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Abstract 

     This thesis is dedicated to design and implementation of a 6DOF control system 

for a quadrocopter. At the beginning of the work the quadrocopter was analyzed as 

a plant and physical effects with behavior of continuous /discrete elements were 

described. Based on the mathematical equations, continuous time invariant 

nonlinear mathematical model was designed. This mathematical model was 

linearized to create a 6DOF control system and validated thought experiments by 

test benches and a flying prototype of the quadrocopter. For the control system 

design a pole-placement approach was chosen and based on the linear validated 

model, with taking into account requirements to a settling time, an overshoot and a 

steady-state error, the control system was designed. Its behavior was checked in 

simulation and showed adequate results. Afterwards designed control system was 

implemented as a script and incorporated in a soft, developed inside ‘Aerospace 

Information Technology’ Department, University of Würzburg. Then series of 

experiments by test benches and the flying prototype were fulfilled. Based on 

comparing experimental and theoretical results a conclusion was made. At the end 

of the work advantages and drawbacks of the control system were discussed and 

suggestions for future work were declared.   
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Chapter 1 Introduction 

1.1 Motivation and tasks of this work 

     A quadrocopter is a flying object, which changes its altitude and attitude by four 

rotating blades. Quadrocopters are a variation of multicopters, which are 

rotorcrafts. During 20
th

 century there were several attempts to implement manned 

quadrocopters, earliest known cases are in 1922 by Etienne Oemichen in France 

[25] and by George Bothezat in USA [26]. However, during the progress in 

rotorcrafts industry, the helicopters with different schemes of rotors adjusting were 

chosen. 

     In last decades, because of great achievements in technologies such as 

electronics, microcontrollers, motors, sensors and software, an opportunity of 

building small unmanned aerial vehicles (UAVs) became wide world available. 

This one leads to growing research and engineering interest to quadrocopters, 

which can be easily built. Nowadays quadrocopters are used mostly as toys, objects 

for teaching purposes in universities and for panorama video recording, but ones 

have good prospects in other areas. For expansion of application areas they should 

be more autonomous and intelligent. They are planned to be used in rescue 

operations [28], as a fire-fighter [27] or working as a group for fulfillment tasks 

with general purposes [29].  

     Quadrocopters have advantages such as a high maneuverability, a relatively 

cheap price and a simple construction and have a great potential for using as 

robotic autonomous devices. However, there are several problems that should be 

solved or improved for making ones closer to real applications. One of these 

problems is a real time 6DOF control system that can control a position and an 

orientation of a quadrocopter, its linear and angular velocities. Such type of the 

control system is very important for fulfillment series of tasks, e.g. grasping other 

objects, tracking other objects or transmitting video information about other 

objects. Some good results of controlling a quadrocopter behavior were obtained 

and demonstrated by GRASP laboratory of Pennsylvania University [30] and inside 

project ‘Flying Machine Area’ from Zürich University [31]. 
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     Hereby, the main motivation of this project is creating real time a 6DOF control 

system. This control system should control a position and an orientation of a 

quadrocopter. 

     For creating such time of the system, several tasks should be solved. At the 

beginning a mathematical model of a quadrocopter should be created. Then, based 

on this mathematical model, a 6DOF control system should be designed. At the 

end, designed control system should be implemented as a code in a microcontroller 

for a real quadrocopter. 

     A quadrocopter that will be under consideration in this thesis is the one from 

‘AQopterI8’ project, which is developed at Aerospace Information Technology 

Department, University of Würzburg.   

1.2 State of the Art  

       A mathematical model of a quadrocopter consists of describing rigid body 

dynamics, kinematics of fixed and body reference frames and forces applied to the 

quadrocopter. There are several variants of the model. Firstly they vary in 

describing of rigid body dynamics; it can be done by Euler equations [5], Euler-

Newton approach [20] or Lagrangian approach [21]. Secondly they vary in end 

representations of kinematics and direction of z axis of body reference frame. 

Thirdly, they differ in how many forces and other effects are taken into account. 

The most complete model is represented by S. Bouabdallah [21], the simplest 

variant by R. Beard [5] and the variant in the ‘middle’ by T. Luukkonnen [20]. 

Also some researchers simplified a model of a motor, which rotates a blade, as 

proportional coefficients [5], and some of them as a 1
st
 order transfer function [21]. 

A model for this thesis is based on models from two works [20], [5].  

    Control designs used in many works are based on the mathematical model. 

Usually, original model is linearized to linear continuous time invariant model [20, 

5] or to discrete one [24]. A controller for attitude control is usually PD [23] and 

there are several variants for altitude control. Hover control represented by 

N.Michael and others [23] was chosen for the quadrocopter control. There are 

several variants for the structure of control system for a whole plant. The variant 

from N.Michael and others [23] was chosen.  
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1.3 Chapters overview 

     In chapter 2 ‘Mathematical model of the quadrocopter’ several issues are 

discussed. At the beginning an analysis of quadrocopter physical processes is done 

and collected as one process. Then deferential equations described each process are 

represented. Based on these equations transfer functions were obtained and 

implemented as a model in Matlab/Simulink.  

     Chapter 3 ‘Design of the Control System’ dedicates to choosing structures of 

controllers and calculation their coefficients. It starts from short discussion about 

pole-placement approach. A method for choosing poles based on quality 

requirements is discussed. Then calculation feedback coefficients by Ackerman  

method is represented. At the end, implementation in Matlab/Simulink is described 

and results of simulation are shown. 

     Chapter 4 ‘Implementation of the Control System’ contains information about 

experiments for a validation the mathematical model and a controllers adjusting. 

Firstly, the validation of the mathematical model for the pitch/roll, the calculation 

for controllers for pitch/roll and a comparison of modeling and experimental results 

were represented. Afterwards, the same information about the yaw was described. 

Then experiments with a flying prototype were shown and compared. 

     Chapter 5 ‘Conclusion’ contains discussion of the results and recommendation 

for a future work. 
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Chapter 2 Mathematical model of the quadrocopter 

2.1 Analysis of the quadrocopter 

     The quadrocopter consists of four sticks, where each two are set symmetrically 

and perpendicularly to each other. On the end of each stick, symmetrically to 

geometrical center of the quadrocopter, actuators that provide flying are set. Each 

actuator consists of a motor and a blade, where the blade is fixed to the motor’s 

shaft (fig. 2.1). Rotation of these blades can lead to qudrocopter’s motion. 

 
fig. 2.1 Structure of the quadrocopter  

 

     The quadrocopter has 6DOF that means it has linear and angular motions. This 

complex motion (called free motion) can be fully determined by two vectors: a 

position vector pst  and an orientation vectorort . The position vector has current 

position of the quadrocopter in Earth reference frame and the orientation vector has 

current orientation angles of the quadrocopter comparing to Earth reference frame. 

For calculation current values of  pst  the following parameters should be known: a 

vector of linear velocity v , a vector of linear acceleration a . For calculation the 
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current values of ort the following parameters should be known: a vector of 

angular velocity  , a vector of angular acceleration  . Also initial conditions of all 

6 vectors mentioned above should be known. In addition, external forces and 

torques, which could be substituted by net force netF  and net torquenet , lead to 

changing in the linear and the angular acceleration of the quadrocopter and these 

changing influences on the position and the orientation. Hereby, for creating the 

mathematical model (MM) the equations, for calculation vectors pst  and ort based 

on vectors mentioned above, should be declared (fig. 2.2) 

 
 

fig. 2.2 Logical diagram for calculation the position and the orientation of the 

quadrocopter 

 

     There are three sources of external forces such as gravitational field, air drag 

and rotations of the blades in the air. These sources create a gravitational force mgF , 

a drag force dragF  and a thrust force T respectively. External torque H  is created 

only by blades rotation (fig 2.3).   

 



12 
 

 
 

fig. 2.3 Logical diagram for calculation net force and net torque 

 

In total there four blades and four BLDC motors. Assume that motors are 

numbered from 1 to 4. Each blade is rotated by the corresponding motor with 

particular angular velocity bl i , where index i  indicates the number of the motor. 

Angular velocity of the motor’s shaft is regulated by a power bridge and each 

power bridge is regulated by a microcontroller (fig. 2.4). 

 

 
 

fig. 2.4 Logical diagram for calculation angular velocities of the blades 

 

Hereby, the whole process of moving a quadrocopter in 6DOf can be described as: 

a microcontroller sets signals (analogous or digital) that are transferred through 

power bridges and motors to angular velocities of the blades. A rotation of the 

blades creates forces and torques that together with gravitational and drag forces 

change the quadrocopter position and orientation (fig. 2.5).  
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fig. 2.5 Logical diagram for creation the MM of the quadrocopter 

 

The controller needs feedback information such as the position, orientation and 

appropriate parameters (e.g. linear angular velocity) that should be measured by 

sensors. Based on desired values of the position and the orientation and current 

feedback values measured by the sensors the designed controller should generate 

appropriate values for the power bridges (fig. 2.6). 

 

 
 

fig. 2.6 Logical diagram for the MM and the controller 

  

It can be concluded that the MM is consists of transfer functions that describe or 

estimate elements and processes shown on fig. 2.6.  So the behavior of the 
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quadrocopter in 6DOF should be described by differential equations. Then 

relationships between angular velocities of the blades and net force and net torque 

should be shown. External forces that cannot be controlled: gravitational and drag 

forces should be discussed. Elements that are needed for creating force and torque 

for moving: analogous elements (blades, motors, power bridges) and digital 

elements (sensors, a microcontroller) should be described. Based on the MM the 

controller can be designed. 

 

2.2 Mathematical description of the quadrocopter elements 

     The MM should approximate the process shown on fig. 2.5.  A description of 

this process includes free motion of the quadrocopter, influence from applied 

forces, how blades rotations are produced and effects of digital elements (sensors, a 

microcontroller). 

2.2.1 Free motion of the quadrocopter 

     For describing the quadrocopter’s free motion (process is shown on fig. 2.2), the 

theory of free motion of a rigid body is used. According to this one, free motion of 

the rigid body is considered as a complex motion, which consists of two simple 

motions: 

 translation motion of a point with mass equals to the mass of the body (point 

mass), where the point is any point of the body 

 angular rotation of the body around a fixed point, where the point mass 

chosen above is considered as the fixed one. 

Translation motion of a point is described as: 

d p
netF

dt
 , (2.1) 

where netF  is a net force of all external forces applied to the point mass, p  is  

linear momentum of the point mass and 
d

dt
 is differential operator. 

Angular rotation of a body around the fixed point can be described as: 
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d L
net

dt
   , (2.2) 

where net  is a vector sum of all external torques and L  is an angular momentum 

of the body. 

Translation motion of a point mass 

      For describing translation motion of a pointed mass a fixed reference frame 

should be chosen. In some arbitrary point of the space, noted as ‘O’, a fixed 

reference frame XYZ  is created. Position of a point mass in frame XYZ can be 

described by radius vector r   (fig. 2.7). 

 
fig. 2.7 Position of the point mass in XYZ  fixed reference frame 

 

To apply eq. (2.1) to this point mass, a linear momentum of the point mass should 

be described: 

*p m v , (2.3) 

where m  is a mass of the point mass and v is a linear velocity of the point mass. 

With taking into account eq. (2.3), eq. (2.1) can be rewritten as: 

2

* *
dv d r

netF m m
dt dt

  , (2.4). 

The changing in position of the point can be expressed from eq. (2.4) as: 
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netF
r

m
 , (2.5). 

Scalar form of eq. (2.5) is: 

X
X

Y
Y

Z
Z

netF
r

m

netF
r

m

netF
r

m







, (2.6). 

