000101110101C
1001010100010
01010101010
11010100010
010110101001
10101011011
00010111011

1001010100010 :
0101010101010101¢C
11010100010101001)
10101010101010010010101
0810111010101010104000;
0001010114 44400

How to get started with RODOS
In 9 easy steps

RODOS Tutorial
Version: 1.0
Document Id: Tutorials-1
Date: 03.06.2013

Author: Johannes Freitag

L

JNIVERSITAT 0. Before start iileios pacelinfenmationNicchnolo)
URZBURG 2117

-

v e README _first-steps.odt . ompiiemsieshnils fir Luft-urd F "Camrnfﬁ-hrr&({ﬁ;?)

&

L 23

0. Before start
0.1. Notes on this tutorials

A “$” means that the following command has to be executed in a terminal

0.2. RODOS directory structure

make
contains build scripts - with these scripts it is possible to compile RODOS
applications for a variety of hardware platforms

api
all header files defining the Application Programming Interface — have a look
at these files to see all possible RODOS functions

tutorials
learn how to use RODOS

doc
more documentation

src
all RODOS core source files - not important for the RODOS users

0.3. Steps to compile and execute a RODOS program

8.

. Open a Terminal
Enter the RODOS root directory

Set some shell variables that are needed by the compile scripts
$ source makelrodosenvs
It has to be executed every time when opening a new terminal!

Compile the RODOS library for a Linux x86 PC

$ linux-lib

Has to be done only once for every RODOS version, unless something in
folder src or api has been modified.

Enter the folder with the user program
$ cd tutorials/first-steps

Compile the user program
$ linux-executable usercodel.cpp usercode2.cpp...

Execute the binary
$.Jtst

Exit the program with Ctrl+C

As a shortcut, a file has been created for every example that compiles the
necessary code-files and executes it (e.g. execute-example-01 for the example in
chapter 1). Attention: Don't forget to do step 1 to 5 beforehand.

1.

1.1.

1.2.

1.3.

1.4.

1.5.

®

)

G=r)

ulus M- README_first-steps.odt o metiiomsitssnl fir Luff-umne Reumiahrt 52
I UNIVERSITAT 1. Hello World AcosiRsa [oTalen TEsinelegy (éf
WURZBURG 3117

)

Hello World

The Hello World tutorial is the most simple RODOS program. It only prints the string
“Hello World!” in one thread.

Used RODOS functions
« PRINTF()
basically the same as the standard C printf() function — prints characters and
numbers to terminal

Program heIIoworId.cpJ)_{ includes the RODOS API|
#include "rodos.h"

 defines a Thread named Helloworld|

class HellowWorld : public Thread { : :
implements the code for the main

void run(){ T task of the thread
PRINTF("Hello World!\n"); In this case: print “Hello World!”

instantiates one thread of
type Helloworld

}
} helloworld

r— |

Compiling
Compile the tutorial as described in chapter 2, in the following steps:

1. Open a Terminal
2. Enter the RODOS root directory

3. Set some shell variables that are needed by the compile scripts
$ source makelrodosenvs
It has to be executed every time when opening a new terminal!

4. Compile the RODOS library for a Linux x86 PC
$ linux-lib
Has to be done only once for every RODOS version, unless something in
folder src or api has been modified.

5. Enter the folder with the hello world tutorial
$ cd tutorials/first-steps

6. Compile the user program
$ linux-executable helloworld.cpp

7. Execute the binary
$.Jtst

8. Exit the program with Ctrl+C

Console output
After some RODOS Information:

--------------- application running ------------

Hello world! — ———— Ihrintout of run() method |

Several Threads
Try now helloworld-multiple.cpp. Do you see the diffeence?

2.

2.1.

2.2.

2.3.

)

G=r)

ulus M- README_first-steps.odt o metiiomsitssinl fir Luff-umne Reumiahrt 52
I UNIVERSITAT 2. Basic structure Besrospase lnformatias Tishnolagy (éf
WURZBURG 4117

®

)

Basic structure

The Basic structure tutorial is an extension to the Hello World tutorial. It prints the
string “Hello World!” and implements the basic structure of a RODOS program
consistent of one application and one thread.

