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Abstract

This thesis is dedicated to design and implementation of a 6DOF control system
for a quadrocopter. At the beginning of the work the quadrocopter was analyzed as
a plant and physical effects with behavior of continuous /discrete elements were
described. Based on the mathematical equations, continuous time invariant
nonlinear mathematical model was designed. This mathematical model was
linearized to create a 6DOF control system and validated thought experiments by
test benches and a flying prototype of the quadrocopter. For the control system
design a pole-placement approach was chosen and based on the linear validated
model, with taking into account requirements to a settling time, an overshoot and a
steady-state error, the control system was designed. Its behavior was checked in
simulation and showed adequate results. Afterwards designed control system was
implemented as a script and incorporated in a soft, developed inside ‘Aerospace
Information Technology’ Department, University of Wiirzburg. Then series of
experiments by test benches and the flying prototype were fulfilled. Based on
comparing experimental and theoretical results a conclusion was made. At the end
of the work advantages and drawbacks of the control system were discussed and
suggestions for future work were declared.
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Chapter 1 Introduction
1.1 Motivation and tasks of this work

A quadrocopter is a flying object, which changes its altitude and attitude by four
rotating blades. Quadrocopters are a variation of multicopters, which are
rotorcrafts. During 20" century there were several attempts to implement manned
quadrocopters, earliest known cases are in 1922 by Etienne Oemichen in France
[25] and by George Bothezat in USA [26]. However, during the progress in
rotorcrafts industry, the helicopters with different schemes of rotors adjusting were
chosen.

In last decades, because of great achievements in technologies such as
electronics, microcontrollers, motors, sensors and software, an opportunity of
building small unmanned aerial vehicles (UAVs) became wide world available.
This one leads to growing research and engineering interest to quadrocopters,
which can be easily built. Nowadays quadrocopters are used mostly as toys, objects
for teaching purposes in universities and for panorama video recording, but ones
have good prospects in other areas. For expansion of application areas they should
be more autonomous and intelligent. They are planned to be used in rescue
operations [28], as a fire-fighter [27] or working as a group for fulfillment tasks
with general purposes [29].

Quadrocopters have advantages such as a high maneuverability, a relatively
cheap price and a simple construction and have a great potential for using as
robotic autonomous devices. However, there are several problems that should be
solved or improved for making ones closer to real applications. One of these
problems is a real time 6DOF control system that can control a position and an
orientation of a quadrocopter, its linear and angular velocities. Such type of the
control system is very important for fulfillment series of tasks, e.g. grasping other
objects, tracking other objects or transmitting video information about other
objects. Some good results of controlling a quadrocopter behavior were obtained
and demonstrated by GRASP laboratory of Pennsylvania University [30] and inside
project ‘Flying Machine Area’ from Ziirich University [31].



Hereby, the main motivation of this project is creating real time a 6DOF control
system. This control system should control a position and an orientation of a
quadrocopter.

For creating such time of the system, several tasks should be solved. At the
beginning a mathematical model of a quadrocopter should be created. Then, based
on this mathematical model, a 6DOF control system should be designed. At the
end, designed control system should be implemented as a code in a microcontroller
for a real quadrocopter.

A guadrocopter that will be under consideration in this thesis is the one from
‘AQopterl8’ project, which is developed at Aerospace Information Technology
Department, University of Wiirzburg.

1.2 State of the Art

A mathematical model of a quadrocopter consists of describing rigid body
dynamics, kinematics of fixed and body reference frames and forces applied to the
quadrocopter. There are several variants of the model. Firstly they vary in
describing of rigid body dynamics; it can be done by Euler equations [5], Euler-
Newton approach [20] or Lagrangian approach [21]. Secondly they vary in end
representations of kinematics and direction of z axis of body reference frame.
Thirdly, they differ in how many forces and other effects are taken into account.
The most complete model is represented by S. Bouabdallah [21], the simplest
variant by R. Beard [5] and the variant in the ‘middle’ by T. Luukkonnen [20].
Also some researchers simplified a model of a motor, which rotates a blade, as
proportional coefficients [5], and some of them as a 1% order transfer function [21].
A model for this thesis is based on models from two works [20], [5].

Control designs used in many works are based on the mathematical model.
Usually, original model is linearized to linear continuous time invariant model [20,
5] or to discrete one [24]. A controller for attitude control is usually PD [23] and
there are several variants for altitude control. Hover control represented by
N.Michael and others [23] was chosen for the quadrocopter control. There are
several variants for the structure of control system for a whole plant. The variant
from N.Michael and others [23] was chosen.



1.3 Chapters overview

In chapter 2 ‘Mathematical model of the quadrocopter’ several issues are
discussed. At the beginning an analysis of quadrocopter physical processes is done
and collected as one process. Then deferential equations described each process are
represented. Based on these equations transfer functions were obtained and
implemented as a model in Matlab/Simulink.

Chapter 3 ‘Design of the Control System’ dedicates to choosing structures of
controllers and calculation their coefficients. It starts from short discussion about
pole-placement approach. A method for choosing poles based on quality
requirements is discussed. Then calculation feedback coefficients by Ackerman
method is represented. At the end, implementation in Matlab/Simulink is described
and results of simulation are shown.

Chapter 4 ‘Implementation of the Control System’ contains information about
experiments for a validation the mathematical model and a controllers adjusting.
Firstly, the validation of the mathematical model for the pitch/roll, the calculation
for controllers for pitch/roll and a comparison of modeling and experimental results
were represented. Afterwards, the same information about the yaw was described.
Then experiments with a flying prototype were shown and compared.

Chapter 5 ‘Conclusion’ contains discussion of the results and recommendation
for a future work.



Chapter 2 Mathematical model of the quadrocopter
2.1 Analysis of the quadrocopter

The quadrocopter consists of four sticks, where each two are set symmetrically
and perpendicularly to each other. On the end of each stick, symmetrically to
geometrical center of the quadrocopter, actuators that provide flying are set. Each
actuator consists of a motor and a blade, where the blade is fixed to the motor’s
shaft (fig. 2.1). Rotation of these blades can lead to qudrocopter’s motion.

fig. 2.1 Structure of the quadrocopter

The quadrocopter has 6DOF that means it has linear and angular motions. This
complex motion (called free motion) can be fully determined by two vectors: a

position vector pst and an orientation vectorort . The position vector has current

position of the quadrocopter in Earth reference frame and the orientation vector has
current orientation angles of the quadrocopter comparing to Earth reference frame.

For calculation current values of pst the following parameters should be known: a

vector of linear velocity v, a vector of linear acceleration a . For calculation the
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current values of ort the following parameters should be known: a vector of

angular velocity o, a vector of angular acceleration ¢ . Also initial conditions of all

6 vectors mentioned above should be known. In addition, external forces and

torques, which could be substituted by net force netF and net torque netz , lead to

changing in the linear and the angular acceleration of the quadrocopter and these
changing influences on the position and the orientation. Hereby, for creating the

mathematical model (MM) the equations, for calculation vectors pst and ort based

on vectors mentioned above, should be declared (fig. 2.2)

6DOF
netF
L ——— A
nett ort
———
Initial conditions 1;1:
_—

—

Ortt=0 > a)t:o, 8[:0

DPSt,_g, Vi=0, =0

fig. 2.2 Logical diagram for calculation the position and the orientation of the
quadrocopter

There are three sources of external forces such as gravitational field, air drag

and rotations of the blades in the air. These sources create a gravitational force Ifmg

a drag force Ifd and a thrust force frespectively. External torque H is created

rag

only by blades rotation (fig 2.3).
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netf

nert

fig. 2.3 Logical diagram for calculation net force and net torque

In total there four blades and four BLDC motors. Assume that motors are
numbered from 1 to 4. Each blade is rotated by the corresponding motor with
particular angular velocityg)bn , Where index i indicates the number of the motor.
Angular velocity of the motor’s shaft is regulated by a power bridge and each
power bridge is regulated by a microcontroller (fig. 2.4).

A microcontroller Power bridge BLDC motor

voltage voltage o
value current
fig. 2.4 Logical diagram for calculation angular velocities of the blades

Hereby, the whole process of moving a quadrocopter in 6DOf can be described as:
a microcontroller sets signals (analogous or digital) that are transferred through
power bridges and motors to angular velocities of the blades. A rotation of the
blades creates forces and torques that together with gravitational and drag forces
change the quadrocopter position and orientation (fig. 2.5).

12



6DOF

A microcontroller Power bridges BLDC motors blades .
- T netF .
voltages voltages/ Osi; — ort
values GUFEeRt H nett —)
pst
Initial conditions .
—_—

Orti=o, Wi=0, Er=0

PSt,_q, Vi=o0, di=0

fig. 2.5 Logical diagram for creation the MM of the quadrocopter

The controller needs feedback information such as the position, orientation and
appropriate parameters (e.g. linear angular velocity) that should be measured by
sensors. Based on desired values of the position and the orientation and current
feedback values measured by the sensors the designed controller should generate
appropriate values for the power bridges (fig. 2.6).

Desired vectors

pst, ort

6DOF

A microfontroller

Power bridges BLDC motors blades

. T netF

voltages voltages [oFH —

Controller fl=——= H T
values current

Initial conditions

ort

Orti=0, Mi=0, Et=0

pstt=o 5 V=0, dr=0

fig. 2.6 Logical diagram for the MM and the controller

It can be concluded that the MM is consists of transfer functions that describe or
estimate elements and processes shown on fig. 2.6. So the behavior of the

13



quadrocopter in 6DOF should be described by differential equations. Then
relationships between angular velocities of the blades and net force and net torque
should be shown. External forces that cannot be controlled: gravitational and drag
forces should be discussed. Elements that are needed for creating force and torque
for moving: analogous elements (blades, motors, power bridges) and digital
elements (sensors, a microcontroller) should be described. Based on the MM the
controller can be designed.

2.2 Mathematical description of the quadrocopter elements

The MM should approximate the process shown on fig. 2.5. A description of
this process includes free motion of the quadrocopter, influence from applied
forces, how blades rotations are produced and effects of digital elements (sensors, a
microcontroller).

2.2.1 Free motion of the quadrocopter

For describing the quadrocopter’s free motion (process is shown on fig. 2.2), the
theory of free motion of a rigid body is used. According to this one, free motion of
the rigid body is considered as a complex motion, which consists of two simple
motions:

e translation motion of a point with mass equals to the mass of the body (point
mass), where the point is any point of the body

e angular rotation of the body around a fixed point, where the point mass
chosen above is considered as the fixed one.

Translation motion of a point is described as:
netF :ﬂ, (2.1)
dt

where netF is a net force of all external forces applied to the point mass, p is

: : d . . :
linear momentum of the point mass and ot is differential operator.

Angular rotation of a body around the fixed point can be described as:
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- dL
netr =— , (2.2
T=3 (2.2)

where netz is a vector sum of all external torques and L is an angular momentum
of the body.

Translation motion of a point mass

For describing translation motion of a pointed mass a fixed reference frame
should be chosen. In some arbitrary point of the space, noted as ‘O’, a fixed
reference frame XYZ is created. Position of a point mass in frame XYZ can be

described by radius vector r (fig. 2.7).

net FF

O

fig. 2.7 Position of the point mass in XYZ fixed reference frame

To apply eq. (2.1) to this point mass, a linear momentum of the point mass should
be described:

p=m*v, (2.3)

where m is a mass of the point mass and v s a linear velocity of the point mass.
With taking into account eq. (2.3), eq. (2.1) can be rewritten as:

-
Lador

dv
L _m*—— (2.4).
dt dt (24)

netF =m*

The changing in position of the point can be expressed from eq. (2.4) as:

15



:ﬁ, (2.5).
m

Scalar form of eq. (2.5) is:

. netk

P = - X

v netF, (2.6).
m

Y

o ||etFZ
r-Z

Angular rotation around a fixed point

As it was mentioned above, for describing free motion of a body, an angular
rotation around a fixed point should be considered. Assume a fixed reference frame

xyz with origin in a fixed point of a rigid body (fig. 2.8).