Angular rotation around a fixed point 

     As it was mentioned above, for describing free motion of a body, an angular 

rotation around a fixed point should be considered. Assume a fixed reference frame 

xyz with origin in a fixed point of a rigid body (fig. 2.8).  

 
fig. 2.8 Rotation of a rigid body around a fixed point in xyz  fixed reference frame 

 

Rotation of the rigid body with random shape around the fixed point can be 

described in fixed reference frame xyz . For using eq. (2.2) the angular momentum 

of the body should be calculated.  

     The body is considered as a system of point masses, where mass of each point is 

dm and position of any of these points can be determined by vector   from origin 

of xyz  till the element dm . In this case the angular momentum is: 
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*dmL v dm  , (2.7), [9] 

where  is an integral in the volume of the body, dmv is a linear velocity of 

particular element. Eq. (1.7) in non-vector form is: 

 

 

 

* * *

* * *

* * *

x z y

y x z

z y x

L y v z v dm

L z v x v dm

L x v y v dm

 

 

 







, (2.8), [9] 

where  x , y , z  are coordinates of an element dm (or in other words coordinates of 

correspondent radius vector   ),  
xv  ,

yv , 
zv  are projections of the velocity of this 

element.  

Linear velocity of each element dmv  can be described as: 

* *

* *

* *

y z

el z x

x y

z y

v x z

y x

 

   

 

 
 

    
  

, (2.9), [9] 

where  is angular velocity of the body and , ,x y z   are its projections in  xyz . 

By rewriting eq. (2.7) with taking into account (2.9) the angular momentum is: 

   2 2*( * * ) *( * * ) * *( ) * * * * *x x y z x x y zL y y x z x z dm y z x y z x dm               
2 2* ( )* * ( * )* * ( * )*x y zy z dm x y dm z x dm         ,  

   2 2*( * * ) *( * * ) * *( ) * * * * *y y z x y y z xL z z y x y x dm z x z y x y dm               
2 2* ( )* * * * * * *y z xz x dm z y dm x y dm        ,  

   2 2*( * * ) *( * * ) * *( ) * * * * *z z x y z z x yL x x z y z y dm x y x z y z dm               
2 2* ( )* * * * * * *z x yx y dm x z dm y z dm        ,  

or in vector form: 
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2 2

2 2

2 2

( )* ( * )* ( * )*

( * )* ( )* * * * *

( * )* * * ( )*

x x

y y

z z

y z dm x y dm z x dm
L

L L x y dm z x dm z y dm J

L
z x dm z y dm x y dm



 



   
    
         
       

      
 

  

  

  

, (2.10) , [9] 

where J  is so-called tensor of inertia (ToI) and its components can be rewritten as 

follow: 

2 2

2 2

2 2

( )* ( * )* ( * )*

( * )* ( )* * *

( * )* * * ( )*

xx xy xz

yx yy yz

zx zy zz

y z dm x y dm z x dm
J J J

J x y dm z x dm z y dm J J J

J J J
z x dm z y dm x y dm

   
  
         
      

 

  

  

  

, (2.11) , [9] 

where 1st index of J  corresponds to the index of L  and second one to the index of 

  and ; ; ;xy yx xz zx yz zyJ J J J J J   . 

     Each component of inertia tensor is a moment of inertia (MoI) around particular 

axis. These components are constant, since origin of reference frame xyz is 

connected to the body. Tensor of inertia (ToI) can be simplified in a case if axes of 

reference frame xyz  are coincident with principal axes of the body (axes of 

symmetry). To provide this case for rotating body, the axes of the reference frame 

should be fixed with the body. Assume new reference frame b b bx y z , which axes are 

coincidence with principal axes of the body and origin is in the fixed point of the 

body. In reference frame ‘ b b bx y z ’ components 0xy xz yzJ J J    [9] and eq. (2.10) 

and eq. (2.11) can be rewritten as: 

0 0

0 0 * *

0 0

b b b b

b b b b

b b b b

x x x x

y y y y

z z z z

L J

L L J J

L J



 



     
     

       
          
     

, (2.12), [9] 

To derive the angular momentum, an equation for the relative motion is used: 

a br r r   , (2.13), [1] 

where ar  is an arbitrary vector in inertial reference frame, br  is the same vector in 

body (non - inertial) reference frame,   is an angular velocity of  the body 
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reference frame in the fixed reference frame.  Derivation of angular momentum 

d L

dt
 according to eq. (2.13), leads to so-called Euler’s equation [2]: 

( * )
* * *

d L d J d
net J J J

dt dt dt

 
           , (2.14), [2]. 

Eq. (2.14) in more detail form is: 

0 0 0 0

0 0 * 0 0 *

0 0 0 0

b b b b b b b b

b b b b b b b b

b b b b b b b b

x x x x x x x x

y y y y y y y y

z z z z z z z z

net J J

net net J J

net J J

   

    

   

           
           

               
                      
           

 

 

 

 

* ** * *

* * * * *

* * * *

b b b b b b
b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b b b b b b b
b b b b

z z y y y z
x x x x x x x x x x

y y y y y y y y y y x x z z x z

z z z z z z z z z z
y y x x x

J JJ J J

J J J J J

J J J J J

    

     

    

       
       

           
              

        *
b by

 
 
 
 
 
 

,  

or in short form: 

 

 

 

* * *

* * *

* * *

b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b

x x x x z z y y y z

y y y y x x z z x z

z z z z y y x x x y

net J J J

net J J J

net J J J

   

   

   

  

  

  

 , (2.16), [2]. 

Eq. (2.16) should be rewritten in the form for finding changing in angular velocity 

as: 
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 

 

 

* *

* *

* *

b b b b b b b

b

b b

b b b b b b b

b

b b

b b b b b b b

b

b b

x z z y y y z

x

x x

y x x z z x z

y

y y

z y y x x x y

z

z z

net J J

J

net J J

J

net J J

J

  


  


  


 


 


 


, (2.17), [2]. 

     As it was mentioned above, description of rotation in body reference frame 

b b bx y z instead of fixed reference frame xyz simplifies calculation of angular 

momentum L  to eq. 2.12.  On the other hand because of this simplification, 

another equation, that links angular velocity   in b b bx y z  and orientation b b bx y z  

relatively to xyz , is also needed.  Orientation of the body is defined by unique 

rotation around instantaneous axis of rotation. This rotation can be considered as 

sum of three simple rotations. Sequences of simple rotations are not unique [4]. 

Commonly used sequence in Aerospace applications for flying objects is yaw-

pitch-roll (YPR) rotation, where angles e.g. noted as , ,    correspondingly      

(fig. 2.9).  

  

 
fig. 2.9 Orientation of the body reference frame b b bx y z  by yaw-pitch-roll angles in fixed 

reference frame xyz  

 

Changes in orientation are connected with   by following equation: 
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1 * *

0 *

0

b

b

b

x

y

z

sn t c t

c sn

sn c

c c

    

   

   

 

 
   
   

     
         

 

, (2.18). [5] 

Hereby, for a block ‘6DOF’ (from fig. 2.2) three equations are needed: eq. (2.6) 

describes dynamics of linear motion, eq. (2.18) describes kinematics of angular 

motion and eq. (2.17) describes dynamics of angular motion. 

Tensor of inertia and mass of the quadrocopter 

      For calculation ToI, a real structure of the quadrocopter ( fig. 2.1) is simplified 

to the structure, which consists of spherical dense center with mass M , radius R  

and several point masses of mass Mm  located at distance l  (fig. 2.10).[5]  

  

 
fig. 2.10 Simplified structure of the quadrocopter 

 

 

ToI of the simplified structure based on eq. (2.11) and eq. (2.12) can be described 

as: 

2 2

2 2

2 2

( )* 0 0 0 0

0 ( )* 0 0 0

0 00 0 ( )*

b b

b b

b b

b b
x x

b b y y

z z
b b

y z dm J

J z x dm J

Jx y dm

   
   
     
        






, (2.19) 
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where 
2

22* *
2* *

5b b b bx x y y M

M R
J J l m    and 

2
22* *

4* *
5b bz z M

M R
J l m  . 

Eq. (2.19) supplements eq. (2.17). 

In case of chosen approximation the mass of quadrocopter is: 

4* Mm M m  , (2.20), 

where Mm  is total mass of the motor and the blade, M  is mass of the spherical 

dense or in other words mass of the rest parts of the quadrocopter. 

Eq. (2.14) supplements eq. (2.6). 

Summary of equations for motion in 6DOF 

     Hereby, based on written in section 2.1, free motion of the quadrocopter can be 

represented in reference frame XYZ  (fig. 2.11).  

  

 
 

fig. 2.11 The quadrocopter’s free motion 

 

Parameters and functions of this motion can be determined in several steps. Initial 

conditions are set accordingly to current experiment (e.g. equal to zero). Then mass 

and ToI are calculated based on eq. (2.19) and eq.(2.20). Afterwards dynamics and 

kinematics of orientation are calculated based on eq. (2.18) and eq. (2.17) and 

dynamics of linear motion is calculated based on eq. (2.6). 
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2.2 External Forces  

     A position and an orientation of the quadrocopter can be found by eq. (2.6) and 

eq. (1.17) when the external net force netF  and external net torquenet are known. 

As it was mentioned before there are three sources of external forces: gravitational 

field, air drag and rotations of the blades in the air, which lead to a gravitational 

force mgF , a drag force dragF  and a thrust force T respectively. Forces and torques 

from blades can be controlled. Gravitational and drag force cannot be controlled. 

Gravitational forces  

     Forces of gravitational field applied to a body can be represented as a net 

gravitational force applied to a center of gravity (CoG) of the body. Direction of 

this force is constant and pointed to the center of the Earth. Relation between this 

force and acceleration of an object corresponds to Newton law and can be written 

as: 

*mgF m g , (2.21) 

where m is mass of the quadrocopter and g  is gravitational acceleration. 

For simplification assume that the CoG coincides with the CoM of the 

quadrocopter. 

Air drag force 

When an object moves through the air, it overcomes air resistant. Air drag force 

can be described as: 

2* * *drag dF C S v , (2.22),[8] 

where dC  is drag coefficient,   is mass density of the air fluid, S  reference area of 

the object, v  is the speed of the object relative to the air fluid. 

Coefficient dC , which depends on the shape of the object, should be measured in 

advance in a wind tunnel. Drag coefficients for several shapes are well known and 

available in the form of the tables, e.g. for square shape dC  equals to 0.64 [8] . 

Mass density of the air   depends on the height above the see level, e.g. for 1 
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meter above sea level with temperature about 15 degree, air density equals to 1.226 

[8]. 

For movement in 3D eq. (2.22) can be rewritten as: 

 * * *| |*drag dF C S v v , (2.23), 

Forces from blades 

     Interaction between a rotating blade and air can be described by vortex theory 

[7]. Assume that a blade is rotating with some angular velocity
bl  in 

counterclockwise direction. This rotation leads to producing a number of forces. To 

find net forces, the blade surface is theoretically divided by small elements and the 

force that applied to an element represented as sum of vertical force elT and 

horizontal force elQ  (fig. 2.12). Sum of all vertical forces elT  can be substituted by 

thrust force T  and sum of all horizontal force elQ  as hub torque H .  

 
fig. 2.12 Net force and torque from interaction between a blade and the air 

 

The thrust force T  and hub torque H can be described as: 

2*T blT b  , (1.24), [21] 

2*H blH b  , (1.25) , [21]  

where pb  and bb  are proportional coefficients, which depends on air density, angle 

of blade and area of blade. 
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     The quadrocopter has four actuators; each of them consists of a blade, a motor 

and a power bridge. Notate linear movement of the quadrocopter as forward, 

backward, left and right and number actuators from 1 to 4 (fig. 2.13). Blades 2 and 

4 rotate in counterclockwise direction with angular speed
2 , 

4   while blades 1 

and 3 rotate in clockwise direction with angular speed 1 , 
3 .    

 
fig. 1.13 Quadrocopter structure 

 

These rotations lead to four couples of thrust forces and hub torques (fig. 2.14).  

 
fig. 2.14 Thrust and hub forces from each blade 

 

These 4 forces can be replaced by net thrust force T  and 4 hub torques by net hub 

torque H   (fig. 2.15). 
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fig. 2.15 Thrust force and hub torque applied to the quadrocopter (an arbitrary direction of 

H  is chosen) 

 

Thrust force T  can be represented as: 

1 2 3 4T T T T T    , (2.26) , [21]. 

