
1

DEVELOPER MANUAL

SOFTWARE-INTERNSHIP
Detection of the Hessdalsphenomena in video

streams with OpenCV

Lukas Beierlieb, Lukas Wolz, Jan-Philipp Heilmann

Adviser
Prof. Hakan Kayal

Ana Vodopivec

2

Table of contents
Introduction ... 3

General .. 3

Main ... 3

Singleton .. 3

GUI ... 4

VideoIO .. 5

Frame ... 5

FrameLoader ... 5

RTSPLoader .. 5

FrameConsumer .. 5

CanvasUpdater .. 5

IAACanvasUpdater .. 5

PreEventBuffer .. 6

TimeOutChecker .. 6

VideoSaver ... 6

Recorder .. 6

AnalyzeController .. 6

LibraryLoader... 6

SaveLocationGenerator ... 6

IAAChangeController ... 7

VideoIOController.. 7

IAnalyzer .. 7

Detect .. 7

Notification .. 8

Log ... 8

SMTPClient .. 8

Configuration ... 8

Notes for succeeding projects ... 9

Specification sheet .. 9

3

Introduction
This is the developer manual for the RTSP-Observation application which was developed in the winter

semester 2016/2017 at the University Würzburg. The application analyses video streams from cameras

in the Hessdalen valley in Norway to detect occurrences of the Hessdalsphenomena, for more

information to these phenomena check out:

http://www.hessdalen.org

The hole project is developed in Java, so a recent Java Runtime Environment is required for running

this application.

For video processing the OpenCV library is needed (http://opencv.org/downloads.html). See readme

more details. For transmitting mails this software is using the JavaMail API

(https://java.net/projects/javamail/pages/Home). See readme more details. The source archive file

includes a git repository. A detailed code documentation is provided by the archived Javadoc.

General

Main
This class contains the central start point of the application and does the parsing of the command-line

arguments in processArgs(List<String> args).

Singleton
Class for central storage of data, which should accessible for every point in the application. To set and

access data use Singleton.getInstance(). This creates a singleton instance, if not already exists, and

returns it.

http://www.hessdalen.org/
http://opencv.org/downloads.html
https://java.net/projects/javamail/pages/Home

4

GUI
RTSP-Observation has a graphical user interface (GUI) for setting up the configuration, performing the

observation and viewing information and statistics. It basically consists of three central tabs Config,

Filter and Statistics and is completely developed with JavaFX. To improve the maintainability and make

comprehensible it is divided into multiple parts. The code is separated from the GUI elements. These

are stored in four FXML files, one for each tab content and the central ‘GUI.fxml’, which consists of

elements that are shown independent form the tab selection. The code is divided in the same manner.

Each FXML file has its associated controller class such as GUIController. The simplified class diagram

below shows the structure of the GUI.

Each controller implements the Interface IGUIPart, which unifies calls and communication. It consists

of:

void configChanged(): Will be called, if the configuration file has changed.

void init(GUI gui): Will be called, after Part is added to the central GUI.

void runningChanged(boolean running): Will be called, if the observation status has changed.

The GUI will be directly opened by the main method with GUI.open(). This creates a new instance of

GUI and calls start() such as loadGUI(). Where the central FXML file ‘GUI.fxml’ will be loaded and

creates an instance of the associated controller GUIController. The FXML file also includes the other

FXML files, which therefore create an instance of matching controllers. Subsequently GUIController

will be initialized with init(GUI gui), which also initializes the other controllers. Afterwards the main

windows should appear on the screen.

5

VideoIO

Frame
The Frame class is a wrapper for the OpenCV Mat object. It was needed because the Mat java objects

themselves do not need a lot of RAM in the JVM, but allocated quite some memory for the actual

image data natively, which means the JVM doesn't know about that. The natively allocated memory is

released when mat.release() is called or the Mat object is deleted by the garbage collector. We usually

can't rely on the garbage collection because of the small size the Mat objects occupy internally and the

big amount of RAM it allocated natively. Therefore we must determine when a Mat objected is not

needed anymore and call its release() function. When a frame is created, it will be assumed it is in use

by the creator, so the usage counter starts with value 1. If anybody else wants to use the frame (and

make sure it won’t get released) he has to call the use() method, and then call the finished() method

when he doesn't need the frame anymore. When everybody finished his task on the frame (usage gets

down to 0) the mat.release() method is called, cleaning up the now unneeded native memory. At the

moment the Frame is class redundant because garbage collection is trigger manually, releasing unused

Mat objects and native memory periodically.

