
How to get started with RODOS 
in 9 easy steps

RODOS Tutorial
Version: 1.0
Document Id: Tutorials-1
Date: 03.06.2013
Author: Johannes Freitag



README_first-steps.odt
0. Before start

2 / 17

0. Before start
0.1. Notes on this tutorials

• A “$” means that the following command has to be executed in a terminal

0.2. RODOS directory structure
• make

contains build scripts - with these scripts it is possible to compile RODOS 
applications for a variety of hardware platforms

• api
all header files defining the Application Programming Interface – have a look 
at these files to see all possible RODOS functions

• tutorials
learn how to use RODOS

• doc
more documentation 

• src
all RODOS core source files - not important for the RODOS users

0.3. Steps to compile and execute a RODOS program
1. Open a Terminal

2. Enter the RODOS root directory 

3. Set some shell variables that are needed by the compile scripts
$ source make/rodosenvs
It has to be executed every time when opening a new terminal!

4. Compile the RODOS library for a Linux x86 PC
$ linux-lib
Has to be done only once for every RODOS version, unless something in 
folder src or api has been modified.

5. Enter the folder with the user program
$ cd tutorials/first-steps

6. Compile the user program
$ linux-executable usercode1.cpp usercode2.cpp...

7. Execute the binary
$ ./tst

8. Exit the program with Ctrl+C

As a shortcut, a file has been created for every example that compiles the 
necessary code-files and executes it (e.g. execute-example-01 for the example in 
chapter 1). Attention: Don't forget to do step 1 to 5 beforehand.



README_first-steps.odt
1. Hello World

3 / 17

1. Hello World
The Hello World tutorial is the most simple RODOS program. It only prints the string 
“Hello World!” in one thread.

1.1. Used RODOS functions
• PRINTF( )

basically the same as the standard C printf() function – prints characters and 
numbers to terminal

1.2. Program helloworld.cpp

#include "rodos.h" 

class HelloWorld : public Thread { 

  void run(){ 
    PRINTF("Hello World!\n"); 
  } 
} helloworld; 

1.3. Compiling
Compile the tutorial as described in chapter 2, in the following steps:

1. Open a Terminal

2. Enter the RODOS root directory 

3. Set some shell variables that are needed by the compile scripts
$ source make/rodosenvs
It has to be executed every time when opening a new terminal!

4. Compile the RODOS library for a Linux x86 PC
$ linux-lib
Has to be done only once for every RODOS version, unless something in 
folder src or api has been modified.

5. Enter the folder with the hello world tutorial
$ cd tutorials/first-steps

6. Compile the user program
$ linux-executable helloworld.cpp

7. Execute the binary
$ ./tst

8. Exit the program with Ctrl+C

1.4. Console output
After some RODOS Information:

--------------- application running ------------ 
Hello World!

1.5. Several Threads
Try now helloworld-multiple.cpp. Do you see the diffeence?

 includes the RODOS API

 defines a Thread named HelloWorld

 implements the code for the main
 task of the thread
 In this case: print “Hello World!”

 instantiates one thread of
 type HelloWorld

 printout of run() method



README_first-steps.odt
2. Basic structure

4 / 17

2. Basic structure
The Basic structure tutorial is an extension to the Hello World tutorial. It prints the 
string “Hello World!” and implements the basic structure of a RODOS program 
consistent of one application and one thread. 

2.1. Used RODOS functions
• PRINTF( )

basically the same as the standard C printf() function – prints characters and 
numbers to terminal

2.2. Program basic.cpp

#include "rodos.h" 

static Application appHW("HelloWorld"); 

class HelloWorld : public Thread { 

public: 

  HelloWorld() : Thread("HelloWorld") { } 
 
  void init() { 
    PRINTF("Printing Hello World"); 
  } 

  void run(){ 
    PRINTF("Hello World!\n"); 
  } 
} 

static HelloWorld helloworld; 

2.3. Compiling
Compile the tutorial as described in chapter 2, in the following steps:

1. Open a Terminal

2. Enter the RODOS root directory 

3. Set some shell variables that are needed by the compile scripts
$ source make/rodosenvs
It has to be executed every time when opening a new terminal!