Hub torque H  can be represented as: 

 

 

   

2 4

3 1

1 3 2 4

*

*

b

b

b

x

y

z

l T TH

H H l T T

H H H H H

    
        
    

     
 

, (2.27) , [21] 

where sign minus corresponds to negative direction of roll, pitch and yaw angles. 

Equation (2.27) supplements eq. (2.17) for calculation orientation of the 

quadrocopter, so (2.17) can be rewritten as: 

   

   

     

2 4

3 1

1 3 2 4

* * *

* * *

* *

b b b b b b

b

b b

b b b b b b

b

b b

b b b b b b

b

b b

z z y y y z

x

x x

x x z z x z

y

y y

y y x x x y

z

z z

l T T J J

J

l T T J J

J

H H H H J J

J

 


 


 


  


  


    


, (2.28). 

For finding translation motion thrust force T should be represented in xyz  as: 
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*b b b

b b b

x

x y z
x y zy xyz

z

T

T T R T

T

 
 

 
 
 
 

, (2.29), 

where b b bx y z

xyzR  is a rotation matrix. 

Rotation matrix of YPR is: 

     
1

* *b b bx y z

xyz x y zR R R R  


     

1

1 0 0 c 0 c 0

0 c * 0 1 0 * c 0

0 c 0 c 0 0 1

sn sn

sn sn

sn sn

   

   

   



       
      

        
            

 

1

*c *

* *c * * * * *

* *c * * * * *

c c sn s

sn sn c sn sn sn sn c c sn c

c sn sn sn c sn sn sn c c c

    

           

           



   
  

     
     

 

*c * * * * * *

* * *c * * * *

*

c sn sn sn c sn c sn c sn sn

c sn sn sn c c sn sn sn c c

c sn sn c c

           

           

    

   
 

 
 
  

, (2.30) , [4] 

where c  and sn  are abbreviations for cosine and  for sine respectively. 

Thrust force is always aligned with 
bz axis, therefore, with taking into account eq. 

(2.30), eq. (2.29) can be rewritten as: 

0

* * 0b b b b b b

x

x y z x y z
xyz y xyz xyz

z

T

T T R T R

T T

   
   

   
   

  
  

 

*c * * * * * * 0

* * *c * s * * * * 0

*

c sn sn s c sn c sn c sn sn

c sn sn sn c c sn sn c c

c sn sn c c T

           

           

    

     
   

   
   
      
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* * *

s * * * *

*

c sn c sn sn

sn sn c c T

c c

    

    

 

 
 

 
 
 
 

, (2.31). 

With taking into account eq. (2.31), gravitational force eq. (2.21) and drag force eq. 

(2.23), eq. (2.6) can be rewritten as: 

 

 

2

2

2

* * * * * * *

s * * * * * * *

* * * * * *

d X

X

d Y

Y

d Z
Z

c sn c sn sn T C S v
r

m

sn sn c c T C S v
r

m

c c T m g C S v
r

m

     

     

  

 


 


 


, (2.32). 

Thereby, the free motion of the quadrocopter in 6DOF can be represented as linear 

motion its center of the mass (CoM) with mass m  in XYZ and angular rotation of 

the quadrocopter around CoM. The rotation is described by rotation of the 

quadrocopter in b b bx y z  and orientation of b b bx y z  relatively to xyz , where axes of 

xyz  are parallel to relative axes of XYZ  (fig. 2.15). 

 
 

fig. 2.15 Motion of the quadrocopter in 6DOF 

 

The influence from applied forces is described by eq. (2.32) (instead of (2.6)) and 

the influence from applied torques is described by eq. (2.28) (instead of 2.17). 
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2.2.3 Quadrocopter’s actuators 

     The actuator consists of a blade, a motor and a power bridge. The behavior of 

the blade is described in previous section by eq. (2.24), eq. (2.25). 

     Angular velocities of the blades depend on angular velocities of corresponding 

motors. For calculation a shaft velocity of a brushless DC motor (BLDC) a 

mathematical model of the motor should be used. This model depends on motors 

construction. In opposite to brushed DC motor, a BLDC motor needs a control 

system for rotation of its rotor. Sometimes MM of BLDC is needed for creating 

such type of the control system. However, for current case the MM is needed to 

estimate relationship between the input and output. For this purpose MM of BLDC 

can be substituted by MM of brushed DC [6].   

The MM of brushed DC motor is based on four equations:  

* * m

di
U i R L e

dt
   , (2.33) 

*me k  , (2.34) 

*mT k i , (2.35) 

*
d

T J
dt


 , (2.36). 

Eq. (2.33) describes the effect, when applied voltage leads to current in the 

armature with resistance R  and to inductance L and to back EMF 
me . Eq. (2.34) 

indicates that back-EMF 
me  proportional to angular velocity of the motor’s shaft, 

where k  is back-EMF constant. Eq. (2.35) denotes that produced torque is 

proportional to the produced current, where 
mk is the torque constant. Eq. (2.36) 

describes transferring from the torque to angular acceleration of the plant, where J  

is sum of the moment of inertia of the plant and motor shaft. For current case, the 

plant is the blade, which has minimal MoI, so the plant MoI can be omitted. 

     A power bridge can be represented as: 

max*PWMu k u , (2.37) 
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where u is input voltage to the BLDC , 
maxu is maximum input voltage of BLDC 

applied to the power bridge and 
PWMk  is percent of pulse-width modulation 

(PWM). Time delay of the power bridge can be neglected since time for changing 

the electrical signals is much smaller comparing to the time delay in mechanical 

part of the system. The power bridge can be considered as continuous element. 

 

2.2.4 Discrete elements 

     The system has several discrete elements such as: a microcontroller and sensors. 

These elements are discrete in time and level. They should be substituted by 

quantizers with level of discretizations 
Mld and 

sld  correspond to their calculation 

precision and time discretizations 
Mtd and 

std  correspond to their delays in time.   

These parameters can be calculated as: 

1 1
;

2 2
M SNmofBt NmofBt

ld ld  , (2.38) 

where NmofBt is length of the microcontroller’s register in bites. 

1
std

f
 , (2.39) 

where f  is frequency of the sensor in Hz. 

*M instd N t , (2.40), 

where N  is number of instructions in a code and 
inst  is time for fulfillment of one 

instruction.  

 

2.3 Mathematical model of the quadrocopter 

     The MM of the quadrocopter consists of transfer functions (TFs) of elements 

described in previous sections. Logical diagram of this model with corresponding 

equations is shown on fig. 2.16. 
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fig. 2.16 Logical diagram of MM of the quadrocopter in 6DOF 

 

This model has the following simplifications: 

 the quadrocopter is a rigid body 

 center of mass (CoM) is in the geometrical center of the quadrocopter 

 ToI of the quadrocopter is approximated as moment of inertia of several 

objects 

 CoG is coincided with CoM 

 MoI of the blades is neglected 

 Time delay of the power bridge is neglected 

     For simulation purpose equations should be represented by transfer functions. 

TF will be represented in a form suitable for realization in Matlab/Simulink. TF for 

eq. (2.32) is: 
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, (2.41) 

where s  is Laplace operator. 

This TF is nonlinear since it has trigonometric functions and squaring of the inputs.  

Based on eq. (2.41) it can be represented in Matlab/Simulink (fig. 2.17) 

 

 
fig. 2.17 Representation of TF for translation motion in Matlab/Simulink 

 

Block ‘TransTtoXYZ’ (fig. 2.17) has as inputs the thrust force ( )T s  and orientation 

angles , ,   . These inputs shoud be calculated for finding a quadrocopter’s 

position. The TFs for orientation angles are calculated based on eq. (2.18) and eq. 

(2.28) as: 
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, (2.42) 
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,(2.43). 

These TFs are nonlinear since they have trigonometric functions and multiplying of 

the outputs. They can be represented in Matlab/Simulink as shown on fig. (2.18). 

 
 

fig. 2.18 Representation of TF for angular rotation in Matlab/Simulink 

 

The input of this block is hub torque ( )H s . The inputs ( )T s and ( )H s can be 

calculated based on eq., (2.24), (2.25), (2.26), (2.27). The TFs are: 

2 2 2 2

1 1 2 2 3 3 4 4( ) * ( ); ( ) * ( ); ( ) * ( ); ( ) * ( )T bl T bl T bl T blT s b s T s b s T s b s T s b s       , (2.44) 

2 2 2 2

1 1 2 2 3 3 4 4( ) * ( ) ; ( ) * ( ) ; ( ) * ( ) ; ( ) * ( )H bl H bl H bl H blH s b s H s b s H s b s H s b s       , (2.45) 



34 
 

 2 2 2 2

1 2 3 4( ) * ( ) ( ) ( ) ( )T bl bl bl blT s b s s s s       , (2.46) 

 

 

   

2 4

3 1

1 3 2 4

* ( ) ( )( )

( ) * ( ) ( )

( ) ( ) ( ) ( ) ( )

b

b

b

x

y

z

l T s T sH s

H s l T s T s

H s H s H s H s H s

    
       
    

     
 

, (2.47). 

These TFs are nonlinear since they have squaring outputs. They can be represented 

in Matlab/Simulink as it shown on fig. (2.19). 

 

 
fig. 2.19 Representation of TFs in Matlab/Simulink for creating ( )T s and  ( )H s  

 

      MM of BLDC is designed based on eqs. (2.33 - 36). Applying Laplace 

transformation to eq. (2.33), (2.34) leads to: 

( ) * ( )
( )

U s k s
I s

R sL

 



 , (2.48) 

and to eq. (2.35), (2.36) leads to: 

* ( ) * ( )mk I s J s s . (2.49) 
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Transfer function can be obtained by combining eq. (2.48) and (2.49) as: 

 
( ) * ( )

* * ( ) ( ) * * ( ) * ( )m

m

U s k s J
k J s s U s R sL s s k s

R sL k





  


    


 

2

1
( )* ( )

* *
*

m m

U s s
J L J R

s s k
k k



 

 

, (2.50)  

where 
2

1
( )

* *
*

m m

G s
J L J R

s s k
k k





 

 is 2
nd

 order TF.  

More common form of eq. (2.50), where parameters J , L  and 
mk  are substituted, is 

represented in more appropriate form as: 

2
2 2

1 1

1
( )

* * * * * * * 1
* * * * 1

* *
m e m

m m m m

k k
G s

J L J R J R L J R s s
s s k s s

k k k k R k k

 



 

  
  

 
   

or in short way 

2

1

( )
* * * 1m e m

k
G s

s s



  


 
, (2.51) 

where 
*

*
m

m

J R

k k
   is mechanical constant and 

e

L

R
  is electrical constant. 

Implementation of TF based on eq. (2.51) is shown on fig. 2.20. 