7

Body of rotation

fig. 2.8 Rotation of a rigid body around a fixed point in xyz fixed reference frame

Rotation of the rigid body with random shape around the fixed point can be
described in fixed reference frame xyz . For using eq. (2.2) the angular momentum

of the body should be calculated.
The body is considered as a system of point masses, where mass of each point is

dmand position of any of these points can be determined by vector p from origin
of xyz till the element dm. In this case the angular momentum is:

16



E:m;x(/dm*dm, (2.7), [9]
where J'” is an integral in the volume of the body, Vnis a linear velocity of
particular element. Eq. (1.7) in non-vector form is:
L, = .':(y*vZ — z*vy)*dm

L :.':(z*vX —x*v,)*dm, (2.8), [9]

L, = ::(x*vy — y*vx)*dm

where X, y, z are coordinates of an element dm (or in other words coordinates of

correspondent radius vector ,5), V. ,V,, v, are projections of the velocity of this
element.

Linear velocity of each element van can be described as:

o, 7-w*Yy

Va =X p=| @, *X~0,*2 |, (29), [9]

o.*Y-w,*X
where wis angular velocity of the body and w,,w,,o,are its projections in  xyz .
By rewriting eq. (2.7) with taking into account (2.9) the angular momentum is:
L =[[[(y*(&,*y—o,*x) - 2* (@, *x—o,*2))*dm = [[[ (0, * (y* + 2°) 0, * X * y — 0, * 2% x) *dm =
:a,x*jﬂ(yz+z?)*dm—wy*jﬂ(x*y)*dm—wz*jjj(z*x)*dm ,
L, :_m(z*(a)y*z—a)z*y)—x*(a)x*y—a)y*x))*dm:m'(a)y*(zz+x2)—a)z*z*y—cox*x*y)*dm:
=a)y*m'(z2 +x2)*dm—coz*J.”z*y*dm—a)x*_mx*y*dm,
L, :_U‘J'(x*(a)Z *X—w,*7) - y*(0,*7- o, *y))*dm =M(a)z *(XP+Y)—m, *x*z —a)y*y*z)*dm =
= o, *J.J'J'(x2 +y3)*dm -, *J.”x*z*dm—a)y*”.fy*z*dm :

or in vector form:
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S

= —m(x*y)*dm ﬂj(z2+x2)*dm —mz*y*dm

Tieoman [frryran  [ffocyan

where J is so-called tensor of inertia (Tol) and its components can be rewritten as
follow:

)

y y

(v +z2)*dm —[[[(x*y)*dm —[[[(z*x)*dm
t—{b] 1} 1} 1} *[ X}—J*E)’ 210 [
L

S

4 z

”J.(y2+22)*dm —J.'U(x*y)*dm —m(z*x)*dm RN
5 3 |(@211),19]

J= —m(x*y)*dm m(z2+x2)*dm —mz*y*dm =13, I, I,
o fffzeyom ffforeyyean) e S 2

[ SR SEF R

where 1st index of J corresponds to the index of L and second one to the index of
wand J, =J,;3, =53, =J,:.

X!

Each component of inertia tensor is a moment of inertia (Mol) around particular
axis. These components are constant, since origin of reference frame xyzis

connected to the body. Tensor of inertia (Tol) can be simplified in a case if axes of
reference frame xyz are coincident with principal axes of the body (axes of

symmetry). To provide this case for rotating body, the axes of the reference frame
should be fixed with the body. Assume new reference frame Xy, z,, which axes are
coincidence with principal axes of the body and origin is in the fixed point of the
body. In reference frame ‘ X,Y,z,” components J, =J,, =J , =0 [9] and eq. (2.10)

and eqg. (2.11) can be rewritten as:

L,, Jyr O 0 a,
L=|L, |=| O J,, 0 |Yao |=)%,(212),][9]
L 0 o J 1)

To derive the angular momentum, an equation for the relative motion is used:
F.=F +oxr, (2.13), [1]

where T, is an arbitrary vector in inertial reference frame, . is the same vector in

body (non - inertial) reference frame, w is an angular velocity of the body
18



reference frame in the fixed reference frame. Derivation of angular momentum

—

(?j—lt‘ according to eq. (2.13), leads to so-called Euler’s equation [2]:

— U *_’ — - _’ - -
netrzdL=d(Jdt a))‘i‘a’XJ*w:J*dd_?)“wa‘]*w’ (2.14), [2].

Eq. (2.14) in more detail form is:

netz, Jyr, O 0 o, o, Jyr O 0 ),
netr=|netr, [=| 0 J,. 0 [*a, |+ e x| 0 I, 0 |*lo,
netz, 0 o J - a')zb o, 0 o J - @,
bexb *d)xb C()Xb JXbXb *COXb bexb *0.)Xb (szzb B beyb )*a)Yb *a)zb
Yo Yb * d)Yb + a))’b x| Yo Yb * a))’b = Yo Yo * d)yb + J XX J ZyZy * a)xb * a)zb !
ZyZy * a')zb a)zb J ZyZy * a)zb J ZyZy * @Zb ( J Vo¥o J XX * a)xb * a)yb

or in short form:

_ * _ * *
netTXb - bexb a)xb +(szzb JYbe) a)Yb a)zb
_ * 2 _ * *
netr, =3, *o, +(J,, ~J,., )* 0, *o, ,(2.16),[2].

— * o _
netrZb = szzb @, + (beyb

* *
bexb) a)xb a)Yb

Eg. (2.16) should be rewritten in the form for finding changing in angular velocity
as:

19



— _ * *
_netTXb (szzb JYbe) wa @

Zp

a')xb =
XoXp
— _ * *
a')yb — netTYb (JXbXb JZbe) a)xb a)zb ' (217)’ [2]
Yb Yo
— _ * *
C(.) — netfzb (J YbYb J XpXp ) a)xb a))’b

Zp
ZpZy

As it was mentioned above, description of rotation in body reference frame
X, Y, Z, instead of fixed reference frame xyz simplifies calculation of angular

momentum L to eq. 2.12. On the other hand because of this simplification,
another equation, that links angular velocity @ in X,Y,Z, and orientation X, y,z,

relatively to xyz, is also needed. Orientation of the body is defined by unique

rotation around instantaneous axis of rotation. This rotation can be considered as
sum of three simple rotations. Sequences of simple rotations are not unique [4].
Commonly used sequence in Aerospace applications for flying objects is yaw-
pitch-roll (YPR) rotation, where angles e.g. noted asy, @, ¢ correspondingly

(fig. 2.9).

Body of rotation

fig. 2.9 Orientation of the body reference frame X, Y, z, by yaw-pitch-roll angles in fixed
reference frame Xyz

Changes in orientation are connected with o by following equation:

20



d) |1 sng*td co*to| |,
0|=|0 c¢ -sng |*| o, |, (2.18).[5]

V) g S %% ||o,
co co

Hereby, for a block ‘6DOF’ (from fig. 2.2) three equations are needed: eq. (2.6)
describes dynamics of linear motion, eq. (2.18) describes kinematics of angular
motion and eq. (2.17) describes dynamics of angular motion.

Tensor of inertia and mass of the quadrocopter

For calculation Tol, a real structure of the quadrocopter ( fig. 2.1) is simplified
to the structure, which consists of spherical dense center with mass M, radius R
and several point masses of mass m,, located at distance | (fig. 2.10).[5]

fig. 2.10 Simplified structure of the quadrocopter

Tol of the simplified structure based on eg. (2.11) and eq. (2.12) can be described
as:

[[[ (v +2,%)*dm 0 0 3. 0 0
J= 0 [ @ +x7)*dm 0 =0 J, O
0 0 I”(xf +y,%)*dm 0 0 J,,
,(2.19)
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2*M *R?

2*M *R? ) )
whereJ, =) =——4+2*"* M, andJ,, =————+4*|°*m,, .
XbXb M szb 5 M

T %Y

Eq. (2.19) supplements eq. (2.17).
In case of chosen approximation the mass of quadrocopter is:
m=M +4*m,,, (2.20),

where m,, is total mass of the motor and the blade, M is mass of the spherical
dense or in other words mass of the rest parts of the quadrocopter.

Eq. (2.14) supplements eq. (2.6).
Summary of equations for motion in 6DOF

Hereby, based on written in section 2.1, free motion of the quadrocopter can be
represented in reference frame XYZ (fig. 2.11).

fig. 2.11 The quadrocopter’s free motion

Parameters and functions of this motion can be determined in several steps. Initial
conditions are set accordingly to current experiment (e.g. equal to zero). Then mass
and Tol are calculated based on eg. (2.19) and eq.(2.20). Afterwards dynamics and
kinematics of orientation are calculated based on eg. (2.18) and eq. (2.17) and
dynamics of linear motion is calculated based on eq. (2.6).
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2.2 External Forces

A position and an orientation of the quadrocopter can be found by eq. (2.6) and

eq. (1.17) when the external net force netF and external net torque netz are known.
As it was mentioned before there are three sources of external forces: gravitational
field, air drag and rotations of the blades in the air, which lead to a gravitational

force F_, a drag force IfOI and a thrust force T respectively. Forces and torques

mg ? rag

from blades can be controlled. Gravitational and drag force cannot be controlled.
Gravitational forces

Forces of gravitational field applied to a body can be represented as a net
gravitational force applied to a center of gravity (CoG) of the body. Direction of
this force is constant and pointed to the center of the Earth. Relation between this
force and acceleration of an object corresponds to Newton law and can be written
as:

F =m*g, (2.21)

mg
where mis mass of the quadrocopter and ¢ is gravitational acceleration.

For simplification assume that the CoG coincides with the CoM of the
quadrocopter.

Air drag force

When an object moves through the air, it overcomes air resistant. Air drag force
can be described as:

F

drag

=C, *p*S*V?, (2.22),[8]

where C, is drag coefficient, p is mass density of the air fluid, S reference area of
the object, v is the speed of the object relative to the air fluid.

Coefficient C,, which depends on the shape of the object, should be measured in

advance in a wind tunnel. Drag coefficients for several shapes are well known and
available in the form of the tables, e.g. for square shape C, equals to 0.64 [8] .

Mass density of the air p depends on the height above the see level, e.g. for 1

23



meter above sea level with temperature about 15 degree, air density equals to 1.226
[8].

For movement in 3D eq. (2.22) can be rewritten as:

F... =C,*p*S*|V|*V, (2.23),

drag —

Forces from blades

Interaction between a rotating blade and air can be described by vortex theory
[7]. Assume that a blade is rotating with some angular velocity e, in

counterclockwise direction. This rotation leads to producing a number of forces. To
find net forces, the blade surface is theoretically divided by small elements and the

force that applied to an element represented as sum of vertical force Teand
horizontal force 69, (fig. 2.12). Sum of all vertical forces T« can be substituted by

thrust force T and sum of all horizontal force Q,, as hub torque H .