4. Compile the RODOS library for a Linux x86 PC
$ linux-lib
Has to be done only once for every RODOS version, unless something in 
folder src or api has been modified.

5. Enter the folder with the hello world tutorial
$ cd tutorials/first-steps

6. Compile the user program
$ linux-executable basic.cpp

7. Execute the binary
$ ./tst

 includes the RODOS API

 defines a thread named HelloWorld

 thread constructor with definition of the thread name

 is called before the scheduler starts

 implements the code for the main
 task of the thread
 In this case: print “Hello World!”

 instantiates one thread of
 type HelloWorld

 application that wraps all threads, events,... in this file



README_first-steps.odt
2. Basic structure

5 / 17

8. Exit the program with Ctrl+C

9. Modify the run() method in basic.cpp

10.Repeat step 6 to 8 and see the difference

2.4. Console output
RODOS RODOS-100.0 OS Version RODOS-linux-8 
Loaded Applications: 
         10 -> 'Topics & Middleware' 
       1000 -> 'HelloWorld' 
Calling Initiators 
Distribute Subscribers to Topics 
List of Middleware Topics: 
 CharInput  Id = 28449 len = 12.   -- Subscribers: 
 SigTermInterrupt  Id = 16716 len = 4.   -- Subscribers: 
 UartInterrupt  Id = 15678 len = 4.   -- Subscribers: 
 TimerInterrupt  Id = 25697 len = 4.   -- Subscribers: 
 gatewayTopic  Id = 0 len = 12.   -- Subscribers: 

Event servers: 
Threads in System: 
   Prio =       0 Stack =  32000 IdleThread: yields all the time 
   Prio =     100 Stack =  32000 HelloWorld: Printing Hello World 
BigEndianity = 0, cpu-Arc = x86, Basis-Os = baremetal, Cpu-Speed (K-
Loops/sec) = 350000 
----------------------------------------------------- 
Default internal MAIN 
--------------- application running ------------ 
Hello World!

 shows defined threads and printout of init method

 RODOS version

 all applications in this programm

 printout of run() method



README_first-steps.odt
3. Time
6 / 17

3. Time
This tutorial shows how time dependent processes can be modeled in RODOS. It 
demonstrates how to do something at a specific point in time, after a defined 
amount of time and periodically. While the thread waits for the defined time, other 
threads can be executed. Time in RODOS is defined with a long long type “TTime” 
and represents the number of nanoseconds elapsed since startup.

3.1. RODOS time functions
• NOW() 

Returns the current time (in nanoseconds) 

• SECONDS_NOW()
Returns the current time in seconds

• AT(time) 
Suspends (interrupts) the thread that has called this method, until the given 
point in time is reached

• TIME_LOOP(firstExecution, Period) { … }
Almost each control loop has a start time and a period. This macro provides 
this loop with no end. 

3.2. Time macros
In order to use the time functions comfortably there are some time macros defined: 
NANOSECONDS , MICROSECONDS , MILLISECONDS , SECONDS , MINUTES, 
HOURS , DAYS , WEEKS , END_OF_TIME

To use them, just multiply them to the amount of time, e.g. AT(3*SECONDS) . 
END_OF_TIME is the highest time possible (about 293 years).

3.3. Program time.cpp
...
PRINTF("waiting until 3rd second after start\n"); 
AT(3*SECONDS); 
PRINTF("after 3rd second\n"); 

PRINTF("waiting until 1 second has pased\n"); 
AT(NOW()+1*SECONDS); 
PRINTF("1 second has pased\n"); 

PRINTF("print every 2 seconds, start at 5 seconds\n"); 
TIME_LOOP(5*SECONDS, 2*SECONDS){ 
  PRINTF("current time: %3.9f\n", SECONDS_NOW()); 
} 
...