FrameLoader
The abstract FrameLoader class is a template for classes that load OpenCV Mat objects and want to

share them with other threads that consume them (refer to FrameConsumer). A class implementing

this just has to call the setCurrentFrame(Mat) method with its newly loaded Mat, the FrameLoader will

take care of wrapping it into a Frame and notifying everybody that is waiting for Frames of this Loader

implementation.

RTSPLoader
The RTSPLoader is an implementation of the FrameLoader. It loads its Mat objects through OpenCV's

VideoCapture class which can load them from a RTSP stream, but loading from video files is possible

as well.

FrameConsumer
The abstract FrameConsumer class is a template for classes that want to do execute some task on

frames created by a FrameLoader implementation. It creates itself an own thread for execution which

waits for the specified FrameLoader to announce a new Frame which it will hand through to the

consume(Frame) method, in which each implementation can do something with it. If multiple

FrameConsumer are listening to the same FrameLoader, a new Frame will be processed by every

FrameConsumer in parallel, though they may not start at the exact same time. It is important not to

modify the content of the Frame since those changes will also apply to everybody else. Instead it is

recommended to create a copy of the Frame’s Mat object and modify that.

CanvasUpdater
The CanvasUpdater is an implementation of FrameConsumer, which draws the frames it consumes

onto the associated JavaFX ImageView. Its name is a leftover of the time the GUI used a canvas to

display images.

IAACanvasUpdater
The IAACanvasUpdater extends the normal CanvasUpdater. It contains an additional

IgnoreAreaApplier which draws pink rectangles to the displayed image that are then also shown on

screen.

6

PreEventBuffer
The PreEventBuffer is an implementation of FrameConsumer which buffers the frames that will, if the

analyze detects something, be written to disk to see how exactly the objected "spawned". It does that

by having a array of Frames and a pointer which tells where the next Frame will be saved. If that index

gets so big that is would be pointing outside of the array, it is set at the begin of the array (so it’s

basically a ringbuffer). To allow somebody to iterate over the current state of the buffer, its iterator()

method copies the current array and provides access to those frames, from the oldest to the newest.

TimeOutChecker
The TimeOutChecker is an implementation of FrameConsumer, which notifies a given

VideoIOController when the moment that the last frame occurred is longer ago than specified from its

maxDelay attribute.

VideoSaver
The VideoSaver is an implementation of FrameConsumer which is supposed to record parts of the

stream and save them on disk. The life of a VideoSaver object goes through following states:

Write PreEventBuffer: get current state of PreEventBuffer, iterate through it and write every frame to

file. All frames that occur in that time through consume are saved in the delayBuffer.

Write delayBuffer: go through the delayBuffer and write every frame to file. All frames that occur in

that time also append to the delayBuffer, but by sometime the buffer should get empty.

Write live: from then on write every new frame directly to file.

Write postEvent: after calling writePostEventFramesAndStop() the amount of frames written in the

PreEventBuffer state should be written down (live, of course) to record how the object disappears.

After that the VideoSaver should stop. While it didn’t reach the end quite yet, a call of restart() will put

it back into the ‘write live’ state.

A VideoSaver instance should only be used once.

Recorder
The Recorder is basically a wrapper around the VideoSaver. Because the VideoSaver starts as soon as

its constructor gets called and can't be reused after stopping, the Recorder provides easy methods to

start and stop and manages corresponding VideoSaver instances.

AnalyzeController
The AnalyzeController is an implementation of FrameConsumer. It copies and modifies new frames, so

that some areas get ignored (refer to IgnoreAreaApplier). It feeds those to an implementation of the

IAnalyzer interface. Depending on the result the analyzation it starts and stops recording to capture

those events. It also keeps track of some statistics regarding the analyze.

LibraryLoader
The LibraryLoader is responsible for loading the native libraries for OpenCV. It should only be needed

when the program started.

SaveLocationGenerator
The SaveLocationGenerator class mainly provides a method for creating file locations for videos and

images that should be saved. It isn't intended to create objects of this class.