N
|

I
I

CCW

fig. 2.12 Net force and torque from interaction between a blade and the air

The thrust force T and hub torque H can be described as:
T=b *a,’, (1.24), [21]
H=b, *a,’, (1.25), [21]

where b, and b, are proportional coefficients, which depends on air density, angle

of blade and area of blade.
24



The quadrocopter has four actuators; each of them consists of a blade, a motor
and a power bridge. Notate linear movement of the quadrocopter as forward,
backward, left and right and number actuators from 1 to 4 (fig. 2.13). Blades 2 and
4 rotate in counterclockwise direction with angular speed ,, @, while blades 1

and 3 rotate in clockwise direction with angular speed w,, .

$ ? k
a,

A 0 n

@ (;')
o, @,
) /4

fig. 1.13 Quadrocopter structure

These rotations lead to four couples of thrust forces and hub torques (fig. 2.14).
L, fl

H> X

gL T,

H 4
fig. 2.14 Thrust and hub forces from each blade

These 4 forces can be replaced by net thrust force T and 4 hub torques by net hub
torque H (fig. 2.15).
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fig. 2.15 Thrust force and hub torque applied to the quadrocopter (an arbitrary direction of
H is chosen)
Thrust force T can be represented as:
T=T1+T2+Ts+T4, (2.26), [21].
Hub torque H can be represented as:

|*(-|72 —-|T4)

x
=3

|*(f3 —ﬂ) 2.2y, [21]

I
I

I T =T
I

N
o

(ﬁl +ﬁ3)—(ﬁ2 +ﬁ4)
where sign minus corresponds to negative direction of roll, pitch and yaw angles.

Equation (2.27) supplements eq. (2.17) for calculation orientation of the
quadrocopter, so (2.17) can be rewritten as:

o I*(fz —ﬂ)—(Jszb _‘beyb)*a)yb *a)zb

K ‘]xbxb
@, = I*(fg _ﬂ)_(JXbXb _JZbe)*wXb " , (2.28).
Yo Yo
0 :(H1+H3)_(H2+H4)_(beyb_bexb)*a)xb*a)yb

Zy
Ipzy

For finding translation motion thrust force T should be represented in xyz as:
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T=|T = Rh *beYbe , (229)’

y Xyz

where R®** is a rotation matrix.

Rotation matrix of YPR is:

Ry =[R(9)*R, ("R, (v)] =

1 0 0 cd 0 -snd cy sy O\
=|0 cg sng(* O 1 O (*-snw cy O =
0 —sng c¢ sné 0 cé 0 0 1
ch*cy cO™* sny —s60 |

=|| SNn@*sn@*cy —cp*sny sSng*sn@*sny +cg*cy sng*co =
Cop*sné*cy +sng*sny  co*sné*sny —sng*cy  cop*cé

cO*cy —sng*sn@*sny —cO*sny Cy *sné +cl™*sng > sny
Co*sny +sng*sné*cy  co*cy  sn@*sny —sng*cOd*cy |, (2.30), [4]
—Cgsné sng cp*co

where ¢ and sn are abbreviations for cosine and for sine respectively.

Thrust force is always aligned with z, axis, therefore, with taking into account eq.
(2.30), eq. (2.29) can be rewritten as:

T, 0
Tue=| T, |[ZR™*T =R *| 0 |=
T, T

cO*Cy —sng*snd*sy —cO*sny  Cy *sn@ +co>*sng ™ sny 0
=| cog*sny +sng*snd*cy cop*cy  sO@*Fsny —sng*cOd*cy |*| 0 |=
—Cgsné sn¢g cop*co T
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Cy * sn@ + cO* sng * sny
=| sO@*sny —sng*cod*cy |*T  (2.31).
cp*cl

With taking into account eq. (2.31), gravitational force eq. (2.21) and drag force eq.
(2.23), eg. (2.6) can be rewritten as:

. (cy*sn@+co*sng*sny )*T —C, * p*S*vy

P, = -
sO@*sny —sng*cO*cy )*T —C * p*S*2
(- (SO7SW ZSngreoray) T =Cy " p*ST ) 0oy
m
" _CH*CO*T —m*g—C,* p*S*V:

z m

Thereby, the free motion of the quadrocopter in 6DOF can be represented as linear
motion its center of the mass (CoM) with mass m in XYZ and angular rotation of
the quadrocopter around CoM. The rotation is described by rotation of the
quadrocopter in X, Y,z, and orientation of X Y, z, relatively to xyz , where axes of

xyz are parallel to relative axes of XYZ (fig. 2.15).

fig. 2.15 Motion of the quadrocopter in 6DOF

The influence from applied forces is described by eq. (2.32) (instead of (2.6)) and
the influence from applied torques is described by eq. (2.28) (instead of 2.17).
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2.2.3 Quadrocopter’s actuators

The actuator consists of a blade, a motor and a power bridge. The behavior of
the blade is described in previous section by eq. (2.24), eq. (2.25).

Angular velocities of the blades depend on angular velocities of corresponding
motors. For calculation a shaft velocity of a brushless DC motor (BLDC) a
mathematical model of the motor should be used. This model depends on motors
construction. In opposite to brushed DC motor, a BLDC motor needs a control
system for rotation of its rotor. Sometimes MM of BLDC is needed for creating
such type of the control system. However, for current case the MM is needed to
estimate relationship between the input and output. For this purpose MM of BLDC
can be substituted by MM of brushed DC [6].

The MM of brushed DC motor is based on four equations:

Uzi*r+L*3 ¢ ,(2.33)
dt "

e, =K,*w, (2.34)

T =k *i, (2.35)
do
T=3*=" (236).

dt( )

Eq. (2.33) describes the effect, when applied voltage leads to current in the
armature with resistance R and to inductance L and to back EMF e, . Eq. (2.34)

indicates that back-EMF e, proportional to angular velocity of the motor’s shaft,
where k is back-EMF constant. Eq. (2.35) denotes that produced torque is
proportional to the produced current, where k_ is the torque constant. Eq. (2.36)

describes transferring from the torque to angular acceleration of the plant, where J
is sum of the moment of inertia of the plant and motor shaft. For current case, the
plant is the blade, which has minimal Mol, so the plant Mol can be omitted.

A power bridge can be represented as:

U =Koy U, (2.37)

max !
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where u is input voltage to the BLDC , u,, is maximum input voltage of BLDC
applied to the power bridge and k,,,, is percent of pulse-width modulation

(PWM). Time delay of the power bridge can be neglected since time for changing
the electrical signals is much smaller comparing to the time delay in mechanical
part of the system. The power bridge can be considered as continuous element.

2.2.4 Discrete elements

The system has several discrete elements such as: a microcontroller and sensors.
These elements are discrete in time and level. They should be substituted by
quantizers with level of discretizations Id,, and Id_ correspond to their calculation

precision and time discretizations td,, and td, correspond to their delays in time.

These parameters can be calculated as:

L . g,-—1_ (239

- 2 NmofBt '

Id,,

= 2Nm0th !

where NmofBt s length of the microcontroller’s register in bites.
td, = % (2.39)

where f is frequency of the sensor in Hz.

td,, = N *t

ins !

(2.40),

where N is number of instructions in a code and t. . is time for fulfillment of one
instruction.

2.3 Mathematical model of the quadrocopter

The MM of the quadrocopter consists of transfer functions (TFs) of elements
described in previous sections. Logical diagram of this model with corresponding
equations is shown on fig. 2.16.
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eq. (1.28)

— eq. (1.32)
e €4 (118) | e >
Desired vectors = 7 A
drag 3 2 i
? " 6DOF
Microcdntroller Power bridge motors blades . ‘
| — T netFF , f
voltage Voltage Opii —® — eq. (1.19 i m
Controller | [=——=>| eq.(1.37) eq. (1.33-36) eq. (1.24) " _ " st (1ooy |
eq.(1.25) | H nett - (L. i
Value current — |
ld, .td, eq. (1.18) | [
] st
eq. (1.38) Initial conditions i A
eq. (1.40) — = =
Orti=0, Mi=0, Er=0
i SR ) | Quadrocopter
Pst,_q, Vi=o0, dr=0

| 1d,1d,

Sensores

eq. (1.38-39)

fig. 2.16 Logical diagram of MM of the quadrocopter in 6DOF

This model has the following simplifications:

e the quadrocopter is a rigid body
e center of mass (CoM) is in the geometrical center of the quadrocopter

e Tol of the quadrocopter is approximated as moment of inertia of several
objects

e CoG is coincided with CoM

e Mol of the blades is neglected

e Time delay of the power bridge is neglected

For simulation purpose equations should be represented by transfer functions.
TF will be represented in a form suitable for realization in Matlab/Simulink. TF for

eq. (2.32) is:
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LS o, )|

i(sé’(s)*snx//(s)—sn¢(s)*c6’(s)*c(//(s) *T(s) + ~C,*p*S * (st (S))z) , (2.41)
s? m m Y

I (5) =

1 (ny(s)*sne(s) +CH(S) * sng(s) * s (s) T (s) +

s? m

Iy (S) =

1 (co(s)*ch(s)* —-C,*p*S

r(9)= 5| I 7y g Cn 2 e (|
S m m

where S is Laplace operator.

This TF is nonlinear since it has trigonometric functions and squaring of the inputs.

Based on eq. (2.41) it can be represented in Matlab/Simulink (fig. 2.17)

T
x|

k4

phi

coped Lo

4 Ty In2 Out2
TransTtoXYZ

_ riefthets In3 Out2
DragForcs
1

Tz

ps!
TransTtoXYZ
= l ‘E_@
L s L
x

5
Integrator Integrator5

Scope5

fig. 2.17 Representation of TF for translation motion in Matlab/Simulink

Block ‘TransTtoXYZ’ (fig. 2.17) has as inputs the thrust forceT (s) and orientation
angles w,0,¢. These inputs shoud be calculated for finding a quadrocopter’s

position. The TFs for orientation angles are calculated based on eq. (2.18) and eq.
(2.28) as:
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B(s)) |1 sng(s)*to(s) cg(s)*ta(s) | | @, (S)
s| 6(s) |=|0 Ceh(S) =sng(s) |*| o, () |, (2.42)
v()) |, sné() pS) | o, ()
co(s) co(s)
. . -J,, —J
Sa)xb(s)zJI *(Tz(s)—T4(s))+ U y"y“)*a)yb(s)*a)zb(s)
. . —J,, —-J
Sa)yb(s)zJI *(Ts(S)—Tl(S))+ (J szb)*a)xb(s)*a)zb(s) (2:43).
1 _(J%%-_J%%)
5@, (8) =——"(Hy(s) + H3(s)) = (H,(s) + H,(s)) + *o, (s)*w, (s)

72 ZpZp

These TFs are nonlinear since they have trigonometric functions and multiplying of
the outputs. They can be represented in Matlab/Simulink as shown on fig. (2.18).

(a-., 1 vl
a o = Pomx
Integrator phi
auy l—.on-y ot
ts'..z - Integrator2
tauz slo - I‘\R . dtOmy = plomz
=] Omix ulerRo 1
d 1 - 2
Integrator1 4 dtheta —.E »{ 2 )
P Omy ]ohi OrientAngles pror
1 Integratord
p{omz dtOmz; 3 sl
Integrator2 1
MATLAB Function Lo - »{ 2 )
1 i
IntegratorS P
FormAngVelocity ToCrientstion

fig. 2.18 Representation of TF for angular rotation in Matlab/Simulink

The input of this block is hub torque H(s). The inputs T (s)and H(s)can be
calculated based on eq., (2.24), (2.25), (2.26), (2.27). The TFs are:
Tl(s) = bT *a)bllz(s); Tz(s) = bT *a)blzz(s); T3(S) = bT *a)b|32(s); T4(S) = bT *a)b|42(s) ) (2-44)

Hl(s) = bH *a)ouz(s) ; Hz(s) = bH *wnlzz(s) ; Hs(S) = bH *wn|32(5) ; H4(S) = bH *wnmz(s) ! (245)
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T ()=l *( @, () + @y,°(8) + @y (8) + @, °(5) ), (2.46)

H, (5) 1%(T2(s) - Ta(s))
H, (5) |= 1%(Ta(s) - Ta(s))  (2.47).
H., ) (ﬁl(s) +ﬁ3(s))—(ﬁ2(s) +ﬁ4(s))

These TFs are nonlinear since they have squaring outputs. They can be represented
in Matlab/Simulink as it shown on fig. (2.19).

