Chair of Computer Science VIII Aerospace Information Technology

Creating a Setup to Assess the Use of Virtual Reality for Mission Control

Felix Sittner, Cedric Liman, Gino Schulze, Hans Schülein, Jan Schmieder, Jan Tischhöfer, Marlene Busch & Sergio Montenegro

Chair of Computer Science VIII Aerospace Information Technology

The Team

InnoCube

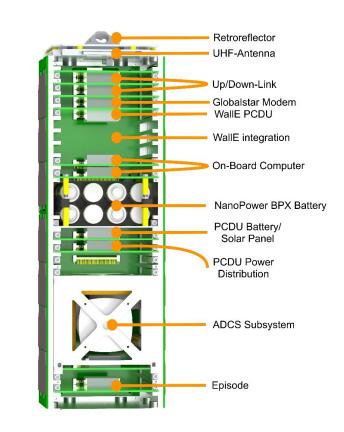
- Info8-ILR @JMU Würzburg
 - \rightarrow Software Team
 - Onboard Software
 - Control Room Software
- IRAS @TU Brunswick Berlin
- DLR Bremen

"Serious Mission"

Virtual Control Room (VCR)

- Student Thesis Projects
- Student Assistants
- Internships

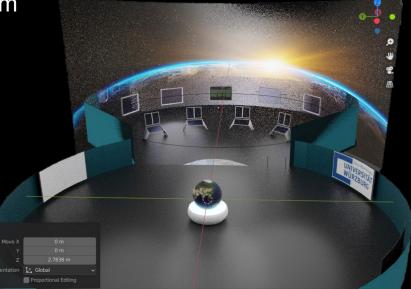
"Fun educational project"


Chair of Computer Science VIII Aerospace Information Technology

The Mission

InnoCube

- 3U Cubesat
- Technology Demonstration:
 - SKITH wireless satellite bus
 - WALL#E structural battery
- Scientific Payload:
 - EPISODE SDR GNSS
- Launches Spring 2023


Chair of Computer Science VIII Aerospace Information Technology

Motivation

Why build a Virtual Control Room (VCR)?

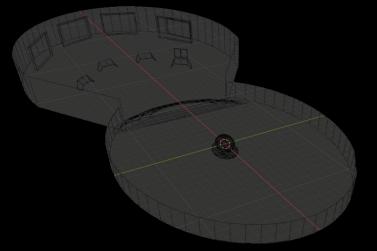
- Fun project for students!
- Less hardware needed: One computer, one VR headset
- Virtual environment ("scene") reconfiguration is easy & cheap
- We could not use our real control room anymore due to pandemic

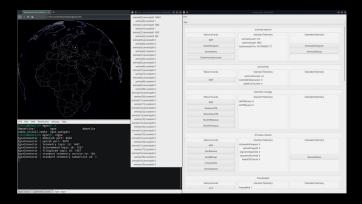
Chair of Computer Science VIII Aerospace Information Technology

The Idea

Coordinate InnoCube GS SW and VCR development and find out what can be achieved using the available technology!

Requirements:


- 1) Create GUIs that can be used normally and within VR
- 2) One GS backend software framework
- 3) Can connect either to dev/simulation or real satellite
- 4) Integrate with our exiting setup:
 - Satellite / simulation: Rodos OS
 - Exchange data using the *Corfu* framework
 - Use Corfu configuration files to create GUI views
- 5) Test, evaluate & adapt VR environment to support ground crew (and reduce simulation sickness)

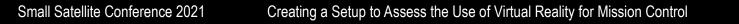

Chair of Computer Science VIII Aerospace Information Technology

The Tasks

- <u>Create the VCR scene</u>
- <u>Develop control room software</u>
- Plan & furnish real control room
- Assign software views to displays
- Configure for individual operators
- Test with users
- Improve Software & VCR design

Chair of Computer Science VIII Aerospace Information Technology

Creating the Virtual Reality Scene


Chair of Computer Science VIII Aerospace Information Technology

DOOR

Creating the VR Scene

- Design & floor plan
- Model 3D objects & room in <u>Blender</u>
- Add textures
- Create Scene in <u>Unity3D</u> with the objects
- Add XR-rig to represent the user in the scene
- Add functionality / interactivity, e.g.,
 - Interactions (add triggers & link scripts to objects)
 - Set up browser windows to display control room software GUI
 - Update object properties with external data

Chair of Computer Science VIII Aerospace Information Technology

First VCR Design

Attempt to create a futuristic virtual representation of a normal control room:

- Intended to be used by multiple operators working in teams
- Round room with two rows of consoles
- One console / row per operator
- Huge displays on walls
- Central globe showing the satellite position
- Calm color scheme
- Operators may walk, but usually sit