Used RODOS functions

* PRINTF()
basically the same as the standard C printf() function — prints characters and
numbers to terminal

Program basic.cpp includes the RODOS API|
#include Trodos.h" /—{ application that wraps all threads, events,... in this file |
static Application appHW(" ");

 defines a thread named HellowWorld |

class HelloWorld : public Thread {

public: /—{ thread constructor with definition of the thread name |

Helloworld() : Thread("Helloworld") { }

o ~————is called before the scheduler starts |
void init() {

PRINTF("Printing Hello World");

} implements the code for the main
” 04 task of the thread
VOl run 1 . H “ 1”
PRINTF("Hello World!\n"): In this case: print “Hello World!
}
} instantiates one thread of

type Helloworld

static HelloWorld helloworld;

Compiling
Compile the tutorial as described in chapter 2, in the following steps:

1. Open a Terminal
2. Enter the RODOS root directory

3. Set some shell variables that are needed by the compile scripts
$ source makelrodosenvs
It has to be executed every time when opening a new terminal!

4. Compile the RODOS library for a Linux x86 PC
$ linux-lib
Has to be done only once for every RODOS version, unless something in
folder src or api has been modified.

5. Enter the folder with the hello world tutorial
$ cd tutorials/first-steps

6. Compile the user program
$ linux-executable basic.cpp

7. Execute the binary
$.Jtst

r~"'"“’"“"“‘"“"-”'-‘:' README _firSt-Steps.odt ;o ermsitssnll for Luft-urnd Reumizhet ;2
UNIVERSITAT 2. Basic structure iileios pacelinfenmationNicchnolo) 5’%}}
W =5

AT

URZBURG 5/17 NS

s

8. Exit the program with Ctrl+C
9. Modify the run() method in basic.cpp
10.Repeat step 6 to 8 and see the difference

2.4. Console output .
RODOS RODOS-100.6 0S Version RODOS-linux-8 — | RODOS version |

Loaded Applications: ————_____ [g| applications in this programm
10 -> 'Topics & Middleware' PP prog ‘

1000 -> '
Calling Initiators
Distribute Subscribers to Topics
List of Middleware Topics:

CharInput Id = 28449 len = 12. -- Subscribers:
SigTermInterrupt Id = 16716 len = 4. -- Subscribers:
UartInterrupt Id = 15678 len = 4. -- Subscribers:
TimerInterrupt Id = 25697 len = 4. -- Subscribers:
gatewayTopic Id = 0 len = 12, -- Subscribers:

Event servers: . . —
T\r:reads ix System: /—{shows defined threads and printout of init method \
Prio = 0 Stack 32000 IdleThread: yields all the time
Prio = 100 Stack 32000 HelloWorld: Printing Hello World
BigEndianity = 0, cpu-Arc = x86, Basis-0s = baremetal, Cpu-Speed (K-
Loops/sec) = 350000
Default internal MAIN
--------------- application running ------------

Hello world! — ———— Ihrintout of run() method |

3.

3.1.

3.2.

3.3.

3.4.

Julius-Maximillians- README_ﬁI’St-StepS.Odt Inffemieenstashnik G Luf-und Reumiket 5% N

I UNIVERSITAT 3. Time " fetospass niemation Teshmolegy (%%3%)

WURZBURG 6/17 Afﬁf
Time

This tutorial shows how time dependent processes can be modeled in RODOS. It
demonstrates how to do something at a specific point in time, after a defined
amount of time and periodically. While the thread waits for the defined time, other
threads can be executed. Time in RODOS is defined with a long long type “TTime”
and represents the number of nanoseconds elapsed since startup.

RODOS time functions

« NOW()
Returns the current time (in nanoseconds)

« SECONDS_NOW()
Returns the current time in seconds

* AT(time)
Suspends (interrupts) the thread that has called this method, until the given
point in time is reached

* TIME_LOOP(firstExecution, Period) { ... }
Almost each control loop has a start time and a period. This macro provides
this loop with no end.

Time macros

In order to use the time functions comfortably there are some time macros defined:
NANOSECONDS , MICROSECONDS , MILLISECONDS , SECONDS , MINUTES,
HOURS , DAYS , WEEKS , END_OF_TIME

To use them, just multiply them to the amount of time, e.g. AT(3*SECONDS) .
END_OF_TIME is the highest time possible (about 293 years).

