSL-TLS, aufgerufen am 25.07.2015.

[Roa und Felipe, 2012] Roa, C. und Felipe, A. (2012). Activity in the lunar surface:

Transient lunar phenomena. Tumbaga journal of the University of Tolima - Vol 1,

No 7.

63

http://www.codeproject.com/Articles/98355/SMTP-Client-with-SSL-TLS
http://www.codeproject.com/Articles/98355/SMTP-Client-with-SSL-TLS

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus

fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich

gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen

Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ort, Datum Unterschrift

64

	Abkürzungsverzeichnis
	Kurzfassung
	Einleitung
	Wetterbeobachtung mit Satelliten
	Überblick über Meteosat-10 und Eumetcast-System
	Vorstellung des Lehrstuhls und dessen Bodenstation
	Hintergrund der Arbeit

	Aufgabenstellung
	Stand der Technik
	Lunar Transient Phenomena Observation
	ESA Solar and Heliospheric Observatory
	SkyCAM

	Betrachtung einzelner Elemente in den Aufnahmen von Wettersatelliten
	Regelmäßig auftretende Vorgänge
	Unregelmäßigkeiten mit Beispiel und Herkunft einzelner Ereignisse
	Bildfehler des optischen Systems
	NEOs und andere Körper
	Leuchterscheinungen in der Atmosphäre

	Nicht erklärbare Erscheinungen und SETI

	Grundlagen der Digitalen Bildverarbeitung
	Vorgehensweise beim Arbeiten mit Computer Vision
	Arbeiten mit OpenCV

	Randbedingungen und Anforderungen an das Programm
	Konzept
	Überblick
	Vorstellung und Entwicklung der Algorithmen zur Erkennung von Unregelmäßigkeiten
	Helle- und Dunkle-Flecken-Erkennung
	Formen-Erkennung

	Algorithmen zur Filterung von Sonnenreflexionen
	GUI und Worker Thread Prinzip

	Implementierung
	Anwendung der Algorithmen zur Erkennung von Unregelmäßigkeiten
	Formen-Algorithmen
	Heller- und Dunkler-Fleck-Algorithmus

	Erkennung von Regelmäßigkeiten
	Aufbau der GUI
	Aufbau der Worker-Threads
	Routineablauf beim Eintreffen eines neuen Bildes
	Implementierung auf bestehender Bodenstation

	Evaluation
	Überblick
	Performancetests des Programms auf der Testumgebung und der Bodenstation
	Evaluation der Treffergenauigkeit der Algorithmen
	Minimale Größe der Formen und Flecken für eine Detektion
	Übersicht über gefundene Unregelmäßigkeiten

	Diskussion und Ausblick
	Diskussion der Evaluation
	Ausblick und Erweiterbarkeit

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Literaturverzeichnis