3.4. Compiling and console output
Compile the tutorial time.cpp in tutorials/first-steps as described in chapter 2 and 
execute it. The output should be the following:

waiting until 3rd second after start 
after 3rd second 
waiting until 1 second has pased 
1 second has pased 
print every 2 seconds, start at 5 seconds 
current time:   5.000003995 
current time:   7.000004191 ...

 waits for the point in time: 3 seconds after start 

 waits for 1 second

 code in the loop will
 be executed every 2
 seconds; the first
 execution will be at
 5 seconds after start



README_first-steps.odt
4. Priority

7 / 17

4. Priority
In RODOS it is possible to define threads with higher and threads with lower 
priorities. If the thread with highest priority runs, the other threads will wait. In 
RODOS is a higher priority defined with a higher number. The  lowest priority is 1, 
the highest is 2^31.

In this tutorial two threads, one with a high priority which is executed very shortly 
every second and one with a low priority which is executed constantly. The high 
priority thread (printing “*”)  runs when one second is over, although the low priority 
thread (printing “.”) does not suspend.

The priority of a thread is defined in the thread constructor.

4.1. Program priority.cpp
...
HighPriorityThread() : Thread("HiPriority", 25)
...
LowPriorityThread() : Thread("LowPriority", 10)
...

4.2. Compiling and console output
Compile the tutorial priority.cpp in tutorials/first-steps as described in chapter 2 and 
execute it. The output should be the following:

...
Threads in System: 
   Prio =       0 Stack =  32000 IdleThread: yields all the time 
   Prio =      10 Stack =  32000 LowPriority:  lopri = '.' 
   Prio =      25 Stack =  32000 HiPriority:  hipri = '*' 
BigEndianity = 0, cpu-Arc = x86, Basis-Os = baremetal, Cpu-Speed (K-
Loops/sec) = 350000 
----------------------------------------------------- 
Default internal MAIN 
--------------- application running ------------ 
*..........*..........*..........*...........*..........*....

Switch the priorities of the threads, compile again and see the difference. 

4.3. Special function: Priority ceiling
If a thread needs to do something without being interrupted priority ceiling is possible 
by wrapping some code with the PRIORITY_CEILING command. The wrapped code 
is executed in highest priority possible as demonstrated in the file priority_ceiler.cpp. 
At fist it is the same as the priority.cpp example but after leaving the fist while-loop 
priority ceiling is activated. The following code will never be interrupted by the high 
prioritiy thread.

Compile the tutorial priority_ceiling.cpp in tutorials/first-steps as described in chapter 
2 and execute it. The output should be the following:

*.....*....*.........................................

 thread with priority 25

 thread with priority 10

 low priority thread  interrupted by high prio thread

 no more interrupts from the high prio thread



README_first-steps.odt
5. Thread Communication

8 / 17

5. Thread Communication
The communication between two threads can bee realized via a CommBuffer or a 
FiFo (First in first out). For that a CommBuffer or a Fifo has to be defined outside a 
thread so that both threads can access it.

5.1. CommBuffer
A CommBuffer is a double buffer with only one writer and only one reader. Both 
can work concurrently. The writer may write at any time. The reader gets the newest 
consistent data (eg. the last complete written record). The type of the CommBuffer 
can be defined. Not using a CommBuffer is risky, because maybe the data is half 
written in the shared variable while the thread is interrupted. In this case the receiver 
thread gets inconsistent data. 

5.1.1. Programm combuffer.cpp

CommBuffer<int> buf;

class Sender : public Thread { 
...
  PRINTF("Writing %d\n", cnt); 
  buf.put(cnt); 
...
}

class Receiver : public Thread { 
...
  buf.get(cnt); 
  PRINTF("Reading %d\n", cnt); 
...
}

Compile the tutorial combuffer.cpp in tutorials/first-steps as described in chapter 2 
and execute it. 

5.2. Fifo
A fifo is used for synchronous communication from one single writer to one single 
reader. Writing to a full fifo has no effect and returns 0. Reading from an empty fifo 
returns 0. The first value inserted into the fifo will be the first value to be read.