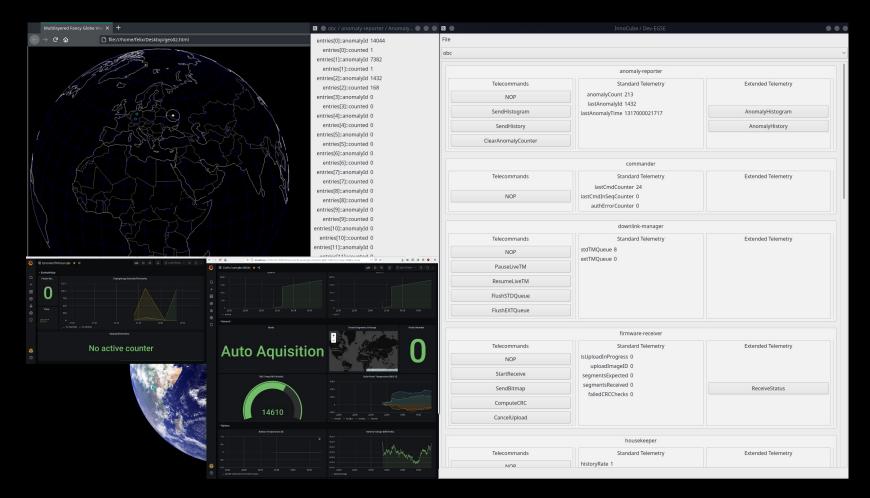
Chair of Computer Science VIII Aerospace Information Technology

Second VCR Design

Improving upon the first VCR design.

- Intended to be used by a single operator
- User not globe at the center of the room
- Two connected rooms:
 - One main work area
 - One room with the 3D globe
- 4 consoles in a half circle
- User can grab / move large screens
- User can stand or sit

Chair of Computer Science VIII Aerospace Information Technology



Creating the Control Room Software

Chair of Computer Science VIII Aerospace Information Technology

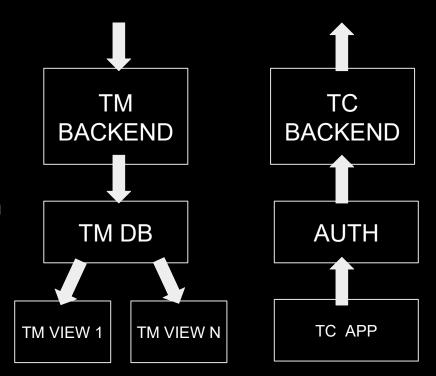
The early GUIs – Dev-EGSE, D3-Geo & Grafana

Chair of Computer Science VIII Aerospace Information Technology

Improving the GUI – BA-Thesis: Parcel

- <u>Python Application for Recording</u> a <u>Corfu EGSE Link</u>
- Works with native Corfu telemetry messages (as sent by InnoCube)
- Creates GUI elements from config
- Adds telemetry visualizations
- Adds search function
- Allows to replay telemetry
- GUI configuration in python script, which builds Parcel executable

Chair of Computer Science VIII Aerospace Information Technology



The Redesign

Handle TM and TC separately!

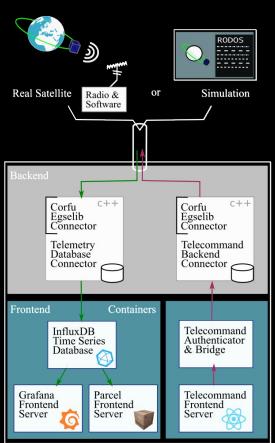
Divide into frontend and backend!

- Backend:
 - Run natively on GS computer
 - Communicates with satellite/simulation
 - Stable / Reliable
- Frontend:
 - Apps packaged into containers
 - Fast setup & development

Chair of Computer Science VIII Aerospace Information Technology

Data Flow

Telemetry


TM message is received & forwarded to control room SW

Backend stores raw data, extracts telemetry & pushes it into database

Frontend software pulls Data from db & serves visualizations

Operators access telemetry data displays via browser

Small Satellite Conference 2021

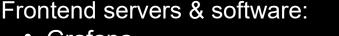
Telecommands

TC message is sent to uplink

Backend assembles TC message object, stores a copy & forwards TC

Frontend server checks credentials & forwards cmd data to the backend

Operator enters command in the web interface


Chair of Computer Science VIII Aerospace Information Technology

The Components

Backend:

- EgseLib, DBs, Connectors
- Container Setup & Routing
- Secure connection

Grafana

Globe / Map view

- Parcel telemetry viewer
- Telecommand web GUI

VR environment:

- Control room scene design
- VR interaction design
- VR-only assets

Normal control room / office:

→ Views should work with various computers & display devices

Chair of Computer Science VIII Aerospace Information Technology

The Resources

Web Frontends:

- <u>Grafana</u>
- <u>D3.js</u> & <u>D3-geo</u>
- InfluxDB Client JS
- <u>React</u>

Backend:

- <u>Docker</u>
- <u>Ubuntu</u>
- <u>InfluxDB</u>

Virtual Control Room

- <u>Blender</u>
- Unity3D
- <u>UnityBrowser</u>

Rodos

- <u>Rodos on GitLab</u> & <u>RodosVM</u>
- <u>Rodos Tutorial on Youtube</u>

For access to the software developed at our chair, such as Corfu, Parcel & the VCR project, send us an email.

Chair of Computer Science VIII Aerospace Information Technology

The Fine Print

Contact:

Julius-Maximilians-Universität Würzburg Department of Computer Science <u>Chair VIII: Aerospace Information Technology</u> Josef-Martin-Weg 52/2 D-97074 Würzburg

Phone: +49 931 3188786 Email: felix.sittner@uni-wuerzburg.de

Funding:

InnoCube is funded under support code 50RU2000 & 50RU2001 by the Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag.