T2
»u 4
TandH2H2 |
Blade2
T4 Y
+ u ‘\ '1""‘
TandH4H4 P taux
Blade4 P tauy
3 P tauz
¥
T i
>4 .
TandH1H1
Blade1 » ) % Scope3
T2 Gsin ]""*+ ris|Te
»{u 4 )
TandH2H32
Blade2

fig. 2.19 Representation of TFs in Matlab/Simulink for creating T (s)and H(s)

MM of BLDC is designed based on egs. (2.33 - 36). Applying Laplace
transformation to eq. (2.33), (2.34) leads to:

U(s) -k, *a(s)
R+sL

=1(s) , (2.48)

and to eq. (2.35), (2.36) leads to:
k., *1(s)=J*sa(s). (2.49)
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Transfer function can be obtained by combining eq. (2.48) and (2.49) as:

LU () =k, *ax(s)

km
R+sL

=J *sw(s) =U(s) :ki*(RJrsL)*sa)(s) +k_*w(s)

1
J*L , J*R
S™ +
k k

m m

=U(s)*

— a(s), (2.50)

*s+k,

1
* *
LI R*s+kw
k k

m m

is 2" order TF.

where G(s) =

More common form of eq. (2.50), where parameters J,L and k  are substituted, is
represented in more appropriate form as:

1 1
IO — -— - X,
J LSZ—|—J R*S-l—k J R *£*32+ J R *S+1 Tm*Te*S +Tm*S+l
K, K. “ k,*k, R k,*k,
or in short way
1
K
G(s) = o , (2.51)

T, %, %S+, *s+1

*

: . L. .
where 7, = is mechanical constant and 7, = — is electrical constant.

m (2]

Implementation of TF based on eq. (2.51) is shown on fig. 2.20.

1w

In1 tauetaum.s<+taum.s+1 Outt

Transfer Fen

fig. 2.20 Representation of BLDC TF in Simulink
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Thereby the TF functions of continuous elements of the quadrocopter can be
represented as shown on fig. 2.21.

EulerAndOrientation

TransTtoXYZ

psi
TransTtoXYZ

fig. 2.21 Representation of TF of continuous part in Matlab/Simulink
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Chapter 3 Design of the Control System

A goal of a controller design is to reach a new plant’s behavior, which
corresponds to desired quality requirements. Any controller design procedure is
based on information how inputs and outputs of the plant are connected. In most
cases relation between inputs and outputs is described by mathematical model of
the plant. The MM can be created by three methods: mathematical description of
physical processes, identification procedure and a sum of two previous methods.
MMs obtained based on these procedures are called white box, black box and grey
box respectively [12]. Most of design procedures are based on the linear MM of the
plant and most popular procedures are root-locus method, pole placement method
and by Bode diagrams. As soon as the quadrocopter should have intelligent control
system, the pole-placement method from mentioned one is chosen.

3.1 Pole-placement method: Ackermann approach

Pole placement method is a method, where a designed controller should change
poles of characteristic equation of the MM to the poles that give the system desired
quality such as a settling time, an overshoot, a steady state error.

However, it should be mentioned that this method has serious limitations such as:
sensitiveness to how adequate the model is and not observability of particular
connected to real physical parameters. Advantage of pole placement method is that
the controller designed by this method can be easily expanded to an optimal or
adaptive controller.

One of the simplest and direct ways to design a system with chosen poles is
using Ackerman equation. This equation transfers state space model in control
canonical form and calculate new coefficients for feedbacks [11]. In general the TF
look like:

G (S)— bn_l*Sn_1+"'+bl*S+b0
P s"+a _, *s"' 4+ +a *s+a,

L (3.2).

The control canonical form for a 3 order system is represented on fig. 3.1.
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fig. 3.1 Structure diagram of control canonical form [10]

The state equations for n-order system in control canonical form are:

X(t) = A*x(t) + B*u(t)

, (3.2)
y(t) =C *x(t) + D*u(t)
0 1 0 .. 0 ] 0]
0 0 1 ... O 0
where A=| : : S : |, B=|i{|,C=[b, b b, ... b.],
0 0 o ... 1
-8, -a -a, ... -4, 1

D=0.

The idea of Ackerman approach is to calculate new coefficients K that
supplement existing coefficients to make roots of a closed-loop system equal to
desired poles. Consider the case when the input of the system is zero, so called
regulator control. In this case u(t) consists only of feedback signals and can be

described as:

u(t) =—-Kx(t), (3.3).



So close-loop matrix A, can be written by substituting result of eq. (3.3) to eq.
(3.2):

0 1 0 ] [0]
0 1 ... O 0
A, =(A-BK)=| : : : ol HIRIK K, Ky K=

0O 0 O 1
-8 -~ & —a | (1]

0 1 0 0
0 0 1 0

- : : : : 3 , (3.4)
0 0 0 1

-, -K, —a-K, -a,-K; ... —a,-K |

Matrix K can be calculated as:
K=[0 0 .. 0 1]*[B A*B .. A"?*B A"*B] *q(A),(35)

where ¢ (A) is matrix polynomial formed with coefficients of the desired
characteristic equation ¢, (s) The desired closed-loop characteristic equation can
be described as:

o (s)=s"+a,  *s" +.. +a*s+ay=(s+4)*(s+4,)...(s+ 4,)=0, (3.6)
where —4,...— A, are desired poles.
Matrix polynomial ¢ (A) is described as:
a (A)=A"+a,  *A7 .+ A+, * 1, (37),
where | is identity matrix with dimension equals to dimension of A.

Thereby, pole placement procedure has three steps. First step is obtaining the MM
of the system , where the MM should be linear continuous time invariant model.
Next step is calculation desired poles based on requirements to quality of the
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system. Last step is calculation feedback coefficients that change poles of the MM
to desired ones.

3.2 Linear time-invariant mathematical model of the quadrocopter

The MM developed in chapter 2 cannot be used for controller design by pole
placement method and should be simplified. One of the approaches is known as
small disturbance theory [13]. Based on the assumption that motion of the flying
object consists of small deviations around a steady flight conditions, multiplication
of angular velocity components can be omitted and eq. (2.43) can be rewritten as:

|
J

Xp Xty

sw, (s)=

*(Ty(s) —Ta(9))

, (3.8).

s, (S) =

*(To(s)-T,(9))

YoYb

s, (5) = ——*(Hy(5) + Hy(5)) — (Hy(s) + H4(5))

Another simplification which leads from this fact is that changes in orientation
angles equal to angular velocity and eq. (2.42) can be rewritten as:

#(s)) [ @, (s)

s| 8(s) |=| @, (5) |, (3.9).
v(s)) |w,(s)

Combination of eq. (3.8) and eq. (3.9) can be shown as:

#(S) = —

*(Ty(s) —T.(9))

Sz XpXo
05) = o—*(T,(9)-Ti(5) - (3.10)
V(9)= 57— (H(8)+ H(9) = (H(6) + His)

ZpZy

Another assumption is that TFs between PWM values and forces/torques can be

substituted by proportional coefficient or (if dynamics of the motors should be
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taken into account) 1% order TF. In the case of keeping dynamics into account, eq.

(2.44), (2.45), (2.51), (2.37) can be rewritten as:

1 By * Uy
T(s)  k k, _ k

Koy () 7, *s+1 7,%s+1 7,*s+1 (3.11)
i bH *umax
H(s) _ kK, *p %y - ko Kk
Koy (5) 7, *¥s+1 1 ™ 7 *s41 ¢ *g41
* *
where k, = by kumax and k, = b kumax :

In the case, if dynamics of the motors is small comparing to dynamics of whole
system eqg. (3.11) can be simplified to:

TG) _y
kPWM (S) '
, (3.12).
h O
kPWM (S) "
Combination of eq. (3.10) and (3.12) gives:
#() Kk,
Kopwn () = Kgpy () 87
o) _k (3.13)
k3PWM (8) — Kipwm (S) s?
40) K,

Kypum (S) + Kapwm (8) — (kzpwm (S) + K,y (5)) s

1%k,

*
,kgzl e and szjk“ .

XpXp YbYo ZpZy

where k(p =

Eq. (2.41) that describes quadrocopter’s motion in XYZ can be simplified by
neglected drag forces [5] and can be modified to:
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[ (s) = s_12 ( cy (S) *sné(s) + cHr;s) *SNg(s) * sy () .1 (S)j
[ (0)= 5 AL IOT ) a1 300,
r,(s)= %(M*T(S) _ gj

S m

For design purpose this TF should be linearized to:

- (9(8)*0,0 O S (S)j

(9= 5 WY ()] a5

L©= (2 TE-q)

§Z
where T(s) =k; *(kPWMl(S) + Koy 2 (S) + Koy 3 (8) + kPWM4(S)) :

Thereby, changes in the quadrocopter attitude and altitude can be described by 2™

order functions from eg. (3.13) and eq. (3.15). So an approach for choosing desired
poles for 2" order system should be described and controllers for 2" order system

by Ackerman equation should be designed.

3.3 Desired poles for 2™ order system

Stability and quality of a system are determined by its characteristic equation.
Choice of desired poles depends on required quality of the system. The simplest
way of choosing poles for 2" order system is to use standard approach described
e.g. in [11]. According to this approach a TF of 2" order system should be
represented as:

2
a,

G(s) = n , (3.16
(5) S°+2**w, + o (3.16)

n

where o, is natural frequency and ¢ is damping ratio.
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This TF is analyzed in time domain by step input. Based on the step response
the quality of the system can be estimated. Typical step response with all
specifications is shown on fig. 3.2.

M b Overshoot
Pi
e
1.0+ 68 . o
LOE———— === il S S
) 09 F——F- I \__ | f
1.0 — 8/, | |
I I I
I I I
I I I
o |
0‘{11 A | | |
I<-T _4 I, T, Time
.
Rise tlime Peak time Settling time

fig. 3.2 Step response of a 2" order system [10]

The following quality parameters are shown: rise time, peak time, overshoot,
settling time, steady state error. Usually for design purpose minimum settling time
and overshooting should be specified.

Percent of overshoot percOvSh can be set by varying damping ratio £ (eq.
3.17) and settling time T, by varying natural frequency @, (eq. 3.18).

percOvSh=e <"’ et %100 (3.17)

T-_2
& * o,

For finding damping ratio £ and natural frequency @, eqg. (3.17) and (3.18) is
rewritten as:

(3.18).
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(1*"] percOvShj
T 100

g = =, (3.19)
\/l+(1*ln percOvShj

T 100

4
.

= P (3.20).

Based on ¢ and @, the desired poles can be calculated as:

S,=—¢*m, t j*a, *x/1-g2 , (3.21).

Thereby, by choosing quality parameters: overshooting and settling time T, the
damping ratio ¢ and natural frequency o, can be calculated (eq. 3.19 and 3.20).
Based on the last ones the desired poles can be found by eq. (3.21).