 
 

fig. 2.20 Representation of BLDC TF in Simulink 
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Thereby the TF functions of continuous elements of the quadrocopter can be 

represented as shown on fig. 2.21. 

 
 

fig. 2.21 Representation of TF of continuous part in Matlab/Simulink 
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Chapter 3 Design of the Control System 

     A goal of a controller design is to reach a new plant’s behavior, which 

corresponds to desired quality requirements. Any controller design procedure is 

based on information how inputs and outputs of the plant are connected. In most 

cases relation between inputs and outputs is described by mathematical model of 

the plant. The MM can be created by three methods: mathematical description of 

physical processes, identification procedure and a sum of two previous methods. 

MMs obtained based on these procedures are called white box, black box and grey 

box respectively [12]. Most of design procedures are based on the linear MM of the 

plant and most popular procedures are root-locus method, pole placement method 

and by Bode diagrams. As soon as the quadrocopter should have intelligent control 

system, the pole-placement method from mentioned one is chosen.   

3.1 Pole-placement method: Ackermann approach 

     Pole placement method is a method, where a designed controller should change 

poles of characteristic equation of the MM to the poles that give the system desired 

quality such as a settling time, an overshoot, a steady state error.  

However, it should be mentioned that this method has serious limitations such as: 

sensitiveness to how adequate the model is and not observability of particular 

connected to real physical parameters. Advantage of pole placement method is that 

the controller designed by this method can be easily expanded to an optimal or 

adaptive controller.  

     One of the simplest and direct ways to design a system with chosen poles is 

using Ackerman equation. This equation transfers state space model in control 

canonical form and calculate new coefficients for feedbacks [11]. In general the TF 

look like: 

 
1

1 1 0

1

1 1 0

* *

* *

n

n
p n n

n

b s b s b
G s

s a s a s a









  


   
, (3.1). 

The control canonical form for a 3
rd

 order system is represented on fig. 3.1. 
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fig. 3.1 Structure diagram of control canonical form [10] 

 

The state equations for n-order system in control canonical form are: 

( ) * ( ) * ( )

( ) * ( ) * ( )

x t A x t B u t

y t C x t D u t

 

 
, (3.2) 

where 

0 1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

n

A

a a a a 

 
 
 
 
 
 
     

,  

0

0

0

1

B

 
 
 
 
 
 
  

,  0 1 2 1nC b b b b  , 

0D  . 

     The idea of Ackerman approach is to calculate new coefficients K  that 

supplement existing coefficients to make roots of a closed-loop system equal to 

desired poles. Consider the case when the input of the system is zero, so called 

regulator control. In this case ( )u t  consists only of feedback signals and can be 

described as: 

( ) ( )u t Kx t  , (3.3). 
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So close-loop matrix 
fA can be written by substituting result of eq. (3.3) to eq. 

(3.2): 

   1 2 1

0 1 2 1

0 1 0 0 0

0 0 1 0 0

*

0 0 0 1 0

1

f n n

n

A A BK K K K K

a a a a





   
   
   
       
   
   
         

 

0 1 1 2 2 3 1

0 1 0 0

0 0 1 0

0 0 0 1

n na K a K a K a K

 
 
 
 
 
 
         

, (3.4) 

Matrix K  can be calculated as: 

   
1

2 10 0 ... 0 1 * * ... * * *n n

cK B A B A B A B A


      , (3.5), 

where  c A  is matrix polynomial formed with coefficients of the desired 

characteristic equation  c s . The desired closed-loop characteristic equation can 

be described as: 

       1

1 1 0 1 2* * * 0n n

c n ns s s s s s s      

          , (3.6) 

where 1 n    are desired poles. 

Matrix polynomial  c A  is described as: 

  1

1 1 0* * *n n

c nA A A A I   

     , (3.7), 

where I  is identity matrix with dimension equals to dimension of A. 

Thereby, pole placement procedure has three steps. First step is obtaining the MM 

of the system , where the MM should be linear continuous time invariant model. 

Next step is calculation desired poles based on requirements to quality of the 
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system. Last step is calculation feedback coefficients that change poles of the MM 

to desired ones. 

 

3.2 Linear time-invariant mathematical model of the quadrocopter  

     The MM developed in chapter 2 cannot be used for controller design by pole 

placement method and should be simplified. One of the approaches is known as 

small disturbance theory [13]. Based on the assumption that motion of the flying 

object consists of small deviations around a steady flight conditions, multiplication 

of angular velocity components can be omitted and eq. (2.43) can be rewritten as: 

 

 

   

2 4

3 1

1 3 2 4

( ) * ( ) ( )

( ) * ( ) ( )

1
( ) * ( ) ( ) ( ) ( )

b

b b

b

b b

b

b b

x

x x

y

y y

z

z z

l
s s T s T s

J

l
s s T s T s

J

s s H s H s H s H s
J







 

 

   

 , (3.8). 

Another simplification which leads from this fact is that changes in orientation 

angles equal to angular velocity and eq. (2.42) can be rewritten as: 

( )( )

( ) ( )

( ) ( )

b

b

b

x

y

z

ss

s s s

s s



 

 

  
  

   
       

, (3.9). 

Combination of eq. (3.8) and eq. (3.9) can be shown as: 

 

 

   

2 42

3 12

1 3 2 42

( ) * ( ) ( )

( ) * ( ) ( )

1
( ) * ( ) ( ) ( ) ( )

b b

b b

b b

x x

y y

z z

l
s T s T s

s J

l
s T s T s

s J

s H s H s H s H s
s J







 

 

   

, (3.10). 

Another assumption is that TFs between PWM values and forces/torques can be 

substituted by proportional coefficient or (if dynamics of the motors should be 
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taken into account) 1
st
 order TF. In the case of keeping dynamics into account, eq. 

(2.44), (2.45), (2.51), (2.37) can be rewritten as: 

max

max

max

max

1 *

( )
* *

( ) * 1 * 1 * 1

1 *

( )
* *

( ) * 1 * 1 * 1

T

T
T

PWM m m m

H

H
H

PWM m m m

b u

T s k k k
b u

k s s s s

b u

H s k k k
b u

k s s s s

 

 

  

  

  
  

  
  

, (3.11) 

where max*T
T

b u
k

k
  and max*H

H

b u
k

k
 . 

In the case, if dynamics of the motors is small comparing to dynamics of whole 

system eq. (3.11) can be simplified to: 

( )

( )

( )

( )

T

PWM

H

PWM

T s
k

k s

H s
k

k s





, (3.12). 

Combination of eq. (3.10) and (3.12) gives: 

 

2

2 4

2

3 1

2

1 3 2 4

( )

( ) ( )

( )

( ) ( )

( )

( ) ( ) ( ) ( )

PWM PWM

PWM PWM

PWM PWM PWM PWM

ks

k s k s s

s k

k s k s s

ks

k s k s k s k s s




















  

, (3.13) 

where 
*

b b

T

x x

l k
k

J
  , 

*

b b

T

y y

l k
k

J
   and 

b b

H

z z

k
k

J
  . 

Eq. (2.41) that describes quadrocopter’s motion in XYZ can be simplified by 

neglected drag forces [5] and can be modified to: 
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2

2

2

1 ( )* ( ) ( )* ( )* ( )
( ) * ( )

1 s ( )* ( ) ( )* ( )* ( )
( ) * ( )

1 ( )* ( )
( ) * ( )

X

Y

Z

c s sn s c s sn s sn s
r s T s

s m

s sn s sn s c s c s
r s T s

s m

c s c s
r s T s g

s m

    

    

 

 
  

 

 
  

 

 
  

 

, (3.14). 

For design purpose this TF should be linearized to: 

2

2

2

1 ( )* ( )*
( ) * ( )

1 ( )* *
( ) * ( )

1 1
( ) * ( )

X

Y

Z

s c s sn
r s T s

s m

s sn c
r s T s

s m

r s T s g
s m

   

   

 
  

 

 
  

 

 
  

 

, (3.15) 

where  1 2 3 4( ) * ( ) ( ) ( ) ( )T PWM PWM PWM PWMT s k k s k s k s k s    . 

Thereby, changes in the quadrocopter attitude and altitude can be described by 2
nd

 

order functions from eq. (3.13) and eq. (3.15). So an approach for choosing desired 

poles for 2
nd

 order system should be described and controllers for 2
nd

 order system 

by Ackerman equation should be designed. 

 

3.3 Desired poles for 2
nd

 order system  

     Stability and quality of a system are determined by its characteristic equation. 

Choice of desired poles depends on required quality of the system. The simplest 

way of choosing poles for 2
nd

 order system is to use standard approach described 

e.g. in [11]. According to this approach a TF of 2
nd

 order system should be 

represented as: 

2

2 2
( )

2* *

n

n n

G s
s



  


 
, (3.16) 

where n  is natural frequency and   is damping ratio. 



43 
 

     This TF is analyzed in time domain by step input. Based on the step response 

the quality of the system can be estimated. Typical step response with all 

specifications is shown on fig. 3.2. 

 
fig. 3.2 Step response of a 2

nd
 order system [10] 

  

The following quality parameters are shown: rise time, peak time, overshoot, 

settling time, steady state error. Usually for design purpose minimum settling time 

and overshooting should be specified. 

     Percent of overshoot percOvSh   can be set by varying damping ratio   (eq. 

3.17) and settling time sT  by varying natural frequency n  (eq. 3.18). 

2* / 1
*100percOvSh e

   
 , (3.17) 

4

*
s

n

T
 

 , (3.18). 

For finding damping ratio   and natural frequency n  eq. (3.17) and (3.18) is 

rewritten as: 
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2

1
*ln

100

1
1 *ln

100

percOvSh

percOvSh






 
 
 

 
  
 

, (3.19) 

4

*
n

sT



 , (3.20). 

Based on    and n  the desired poles can be calculated as: 

2

1,2 * * 1n ns j        , (3.21). 

Thereby, by choosing quality parameters: overshooting and settling time sT , the 

damping ratio   and natural frequency n  can be calculated (eq. 3.19 and 3.20). 

Based on the last ones the desired poles can be found by eq. (3.21).  

For control of the quadrocopter, as for most of other systems, the fastest response 

with minimal overshooting should be provided. The damping ratio   for this 

behavior is well known and equals to 0.707 that corresponds to 4.32% of 

overshooting. Settling time in the model can be close to zero by choosing n  close 

to infinity, but in real system it is not possible. Based on current experimental result 

with the quadrocopter sT should be no more than0.8s , so 0.8sT s  is chosen.  

Based on chosen quality parameters 0.8sT s  and 4.32%percOvSh   by using eq. 

(3.19, 3.20, 3.21) the desired poles are calculated as:  

1,2 -3.5357  j*3.5354s    (3.22). 

The algorithm of calculation is realized as function ‘Dpoles.m’ in Matlab, where 

inputs are percOvSh  and settling time sT  and outputs are desired poles (see App. 

B). 
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3.4 Attitude control 

3.4.1 Design of controllers 

     Mathematical models from eq. (3.13) is 2
nd

 order and in general can be 

represented as: 

  1 0

2

1 0

*

*
p

b s b
G s

s a s a




 
, (3.23). 

The state space equations in canonical form for a 2
nd

 order system are: 

( ) * ( ) * ( )

( ) * ( )

x t A x t B u t

y t C x t

 


, (3.24) 

where
0 1

0 1
A

a a

 
  

  
,  

0

1
B

 
  
 

,  0 1C b b , 

that can be represented as shown on fig. 3.3.  

 
fig. 3.3 Canonical form of 2

nd
 order system 

 

By comparing TF of quadrocopter (eq. 3.1) and 2
nd

 order TF in general form (eq. 