Program time.cpp
ﬁéiNTF("waiting until 3rd second after start\n");

AT (3*SECONDS) ; ———— waits for the point in time: 3 seconds after start
PRINTF("after 3rd second\n");

PRINTF("waiting until 1 second has pased\n");

AT (NOW() +1*SECONDS) ; | waits for 1 second |
PRINTF("1 second has pased\n");

code in the loop will

PRINTF("print every 2 seconds, start at 5 seconds\n"); |be executed every 2
TIME_LOOP(5*SECONDS, 2*SECONDS){ seconds: the first
PRINTF("current time: %3.9f\n", SECONDS_NOW()); executio’n will be at

} 5 seconds after start

Compiling and console output
Compile the tutorial time.cpp in tutorials/first-steps as described in chapter 2 and
execute it. The output should be the following:

waiting until 3rd second after start
after 3rd second

waiting until 1 second has pased

1 second has pased

print every 2 seconds, start at 5 seconds
current time: 5.000003995

current time: 7.000004191 ...

4.

4.1.

4.2,

4.3.

r dulls e README _first-steps.odt o mmefionstiashnk i Luft-urd Reumii ;22
UNI VERS ITAT 4. Priority = Jlcios pacell m@ﬁ@m&ﬁf@m 'f;@uufﬂ@[b@g” (@{%"%}
WURZBURG 7117 =

&

s

Priority

In RODOS it is possible to define threads with higher and threads with lower
priorities. If the thread with highest priority runs, the other threads will wait. In
RODOS is a higher priority defined with a higher number. The lowest priority is 1,
the highest is 2"31.

In this tutorial two threads, one with a high priority which is executed very shortly
every second and one with a low priority which is executed constantly. The high
priority thread (printing “*”) runs when one second is over, although the low priority
thread (printing “.”) does not suspend.

The priority of a thread is defined in the thread constructor.

Program priority.cpp

. ___—— thread with priority 25 |
HighPriorityThread() : Thread("HiPriority", 25)

thread with priority 10 |

LéQPriorityThread() : Thread("LowPriority", 10)
Compiling and console output

Compile the tutorial priority.cpp in tutorials/first-steps as described in chapter 2 and
execute it. The output should be the following:

Threads in System:

Prio = @ Stack = 32000 IdleThread: yields all the time
Prio = 10 Stack = 32000 LowPriority: lopri = '.'
Prio = 25 Stack = 32000 HiPriority: hipri = '*'

BigEndianity = 0, cpu-Arc = x86, Basis-0s = baremetal, Cpu-Speed (K-
Loops/sec) = 350000

Default internal MAIN
--------------- appllcatlon runnlng e

| Iow priority thread M \—{ mterrupted by hlgh prlo thread |
Switch the priorities of the threads, compile again and see the difference.

Special function: Priority ceiling

If a thread needs to do something without being interrupted priority ceiling is possible
by wrapping some code with the PRIORITY_CEILING command. The wrapped code
is executed in highest priority possible as demonstrated in the file priority_ceiler.cpp.
At fist it is the same as the priority.cpp example but after leaving the fist while-loop
priority ceiling is activated. The following code will never be interrupted by the high
prioritiy thread.

Compile the tutorial priority ceiling.cpp in tutorials/first-steps as described in chapter
2 and execute it. The output should be the following:

\—{ no more interrupts from the high prio thread

5.

5.1.

5.1.1.

5.2.

5.2.1.

LN README firSt-Steps.0dt i e fiemsitasinlle ftir Luff-urd Revmbalrt y 228
I UNIVERSITAT 5. Thread Communication msece siformeiion Ticinoiogy (ééfﬁ“’%)
WOURZBURG 8/17 =/

Thread Communication

The communication between two threads can bee realized via a CommBuffer or a
FiFo (First in first out). For that a CommBuffer or a Fifo has to be defined outside a
thread so that both threads can access it.

CommBuffer

A CommBuffer is a double buffer with only one writer and only one reader. Both
can work concurrently. The writer may write at any time. The reader gets the newest
consistent data (eg. the last complete written record). The type of the CommBuffer
can be defined. Not using a CommBuffer is risky, because maybe the data is half
written in the shared variable while the thread is interrupted. In this case the receiver
thread gets inconsistent data.

Programm combuffer.cpp
CommBuffer of type Integer |

CommBuffer<int> buf;
class Sender : public Thread {

llﬁRINTF("Writing %d\n", cnt);
buf.put(ent); — Tihread puts local counter data into the CommBuffer |
}

class Receiver : public Thread {

thread gets counter data from the CommBuffer
and saves it into local variable

buf.get(cnt); ——

PRINTF("Reading %d\n", cnt);

Compile the tutorial combuffer.cpp in tutorials/first-steps as described in chapter 2
and execute it.