5.2.1. Programm fifo.cpp

Fifo<int, 10> fifo; 

class Sender : public Thread { 
...
      bool ok = fifo.put(cnt); 
...
}

class Receiver : public Thread { 
...
      bool ok = fifo.get(cnt); 
...
}

Compile the tutorial fifo.cpp in tutorials/first-steps as described in chapter 2 and 
execute it.

 CommBuffer of type Integer

 thread puts local counter data into the CommBuffer

 thread gets counter data from the CommBuffer 
 and saves it into local variable

 Fifo for 10 Integer values 

 puts the current counter value into the fifo
 and checks whether the fifo is full

 receives the current counter value from the fifo
 and checks whether the fifo is empty



README_first-steps.odt
5. Thread Communication

9 / 17

5.3. Synchronous Fifo
A SyncFifo is basically the same as Fifo, but in this case the sender will be 
suspended if the fifo is full and the receiver will be suspended until data is ready.

Compile the tutorial fifo_sync.cpp in tutorials/first-steps as described in chapter 2 and 
execute it.

5.4. Which is best for what?
If the receiver needs only the latest data a Commbuffer should be used. If the 
receiver needs all the data from the sender and in the right order, a Fifo is the way to 
do it. A SyncFifo is a good option if the data has to be processed short times after 
sending it, but take notice that the thread cannot do anything until new data is 
available.



README_first-steps.odt
6. Critical sections

10 / 17

6. Critical sections
To avoid concurrent access of critical sections semaphores have to be used. To enter 
a semaphore use sema.enter() and to leave use sema.leave(). I

6.1. RODOS functions
• Semaphore::enter()

Makes a thread enter a semaphore. All other threads trying to enter the same 
semaphore will wait until it has been left again.

• Semaphore::leave()

Leaves the semaphore and allows other threads entering it.

• PROTECT_WITH_SEMAPHORE(sema){ … }
A macro entering the semaphore "sema" befor the surrounded code (critical 
section) and leaving it afterwards. It is only a short cut, which may be 
usefull .... or maybe not.

• yield()
Interrupts the current thread and calls the scheduler that looks for a thread to 
execute. If no other thread wants to be executed, the thread continues.

6.2. Program semaphore.cpp

Semaphore onlyOne;
...
  onlyOne.enter();
  PRINTF(" only one, I am -- %02d -- ,", myId); 
  yield();
  PRINTF("time %3.9f\n", SECONDS_NOW()); 
  onlyOne.leave();
...

6.3. Program semaphore_macro.cpp
The same functionality but using the macro short cut.
...
  PROTECT_WITH_SEMAPHORE(onlyOne){ 
    PRINTF(" only one, I am -- %02d -- ,", myId); 
    yield();
    PRINTF("time %3.9f\n", SECONDS_NOW()); 
  }
...

6.4. Compiling and console output
Compile the tutorial semaphore.cpp in tutorials/first-steps as described in chapter 2 
and execute it. The output should be the following:

 only one, I am -- A -- ,time   3.000056382 
 only one, I am -- B -- ,time   3.000077366 
 only one, I am -- C -- ,time   3.000094338 
 only one, I am -- D -- ,time   3.000111110 
 only one, I am ---E -- ,time   3.000128005 
 only one, I am -- F -- ,time   3.000157338 
 only one, I am -- G -- ,time   3.000180353 
...

 protection with semaphore “onlyone”

 semaphore definition outside the threads

 printout interrupted by
 yield, but because of the
 semaphore no other
 thread can print between
 the id and the time printout

 enters semaphore “onlyone”

 leaves semaphore “onlyone”

end of the chritical section



README_first-steps.odt
6. Critical sections

11 / 17

Remove the protection in semaphore.cpp, compile again and see the difference.

6.5. Attention: A deadlock may occur!
Compile and have a look at  the tutorial semaphore_deadlock.cpp. The program will 
stop when a deadlock has occurred.