For control of the quadrocopter, as for most of other systems, the fastest response
with minimal overshooting should be provided. The damping ratio £ for this

behavior is well known and equals to 0.707 that corresponds to 4.32% of
overshooting. Settling time in the model can be close to zero by choosing @, close

to infinity, but in real system it is not possible. Based on current experimental result
with the quadrocopter T, should be no more than0.8s, so T, =0.8s is chosen.

Based on chosen quality parameters T, =0.8s and percOvSh =4.32% by using eq.
(3.19, 3.20, 3.21) the desired poles are calculated as:

s,, =-3.5357 + j*3.5354 (3.22).

The algorithm of calculation is realized as function ‘Dpoles.m’ in Matlab, where
inputs are percOVSh and settling time T, and outputs are desired poles (see App.

B).
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3.4 Attitude control
3.4.1 Design of controllers

Mathematical models from eq. (3.13) is 2™ order and in general can be
represented as:

Gp(s)— b, *s+b,

= ,(3.23).
s°+a,*s+a,

The state space equations in canonical form for a 2™ order system are:

X(t) = A*x(t) + B*u(t)

,(3.24
y(t) =C*x(t) (524

WhereA:{_Zo _16]1] Bzm,cz[bo b ],

that can be represented as shown on fig. 3.3.

Integratort

fig. 3.3 Canonical form of 2" order system

By comparing TF of quadrocopter (eq. 3.1) and 2" order TF in general form (eq.

3.23):

*s+b
Gp(s)zszlj_lal*s_:ao

<=>G,(s) :s_k2’ (3.25)

where k in general represents k ,k, or k, (calculation of k ,k, and k is in eq.
3.13).
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It can be concluded that coefficients b, equals to k,and b,,a,,a, equal to 0. So
general state space form can be rewritten as:

A:B ﬂ,B:L?j,C:[l 0] , (3.26).

The structure diagram is shown on fig. 3.4, where k is mentioned in eq. 3.25.

angular velocity

1 1
.—>>—> N @D
integer number angular position in radian

gain Integratort Integrator2

fig. 3.4 Structure diagram of the pitch angle model

For chosen system (eq. (3.25)), desired characteristic equation, from eq. (3.6), can
be written as:

a,(s)=s*+(A4+4)*s+A4*1,=0,(3.27),

and with taking into account that 4, , =3.5357 + j*3.5354 (eq. (3.22)), it can be
stated that:

a,(s)=5s"+7.0714*s+25=0, (3.28).

By combining eq. (3.26) with eq. (3.28) and eq. (3.7) it can be declared that:

) 0 1].[0 1 01
. (A)= A2 +7.0714% A+ 25| = * +7.0714* +
0 0|00 00

1 0 0 0 0 70714 25 0
+25* = + + —
01 0 0] |0 0 0 25
B {25 7.0714

. } (3.29).
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Calculate the 2™ element from eq. (3.5). For current system it corresponds to the
following equation:

[B A*B], (3.30)

0 1 0 k
where A*B = * = , SO
00 k 0

L [0 kT [o k
O T L

Thus, from eq. (3.29) and (3.31), eg. (3.5) can be rewritten as:

K=[0 1*[B A*B]**a,(A)=[0 1]*& (';HZ; 7";7514}:

0 25%k

:[O 1]* :[25*k 7.0714*k],or result in short form is:
25*k 7.0714*k

K=[K, K,]=[25%k 7.0714*k], (3.32).

Thereby, closed-loop system matrix A, (eq. (3.4)) can be represented as:

0 1 0 1
A, { }:{ . . ](3.33)
—a,—K, -a-K,| |-25%k -7.0714*k

The state-space equations for closed-loop system are:
X(t) = A, *x(t) + B*u(t)
y(t) =C*x(t)

where A. = 0 . B= 0 C—[l O]
"l 25%k  —7.0714%k |" ~ |1| T '

. (3.34)

Structure diagram that corresponds to closed-loop system with matrix A, is shown

on fig. 3.5.
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' angular position in radian

integer number
Integratori Integrator2

gain

T e

fig. 3.5 Feedback system with desired poles

For implementation of this approach a function ‘AckCont’ in Matlab was written
(see App. B).

By regulators the system keeps its position around zero. However, the attitude
controllers should follow desired values of pitch, roll and yaw. An output of a
closed-loop TF corresponds to an input, if a gain of the closed-loop TF equals to
one. So TF of the system from fig. 3.5 should be found. Represent the system as
shown on fig. 3.6.

— @D

integer number angular position in radian

gain Integrator2

fig. 3.6 Feedback system with desired poles: finding TF

In this case inner TF G, (s)can be described as:
k
S k

= , (3.35).
s+k*k, (3:35)

Gy(s)= k
1+§*k2

The TF of the regulator G(s) with taking into account eq. (3.35) can be written as:
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kLl
s+k*k, s k
G(s)= 2 = , (3.36).
() 1+ k *}*kl Sz+k*k2*s+k*kl( )
s+k*k, s

Based on eq. (3.36) the gain of G(s) can be found as:

G(0) =kl, (3.37)

1

Result of eq. (3.37) means that numerator ofG(s) should be multiplied by k;. The
final TF of the controller is:

G(s)= K (3.39).
s“+k*k,*s+k*k,

3.4.2 Simulation results

Control of orientation is implemented in Simulink based on eq. (3.13) and eq.
(2.32) (fig. 3.7).

Blocks ‘roll_cont’, ‘pitch_cont” and ‘yaw_cont’ are represented control laws that
are designed based on eqg. (3.32). With taking into account eq. (3.38) controllers for
roll, pitch and yaw are created in Simulink for incorporation in whole system,
shown on fig. 3.7. Example for roll control is shown on fig. (3.8).

phi

fig. 3.8 Implementation of attitude controllers as a block for incorporation in whole
model: Simulink
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fig. 3.7 Orientation control scheme: Simulink

The system was analyzed with different step signals. Theoutput for unit step signal
is shown on fig. 3.9 for pitch angle and on fig. 3.10 for yaw angle (step response
for roll angle is omitted, since it is identical to the results on fig. 3.9).

...........................................................................

0.5

fig. 3.9 Step response: pitch angle
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fig. 3.10 Step response: yaw angle

It has clearly seen that controllers provide quality requirements as T, =0.8s and
percOvSh = 4.32%. Additionally, it should be mentioned that steady state error for
this model is zero, because TFs of the MM (eq. 3.13) has 2™ order integration

As soon as designed controllers show required result, they should be implemented
in a microcontroller and checked through experiments with real quadrocopter.

3.5 Altitude control
3.5.1 Design of controllers

Position control is divided into two parts: height control along Z axis and 2D
control in XY plane.

Height control is based on 3™ equation from linearized model (eq. 3.15) and can

be calculated based on Ackerman approach (eq. 3.32), wherek = %T

For control law in XY plane the algorithm from [23] is chosen. Based on eq.
(3.15) required acceleration can be calculated as:
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#°(s) = g*(s%rc (s) * sy —s°r, (s) *cy )

, (3.39)
0° (s) = g *(s7ry (s) *cyr + 57, (s) * sy )

where g is gravitational acceleration, ¢ and 6°(s) are desired values. In case if

yaw angle equals to zero and constant during whole flight it can be even simplified
to:

Y(s)=—g*s°r,(s)*c
AORS MELTOMC TR
0" (s) =g *sr () *cy

3.5.2 Simulation results

Control law based on eq. (3.39) is realized in Matlab/Simulink as shown on fig.
(3.11).

(o ————mx
ermor_X
xd % - . i
¥_cont S =t phil: o :
- J—’ o5y 4 phil
fd DesPosTolrient _
& - thetal B! 2
M psi = a thetaD
Y _cont MATLAB Function
b
=
Zd emor_Z
o1 ¢
— Z_pont
Z
Thover g =@

HoverPlusdeltaZ
Thowver

fig. 3.11 Altitude Control: Matlab/Simulink

Controllers ‘X cont’, ‘Y cont’, ‘Z_cont’ have the same structures as attitude
controls (fig. 3.8). Coefficients for ‘Z cont’ are calculated based on Ackerman
approach; coefficients for ‘X _cont’, ‘Y _cont’ controllers are adjusted manually.
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Hereby, the structure of the whole system is implemented as shown on fig.
(3.12).

P Thower .
philh v uz oz phi
Yd
phily
thats
Zd
|—} thetsDr ud »ut .
] X thetalr psi
He pesily
L A
x
»lz ~—{ phi ul s
HoverPlusdeltaZ "
] psi P theta
-

Altitude Control ul = 3 z

psi

Attitude Control MM of the quadrocopter

fig. 3.12 Altitude Control: Matlab/Simulink

Simulation results for X* =1Y% =172 =1,p° :% are shown on fig. (3.13).




fig. 3.3b Yposition

................................................................................................

1 1.5 2
fig. 3.13 ¢ Z position
There are no overshoots along X and Y axes and settling time about 3s. The

overshoot along Z axis is about 50% and settling time about 2s. These ones can be
accepted for some application, but in general it should be improved. For example if
a quadrocopter should record visual information during its movement from one
desired point to another one, the behavior shown on fig. 3.13 is unacceptable and
should be improved. On the other hand, if a quadrocopter should make several
photos in a stable state, this behavior is acceptable since the positioning by itself is
precise enough. Additionally, a steady state error along Z axis is about 0.14 m. It

can be eliminated by using integral component in controller for Z axis.
54



Chapter 4 Implementation of the Control System

The MM of the quadrocopter, attitude and position control systems were
developed in previous chapters. To adapt the MM to the real quadrocopter and to
check controllers, several experiments should be fulfilled. First of all the MM
should be validated, afterwards control system should be implemented and tested.
For the MM validation and adjusting attitude control two test benches are used.
Test bench 1 has 2 DOF and used for validating and adjusting pitch orientation.
Test bench 2 has 3DOF and used for validating and adjusting yaw orientation.
Afterwards, position control system is checked in flying version.

The control algorithms were implemented as a script in a frame of software
created inside Aerospace Information Technology Department, Wiirzburg
University. This software also was used though experiments for data sending and
recording.

4.1. Transfer functions for pitch and roll orientation

Transfer function for pitch and roll was obtained in previous chapter. However,
structure of test bench 1 is different from free motion of the object; Because of this
fact the TF for pitch and roll should be modified for test bench 1.

4.1.1 Elements of the system

For adjusting pitch controller test bench 1 is used (fig. 4.1). This one consists of
a cross-frame, four motors with propellers fixed on their shafts, four power bridges
for motor control, a gyro sensor and a microcontroller. It has 2DOF: pitch (an axis
of rotation shown as black line) and yaw orientation.
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fig. 4.1 Test bench 1: 2DOF

The gyro sensor is set close to the center of the symmetry of the quadrocopter. The
orientation of the x and y axes of gyro sensor are parallel to correspondent axes of
xy (fig. 4.1). The pitch angle is limited by construction in the range of —18<6<18

degree.