3.23) : 

  1 0

2 2

1 0

*
( )

*
p p

b s b k
G s G s

s a s a s


  

 
, (3.25) 

where k  in general represents k , k  or k (calculation of k , k  and k is in eq. 

3.13 ). 
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It can be concluded that coefficients 0b  equals to k and 1b , 0a , 1a  equal to 0. So 

general state space form can be rewritten as: 

0 1

0 0
A

 
  
 

, 
0

B
k

 
  
 

,  1 0C   , (3.26). 

The structure diagram is shown on fig. 3.4, where k  is mentioned in eq. 3.25. 

 
fig. 3.4 Structure diagram of the pitch angle model  

 

For chosen system (eq. (3.25)), desired characteristic equation, from eq. (3.6), can 

be written as: 

   2

1 2 1 2* * 0c s s s         , (3.27), 

and with taking into account that
1,2 3.5357  j*3.5354    (eq. (3.22)), it can be 

stated that: 

  2 7.0714* 25 0c s s s     , (3.28). 

By combining eq. (3.26) with eq. (3.28) and eq. (3.7) it can be declared that: 

  2
0 1 0 1 0 1

7.0714* 25* * 7.0714*
0 0 0 0 0 0

c A A A I
     

          
     

 

1 0 0 0 0 7.0714 25 0
25*

0 1 0 0 0 0 0 25

       
           

       
 

25 7.0714

0 25

 
  
 

, (3.29). 
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Calculate the 2
nd

 element from eq. (3.5). For current system it corresponds to the 

following equation: 

 
1

*B A B


, (3.30) 

 where 
0 1 0

* *
0 0 0

k
A B

k

     
      
     

, so  

 
1

1 0 0
*

0 0

k k
B A B

k k



    
    
   

, (3.31). 

Thus, from eq. (3.29) and (3.31), eq. (3.5) can be rewritten as: 

       
1 0 25 7.0714

0 1 * * * 0 1 * *
0 0 25

c

k
K B A B A

k


    
     

   
 

   
0 25*

0 1 * 25* 7.0714*
25* 7.0714*k

k
k k

k

 
  

 
, or result in short form is: 

   1 2 25* 7.0714*K K K k k  , (3.32). 

Thereby, closed-loop system matrix fA  (eq. (3.4)) can be represented as: 

0 1 1 2

0 1 0 1

25* 7.0714*k
fA

a K a K k

   
           

, (3.33) 

The state-space equations for closed-loop system are: 

( ) * ( ) * ( )

( ) * ( )

fx t A x t B u t

y t C x t

 


, (3.34) 

where 
0 1

25* 7.0714*k
fA

k

 
  

  
, 

0

1
B

 
  
 

,  1 0C  . 

Structure diagram that corresponds to closed-loop system with matrix fA  is shown 

on fig. 3.5.  
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fig. 3.5 Feedback system with desired poles 

 

For implementation of this approach a function ‘AckCont’ in Matlab was written 

(see App. B). 

     By regulators the system keeps its position around zero. However, the attitude 

controllers should follow desired values of pitch, roll and yaw. An output of a 

closed-loop TF corresponds to an input, if a gain of the closed-loop TF equals to 

one. So TF of the system from fig. 3.5 should be found. Represent the system as 

shown on fig. 3.6. 

 
fig. 3.6 Feedback system with desired poles: finding TF 

 

In this case inner TF  1G s can be described as: 

 1

2
2

*
1 *

k
ksG s

k s k k
k

s

 




, (3.35). 

The TF of the regulator  G s  with taking into account eq. (3.35) can be written as: 
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  2

2

2 1
1

2

1
*

*

1 * * *
1 * *

*

k

ks k k s
G s

k s k k s k k
k

s k k s


 

 




, (3.36). 

Based on eq. (3.36) the gain of  G s  can be found as: 

 
1

1
0G

k
 , (3.37). 

 Result of eq. (3.37) means that numerator of  G s  should be multiplied by 1k . The 

final TF of the controller is: 

  1

2

2 1

*

* * *

k k
G s

s k k s k k


 
, (3.38). 

 

3.4.2 Simulation results  

Control of orientation is implemented in Simulink based on eq. (3.13) and eq. 

(2.32) (fig. 3.7). 

Blocks ‘roll_cont’, ‘pitch_cont’ and ‘yaw_cont’ are represented control laws that 

are designed based on eq. (3.32). With taking into account eq. (3.38) controllers for 

roll, pitch and yaw are created in Simulink for incorporation in whole system, 

shown on fig. 3.7. Example for roll control is shown on fig. (3.8). 

 
fig. 3.8 Implementation of attitude controllers as a block for incorporation in whole 

model: Simulink  
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fig. 3.7 Orientation control scheme: Simulink 

  

The system was analyzed with different step signals. Theoutput for unit step signal 

is shown on fig. 3.9 for pitch angle and on fig. 3.10 for yaw angle (step response 

for roll angle is omitted, since it is identical to the results on fig. 3.9). 

 
fig. 3.9 Step response: pitch angle  
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fig. 3.10 Step response: yaw angle  

 

It has clearly seen that controllers provide quality requirements as  0.8sT s  and 

4.32%percOvSh  . Additionally, it should be mentioned that steady state error for 

this model is zero, because TFs of the MM (eq. 3.13) has 2
nd

 order integration 

As soon as designed controllers show required result, they should be implemented 

in a microcontroller and checked through experiments with real quadrocopter. 

 

3.5 Altitude control 

3.5.1 Design of controllers 

     Position control is divided into two parts: height control along Z  axis and 2D 

control in XY plane.  

     Height control is based on 3
rd

 equation from linearized model (eq. 3.15) and can 

be calculated based on Ackerman approach (eq. 3.32), where Tk
k

m
 . 

     For control law in XY plane the algorithm from [23] is chosen. Based on eq. 

(3.15) required acceleration can be calculated as: 
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 

 

2 2

2 2

( ) * ( )* ( )*

( ) * ( )* ( )*

d

X Y

d

X Y

s g s r s sn s r s c

s g s r s c s r s sn

  

  

 

 
, (3.39) 

where g  is gravitational acceleration, d  and ( )d s  are desired values. In case if 

yaw angle equals to zero and constant during whole flight it can be even simplified 

to: 

2

2

( ) * ( )*

( ) * ( )*

d

Y

d

X

s g s r s c

s g s r s c

 

 

 


, (3.40) 

3.5.2 Simulation results 

Control law based on eq. (3.39) is realized in Matlab/Simulink as shown on fig. 

(3.11). 

 

 
fig. 3.11 Altitude Control: Matlab/Simulink  

 

     Controllers ‘X_cont’, ‘Y_cont’, ‘Z_cont’ have the same structures as attitude 

controls (fig. 3.8). Coefficients for ‘Z_cont’ are calculated based on Ackerman 

approach; coefficients for ‘X_cont’, ‘Y_cont’ controllers are adjusted manually. 
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     Hereby, the structure of the whole system is implemented as shown on fig. 

(3.12). 

 
fig. 3.12 Altitude Control: Matlab/Simulink  

Simulation results for 1, 1, 1,
6

d d d dX Y Z


     are shown on fig. (3.13). 

 
fig. 3.13 a   X position 
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fig. 3.13 b   Y position 

 
fig. 3.13 c   Z position 

There are no overshoots along X and Y axes and settling time about 3s. The 

overshoot along Z axis is about 50% and settling time about 2s. These ones can be 

accepted for some application, but in general it should be improved. For example if 

a quadrocopter should record visual information during its movement from one 

desired point to another one, the behavior shown on fig. 3.13 is unacceptable and 

should be improved. On the other hand, if a quadrocopter should make several 

photos in a stable state, this behavior is acceptable since the positioning by itself is 

precise enough. Additionally, a steady state error along Z axis is about 0.14 m. It 

can be eliminated by using integral component in controller for Z axis.  
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Chapter 4 Implementation of the Control System 

     The MM of the quadrocopter, attitude and position control systems were 

developed in previous chapters. To adapt the MM to the real quadrocopter and to 

check controllers, several experiments should be fulfilled. First of all the MM 

should be validated, afterwards control system should be implemented and tested. 

For the MM validation and adjusting attitude control two test benches are used. 

Test bench 1 has 2 DOF and used for validating and adjusting pitch orientation. 

Test bench 2 has 3DOF and used for validating and adjusting yaw orientation. 

Afterwards, position control system is checked in flying version. 

     The control algorithms were implemented as a script in a frame of software 

created inside Aerospace Information Technology Department, Würzburg 

University. This software also was used though experiments for data sending and 

recording. 

4.1. Transfer functions for pitch and roll orientation  

     Transfer function for pitch and roll was obtained in previous chapter. However, 

structure of test bench 1 is different from free motion of the object; Because of this 

fact the TF for pitch and roll should be modified for test bench 1. 

4.1.1 Elements of the system 

     For adjusting pitch controller test bench 1 is used (fig. 4.1). This one consists of 

a cross-frame, four motors with propellers fixed on their shafts, four power bridges 

for motor control, a gyro sensor and a microcontroller. It has 2DOF: pitch (an axis 

of rotation shown as black line) and yaw orientation. 
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fig. 4.1 Test bench 1: 2DOF 

 

The gyro sensor is set close to the center of the symmetry of the quadrocopter. The 

orientation of the x and y axes of gyro sensor are parallel to correspondent axes of 

xy  (fig. 4.1). The pitch angle is limited by construction in the range of 18 18  

degree.  

     Each actuator consists of power bridge BL-Ctrl1.2 [14], BLDC motor KA20-

22L [15], a blade EPP0845  [16]. The power bridge is controlled by the 

microcontroller AT32UC3A0512-0ESAL fixed on evaluation board EVK1100 

[17]. Relation between pitch angle and force and torque from a blade is shown on 

fig. 4.2. An integer number in a range 0 255  should be send by the 

microcontroller though I2C to the power bridge. The power bridge produces 

control signals to rotate motor shaft with angular velocity which is proportional to 

integer value , where 0 corresponds to stop and 255 to rotation with maximal 

velocity. The blade which is fixed on the motor’s shaft begins to rotate and produce 

thrust force and hub torque. 
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fig. 4.2 Structure diagram of actuator and feedback: test bench 1 

 

     The forces from propellers move quadrocopter around axes of rotation and 

change pitch angle. The angular velocity around pitch angle is measured by gyro 

IMU3000 [18] in deg/sec .Integration of this value gives changing of pitch angle in

deg . Error between desired and current values of pitch angle should be changed 

according to the design law. This output is transferred through the power bridges, 

motors and blades to produce forces and torques. This motion corresponds to 2
nd

 

equation from eq. (3.13), but since the axis of rotation is not in the center of 

symmetry of the quadrocopter additional force occurs. Thereby, 2
nd

 equation from 

eq. (3.13) should be modified for applying to test bench 1.   

4.1.2 Linear model for pitch angle on test bench 1 

     Consider forces acting on the quadrocopter: thrust force from motor 1, thrust 

force from motor 3 and gravitational force (fig. 4.3). 

 
fig. 4.3 Forces applied to the quadrocopter: test bench 1 
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2
nd

 equation from eq. (3.10) can be rewritten as: 

 3 1 * * * *sin

b

b b

y

y y

T T r m g b

J




  
 , (4.1) 

where 3T   and 1T   are projections of thrust forces 3T  and 1T  on perpendiculars to 

radius vector r ; r  is a shortest distance between a point, where a force 3T  or 1T  

applied, and axis of rotation; *sinb   is the displacement vector for gravitational 

force . These projections can be calculated as:      

1 1

3 3

*cos

*cos

T T

T T












, (4.2) 

where   is a constant angle between vector of force 3T / 1T  and 3T  / 1T  . This 

angle and radius vector r  can be calculated as: 

2 2

arctan
b

l

r b l

 

 

, (4.3) 

where b  is a shortest distance from the center of the quadrocopter’s symmetry to 

axis of rotation, l  is a shortest distance from force  3T / 1T   to the center of the 

quadrocopter’s symmetry. 