README_first-steps.odt
7. Events
12 / 17

7. Events
Events can be used to react to interrupts from timers and signals from devices. Do 
not use them for complex actions, because they cannot be interrupted. Just use them 
to trigger threads that handle the interrupts. Implement them as short as possible.

An event has basically two methods: The init() method similliar to threads and the 
handle() method in which the code is defined that handles the event.  

7.1. RODOS functions
• activatePeriodic(startTime, period)

Activates an event periodically after the first activation at startTime.

• activateAt(time)
Activates an event at the given point in time.

• thread.resume()
Resumes a thread that is suspended.

7.2. program event.cpp

class TestWaiter: public Thread { 
...
  PRINTF("Suspend and wait until some one resumes me\n"); 
  AT(); 
  PRINTF("testwaiter running again at %3.9f\n", SECONDS_NOW()); 
...
} 

class TimeEventTest : public TimeEvent { 
public: 
  void handle(){ 
    xprintf("   Time Event at %3.9f\n", SECONDS_NOW()); 
    testWaiter.resume(); 
    xprintf("   Testwaiter resumed from me\n"); 
  } 

  void init() { activatePeriodic(5*SECONDS, 3*SECONDS); } 
}; 
...

7.3. Compiling and console output
Compile the tutorial event.cpp in tutorials/first-steps as described in chapter 2 and 
execute it. The output should be the following:

Suspend and wait until some one resumes me 
   Time Event at   5.000107974 
   Testwaiter resumed from me 
testwaiter running again at   5.000135475 
Suspend and wait until some one resumes me 
   Time Event at   8.000168306 
   Testwaiter resumed from me 
...

Try the example with activateAt(time) instead of activatePeriodic(startTime, period).

 suspends the thread forever

 defines an event

 defines when the event is beeing raised
 could also use activateAt(time)

 resumes the suspendend thread

 handles the event



README_first-steps.odt
8. Middleware

13 / 17

8. Middleware
Up to here, we had "normal" programming. Now assume we are in a big team with a 
big project. You do not know the details of what others are programming, just the 
format of the data you need from them or you produce for them. Now you have to get 
and distribute this data without notion of the other side of this generic interface which 
we call the middleware.

The middleware is used to communicate between tasks and even between tasks of 
different RODOS nodes. This communication is based on a publisher/subscriber 
protocol and there is no connection from a sender to a receiver.

Any thread can publish messages under a given topic, while subscribers of the same 
topic receive the published data. 

There can be 0, 1 or many publishers for one topic. The same goes for subscribers.

8.1. Required files
For this example you will need flowing files:

sender.cpp The one who sends test message: a publisher
topics.h, topics.cpp communication channels to send and receive data
receiver_* different methods to subscribe and get data: Subscribers

You will need to compile several source files together. Every compilation needs to 
include the file topics.cpp

for example:
$linux-executable topics.cpp sender.cpp receiver_commbuff.cpp

or another receiver:
$linux-executable topics.cpp sender.cpp receiver_putter.cpp

or all receivers togehter:
$linux-executable topics.cpp sender.cpp receiver_*.cpp

8.2. Topic, program topics.cpp
A topic is a pair of a data-type and the topic id, e.g.:

Topic<long>    counter1(10, "counter1");

If the topic id is “-1” the id will be generated. 

8.2.1. Sample topics
Some sample topics are defined in topics.cpp. To use these topics in a RODOS 
program include topics.h.

8.3. Publisher
A publisher is easy to implement. To publish data under the topic “counter” just use 
counter.publish(data) in any thread.

8.3.1. Program sender.cpp
...
#include "topics.h" 

 data type of
 published
 messages

 name of the topic

  topic id

 includes the topics



README_first-steps.odt
8. Middleware

14 / 17

...
    TIME_LOOP(3*SECONDS, 3*SECONDS) { 
      PRINTF("Publisher01 sending Counter1 %ld\n", ++cnt); 
      counter1.publish(cnt); 
    } 
...