Each actuator consists of power bridge BL-Ctrl1.2 [14], BLDC motor KA20-
221 [15], a blade EPP0845 [16]. The power bridge is controlled by the
microcontroller AT32UC3A0512-0ESAL fixed on evaluation board EVK1100
[17]. Relation between pitch angle and force and torque from a blade is shown on
fig. 4.2. An integer number in a range 0...255 should be send by the
microcontroller though 12C to the power bridge. The power bridge produces
control signals to rotate motor shaft with angular velocity which is proportional to
integer value , where 0 corresponds to stop and 255 to rotation with maximal
velocity. The blade which is fixed on the motor’s shaft begins to rotate and produce
thrust force and hub torque.
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-

Microcontroller Power Bridge
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fig. 4.2 Structure diagram of actuator and feedback: test bench 1

Torque

The forces from propellers move quadrocopter around axes of rotation and
change pitch angle. The angular velocity around pitch angle is measured by gyro
IMU3000 [18] in deg/sec.Integration of this value gives changing of pitch angle i

deg . Error between desired and current values of pitch angle should be changed

according to the design law. This output is transferred through the power bridges,
motors and blades to produce forces and torques. This motion corresponds to 2™
equation from eqg. (3.13), but since the axis of rotation is not in the center of
symmetry of the quadrocopter additional force occurs. Thereby, 2" equation from
eg. (3.13) should be modified for applying to test bench 1.

4.1.2 Linear model for pitch angle on test bench 1

Consider forces acting on the quadrocopter: thrust force from motor 1, thrust
force from motor 3 and gravitational force (fig. 4.3).

CoM =

Axis of rotation

fig. 4.3 Forces applied to the quadrocopter: test bench 1

n
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2" equation from eq. (3.10) can be rewritten as:

(ﬂa —ﬂl)*r +m*g*b*sing
a.)Yb -

, (4.1)
Yo¥b
where T 1z and T .1 are projections of thrust forces Ts and T1 on perpendiculars to

radius vector r; r is a shortest distance between a point, where a force Tsor Ts
applied, and axis of rotation; b*sin@ is the displacement vector for gravitational
force . These projections can be calculated as:

T  _T. %
Tu=Ti1*cosa (42)

Tis=Ts:*cosa

where « is a constant angle between vector of force Ts/T1 and T 1s/T 1. This
angle and radius vector r can be calculated as:

b
o = arctan —
|, (4.3)

r=+b?+1?
where b is a shortest distance from the center of the quadrocopter’s symmetry to

axis of rotation, | is a shortest distance from force T3/T1 to the center of the
quadrocopter’s symmetry.

Forces Ts and T can be calculated by 1% equation from eq. (3.12) in rewritten
form:

Ti=u *k
T (44
T3=U3"‘|<T

where u, and u, are values in the range 0...255.

After combining eq. (4.1), (4.2), (4.3), (4.4), the relation between u,, U, and @,
can be written as:
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(U —u, ) *k; *b? +17 *cos(arctantl)j +m*g*b*sing
o = , (4.5)

Yb
Yb Yo

or in a form of TF as:

5°0(s) =k, *(u(s) —u,(s)) +k,, *siné, (4.6)
_ m*g*b

K; *(b? +12 *cos(arctan ?j
k
) mg

3 , Uy(S) —u,(s) is input and
YbYb YoYb

where k, =

6(s) is output.
Hereby, the TF of pitch angle for test bench 1 can be stated as:

k 1 .
0(s) :S—g*(us(s) —ul(s))+s—2kmg *sin@(s), (4.7)
This TF is nonlinear continuous one and for linearization, element sin& should
be substituted by a linear element. With taking into account that fixed construction
has pitch angle range approximately —18 <8 <18 degree, this element can be

substituted by @ in radians [10]. So TF from eq. (3.13) can be rewritten as:

o) = Gpitch (s)= kg , (4.8).

Us (S) - Ul(S) - s* - kmg

The TF based on eq. (4.8) is created in Simulink and shown on fig. 4.4.

integer number

L I
5 *os » D
Integraterd Integrator2 angular position in radian

[phi]

L}

. o ZErD
Initial condition

fig. 4.4 Open-loop TF of pitch orientation: test bench 1
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4.1.3 Coefficients calculation and verification
Coefficients calculation

To calculate coefficients k,k

] mg

be measured. Initial data for calculation are:

the length and weight of the quadrocopter should

b=0.11m, 1=0.205m, m=0.49kg, g=9.81.
S

Moment of inertia component J_ according to eq. (2.19) and parallel axis

Yi
theorem can be calculated as:

2*M *R?

Yo¥o

+2*12*m, +m*b? =0.0151, (4.9)

where R is chosen equal to I.

Coefficients k , and k based on eq.(4.6) are:

k. *v/b?+1° *cos(arctan tl)j

Yo Yo

K, =0.4487 , (4.10)

* *
_M*g"b _ 34 gp5g

YoYb

mg

where k; =0.0331 coefficient for the motor taken from here [19].

So based on theoretical model k =34.9258i2 andk = 0.4487%.
s S

Coefficients verification

Feedback coefficients for designed controller fit the MM. The more precise the
MM is, the more real behavior of the quadrocopter with designed controller
coefficients relates to simulation results. It has been done several simplifications
during creation MM and verification coefficients k and k, through experiment

can improve MM. The verification procedure includes two types of experiments.
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Verification of coefficientk

First coefficient k  was verified. This one corresponds to movements in

gravitational field without influence from blade’s forces. The quadrocopter fixed in
test bench 1 is inclined four times to random angular position and released to fall
till the limited angle. Changes in angular position were recorded and as graph
represented on fig. 4.5.

Angular Position
0.4 T T T T T T

03

A
N}
33

<
[

AngularPosition,rad

5

01}

0.1 0.2 0.3 0.4 05 0.6 0.7
time, s

fig. 4.5 Changes in angular position during quadrocopter’s free falling: test bench 1

Four initial angles are taken from these records and used as initial positions for

the MM from fig. 4.4. The same trajectories based on MM with k =34.9258i2
S

are shown on fig. 4.6 (colorful trajectories indicate experiment data and black ones
simulation). Comparing the sets of trajectories shows that current value of k,, ,

does not describe the behavior of the quadrocopter adequate. It can be seen that
model is too fast, so it means that the calculated inertia momentum is less than real.
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fig. 4.6 Experimental and theoretical trajectories: kmg :34.9258i2
S

To make the model adequate k,,,was decreased until the longest trajectories
from both sets became as close as possible to each other’s (fig. 4.7).
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fig. 4.7 Experiment and theoretical trajectories: k ;= 22.3006i2
S
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The new k isrenewed ask = 22.300612. For making theoretical result close to
S

real one, the new value R =1.72*1 is chosen.

Verification of coefficient k

The idea of verification is to find equilibrium conditions between torques from
motor 1 and from gravitation force for various angles. Values of angular position
and for motor control were recorded (see table 4.1).

Table 4.1

angle, rad | 0.3491 | 0.3316 | 0.2897 | 0.2548 | 0.2217 | 0.1658 | 0.1117

value 65 60 50 40 30 20 10

Based on the eq. (4.7), with taking into account that angular acceleration s*6 =0,
the coefficient k is calculated. It is value in the range0.1198...0.2491. The average
value k =0.1844is chosen.

The script ‘DOF2_ver.m’ (see App. B) was written and used for processing and
representation experiment data, for simulation TF from fig. 4.4.
After analyses and validation the MM of pitch angle (test benchl) was specified.

The mathematical model is represented in a form of linear continuous time
invariant transfer function (eq. 4.8) and can be used for controllers design.

4.2 Control design for pitch and roll orientation
By comparing TF of 2" order function and TF of pitch orientation quadrocopter
(eq. 4.8) coefficients for state space model are calculated as :
b, *s+Db, K

G(s)= =G .. (S)=
( ) sz+a1*s+a0<] > pltch() Sz_k

,(4.11).

mg

It can be concluded that b, equals tok, a,equals to—k_, ,b, and aequal to zero.

mg !
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Using the same logic as in section 3.4 and eq. (3.24 -3.29) feedback coefficients
can be obtained as (details see in App. A):

K=[K, K,]=[ky+25%k 7.0714*], (4.12).

Thereby, closed-loop system matrix A; (eq. (3.4)) can be represented as:

A 0 1 B 0 1 B 0 1
" l-a,-K, —a K, | |Ky Ky —25%k —7.0714*% | | -25*%k -7.0714*k
, (4.13)

The state-space equations for closed-loop system are:

X(t) = A, *x(t) + B*u(t) (4.14)
y(t) =C*x(t)

0 1 0
where A, = ,B=| [, C=[1 0]
-25 —7.0714 1

Structure diagram that corresponds to closed-loop system with matrix A, is shown
on fig. 4.8.

Theta(s)

' angular position in radian

Integrator2

integer number
Integratori

~l-

fig. 4.8 Feedback system with desired poles
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Based on idea and equations mentioned above the script in Control System
Toolbox (CST) was written (see App. B ‘AckContSim.m”). The response of the

closed-loop with desired poles and initial conditions [1 O] (means initial position

is 1 radian and initial velocity is zero) is shown on fig. 4.9. It is clearly seen that for
the model the overshooting is minimal (less than 4.32%), settling time is about 0.8

seconds, steady-state error equals to zero.

Response to Initial Conditions
018

016

014 -

012

01

Amplitude

0.06

Time (seconds)

fig. 4.9 Response for initial conditions

4.2.1 Implementation of the regulator

Control law corresponds to closed-loop TF (fig. 4.8) and, with taking into
account that the gyroscope generates data in degrees, this law can be represented
as:

g(t)=0%(t) +%*(—K1)* DtR *9(t) + %*(—Kz)* DtR*6(t) , (4.15)

where 8% (t) = u, (t) —u. (t) and DtR =~
(t) =u(t) —u,(t) 180
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In form applied to motor’s values it can be rewritten as:

u (t) = &, (t) :%*(—Kl)* DtR*4(t) +%*(—K2)*DtR*6’(t)
, (4.16).

U (t) = —, (t) :—(%*(—Kl)* DtR*4(t) +%*(—K2)* DtR*é(t))

Additionally, initial values of u,(t) and u,(t) should not be 0, because of two

reasons. First reason is a simplification of the model for which this controller was
designed. Time delays in changing velocities of quadrocopter’s blades were
neglected. The most important delay is during increasing the blade angular velocity
from zero to some value. So the blades should always have some non-zero
velocities. Moreover, there is some value of speed that provides hovering of the
quadrocopter and all changes in control should be around this value. With taking
into account these facts eq. (4.16) should be rewritten as:

Uy (1) = Uy, + U, + &, (t)

u3(t) = umin + uhov - ‘96 (t) ’ (417)’

where ¢,(t) is defined by eq. (4.16), u,.. isa minimal angular velocity of the
blades, u,,, is an angular velocity for hovering.

The designed control law (eq. (4.17)) is incorporated in the software. Fulfilled
experiments consist of two simple steps:

e change the quadrocopter pitch angle from 0 by some external force

e record system response

Results are shown on fig. 4.10, the data are recorded with discretization of 100 Hz.
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fig. 4.10 Responses of regulator on changing of initial conditions

The system should return its pitch to zero. It is inclined four times and returns to
initial zero. For settling time estimation an area from fig. 4.10 is zoomed (fig.
4.11).

-20 L—7

-30 4

T T T T T
1.869 1.869,5 1.870 1.870,5 1.871

start Time in send
fig. 4.11 Response signal (zoomed part from fig. 4.10)
It can be seen that the settling time is about 0.6 second and a static error about

0.3 degree. Settling time in experiment is close to settling time from model. There
IS no static error in the model, since the model does not take into account all facts,
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e.g. some friction in test bench joint that can be the source of this error. This error
can be compensate by an integral component.