Fifo

A fifo is used for synchronous communication from one single writer to one single
reader. Writing to a full fifo has no effect and returns 0. Reading from an empty fifo
returns 0. The first value inserted into the fifo will be the first value to be read.

Programm fifo.cpp

Fifo<int, 16> fifo; —— Fifo for 10 Integer values |

class Sender : public Thread {

puts the current counter value into the fifo
ﬁ - .
bool ok = fifo.put(cnt); |and checks whether the fifo is full

class Receiver : public Thread - -
P { receives the current counter value from the fifo

bool ok = fifo.get(cnt); |and checks whether the fifo is empty

Compile the tutorial fifo.cpp in tutorials/first-steps as described in chapter 2 and
execute it.

5.3.

5.4.

Julius-Maximillians- READM E_fl rst-steps.odt IntemEtenstzehnitk fir Luft-umns RevnmiEhrt 2
I UNIVERSITAT 5. Thread Communication JAcios pacclinfonmationRiechne] o] (é{‘m})
WURZBURG 9/17 =

s

Synchronous Fifo
A SyncFifo is basically the same as Fifo, but in this case the sender will be
suspended if the fifo is full and the receiver will be suspended until data is ready.

Compile the tutorial fifo_sync.cpp in tutorials/first-steps as described in chapter 2 and
execute it.

Which is best for what?

If the receiver needs only the latest data a Commbuffer should be used. If the
receiver needs all the data from the sender and in the right order, a Fifo is the way to
do it. A SyncFifo is a good option if the data has to be processed short times after
sending it, but take notice that the thread cannot do anything until new data is
available.

URZBURG 10/17 ==

L 23

s el README _first-steps.odt o mmefionstiashnlk i Luft-urd ReumiEi ;22
I UNIVERSITAT 6. Critical sections e g (&fﬁ))
W

&

6. Critical sections
To avoid concurrent access of critical sections semaphores have to be used. To enter
a semaphore use sema.enter() and to leave use sema.leave(). |

6.1. RODOS functions
* Semaphore::enter()

Makes a thread enter a semaphore. All other threads trying to enter the same
semaphore will wait until it has been left again.

* Semaphore::leave()
Leaves the semaphore and allows other threads entering it.

* PROTECT_WITH_SEMAPHORE(sema){ ... }
A macro entering the semaphore "sema" befor the surrounded code (critical
section) and leaving it afterwards. It is only a short cut, which may be
usefull or maybe not.

+ vyield()
Interrupts the current thread and calls the scheduler that looks for a thread to
execute. If no other thread wants to be executed, the thread continues.

6.2. Program semaphore.cpp

Semaphore onlyone; — | Semaphore definition outside the threads |
—— | enters semaphore “onlyone” |

onlyOne.enter();
PRINTF(" only one, I am -- %02d -- ,", myId); printout interrupted by

yield(); ield, but because of the
PRINTF("time %3.9f\n", SECONDS_NOW()); .)s/eméphore no other

lyoOne.1 ; .
(_)n yone. leave() thread can print between
the id and the time printout

Ieaves semaphore “onlyone”

6.3. Program semaphore_m
The same functionality but u51ng the macro short cut.
' | protection with semaphore “onlyone”
"PROTECT WITH _SEMAPHORE (onlyOne){
PRINTF(" only one, I am -- %02d -- ,", myId);
yield();
PRINTF("time %3.9f\n", SECONDS_NOW());
}

end of the chritical section |

6.4. Compiling and console output
Compile the tutorial semaphore.cpp in tutorials/first-steps as described in chapter 2
and execute it. The output should be the following:

only one, I am -- A -- ,time 3.000056382
only one, I am -- B -- ,time 3.000077366
only one, I am -- C -- ,time 3.000094338
only one, I am -- D -- ,time 3.000111110
only one, I am ---E -- ,time 3.000128005
only one, I am -- F -- ,time 3.000157338
only one, I am -- G -- ,time 3.000180353

v Nexwiikuge: README_firSt-steps.odt s e fismsicashills i Luffe o) Reumizht ;22
UNIVERSITAT 6. Critical sections e iiees pacelinionmation T@@m}m}@ i (@)
| WURZBURG Ly W=

Remove the protection in semaphore.cpp, compile again and see the difference.