     Forces  3T  and 1T  can be calculated by 1
st
 equation from eq. (3.12) in rewritten 

form: 

1 1

3 3

*

*

T

T

T u k

T u k




, (4.4) 

where 1u  and 3u  are values in the range 0 255 . 

     After combining eq. (4.1), (4.2), (4.3), (4.4), the relation between 1u , 3u  and 
by

can be written as: 
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  2 2

3 1 * * *cos arctan * * *sin

b

b b

T

y

y y

b
u u k b l m g b

l

J





 
   

   , (4.5) 

or in a form of TF as: 

 2

3 1( ) * ( ) ( ) *sinmgs s k u s u s k    , (4.6) 

where 

2 2* *cos arctan

b b

T

y y

b
k b l

l
k

J


 
  

  , 
* *

b b

mg

y y

m g b
k

J
 , 3 1( ) ( )u s u s  is input and 

( )s  is output. 

Hereby, the TF of pitch angle for test bench 1 can be stated as: 

   3 12 2

1
* ( ) ( ) *sin ( )mg

k
s u s u s k s

s s

    , (4.7) 

     This TF is nonlinear continuous one and for linearization, element sin  should 

be substituted by a linear element. With taking into account that fixed construction 

has pitch angle range approximately 18 18    degree, this element can be 

substituted by   in radians [10].   So TF from eq. (3.13) can be rewritten as: 

2

3 1

( )
( )

( ) ( )
pitch

mg

s k
G s

u s u s s k


 

 
, (4.8). 

The TF based on eq. (4.8) is created in Simulink and shown on fig. 4.4. 

 
fig. 4.4 Open-loop TF of pitch orientation: test bench 1 
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4.1.3 Coefficients calculation and verification 

Coefficients calculation 

     To calculate coefficients , mgk k  the length and weight of the quadrocopter should 

be measured. Initial data for calculation are: 

2
0.11 , 0.205 , 0.49 , 9.8

m
b m l m m kg g

s
    . 

Moment of inertia component 
b by yJ  according to eq. (2.19) and parallel axis 

theorem can be calculated as: 

2
2 22* *

2* * * 0.0151
5b by y M

M R
J l m m b    , (4.9) 

where R  is chosen equal to l . 

Coefficients 
mgk  and k  based on eq.(4.6) are: 

2 2* *cos arctan

0.4487

b b

T

y y

b
k b l

l
k

J


 
  

   , (4.10) 

* *
34.9258

b b

mg

y y

m g b
k

J
   

where 0.0331Tk   coefficient for the motor taken from here [19].  

So based on theoretical model 
2

1
34.9258mgk

s
  and

2

1
0.4487k

s
 . 

Coefficients verification  

     Feedback coefficients for designed controller fit the MM. The more precise the 

MM is, the more real behavior of the quadrocopter with designed controller 

coefficients relates to simulation results. It has been done several simplifications 

during creation MM and verification coefficients k  and mgk through experiment 

can improve MM. The verification procedure includes two types of experiments.  
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Verification of coefficient
mgk  

     First coefficient mgk was verified. This one corresponds to movements in 

gravitational field without influence from blade’s forces. The quadrocopter fixed in 

test bench 1 is inclined four times to random angular position and released to fall 

till the limited angle. Changes in angular position were recorded and as graph 

represented on fig. 4.5. 

 
fig. 4.5 Changes in angular position during quadrocopter’s free falling: test bench 1  

 

     Four initial angles are taken from these records and used as initial positions for 

the MM from fig. 4.4. The same trajectories based on MM with 
2

1
34.9258mgk

s
   

are shown on fig. 4.6 (colorful trajectories indicate experiment data and black ones 

simulation). Comparing the sets of trajectories shows that current value of     

does not describe the behavior of the quadrocopter adequate.  It can be seen that 

model is too fast, so it means that the calculated inertia momentum is less than real. 
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fig. 4.6 Experimental and theoretical trajectories: 
2

1
34.9258mgk

s
  

 

     To make the model adequate    was decreased until the longest trajectories 

from both sets became as close as possible to each other’s (fig. 4.7). 

 

fig. 4.7 Experiment and theoretical trajectories: 
2

1
22.3006mgk

s
   
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The new 
mgk   is renewed as

2

1
22.3006mgk

s
 . For making theoretical result close to 

real one, the new value 1.72*R l  is chosen. 

 

Verification of coefficient k  

     The idea of verification is to find equilibrium conditions between torques from 

motor 1 and from gravitation force for various angles. Values of angular position 

and for motor control were recorded (see table 4.1).  

Table 4.1 

angle, rad 0.3491 0.3316 0.2897 0.2548 0.2217 0.1658 0.1117 

value 65 60 50 40 30 20 10 

 

Based on the eq. (4.7), with taking into account that angular acceleration 2 0s   , 

the coefficient   is calculated. It is value in the range0.1198 0.2491. The average 

value 0.1844k  is chosen.  

The script ‘DOF2_ver.m’ (see App. B) was written and used for processing and 

representation experiment data, for simulation TF from fig. 4.4. 

     After analyses and validation the MM of pitch angle (test bench1) was specified. 

The mathematical model is represented in a form of linear continuous time 

invariant transfer function (eq. 4.8) and can be used for controllers design. 

 

4.2 Control design for pitch and roll orientation 

     By comparing TF of 2
nd

 order function and TF of pitch orientation quadrocopter 

(eq. 4.8) coefficients for state space model are calculated as : 

  1 0

2 2

1 0

*
( )

*
pitch

mg

b s b k
G s G s

s a s a s k


  

  
, (4.11). 

It can be concluded that 0b equals to k , 
0a equals to mgk  , 1b  and 1a equal to zero. 
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Using the same logic as in section 3.4 and eq. (3.24 -3.29) feedback coefficients 

can be obtained as (details see in App. A ):  

 1 2 25* 7.0714*kmgK K K k k     , (4.12). 

Thereby, closed-loop system matrix 
fA  (eq. (3.4)) can be represented as: 

0 1 1 2

0 10 1 0 1

25* 7.0714*k 25* 7.0714*k
f

mg mg

A
k k ka K a K k

    
                 

, (4.13) 

The state-space equations for closed-loop system are: 

( ) * ( ) * ( )

( ) * ( )

fx t A x t B u t

y t C x t

 


, (4.14) 

where 
0 1

25 7.0714
fA

 
  

  
, 

0

1
B

 
  
 

,  1 0C  . 

Structure diagram that corresponds to closed-loop system with matrix fA  is shown 

on fig. 4.8.  

 
fig. 4.8 Feedback system with desired poles  
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     Based on idea and equations mentioned above the script in Control System 

Toolbox (CST) was written (see App. B ‘AckContSim.m’). The response of the 

closed-loop with desired poles and initial conditions  1 0  (means initial position 

is 1 radian and initial velocity is zero) is shown on fig. 4.9. It is clearly seen that for 

the model the overshooting is minimal (less than 4.32%), settling time is about 0.8 

seconds, steady-state error equals to zero. 

 
fig. 4.9 Response for initial conditions 

 

4.2.1 Implementation of the regulator 

     Control law corresponds to closed-loop TF (fig. 4.8) and, with taking into 

account that the gyroscope generates data in degrees, this law can be represented 

as: 

 1 2

1 1
( ) ( ) * * * ( ) *( )* * ( )dt t K DtR t K DtR t

k k
        , (4.15) 

where 3 1( ) ( ) ( )d t u t u t    and 
180

DtR


 .  
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In form applied to motor’s values it can be rewritten as:  

1 1 2

3 1 2

1 1
( ) ( ) *( )* * ( ) *( )* * ( )

1 1
( ) ( ) *( )* * ( ) *( )* * ( )

u t t K DtR t K DtR t
k k

u t t K DtR t K DtR t
k k





  

  

    

 
       

 

, (4.16). 

     Additionally, initial values of 3( )u t  and 1( )u t  should not be 0, because of two 

reasons. First reason is a simplification of the model for which this controller was 

designed. Time delays in changing velocities of quadrocopter’s blades were 

neglected. The most important delay is during increasing the blade angular velocity 

from zero to some value. So the blades should always have some non-zero 

velocities. Moreover, there is some value of speed that provides hovering of the 

quadrocopter and all changes in control should be around this value. With taking 

into account these facts eq. (4.16) should be rewritten as: 

1 min

3 min

( ) ( )

( ) ( )

hov

hov

u t u u t

u t u u t









  

  
, (4.17), 

where ( )t  is defined by eq. (4.16),  minu  is a minimal angular velocity of the 

blades, hovu  is an angular velocity for hovering. 

     The designed control law (eq. (4.17)) is incorporated in the software. Fulfilled 

experiments consist of two simple steps: 

 change the quadrocopter pitch angle from 0 by some external force  

 record system response 

 

Results are shown on fig. 4.10, the data are recorded with discretization of 100 Hz. 
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fig. 4.10 Responses of regulator on changing of initial conditions  

 

The system should return its pitch to zero. It is inclined four times and returns to 

initial zero. For settling time estimation an area from fig. 4.10 is zoomed (fig. 

4.11). 

   

 
fig. 4.11 Response signal (zoomed part from fig. 4.10)  

    

     It can be seen that the settling time is about 0.6 second and a static error about 

0.3 degree. Settling time in experiment is close to settling time from model. There 

is no static error in the model, since the model does not take into account all facts, 
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e.g. some friction in test bench joint that can be the source of this error. This error 

can be compensate by an integral component. 

      

4.2.2 Implementation of the controller 

     To provide control for general input, the gain of the TF should be set to one. TF 

of the system from fig. 4.8 is: 

 

_ 2

2 1

( )
* ( * )

pitch f

mg

k
G s

s k s k k k


  
, (4.18), 

and it’s gain is: 

 

_

1

(0)
*

pitch f

mg

k
G

k k k



, (4.19). 

So a coefficient, which is inversed to _ (0)pitch fG , should be set between the 

reference signal that represents desired pitch angle and input of feedback TF. As 

soon as a desiredt angle is in degree and the model in radian, transfer coefficients: 

180


  between reference signal and input signal and 

180


 between output signal and 

results should be added (fig. 4.12). 

 
fig. 4.12 Pitch angle: control system for non-zero input 

 

It means that for experiment the control law is: 

1
1 2

1 1
( ) ( )* * * *( )* ( ) *( )* ( )d

m

K
t t DtR DtR K t K t

k k k
   

   
       

   
, (4.20). 
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After corresponding changes in microcontroller one more experiment was fulfilled. 

Response function is shown on fig. 4.13. 

 
fig. 4.13 Pitch angle: control system for non-zero input 

 

Quality parameters are summarized in table 4.2. 

Table 4.2 

input signals, deg output signal, deg settling time, sec overshooting, deg 

0 0.12 -- 0.3 

2 2.31 0.6 0.4 

-2 -2.21 0.6 0.4 

5 5.9  0.65 0.4 

-5 -5.6 0.65 0.4 

 

Quality parameters are inside required range, so pitch and roll attitude control is 

designed. 

 

     Results of experiments show that system works with required quality 

(overshooting and settling time) for both cases: zero input and non-zero input. 