7

IAAChangeController
The IAAChangeController is a JavaFX GUI class which allows to graphically specify areas for the

IgnoreAreaApplier. To start it, call the run method with the stream URL and the current ignore area

string (can also be empty). When the window is closed, the run method returns the new ignore area

string created by the user.

VideoIOController
VideIOController is the class that manages all the other components from videoio.implementation to

run a video analysis. It starts as soon as an object is instantiated and stops with a call of kill().

IAnalyzer
IAnalyzer is an interface that allows for multiple analyzing strategies to be implemented. An

implementation must define following methods:

boolean analyze(Mat mat): Return if the Mat shows a Hessdalen-event.

void drawFrameWithHighlights(Frame original): If the last analyze(Mat) call returned true, highlight

the spot where the object was detected in the given Frame.

Detect
Detect implements the interface IAnalyzer and is mainly for detecting changes in video. It consists of

two public methods:

boolean analyze(Mat mat): This method detects only changes in videos by comparing to consecutive

frames with each other. Frames are handled as matrices. For each frame the difference to this

predecessor will be calculated and afterwards converted into a grayscale. This allows to apply a

threshold for removing unwanted changes such as noise. The resulting is a binary frame, where

unchanged areas cloud be imagined as black and detected areas as white. Then the white areas will be

eroded from their borders to remove for example singe detected pixels. The remaining areas will be

dilated that may grows some areas together. This supports detecting a change as one area instead of

multiple small changes. This process is compensated, that a big enough area has about the same size

after. Subsequently the areas from the binary frame are stored in a list with their approximated size.

Now the list can be sorted and filtered to get rid of changes that are too small or too big such as

flickering of the whole image. Then it returns true, if a change area is left after the procedure.

void drawFrameWithHighlights(Frame original): Highlight the spots on the given frame, which were

found to contain an object (in the previous call of analyze).

8

Notification
The class Notification only contains the data needed for a notification, were as the NotificationHandler

is responsible for forwarding. They could be send as output via console, adding a log entry, messages

for GUI or send a mail. There are four different types of notification ERROR, WARNING, INFO and

RECOGNITION defined in the enum NotificationType. A notification consists of:

type: Defines the type of notification. If null, INFO would be used.

message: Message of the notification.

attachment: Only used for sending mails. If null or withPreview in configuration is false, no attachment

would be sent.

date: Occurrence of the notification. If null, current date would be used.

These values can be set via the constructor of Notification and via getters and setters. Afterwards the

instance of Notification still needs to be send with forward(). There are exist other methods for

example forwardWithoutMail(). Primary to prevent loops, if SMTPClient forward an error to not get

notified again.

Log
The LogHandler creates with its constructor a PrintWriter object which is used by the logNotification

method to write notifications to the log file. Every log message goes throw the NotificationHandler, it

is not intended to use the LogHandler directly.

SMTPClient
Transmitting mails to SMTP servers or relays. This Class is using the JavaMail API

(https://java.net/projects/javamail/pages/Home).

It consists of two public methods:

static boolean checkAddress(String mail): Checks, if a mail address seems to be valid.

static void sendMail(String recipient, String subject, String text, String attachment, Date date): Sends

a mail to a SMTP server or relay, if enabled. Transmitter parameters are read from the configuration

file. If the SMTP server / rely is not capable of authentication or the password in the configuration file

is empty, no authentication will be used. Until now it doesn’t support SSL/TLS or STARTTLS encryption,

but should be possible with the API.

Configuration
The ConfigIO class provides the loadConfig and saveConfig method, which are need to read and write

the configuration file from and to the hard drive. Its methods can only be accessed by the

configHandler.

The ConfigHandler provides the general functionality for the configuration, it ensures that the load and

save methods are only called with proper values and for example contains a method which can be used

to save array in the configuration file.

To ensure the only proper key/value pairs are added to the configuration every configuration

parameter gets a getter and a setter method in the Config class which extends the ConfigHandler. To

add new parameters simply add the methods to this calls.

https://java.net/projects/javamail/pages/Home

9

Notes for succeeding projects
To reduce false detections, the recording could be started after in two successive frames will be

something detected. Helpful in this manner cloud be an additional filter, which takes color

temperature into account, to only detect changes of light.

The functionality to ignore areas could be directly integrated into the main window.

Specification sheet
On the next pages you will find an specification sheet. It is written in German because the customer

specified just before completing the document, that the main language of the project is English,

especially any user related parts.

10

11

12