6.5. Attention: A deadlock may occur!
Compile and have a look at the tutorial semaphore_deadlock.cpp. The program will
stop when a deadlock has occurred.

duves Nl README _firSt-Steps.0dt y:its e farstisshili frir L Revrmelhit ;220
I UNIVERSITAT 7. Events Rerobpaes RomAilon Tssmalogy ({“})
WURZBURG 12/17 =)

7. Events
Events can be used to react to interrupts from timers and signals from devices. Do
not use them for complex actions, because they cannot be interrupted. Just use them
to trigger threads that handle the interrupts. Implement them as short as possible.

An event has basically two methods: The init() method similliar to threads and the
handle() method in which the code is defined that handles the event.

7.1. RODOS functions

» activatePeriodic(startTime, period)
Activates an event periodically after the first activation at startTime.

* activateAt(time)
Activates an event at the given point in time.

* thread.resume()
Resumes a thread that is suspended.

7.2. program event.cpp
class TestWaiter: public Thread {

PRINTF("Suspend and wait until some one resumes me\n");

AT(); — suspends the thread forever|
PRINTF("testwaiter running again at %3.9f\n", SECONDS_NOW());

} /—{ defines an event|

class TimeEventTest : public TimeEvent {

ublic:
P void handle(){ __—handles the event |
xprintf(" Time Event at %3.9f\n", SECONDS_NOW());
testwaiter.resume(); ——— resumes the suspendend thread |

xprintf(" Testwaiter resumed from me\n™);
}
void init() { activatePeriodic(5*SECONDS, 3*SECONDS); }
}i ~ defines when the event is beeing raised

could also use activateAt(time)

7.3. Compiling and console output
Compile the tutorial event.cpp in tutorials/first-steps as described in chapter 2 and
execute it. The output should be the following:

Suspend and wait until some one resumes me
Time Event at 5.000107974
Testwaiter resumed from me
testwaiter running again at 5.000135475
Suspend and wait until some one resumes me
Time Event at 8.000168306
Testwaiter resumed from me

Try the example with activateAt(time) instead of activatePeriodic(startTime, period).

8.

8.1.

8.2.

8.2.1.

8.3.

8.3.1.

okl el README _first-steps.odt o mmefionstashnk fiir Luft-urd Reumii ;22
W\,{'VERSITAT 8. Middleware e (f{%&%)
WOURZBURG To7 LT =/
Middleware

Up to here, we had "normal” programming. Now assume we are in a big team with a
big project. You do not know the details of what others are programming, just the
format of the data you need from them or you produce for them. Now you have to get
and distribute this data without notion of the other side of this generic interface which
we call the middleware.

The middleware is used to communicate between tasks and even between tasks of
different RODOS nodes. This communication is based on a publisher/subscriber
protocol and there is no connection from a sender to a receiver.

Any thread can publish messages under a given topic, while subscribers of the same
topic receive the published data.

There can be 0, 1 or many publishers for one topic. The same goes for subscribers.

Required files
For this example you will need flowing files:

sender.cpp The one who sends test message: a publisher
topics.h, topics.cpp communication channels to send and receive data
receiver_* different methods to subscribe and get data: Subscribers

You will need to compile several source files together. Every compilation needs to
include the file topics.cpp

for example:

$linux-executable topics.cpp sender.cpp receiver_commbuff.cpp
or another receiver:

$linux-executable topics.cpp sender.cpp receiver_putter.cpp
or all receivers togehter:

$linux-executable topics.cpp sender.cpp receiver_*.cpp

Topic, program topics.cpp
A topic is a pair of a data-type and the topic id, e.qg.:
Topic<long> counter1(10, "counteri");

\—{ name of the topic
\ data type of pic
published

messages

If the topic id is “-1” the id will be generated.

Sample topics
Some sample topics are defined in topics.cpp. To use these topics in a RODOS
program include topics.h.

Publisher
A publisher is easy to implement. To publish data under the topic “counter” just use
counter.publish(data) in any thread.