Static error for both cases is inside 0.5 degree. With taking into account many 

approximations, this error is relatively small. To reduce steady state error 

integration should be used. 
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Roll controller by using the same logic can be stated as the following equations: 

2 min

4 min

( ) ( )

( ) ( )

hov

hov

u t u u t

u t u u t









  

  
, (4.18), 

where 
1 2

1 1
( ) *( )* * ( ) *( )* * ( )t K DtR t K DtR t

k k
      .  

Results of roll controller are identical to results of pitch controller. 

 

4.3 Controller for yaw orientation 

     Controller for yaw orientation is checked on test bench 2, which has 3DOF. Test 

bench 2 has a structure  close to test bench 1, but fix point of test bench 2 is close to 

CoM of the quadrocopter. 

     The TF of yaw rotation based on 3
rd

 line from eq. (3.13) can be stated as an 

equation: 

  2

1 3 2 4

( )

( ) ( ) ( ) ( )

ks

u s u s u s u s s




  
, (4.21) 

where 

b b

H

z z

k
k

J
  . 

Component 0.0226
b bz zJ   is calculated by eq. (2.19). Coefficient k  is measured 

by an experiment. Inputs 1( )u s   and 3( )u s  were set to value of hover and yaw 

rotation was recorded (fig. 4.14).  

In the range 10 12sec released and stop manually. Angular velocity is about

1.084 /secrad . Coefficient Hk  was adjusted until angular rate of yaw in the model 

(file ‘’) became 1.084 /secrad ; new 30.5*10Hk   and 0.0211k  . 

     Controller for yaw orientation is calculated based on eq. (3.23) where k k . 

Settling time is chosen equal to 3.5sec  instead of 0.8sec .It is done to make 

feedback coefficients lower.  
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fig. 4.14 Yaw rotation open-loop: test bench 2 

 

     Implementation of yaw controller can be described as the following equations: 

1 min

2 min

3 min

4 min

( ) ( )

( ) ( )

( ) ( )

( ) ( )

hov

hov

hov

hov

u t u u t

u t u u t

u t u u t

u t u u t

















  

  

  

  

, (4.22), 

where 1 2

1 1
( ) *( )* * ( ) *( )* * ( )t K DtR t K DtR t

k k
      .  

     Experiments showed that when all three controllers for attitude control have 

high coefficients the system has very thin linear zone, which leads to big 

oscillations.  Results are shown on fig. 4.15. It can be seen that’s settling time is 

about 3.5sec  and precision from 1 to 2 degree.       
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fig. 4.15 Yaw rotation closed-loop: test bench 2 

 

Thereby attitude control can be described by following equations: 

1 min

2 min

3 min

4 min

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

hov

hov

hov

hov

u t u u t t

u t u u t t

u t u u t t

u t u u t t

 

 

 

 

 

 

 

 

   

   

   

   

, (4.23). 

Results of attitude controller are received by test bench 2 and shown on fig. 4.16. 

The quadrocopter was inclined several times and one returned to original positions. 

Moments of inclination are marked as: roll1, roll2, pitch1, pitch2, yaw1, yaw2.  
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fig. 4.16 Attitude Controller: test bench 2 

 

Dynamics of the system corresponds to required quality. However original 

positions are changed during the time from 0 to 5 degree. This disadvantage can be 

eliminated by using integral component and by separating in time pitch-roll and 

yaw controllers.  

4.4 The Altitude Control System  

     The altitude control system consists of the controller for quadrocopter’s hover 

and position controllers (see section 3.5.1).  

     Implementation of the hover controller can be described as the following 

equations: 

1 min

2 min

3 min

4 min

( ) ( )

( ) ( )

( ) ( )

( ) ( )

hov z

hov z

hov z

hov z

u t u u t

u t u u t

u t u u t

u t u u t









  

  

  

  

, (4.23), 

where 1 2

1 1
( ) *( )* ( ) *( )* ( )z t K z t K z t

k k
      and Tk

k
m

 .  
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Result of experiment with a flying prototype for the hover control is shown on     

fig. 4.17, where a green line is desired height and a red line is a current height. 

 
fig. 4.17 The hover Controller with calculated coefficients: flying mode 

 

In the case when coefficients of the hover controller are calculated perfectly, the 

behavior of current height (red line) should correspond to the modeling result    

(fig. 3.13c). However it does not since proportional coefficient (
1K ) is low and 

velocity/derivative coefficient (
2K ) is extremely low. After slightly increasing of 

1K  and big increasing of 
2K  (about ten times) the new experiment was conducted 

(fig. 4.18). The behavior of the system is better, but still is not acceptable. For 

better results the 2K  was increased (in total about 30 times comparing to original

2K ) and an integral component for elimination steady state error was added. 

Appropriate result is shown on fig. 4.19. 
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fig. 4.18 The hover Controller with 

2 10K  : flying mode 

 

 
fig. 4.19 The hover Controller with 

2 35K  : flying mode 
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     Implementation of position controller corresponds to eq. (3.40). The behavior of 

the quadrocopter in the flying mode with coefficients used in the simulation is 

shown on fig. 4.20, where green line corresponds to the desired height and other 

ones to changing along X  and Y .  

 
fig. 4.20 Position Controller with calculated coefficients: flying mode 

 

It can be clearly seen that the system is unstable and simulation results (fig. 3.13a 

and fig. 3.13b) do not match to experimental ones. New coefficients for position 

controllers were found though adjusting, results are shown on fig. 4.21, where 

green line is desired position along Y  axis and red line is current position of the 

quadrocopter along Y  axis. Also it should be mentioned that new 
1K  is ten times 

less than 
1K  from simulation and new

2K is thirty times more than original
2K . 

Position error of the system is inside 10 centimeters.  

     Thereby, it can be concluded that results of the simulation are different from 

results from real experiment. For the hover controller 
1K  from the simulation is 

close to real one, but 2K  should be increased in thirty times. For the position 

control, both coefficients obtained from the simulation should be changed, 
1K  

should be decreased in ten times and 
2K  should be increased in thirty times.  
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fig. 4.21 Position Controller with adjusted coefficients: flying mode 
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5 Conclusion and Recommendations 

5.1 Conclusion 

     In this work all stages of a control system development were done. Starting from 

the analysis of the quadrocopter as a flying object, the mathematical model was 

created and modified for using in design purposes. After choosing an appropriate 

design method, the 6DOF control system for the quadrocopter was developed and 

implemented for using on the real quadrocopter. Experiments for estimation 

theoretical results were fulfilled. 

     Process of calculation coefficients for the 6DOF control system is organized as 

one script in Matlab. The input parameters are the mass of the quadrocopter, the 

dimensions of the quadrocopter and the gains of the actuators. Based on these 

inputs coefficients for all 6 controllers (pitch one, roll one, yaw one, hover one and 

two for the position) are calculated. 

     The validating procedures for the attitude part of the mathematical model are 

shown in sections 4.1.3 and 4.3. These procedures are necessary part of the 

modeling, since they helped to improve the coefficients of the model. Based on the 

experimental results the parameter R  (eq.2.19) for calculation MoI was improved 

(p. 63). However, the equations for roll and pitch from the mathematical model   

(1
st
 one and 2

nd
 one from 3.13) cannot be used directly for applying to test 

bench1and should be modified as it was described in section 4.1.2. The attitude 

controller, designed based on the improved model, shows in simulation the 

behavior close to required one. The same controller after implementation shows 

experimental results closed to the simulation ones.  

     The control system for hover and position control obtained from simulation 

shows not adequate results. Only the proportional coefficient for hover control is 

close to the real one. The proportional coefficient for position control is ten times 

more that real one and all derivative coefficients for altitude control are about thirty 

times less than real ones. 

     Chosen structure for all controllers in general corresponds to PD control. 

According to the theory all systems that are 1
st
 order and higher (they have pure 

integration component in their TFs) have no steady state error [11]. However in 

reality the quadrocopter has steady state error in the attitude (e.g. fig. 4.16) and the 
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attitude (fig. 4.21), it means that international components should be added to all 

controllers. 

5.2 Recommendations for a future work 

     Several improvements for the mathematical model and the control system can 

be done.  

     First of all, a time delay of the actuator (BLDC and the blade) should be taken 

into account (eq. 3.11). In this work settling time for the system is about 0.8 

seconds and in general typical time for a mechanical constant is about 0.3 seconds. 

If e.g. a required settling time should be less than 0.3 seconds, a model without 

mentioned time delay cannot show adequate behavior of the system. Moreover, 

because of the blade the time delay is different during increasing and decreasing 

angular velocity of the blade. This factor also should be taken into account.  

     Another important improvement is about the model by itself. In the work it is 

continuous one, but it should be transferred to discrete one. The discrete model 

helps to estimate influence of time delays of the sensors and microcontrollers.  

     Additionally, the structure of chosen controllers should be changed and 

supplemented by integral components. In case of making first mentioned 

improvement, the structure of the controllers should be expanding to three 

coefficients. Also, a third order polynomial for desired poles should be chosen. 

     One more improvement can be done with the control system. In current work it 

is a real time one, but with fixed coefficients. A more profound control system can 

calculate/recalculate coefficients depend on the current quadrocopter behavior. 

Also another control algorithm such as e.g. back stepping algorithm or LQR can be 

used. 
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Appendix A Calculations 

 1. Calculation feedback coefficients for pitch orientation: test bench 1 

State-space form from eq. (4.10) looks like: 

0 1

0mg

A
k

 
  
 

, 
0

B
k

 
  
 

,  1 0C  , (a.1) 

Characteristic equation can be obtained by combining eq. (a.1) with eq. (3.18) and 

eq. (3.7) as: 

  2
0 1 0 1 0 1
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0 0 0c

mg mg mg

A A A I
k k k


     
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7.0714* 25

mg

mg mg

k

k k

 
  
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, (a.2). 

The 2
nd

 element from eq. (3.5) can be calculated as: 

 
1

*B A B


,(a.3) 

 where 
0 1 0

* *
0 0mg

k
A B

k k

     
      
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, so  
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, (a.4). 

Thus, from eq. (a.2) and (a.4), eq. (3.5) can be rewritten as: 
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 
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, or result 

in short form is: 
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, (a.5). 
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Appendix B. Scripts 

List of the files. 

 Name Description 

 JforQuad Function for calculation ToI (eq. 2.19) 

 

01 fullMM.mdl Implementation of the MM (fig. 2.16). 

01 fullMM_Int.m Initial conditions for simulation the MM 

 

02 

 

linMM.mdl 

 

Implementation of the MM after linearization 

(eq. 3.13 and 3.39) 

02 linMM_Int.m Initial conditions for simulation linearized MM 

  

Dpoles.m 

 

Function for calculation desired poles of 2
nd

 

order system, based on settling time and 

damping ration coefficients 

 AckCont.m Function for calculation feedback coefficients of 

2
nd

 order system, based on TF in state-space. 