8.4. Subscriber
There are many possibilities to implement a receiver of middleware data.

8.4.1. Subscriber put() method, program receiver_simple.cpp
Define a new subscriber by inheriting from “Subscriber”:

class SimpleSub :  public Subscriber { 
public: 
  SimpleSub() : Subscriber(counter1, "simplesub") { } 

  long put(const long topicId, const long len, const void* data, ...) { 
    PRINTF("SimpleSub - Length: %ld Data: %ld ...
    return 1; 
  } 
} simpleSub;

Compile the tutorial receiver_simple.cpp in tutorials/first-steps as described in 
chapter 2 and execute it. Do not forget to compile it with topics.cpp and sender.cpp:

$ linux-executable topics.cpp sender.cpp receiver_simple.cpp

8.4.2. Subscriber and a CommBuffer, program receiver_combuf.cpp
Define a CommBuffer that is going to be filled by a Subscriber. The thread gets 
periodically the latest data from the CommBuffer.

static CommBuffer<long> buf; 
static Subscriber receiverBuf(counter1, buf, "receiverbuf"); 
 
class ReceiverBuf : public Thread { 
  void run () { 
    long cnt; 
    TIME_LOOP(0, 1.1*SECONDS) { 
      buf.get(cnt); 
      PRINTF( "ReciverComBuffer - counter1: %ld\n",cnt); 
    } 
  } 
} recbuf; 

Compile the tutorial receiver_commbuff.cpp in tutorials/first-steps as described in 
chapter 2 and execute it. Do not forget to compile it with topics.cpp and sender.cpp:

$ linux-executable topics.cpp sender.cpp receiver_commbuff.cpp

To get synchronised data transfer use a SyncFifo like in tutorial receiver_sync.cpp

8.4.3. Putter, program receiver_putter.cpp
Define a new Putter by inheriting from “Putter”:

class JustPrint : public Putter { 
  bool putGeneric(const long topicId, unsigned int msgLen, ...) { 
    PRINTF("%d %ld %ld\n", msgLen, *(long*)msg, topicId); 
    return true; 

 publishes every 3 seconds the
 incremented counter

 subscribing for counter1

 the put function is called everytime new data has been published;
 receive the data in this method and send it to a thread via
 CommBuffer or Fifo (it is also possible to resume a thread when
 new data is available)

 subscriber that filles the CommBuffer
 with values from topic counter1

 the thread gets the latest value

 is called every time new data is available on defined topics



README_first-steps.odt
8. Middleware

15 / 17

  } 
} justPrint; 

static Subscriber nameNotImportant01(counter1, justPrint, "justprint01"); 
static Subscriber nameNotImportant02(counter2, justPrint, "justprint02");

Compile the tutorial receiver_putter.cpp in tutorials/first-steps as described in chapter 
2 and execute it. Do not forget to compile it with topics.cpp and sender.cpp:

$ linux-executable topics.cpp sender.cpp receiver_putter.cpp

To receive two counters, implement a sender of the second counter.

8.4.4. Which subscriber is best for what?
If the receiver needs only the latest data and has to be executed periodically, the 
CommBuffer solution should be used. For synchronized communication the 
subscriber put method in combination with resuming a thread is the way to do it. A 
SyncFifo is also good for this. To receive from multiple topics with one method a 
Putter should be used.

For more information and tutorials about the middleware check out the folders 
tutorials/middleware and tutorials/alice_bob_charly

9. More Middleware

To see a little more about using the middleware and multicasting, please have a look 
at the example in the directory gps. Here we have an example of topics with more 
than one subscribers and of subscribers of more than one topic. A position sensor 
measures and publishes data of the postion (3D) of a flying object. A speedcalculator 
receives those data and calculates and publishes the object's speed. Finally, a 
display subscribing both topics, position and speed, and prints the data.

executeit: shell script to compile and execute the whole example

topics.h: interface of the topics

topics.cpp:  definition of the topics position and speed

positionsensor.cpp generates and publishes random postion data

speedcalc.cpp subscribes position topic and publishes speed data

display.cpp subscribes position and speed topic and prints the data

Compile all *cpp and see the execution.

Then try to compile without speedcalc.cpp. Do you see the difference?