Program sender.cpp

#include "topics.h"—— includes the topics |

r“"“'“'”“**“‘*"“'-‘-" README _first-steps.odt o mpiiemsieshnils for Luft-urd Reumfshn ;22a
UNIVERSITAT 8. Middleware @@m@ﬁ%ﬁ@m&ﬁn@m f@%m@n@éy (@E‘% jﬁ)
WOURZBURG 14/17 =/

TIME_LOOP(3*SECONDS, 3*SECONDS) {
PRINTF("Publisher®1 sending Counterl %ld\n", ++cnt);

counterl.publish(cnt); . [publishes every 3 seconds the
incremented counter

3

8.4. Subscriber
There are many possibilities to implement a receiver of middleware data.

8.4.1. Subscriber put() method, program receiver_simple.cpp
Define a new subscriber by inheriting from “Subscriber”:

class SimpleSub : public Subscriber { —
public: ~_— subscribing for counter1 |

SimpleSub() : Subscriber(counteri1, "simplesub") { }

long put(const long topicId, const long len, const void* data, ...) {
PRINTF("SimpleSub - Length: %1d Data: %1d ...

return 1; \the put function is called everytime new data has been published,;

receive the data in this method and send it to a thread via
CommBuffer or Fifo (it is also possible to resume a thread when
new data is available)

}
} simpleSub;

Compile the tutorial receiver_simple.cpp in tutorials/first-steps as described in
chapter 2 and execute it. Do not forget to compile it with topics.cpp and sender.cpp:

$ linux-executable topics.cpp sender.cpp receiver_simple.cpp

8.4.2. Subscriber and a CommBuffer, program receiver_combuf.cpp
Define a CommBuffer that is going to be filled by a Subscriber. The thread gets
periodically the latest data from the CommBuffer.

static CommBuffer<long> buf;
static Subscriber receiverBuf(counterl, buf, "receiverbuf");

_ _ — subscriber that filles the CommBuffer
class ReceiverBuf : public Threa

void run () { with values from topic counterl

long cnt;
TIME_LOOP(®, 1.1*SECONDS) {

buf.get(cnt); _————the thread gets the latest value |
PRINTF("ReciverComBuffer - counterl: %ld\n",cnt);

3

}
} recbuf;
Compile the tutorial receiver_commbuff.cpp in tutorials/first-steps as described in
chapter 2 and execute it. Do not forget to compile it with topics.cpp and sender.cpp:

$ linux-executable topics.cpp sender.cpp receiver_commbuff.cpp

To get synchronised data transfer use a SyncFifo like in tutorial receiver_sync.cpp
8.4.3. Putter, program receiver_putter.cpp

Define a new Putter by inheriting from “Putter”:

class JustPrint : public Putter {
bool putGeneric(const long topicId, unsigned int msgLen, ...) {
PRINTF("%d %ld %1ld\n", msgLen, *(long*)msg, topicId);

return true; “lis called every time new data is available on defined topics |

8.4.4.

9.1.

r“"“'“'”“**“‘*"“'-‘-" README _first-steps.odt o mpiiemsieshnils for Luft-urd Reumfshn ;22a
UNIVERSITAT 8. Middleware @@m@ﬁ%ﬁ@m&ﬁn@m f@%m@n@éy (@E‘% jﬁ)
WOURZBURG 15717 =/

}
} justPrint;

static Subscriber nameNotImportant@l(counterl, justPrint, "justprintei");
static Subscriber nameNotImportant®2(counter2, justPrint, "justprinte2");

__ | subscriber with topic definition — both, counterl and
counter2 will call the putter method of “justprint”

Compile the tutorial receiver_putter.cpp in tutorials/first-steps as described in chapter
2 and execute it. Do not forget to compile it with topics.cpp and sender.cpp:

$ linux-executable topics.cpp sender.cpp receiver_putter.cpp
To receive two counters, implement a sender of the second counter.

Which subscriber is best for what?

If the receiver needs only the latest data and has to be executed periodically, the
CommBuffer solution should be used. For synchronized communication the
subscriber put method in combination with resuming a thread is the way to do it. A
SyncFifo is also good for this. To receive from multiple topics with one method a
Putter should be used.

For more information and tutorials about the middleware check out the folders
tutorials/middleware and tutorials/alice_bob_charly

More Middleware

To see a little more about using the middleware and multicasting, please have a look
at the example in the directory gps. Here we have an example of topics with more
than one subscribers and of subscribers of more than one topic. A position sensor
measures and publishes data of the postion (3D) of a flying object. A speedcalculator
receives those data and calculates and publishes the object's speed. Finally, a
display subscribing both topics, position and speed, and prints the data.

executeit: shell script to compile and execute the whole example
topics.h: interface of the topics
topics.cpp: definition of the topics position and speed

positionsensor.cpp generates and publishes random postion data
speedcalc.cpp subscribes position topic and publishes speed data
display.cpp subscribes position and speed topic and prints the data
Compile all *cpp and see the execution.