4.2.2 Implementation of the controller
To provide control for general input, the gain of the TF should be set to one. TF
of the system from fig. 4.8 is:

k
G i S)= y 418 y
pltch_f( ) 52+k2*3+(k1—k*kmg) ( )
and it’s gain is:
G (0)—L (4.19)
pitch_ f kl—k*kmg )

So a coefficient, which is inversed toG ;,,, ((0), should be set between the

reference signal that represents desired pitch angle and input of feedback TF. As
soon as a desiredt angle is in degree and the model in radian, transfer coefficients:

% between reference signal and input signal and 180 between output signal and
T

results should be added (fig. 4.12).

Gain2 Scope

[0]

o} a

zerol
itial condition1

fig. 4.12 Pitch angle: control system for non-zero input

It means that for experiment the control law is:

g (t)=6°(t)*DtR *(%j + DtR*(%*(—Kl)*H(t) +%*(—K2)*é(t)J , (4.20).
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After corresponding changes in microcontroller one more experiment was fulfilled.
Response function is shown on fig. 4.13.
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fig. 4.13 Pitch angle: control system for non-zero input

Quality parameters are summarized in table 4.2.

Table 4.2
input signals, deg | output signal, deg | settling time, sec | overshooting, deg
0 0.12 -- 0.3
2 2.31 0.6 0.4
-2 -2.21 0.6 0.4
5 5.9 0.65 0.4
-5 -5.6 0.65 0.4

Quality parameters are inside required range, so pitch and roll attitude control is
designed.

Results of experiments show that system works with required quality
(overshooting and settling time) for both cases: zero input and non-zero input.
Static error for both cases is inside 0.5 degree. With taking into account many
approximations, this error is relatively small. To reduce steady state error
integration should be used.
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Roll controller by using the same logic can be stated as the following equations:
u2(t) = Upin T Unoy — &, (t)

, (4.18),
u4 (t) = umin + uhov + g(o (t)

where &, (t) = %*(—Kl) * DR * o(t) + %*(—Kz) *DtR*(t) .

Results of roll controller are identical to results of pitch controller.

4.3 Controller for yaw orientation

Controller for yaw orientation is checked on test bench 2, which has 3DOF. Test
bench 2 has a structure close to test bench 1, but fix point of test bench 2 is close to
CoM of the quadrocopter.

The TF of yaw rotation based on 3" line from eq. (3.13) can be stated as an
equation:

v (s) _& a.21)
Uy () +Us(8) = (U, (8) +U,(s))  s°

kH
7

ZpZy

where kw =

Component J, , =0.0226 is calculated by eq. (2.19). Coefficient k, is measured

by an experiment. Inputs u,(s) and u,(s) were set to value of hover and yaw
rotation was recorded (fig. 4.14).

In the range 10...12secreleased and stop manually. Angular velocity is about
1.084rad /sec. Coefficient k,, was adjusted until angular rate of yaw in the model

(file **) became 1.084rad /sec; new k, =0.5*10~ and k, =0.0211.

Controller for yaw orientation is calculated based on eq. (3.23) where k =k, .

Settling time is chosen equal to 3.5sec instead of 0.8sec.It is done to make
feedback coefficients lower.
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fig. 4.14 Yaw rotation open-loop: test bench 2

Implementation of yaw controller can be described as the following equations:

ul(t) = Upin +Upoy, — €, (t)
uz(t) = umin + uhov + g.// (t)
Us (t) = Upin T Upoy — &, (t)
u4 (t) = umin + uhov + ‘c"y/ (t)

, (4.22),

where &, (t) = %*(—Kl) *DtR*w(t) + %*(—K2) *DtR*y/(t) .

Experiments showed that when all three controllers for attitude control have
high coefficients the system has very thin linear zone, which leads to big
oscillations. Results are shown on fig. 4.15. It can be seen that’s settling time is
about 3.5sec and precision from 1 to 2 degree.
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fig. 4.15 Yaw rotation closed-loop: test bench 2

Thereby attitude control can be described by following equations:

ul(t) =Upin T Uhoy T & (t) - gy/ (t)
uz(t) =Upin + Upgy — €, (t) + &, (t)
u3 (t) =Un, + uhov — & (t) - gw (t)
Uy (t) = U, + U, +&, () + &, (1)

(4.23).

Results of attitude controller are received by test bench 2 and shown on fig. 4.16.
The quadrocopter was inclined several times and one returned to original positions.
Moments of inclination are marked as: roll1, roll2, pitchl, pitch2, yawl, yaw?2.
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fig. 4.16 Attitude Controller: test bench 2

Dynamics of the system corresponds to required quality. However original
positions are changed during the time from 0 to 5 degree. This disadvantage can be
eliminated by using integral component and by separating in time pitch-roll and
yaw controllers.

4.4 The Altitude Control System

The altitude control system consists of the controller for quadrocopter’s hover
and position controllers (see section 3.5.1).

Implementation of the hover controller can be described as the following
equations:

ul(t) = umin + uhov + gz (t)
u,(t)=u_. +u .+ t

2( ) min hov gz( )’ (423)’
u3 (t) = umin + LIhov + €, (t)

u,(t)=u,;, +U,, +&1)

k

where gz(t):%*(—Kl)*z(t)+%*(—K2)*z‘(t) and k=L
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Result of experiment with a flying prototype for the hover control is shown on
fig. 4.17, where a green line is desired height and a red line is a current height.
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fig. 4.17 The hover Controller with calculated coefficients: flying mode

In the case when coefficients of the hover controller are calculated perfectly, the
behavior of current height (red line) should correspond to the modeling result
(fig. 3.13c). However it does not since proportional coefficient (K,) is low and

velocity/derivative coefficient (K, ) is extremely low. After slightly increasing of
K, and big increasing of K, (about ten times) the new experiment was conducted

(fig. 4.18). The behavior of the system is better, but still is not acceptable. For
better results the K, was increased (in total about 30 times comparing to original

K,) and an integral component for elimination steady state error was added.
Appropriate result is shown on fig. 4.19.
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fig. 4.18 The hover Controller with K, =10: flying mode
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fig. 4.19 The hover Controller with K, =35 flying mode
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Implementation of position controller corresponds to eq. (3.40). The behavior of

the quadrocopter in the flying mode with coefficients used in the simulation is
shown on fig. 4.20, where green line corresponds to the desired height and other

ones to changing along X and Y .
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Timeins

fig. 4.20 Position Controller with calculated coefficients: flying mode

It can be clearly seen that the system is unstable and simulation results (fig. 3.13a
and fig. 3.13b) do not match to experimental ones. New coefficients for position
controllers were found though adjusting, results are shown on fig. 4.21, where
green line is desired position along Y axis and red line is current position of the
quadrocopter along Y axis. Also it should be mentioned that new K; is ten times

less than K; from simulation and new K, is thirty times more than original K, .
Position error of the system is inside 10 centimeters.

Thereby, it can be concluded that results of the simulation are different from
results from real experiment. For the hover controller K, from the simulation is

close to real one, but K, should be increased in thirty times. For the position
control, both coefficients obtained from the simulation should be changed, K,
should be decreased in ten times and K, should be increased in thirty times.
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fig. 4.21 Position Controller with adjusted coefficients: flying mode
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5 Conclusion and Recommendations
5.1 Conclusion

In this work all stages of a control system development were done. Starting from
the analysis of the quadrocopter as a flying object, the mathematical model was
created and modified for using in design purposes. After choosing an appropriate
design method, the 6DOF control system for the quadrocopter was developed and
implemented for using on the real quadrocopter. Experiments for estimation
theoretical results were fulfilled.

Process of calculation coefficients for the 6DOF control system is organized as
one script in Matlab. The input parameters are the mass of the quadrocopter, the
dimensions of the quadrocopter and the gains of the actuators. Based on these
inputs coefficients for all 6 controllers (pitch one, roll one, yaw one, hover one and
two for the position) are calculated.

The validating procedures for the attitude part of the mathematical model are
shown in sections 4.1.3 and 4.3. These procedures are necessary part of the
modeling, since they helped to improve the coefficients of the model. Based on the
experimental results the parameter R (eq.2.19) for calculation Mol was improved
(p. 63). However, the equations for roll and pitch from the mathematical model
(1% one and 2" one from 3.13) cannot be used directly for applying to test
benchland should be modified as it was described in section 4.1.2. The attitude
controller, designed based on the improved model, shows in simulation the
behavior close to required one. The same controller after implementation shows
experimental results closed to the simulation ones.

The control system for hover and position control obtained from simulation
shows not adequate results. Only the proportional coefficient for hover control is
close to the real one. The proportional coefficient for position control is ten times
more that real one and all derivative coefficients for altitude control are about thirty
times less than real ones.

Chosen structure for all controllers in general corresponds to PD control.
According to the theory all systems that are 1% order and higher (they have pure
integration component in their TFs) have no steady state error [11]. However in
reality the quadrocopter has steady state error in the attitude (e.g. fig. 4.16) and the
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attitude (fig. 4.21), it means that international components should be added to all
controllers.

5.2 Recommendations for a future work

Several improvements for the mathematical model and the control system can
be done.

First of all, a time delay of the actuator (BLDC and the blade) should be taken
into account (eq. 3.11). In this work settling time for the system is about 0.8
seconds and in general typical time for a mechanical constant is about 0.3 seconds.
If e.g. a required settling time should be less than 0.3 seconds, a model without
mentioned time delay cannot show adequate behavior of the system. Moreover,
because of the blade the time delay is different during increasing and decreasing
angular velocity of the blade. This factor also should be taken into account.

Another important improvement is about the model by itself. In the work it is
continuous one, but it should be transferred to discrete one. The discrete model
helps to estimate influence of time delays of the sensors and microcontrollers.

Additionally, the structure of chosen controllers should be changed and
supplemented by integral components. In case of making first mentioned
improvement, the structure of the controllers should be expanding to three
coefficients. Also, a third order polynomial for desired poles should be chosen.

One more improvement can be done with the control system. In current work it
is a real time one, but with fixed coefficients. A more profound control system can
calculate/recalculate coefficients depend on the current quadrocopter behavior.
Also another control algorithm such as e.g. back stepping algorithm or LQR can be
used.
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Appendix A Calculations
1. Calculation feedback coefficients for pitch orientation: test bench 1
State-space form from eq. (4.10) looks like:
0 1 0
A= , B= , C=[1 0f, (a1
BRESHIS LS

Characteristic equation can be obtained by combining eq. (a.1) with eqg. (3.18) and
eq. (3.7) as:

A)= A’ +7.0714* A+ 25*1 ° 1* o1 7.0714* 01
a,(A)=A"+7. + I o kmgo+. ka0+

mg

ssx| T O] _[kng O 0 7.0714] [25 0

o 1Tl o ok, |T|ronak, o |T|o 25]°
[ ky+25  7.0714
| 7.0714%,,, Ky, +25

}, (a.2).

The 2" element from eq. (3.5) can be calculated as:

[B A*B] ,(a3)

0 1 0 k
where A*B = * = , SO
_kmg 0 k 0

[B A*B]_l:_i ﬂ‘:{o k](aA).

Thus, from eg. (a.2) and (a.4), eq. (3.5) can be rewritten as:

0 k}{ Kng +25 7.0714}

K=[0 1J[B A*B] a(A)=[0 ﬂ{k 0| |7.0714%,, k,, +25
. mg mg
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7.0714%  *k (k. +25)*k

=[0 1J*
(kn +25)%k  7.0714%

=[ (kg +25)*k  7.0714*k |, or result

in short form is:

K =[K1 K2]:[(kmg+25)*k 7.0714*k],(a.5).
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Appendix B. Scripts

List of the files.