9.1. program positionsensor.cpp

class PositionSensor : public Thread { 

 subscriber with topic definition – both, counter1 and
 counter2 will call the putter method of “justprint”



README_first-steps.odt
9. More Middleware

16 / 17

...
        TIME_LOOP(2*SECONDS, 3*SECONDS) { 
            p.x+= (randomTT800Positive() % 40)*0.05-1; 
            p.y+= (randomTT800Positive() % 40)*0.05-1; 
            p.z+= (randomTT800Positive() % 40)*0.05-1; 
            position.publish(p); 
        } 
...

 calculate random movement

publish new position in topic „position”



README_first-steps.odt
9. More Middleware

17 / 17

9.2. program speedcalc.cpp

class SpeedCalc :  public Subscriber { 
public: 
    SpeedCalc() : Subscriber(position, "SpeedCalc") { } 
    Pos p0,p1; 
    long put(...) { 
        p0=p1; 
        p1=*(Pos*)data; 
        double v = sqrt((p0.x-p1.x)*(p0.x-p1.x)+...); 
        speed.publish(v); 
        return 1; 
    } 
} speedCalc; 

9.3. program display.cpp

static CommBuffer<Pos>    posbuf; 
static CommBuffer<double> speedbuf; 
static Subscriber namenotimportant1(position, posbuf,   "posreceiverbuf"); 
static Subscriber namenotimportant2(speed,    speedbuf, 
"speedreceiverbuf"); 

class Display : public Thread { 
    void run () { 
        TIME_LOOP(1*SECONDS, 1*SECONDS) { 
            Pos p; 
            double v; 
            posbuf.get(p); 
            speedbuf.get(v); 
            PRINTF( "Position (%3.2f;%3.2f;%3.2f) speed %3.2f\n",.....); 
        } 
    } 
} display; 

 subscribe topic position

calculate and publish speed 
whenever new position data is 
published

fill buffers with published data

get data from buffers

print data


	0.  Before start
	0.1.  Notes on this tutorials
	0.2.  RODOS directory structure
	0.3.  Steps to compile and execute a RODOS program

	1.  Hello World
	1.1.  Used RODOS functions
	1.2.  Program helloworld.cpp
	1.3.  Compiling
	1.4.  Console output
	1.5.  Several Threads

	2.  Basic structure
	2.1.  Used RODOS functions
	2.2.  Program basic.cpp
	2.3.  Compiling
	2.4.  Console output

	3.  Time
	3.1.  RODOS time functions
	3.2.  Time macros
	3.3.  Program time.cpp
	3.4.  Compiling and console output

	4.  Priority
	4.1.  Program priority.cpp
	4.2.  Compiling and console output
	4.3.  Special function: Priority ceiling

	5.  Thread Communication
	5.1.  CommBuffer
	5.1.1.  Programm combuffer.cpp

	5.2.  Fifo
	5.2.1.  Programm fifo.cpp

	5.3.  Synchronous Fifo
	5.4.  Which is best for what?

	6.  Critical sections
	6.1.  RODOS functions
	6.2.  Program semaphore.cpp
	6.3.  Program semaphore_macro.cpp
	6.4.  Compiling and console output
	6.5.  Attention: A deadlock may occur!

	7.  Events
	7.1.  RODOS functions
	7.2.  program event.cpp
	7.3.  Compiling and console output

	8.  Middleware
	8.1.  Required files
	8.2.  Topic, program topics.cpp
	8.2.1.  Sample topics

	8.3.  Publisher
	8.3.1.  Program sender.cpp

	8.4.  Subscriber
	8.4.1.  Subscriber put() method, program receiver_simple.cpp
	8.4.2.  Subscriber and a CommBuffer, program receiver_combuf.cpp
	8.4.3.  Putter, program receiver_putter.cpp
	8.4.4.  Which subscriber is best for what?


	9.  More Middleware
	9.1.  program positionsensor.cpp
	9.2.  program speedcalc.cpp
	9.3.  program display.cpp