Then try to compile without speedcalc.cpp. Do you see the difference?

program positionsensor.cpp

class PositionSensor : public Thread {

URZBURG 16/17 NS

s

rd""“='“"“‘"""“?f' README_firSt-Steps.odt s e fismsicashinls i Luffe) Rt ﬁ""%
UNIVERSITAT 9. More Middleware iileios pacelinfenmationNicchnolo) (@}
W «wﬂ
D —

TIME_LOOP(2*SECONDS, 3*SECONDS) {
p.x+= (randomTT800Positive() % 40)*0.05-1;
p.y+= (randomTT800Positive() % 40)*0.05-1;
p.z+= (randomTT800Positive() % 40)*0.05-1;
osition.publish ;
) position.publish(p); calculate random movement |

publish new position in topic ,position” |

9.2.

9.3.

mj\}éRéiﬁ"T
WURZBURG

program speedcalc.cpp

class SpeedCalc : public Subscriber {
public:
SpeedCalc() : Subscriber(position,
Pos po,p1;
long put(...) {
po=p1;

pl=*(Pos*)data;

README _first-steps.odt o mpiomsieshnil o Lufund Reumihnt 7=
9. More Middleware (

Azrespace [Riermmetihn Teehnelogy @ 3

L=

"SpeedCalc") { }

subscribe topic position

double v = sqrt((p0.x-pl1.x)*(p0.x-pl.xX)+...);

speed.publish(v);
return 1,

}
} speedCalc;

program display.cpp

static CommBuffer<Pos> posbuf;
static CommBuffer<double> speedbuf;

§

)

calculate and publish speed
whenever new position data is
published

static Subscriber namenotimportanti(position, posbuf, "posreceiverbuf");

static Subscriber namenotimportant2(speed,

"speedreceiverbuf");

class Display : public Thread {

void run () {

TIME_LOOP(1*SECONDS, 1*SECONDS) {

Pos p;

double v;
posbuf.get(p);
speedbuf.get(v);

speedbuf,

“~—fill buffers with published data |

get data from buffers

PRINTF("Position (%3.2f;%3.2f;%3.2f) speed %3.2f\n",.....);

}
}
} display;

	0. Before start
	0.1. Notes on this tutorials
	0.2. RODOS directory structure
	0.3. Steps to compile and execute a RODOS program

	1. Hello World
	1.1. Used RODOS functions
	1.2. Program helloworld.cpp
	1.3. Compiling
	1.4. Console output
	1.5. Several Threads

	2. Basic structure
	2.1. Used RODOS functions
	2.2. Program basic.cpp
	2.3. Compiling
	2.4. Console output

	3. Time
	3.1. RODOS time functions
	3.2. Time macros
	3.3. Program time.cpp
	3.4. Compiling and console output

	4. Priority
	4.1. Program priority.cpp
	4.2. Compiling and console output
	4.3. Special function: Priority ceiling

	5. Thread Communication
	5.1. CommBuffer
	5.1.1. Programm combuffer.cpp

	5.2. Fifo
	5.2.1. Programm fifo.cpp

	5.3. Synchronous Fifo
	5.4. Which is best for what?

	6. Critical sections
	6.1. RODOS functions
	6.2. Program semaphore.cpp
	6.3. Program semaphore_macro.cpp
	6.4. Compiling and console output
	6.5. Attention: A deadlock may occur!

	7. Events
	7.1. RODOS functions
	7.2. program event.cpp
	7.3. Compiling and console output

	8. Middleware
	8.1. Required files
	8.2. Topic, program topics.cpp
	8.2.1. Sample topics

	8.3. Publisher
	8.3.1. Program sender.cpp

	8.4. Subscriber
	8.4.1. Subscriber put() method, program receiver_simple.cpp
	8.4.2. Subscriber and a CommBuffer, program receiver_combuf.cpp
	8.4.3. Putter, program receiver_putter.cpp
	8.4.4. Which subscriber is best for what?

	9. More Middleware
	9.1. program positionsensor.cpp
	9.2. program speedcalc.cpp
	9.3. program display.cpp