 

03 

 

Att.mdl 

 

Implementation of attitude control for linearized 

MM 

03 Att_Int.m Initial conditions for attitude control 

 

04 

 

Pos.mdl 

 

Implementation of position control 

04 Pos_Int.m Initial conditions for position control 

  

DOF2_Ver.m 

 

Script for verification coefficients k  and kmgk  

 UnresMotRad.mdl 

 

Simulink model for test bench 1 pitch angle 

 2013_04_24_processed.xlsx 

 

file with data from experiment 

 

Functions of blocks incorporated in the mathematical model in Simulink: file 

‘fullMM.mdl’. 

function for finding angular acceleration of the quadrocopter (eq. 2.17) 
function [dtOmx, dtOmy, dtOmz]  = EulerRot(taux, tauy,tauz, Omx, Omy, Omz, J) 
%#codegen 
Jx = J(1,1); Jy = J(2,2); Jz = J(3,3); 
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dtOmx = (taux-(Jz-Jy)*Omy*Omz)/Jx; 
dtOmy = (tauy-(Jx-Jz)*Omx*Omz)/Jy; 
dtOmz = (tauz-(Jy-Jx)*Omx*Omy)/Jz; 

 

function 2 changing in orientation angles based on angular velocity (eq. 2.18)  
function [dphi1, dtheta1, dpsi1] = OrientAngles(omx, omy,omz,phi, theta, psi ) 
%#codegen 

  
dphi1   = [1 sin(phi)*tan(theta) cos(phi)*tan(theta)]*[omx omy omz]' 
dtheta1 = [0 cos(phi)            -sin(phi)          ]*[omx omy omz]' 
dpsi1   = [0 sin(phi)/cos(theta) cos(phi)/cos(theta)]*[omx omy omz]' 

 
 

function 3  TF for blades (example for 2
nd

 blade eq. 2.24, 2.25)  
 

function [T2,H2] = TandH2(u,b) 
%#codegen 

  
T2 = b(1)*u; 
H2 = b(2)*u; 
 

function 4 transfer thrust force from b b bx y z  to  xyz  ( eq. 2.31) 
function [Tx,Ty,Tz] = TransTtoXYZ(Tb, phi,theta,psi ) 
%#codegen 

  
Tx   = (sin(theta)*cos(psi) + sin(phi)*cos(theta)*sin(psi))*Tb; 
Ty   = (sin(theta)*sin(psi) - sin(phi)*cos(theta)*cos(psi))*Tb; 
Tz   = cos(phi)*cos(theta)*Tb; 

 

  

 

function 2.1 Dpoles 

calculation desired poles for 2nd order system, based on required settling time and 

overshoot 
% function for calculation desired poles for 2nd order system 
% - inputs: settling time, sec; overshooting, in %;   
%   
% - outputs: two poles 
% 09.07.2013 Alex 

  
function [ poles ] = Dpoles1( SetTime , OverSh) 
% set input arguments 
 if ~exist ('SetTime','var'),    SetTime = 0.8;  end 
 if ~exist ('OverSh','var'),     OverSh  = 4.32; end  

  
 % transfer overshooting from % to real value 
 overshD=OverSh/100; % overshooting in % 

  
 % calculate parameters for 2nd order TF 
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  % damping ratio 
    zeta=abs(log(overshD)*1/pi*sqrt(1/((log(overshD)/pi)^2+1))); 
  % natural frequency   
    wn=4/(SetTime*zeta); 

     
 % calculate desired poles 
  RealPart=-zeta*wn; ImPart=wn*sqrt(1-zeta^2); 
  poles = [RealPart+ImPart*1i RealPart-ImPart*1i]; % desired poles  

 

function 2.2 AckContSim 

calculation feedback coefficients for 2
nd

 order system based on Ackerman equation  
% function for calculation feedback coefficients for 2nd order system 
% - inputs: Ts, a0, b0, a1, b1   
%   
% - outputs: vector K with two coefficients k1 and k2 
% 09.08.2013 Alex 

  
function [ K ] = AckContSim( Ts, b0, a0, a1 ) 
% set input arguments 
 if ~exist ('Ts','var'),    Ts = 0.8; end  
 if ~exist ('b0','var'),    b0 = 1; end  
 if ~exist ('a0','var'),    a0 = 0; end 
 if ~exist ('a1','var'),    a1 = 0; end 

  
%*********** 
% state -space form 
% ************* 
  A=[0 1; a0 a1]; 
  B=[0; b0]; 
  C=[1 0]; 
  D=[0]; 

  
% find desired poles  
 Dp = Dpoles(Ts);  
% find feedback coefficients 
 K=acker(A,B,Dp) 

  
% simulation 
 SysF = ss((A-B*K), B,C, D); 
figure(1) 
initial(SysF, [1;0]) 
grid on 
hold on  

 
 

 

 

Script 3.1 ‘DOF2_ver.m’  
% 2013-08-05 
% Task 
 % unrestricted motion 
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 % The quadro was inclined and released. The data during the falling 

(unrestricted motion) 
 % were recorded. Records are saved in file 2013_04_24_processed.xlsx. 

  
% Description 
 % Code of this file  
 % - step 1 processes data and plots data from file 

2013_04_24_processed.xlsx 
 % - step 2 calculates unrestricted motion based on model 
 % - step 3 find optimal coefficient kmg for the model 

  
clear all 
close all 
% STEP 1   
% put data from file in variable 'data' 
 test_data = importdata('2013_04_24_processed.xlsx'); 
 data=test_data.data.Tabelle1 
% transfer degree in radian 
dTr=pi/180; 

  
% data from test 1 
 % create time and angle vectors 
 t0=data(1,1); 
 time1=zeros(6,1); 
 for i=1:6 
  time1(i,1)=data(i,1)-t0; 
 end 
 vector_angularPosition1=data(1:6,2)*dTr; 

  
 % plot time and angle vectors  
 figure(1) 
 p1=plot(time1,vector_angularPosition1,'-*') 
   ylabel('AngularPosition,rad') 
   xlabel('time, s') 
   grid on 
 set(p1,'Color','red','LineWidth',1)    

    
% test 2 
 % create time and angle vectors 
 t0=data(1,4); 
 time2=zeros(5,1); 
 for i=1:5 
  time2(i,1)=data(i,4)-t0; 
 end 
 vector_angularPosition2=data(1:5,5)*dTr; 

  
 % plot time and angle vectors  
 hold on 
 p2=plot(time2,vector_angularPosition2,'-*') 
 set(p2,'Color','green','LineWidth',1) 

  

  
% test 3 
 % create time and angle vectors 
 t0=data(1,7); 
 time3=zeros(4,1); 
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 for i=1:4 
  time3(i,1)=data(i,7)-t0; 
 end 
 vector_angularPosition3=data(1:4,8)*dTr; 

  
 % plot time and angle vectors  
 hold on 
 p3=plot(time3,vector_angularPosition3,'-*') 
 set(p3,'Color','blue','LineWidth',1) 

  
% test 4 
 % create time and angle vectors 
 t0=data(1,10); 
 time4=zeros(2,1); 
 for i=1:2 
  time4(i,1)=data(i,10)-t0; 
 end 
 vector_angularPosition4=data(1:2,11)*dTr; 

  
 % plot time and angle vectors 
 hold on 
 p4=plot(time4,vector_angularPosition4,'-*') 
 set(p4,'Color','yellow','LineWidth',2) 

  
% STEP 2 
% intial conditions for kmg calculation 
 m=730*10^-3     ; % kg 
 mM = 57*10^-3; % mass of one motor  
 l = 21*10^-2; % m 
 J = JforQuad(m, mM, l, l); 
 Jy = J(1,1); % 0.0139 
 b= 0.11; % m 
  g=9.8; 
 Jtb1=Jy+m*(b)^2; % 0.0227 
 kmg=m*g*b/Jtb1; % 34.64 

  
amountOfTests=4; % how many times experiments were made 
%prepare initial condition for each experiment 
phiInitial=zeros(amountOfTests,1); 
 phiInitial(1,1)=vector_angularPosition1(1,1);  
 phiInitial(2,1)=vector_angularPosition2(1,1); 
 phiInitial(3,1)=vector_angularPosition3(1,1); 
 phiInitial(4,1)=vector_angularPosition4(1,1); 
% for comparing data simulation time = 0.5 seconds is enough 
 Ts = 0.01;  
 n=50;  
 integrator= 'ode45';  
 sim_model = 'UnresMotRad'; 

   
 % input and output signals 
 y_data      = zeros(n,amountOfTests); 
 t_data      = zeros(n,amountOfTests); 

  

  
 % Simulation 
  for jj=1:amountOfTests 
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   phi= phiInitial(jj,1)    
   simoptions = simset('Solver',integrator,'MaxRows',0);  
   eval(['[sizes,x0] = ' sim_model '([],[],[],0);']);   
   ref_old   = 0;      
   t      = -Ts; 
  for i=1:n, 
   t = t + Ts; 
  %simulation 
   utmp=[t-Ts,ref_old;t,ref_old]; 
   simoptions.InitialState=x0; 
   [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
   x0 = x0(size(x0,1),:)'; 
   y  = y(size(y,1),:)'; 
  % save output and time value for current step 
   y_data(i,jj)       = y; 
   t_data(i,jj)       = t; 
  end 
  figure(1); 
  axis([0 0.6 0 0.4]) 
  hold on 
  title({'Simulation with theoretical kmg=34.64','Colorful lines are data 

from experiment, Black ones from simulation'}) ; 
  h=plot(t_data(:,jj)',y_data(:,jj)'); 
  set(h,'LineWidth',1,{'Color'},{'black'}); 
  xlabel('time, s'); ylabel('AngularPosition,radian'); 
  grid on 
 end  

  

  

  
 % STEP 3 optimization kmg 
 % as soon as model with kmg=33.5455, calcualted based on theory, 
 % shows the behaviour of the system not precise, the new value of kmg 
 % should be found. 
 % after several attepts it was found that optimal value is around 
 kmg=22.3006; 

  
 % to pove this 
 % plot experiment data in new figure (for example fig.2 ) 
 figure(2) 
 p1=plot(time1,vector_angularPosition1,'-*') 
  title({'Simulation with optimal kmg=22.3006','Colorful lines are data 

from experiment, Black ones from simulation'}) ; 
   ylabel('AngularPosition,rad') 
   xlabel('time, s') 
   grid on 
 set(p1,'Color','red','LineWidth',1)    
 hold on 
 p2=plot(time2,vector_angularPosition2,'-*') 
 set(p2,'Color','green','LineWidth',1) 
 hold on 
 p3=plot(time3,vector_angularPosition3,'-*') 
 set(p3,'Color','blue','LineWidth',1) 
 hold on 
 p4=plot(time4,vector_angularPosition4,'-*') 
 set(p4,'Color','yellow','LineWidth',2)   
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% simulate the system with new kmg=22.3006 

  
% for comparing data simulation time = 0.5 seconds is enough 
Ts = 0.01;  
n=50;  
integrator= 'ode45';  
sim_model = 'UnresMotRad'; 

   
% input and output signals 
y_data      = zeros(n,amountOfTests); 
t_data      = zeros(n,amountOfTests); 

  

  
%************** 
% Simulation 
for jj=1:amountOfTests 
 phi= phiInitial(jj,1)    
 simoptions = simset('Solver',integrator,'MaxRows',0);  
 eval(['[sizes,x0] = ' sim_model '([],[],[],0);']);   
 ref_old   = 0;      
 t      = -Ts; 

  
 for i=1:n, 
  t = t + Ts; 

    
 %simulation 
  utmp=[t-Ts,ref_old;t,ref_old]; 
  simoptions.InitialState=x0; 
  [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
  x0 = x0(size(x0,1),:)'; 
  y  = y(size(y,1),:)'; 

  
 % save output and time value for current step 
  y_data(i,jj)       = y; 
  t_data(i,jj)       = t; 

  
 end 
 figure(2); 
 hold on 
 axis([0 0.6 0 0.4]) 
 h=plot(t_data(:,jj)',y_data(:,jj)'); 
 set(h,'LineWidth',1,{'Color'},{'black'}); 
 xlabel('time, s'); ylabel('AngularPosition,radian'); 
 grid on 
end  

  

  

  

 

  

 

 

 