Name Description
JforQuad Function for calculation Tol (eg. 2.19)
01 | fullMM.mdl Implementation of the MM (fig. 2.16).
01 | fullMM_Int.m Initial conditions for simulation the MM
02 | linMM.mdl Implementation of the MM after linearization
(eq. 3.13 and 3.39)
02 | [inMM_Int.m Initial conditions for simulation linearized MM
Dpoles.m Function for calculation desired poles of 2™
order system, based on settling time and
damping ration coefficients
AckCont.m Function for calculation feedback coefficients of
2" order system, based on TF in state-space.
03 | Att.mdl Implementation of attitude control for linearized
MM
03 | Att_Int.m Initial conditions for attitude control
04 | Pos.mdl Implementation of position control
04 | Pos_Int.m Initial conditions for position control
DOF2_Ver.m Script for verification coefficients k and k,,
UnresMotRad.mdl Simulink model for test bench 1 pitch angle
2013 04 24 processed.xlsx | file with data from experiment

Functions of blocks incorporated in the mathematical model in Simulink: file

‘fullMM.mdl’.

function for finding angular acceleration of the quadrocopter (eq. 2.17)

function [dtOmx, dtOmy, dtOmz]
$#codegen
Jx = J(1,1); Jdy = J(2,2);

= EulerRot (taux,

tauy, tauz, Omx, Omy, Omz, J)

Jz = J(3,3);
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dtOmx = (taux-(Jz-Jy) *Omy*Omz) /JIxX;
dtOmy (tauy- (Jx-Jz) *Omx*Omz) /Jy;
dtOmz = (tauz- (Jy-Jx)*Omx*Omy) /Jz;

function 2 changing in orientation angles based on angular velocity (eq. 2.18)

function [dphil, dthetal, dpsil] = OrientAngles (omx, omy,omz,phi, theta, psi )
$#codegen

dphil = [1 sin(phi)*tan(theta) cos(phi)*tan(theta)]*[omx omy omz]'
dthetal = [0 cos(phi) -sin(phi) ]*[omx omy omz]'
dpsil = [0 sin(phi)/cos (theta) cos(phi)/cos(theta)]*[omx omy omz]'

function 3 TF for blades (example for 2" blade eq. 2.24, 2.25)

function [T2,H2] = TandH2 (u,b)
$#codegen

T2 = b (1) *u;
H2 = b(2)*u;

function 4 transfer thrust force from X, y,z, to xyz (eq. 2.31)

function [Tx,Ty,Tz] = TransTtoXYZ (Tb, phi,theta,psi )
$#codegen

Tx = (sin(theta) *cos (psi) + sin(phi) *cos(theta)*sin(psi)) *Tb;
Ty = (sin(theta)*sin(psi) - sin(phi) *cos (theta) *cos(psi)) *Tb;
Tz = cos (phi) *cos (theta) *Tb;

function 2.1 Dpoles

calculation desired poles for 2nd order system, based on required settling time and
overshoot

$ function for calculation desired poles for 2nd order system
% - inputs: settling time, sec; overshooting, in %;

$ - outputs: two poles
09.07.2013 Alex

oe

function [ poles ] = Dpolesl( SetTime , OverSh)

% set input arguments

if ~exist ('SetTime', 'var'), SetTime = 0.8; end
if ~exist ('OverSh', 'var'), OverSh = 4.32; end

% transfer overshooting from % to real value
overshD=0OverSh/100; % overshooting in %

% calculate parameters for 2nd order TF
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e

damping ratio

zeta=abs (log (overshD) *1/pi*sqrt (1/ ((log(overshD) /pi)"2+1)));
% natural frequency

wn=4/ (SetTime*zeta) ;

% calculate desired poles
RealPart=-zeta*wn; ImPart=wn*sqgrt(l-zeta”2);
poles = [RealPart+ImPart*1li RealPart-ImPart*1i]; % desired poles

function 2.2 AckContSim
calculation feedback coefficients for 2" order system based on Ackerman equation

o\°

function for calculation feedback coefficients for 2nd order system
- inputs: Ts, a0, b0, al, bl

o° oo

o°

- outputs: vector K with two coefficients kl and k2
09.08.2013 Alex

o°

function [ K ] = AckContSim( Ts, b0, a0, al )

o)

% set input arguments

if ~exist ('Ts','var'), Ts = 0.8; end
if ~exist ('bO0','var'), b0 = 1; end
if ~exist ('alO', 'var'), a0 = 0; end
if ~exist ('al', 'var'), al = 0; end

%***********

o°

state -space form
kAkhkkhkhkkhkkhkkhkk*kx

A=[0 1; a0 all;

o\

B=[0; b0];
C=[1 01;
D=[0];

[o)

% find desired poles

Dp = Dpoles (Ts);

% find feedback coefficients
K=acker (A, B, Dp)

% simulation

SysF = ss((A-B*K), B,C, D);
figure (1)

initial (SysF, [1;0])

grid on

hold on

Script 3.1 ‘DOF2_ver.m’

% 2013-08-05
% Task

o)

% unrestricted motion
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% The quadro was inclined and released. The data during the falling
(unrestricted motion)

were recorded. Records are saved in file 2013 04 24 processed.xlsx.

% Description
% Code of this file
- step 1 processes data and plots data from file
13 04 24 processed.xlsx
- step 2 calculates unrestricted motion based on model
- step 3 find optimal coefficient kmg for the model

o\°

2

oo O

o°

clear all

close all

% STEP 1

% put data from file in variable 'data'

test data = importdata('2013 04 24 processed.xlsx');
data=test data.data.Tabellel

% transfer degree in radian

dTr=pi/180;

% data from test 1

% create time and angle vectors
tO=data(1,1);

timel=zeros(6,1);

for i=1:6
timel (i,1)=data(i,1)-t0;
end

vector angularPositionl=data(l:6,2)*dTr;

% plot time and angle vectors

figure (1)

pl=plot (timel,vector angularPositionl, '-*")
ylabel ('"AngularPosition,rad')
xlabel ('time, s')
grid on

set (pl, 'Color', 'red', "LineWidth', 1)

% test 2
% create time and angle vectors

tO0=data(1,4):
time2=zeros (5,1);

for i=1:5
time2 (i,1)=data (i, 4)-t0;
end

vector angularPosition2=data(1:5,5)*dTr;

% plot time and angle vectors

hold on

p2=plot (time2,vector angularPosition2, '-*")
set (p2, 'Color', 'green', 'LineWidth', 1)

% test 3
% create time and angle vectors

tO0=data(1,7);
time3=zeros (4,1);
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for i=1:4
time3 (i, 1l)=data (i, 7)-t0;
end
vector angularPosition3=data(l:4,8)*dTr;

o)

% plot time and angle vectors

hold on

p3=plot (time3,vector angularPosition3, '-*")
set (p3, 'Color', '"blue', 'LineWidth', 1)

% test 4

% create time and angle vectors
t0=data(1,10);

timed=zeros (2,1);

for i=1:2
timed (i,1)=data(i,10)-t0;
end

vector angularPosition4d=data(l:2,11)*dTr;

[}

% plot time and angle vectors

hold on

pd4=plot (time4,vector angularPosition4, '-*")
set (p4, 'Color', 'yellow', 'LineWidth', 2)

% STEP 2
% intial conditions for kmg calculation
m=730*%10"-3 ;% kg

mM = 57*107-3; % mass of one motor
1 =21*%10%-2; % m

J = JforQuad(m, mM, 1, 1);

Jy = J(1,1); % 0.0139

b= 0.11; % m

g=9.8;

Jtbl=Jy+m* (b) ~2; % 0.0227
kmg=m*g*b/Jtbl; % 34.64

amountOfTests=4; % how many times experiments were made
$prepare initial condition for each experiment
phiInitial=zeros (amountOfTests,1);

phiInitial(1l,1)=vector angularPositionl(1l,1);

phiInitial (2,1)=vector angularPosition2(1,1);
phiInitial(3,1)=vector angularPosition3(1l,1);

phiInitial (4,1)=vector angularPosition4 (1,1);

% for comparing data simulation time = 0.5 seconds is enough
Ts = 0.01;

n=50;

integrator= 'oded5';

sim model = 'UnresMotRad';

% input and output signals
y _data = zeros (n,amountOfTests) ;
t data zeros (n,amountOfTests) ;

% Simulation
for jj=l:amountOfTests
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phi= philnitial (j3j,1)

simoptions = simset ('Solver', integrator, "MaxRows',0);
eval (['[sizes,x0] = ' sim model " ([],[],[1,0);"'1);
ref old = 0;

t = -Ts;

for i=1:n,

t =t + Ts;

%$simulation
utmp=[t-Ts, ref old;t,ref old];
simoptions.InitialState=x0;

[time,x0,y] = sim(sim model, [t-Ts t],simoptions,utmp);
x0 = x0(size(x0,1),:)";

y = y(sizel(y,1),:)";
% save output and time value for current step

y data(i, jJ) =y

t data(i,jj) = t;
end

figure (1) ;

axis ([0 0.6 0 0.4])

hold on

title({'Simulation with theoretical kmg=34.64"','Colorful lines are data
from experiment, Black ones from simulation'}) ;

h=plot(t _data(:,3jJj) "',y data(:,33)");

set (h, 'LinewWidth',1, {'Color'}, {'black'});

xlabel ('time, s'); ylabel ('AngularPosition,radian');

grid on

end

o

STEP 3 optimization kmg

as soon as model with kmg=33.5455, calcualted based on theory,
shows the behaviour of the system not precise, the new value of kmg
should be found.

3 after several attepts it was found that optimal value is around
kmg=22.3006;

o° oo oP

\o

o°

to pove this
% plot experiment data in new figure (for example fig.2 )
figure (2)
pl=plot (timel,vector angularPositionl, '-*")

title({'Simulation with optimal kmg=22.3006', 'Colorful lines are data
from experiment, Black ones from simulation'}) ;

ylabel ('"AngularPosition,rad")

xlabel ('"time, s')

grid on
set (pl, 'Color', 'red', "LineWidth', 1)
hold on
p2=plot (time2,vector angularPosition2, '-*")
set (p2, 'Color', 'green', 'LineWidth', 1)
hold on
p3=plot (time3,vector angularPosition3, '-*")
set (p3, 'Color', '"blue', 'LineWidth', 1)
hold on
pd4=plot (time4,vector angularPosition4, '-*")
set (p4, 'Color', 'yellow', 'LineWidth', 2)
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% simulate the system with new kmg=22.3006

% for comparing data simulation time = 0.5 seconds is enough
Ts = 0.01;

n=50;

integrator= 'oded5';

sim model = 'UnresMotRad';

% input and output signals
data = zeros (n,amountOfTests) ;

y_
t data = zeros (n,amountOfTests) ;

%**************

% Simulation

for jj=l:amountOfTests
phi= phiInitial(jj, 1)

simoptions = simset ('Solver', integrator, "MaxRows',0);
eval (['[sizes,x0] = ' sim model ' ([],[],[1,0);"1);
ref old = 0;

t = -Ts;

for i=1:n,
t =t + Ts;

%$simulation
utmp=[t-Ts,ref old;t,ref old];
simoptions.InitialState=x0;

[time,x0,y] = sim(sim model, [t-Ts t],simoptions,utmp);
x0 = x0(size(x0,1),:)";
y = y(size(y,1),:)";

)

% save output and time value for current step

y data(i,j3) = vy;
t data(i,jj) = t;
end
figure (2);
hold on

axis ([0 0.6 0 0.41)

h=plot(t _data(:,3jJj) "',y data(:,33)");

set (h, 'LineWidth',1, {'Color'}, {'black'});

xlabel ('time, s'); ylabel ('AngularPosition,radian');
grid on
end
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