
Julius Maximilian University of Würzburg

Faculty of Mathematics and Computer Science

Aerospace Information Technology

Chair of Computer Science VIII Prof. Dr. Sergio Montenegro

Lulea University of Technology

Department of Computer Science, Electrical and Space Engineering

Space Technology

Chair of Space Technology Division Dr. Victoria Barabash

Master Thesis

Design and Implementation of a 6DOF Control System

for an Autonomous Quadrocopter

by

Alexander Lebedev

Examiner: Prof. Dr. Sergio Montenegro

Examiner: Dr. Anita Enmark

Supervisor: Dipl.-Ing. Nils Gageik

Würzburg, 07. 09. 2013

1

Declaration

I, Alexander Lebedev, hereby declare that this thesis is my own work and that, to

the best of my knowledge and belief, it contains no material previously published

or written by another author nor material which to a substantial extent has been

accepted for the award of any other degree or diploma of a university or other

institute of a higher education, except where due acknowledgment has been made

in the text.

Würzburg, 07.09.2013 Alexander Lebedev

2

Abstract

 This thesis is dedicated to design and implementation of a 6DOF control system

for a quadrocopter. At the beginning of the work the quadrocopter was analyzed as

a plant and physical effects with behavior of continuous /discrete elements were

described. Based on the mathematical equations, continuous time invariant

nonlinear mathematical model was designed. This mathematical model was

linearized to create a 6DOF control system and validated thought experiments by

test benches and a flying prototype of the quadrocopter. For the control system

design a pole-placement approach was chosen and based on the linear validated

model, with taking into account requirements to a settling time, an overshoot and a

steady-state error, the control system was designed. Its behavior was checked in

simulation and showed adequate results. Afterwards designed control system was

implemented as a script and incorporated in a soft, developed inside ‘Aerospace

Information Technology’ Department, University of Würzburg. Then series of

experiments by test benches and the flying prototype were fulfilled. Based on

comparing experimental and theoretical results a conclusion was made. At the end

of the work advantages and drawbacks of the control system were discussed and

suggestions for future work were declared.

3

Acknowledgment

First, I would like to express my sincerely gratitude to Prof. Dr. Montenegro, Dipl.

Ing. Nils Gageik and all other team members for their help and support during this

project. Also I would like to thank Dr. Anita Enmark for her patients and advice.

My sincere thanks to Ms. Shahmary and Ms. Winneback for their kind help.

Finally I would like to thank Dr. Victoria Barabash for her support and

understanding.

4

Table of Contents

 Page

Declaration

Abstracts

Acknowledgment

Table of Contents

Abbreviations

1

2

3

4

6

1 Introduction 7

 1.1 Motivation and tasks of the work

 1.3 State of the Art

 1.4 Chapters overview

7

8

9

2 Mathematical Model of the Quadrocopter 10

 2.1 Analysis of the quadrocopter 10

 2.2 Mathematical description of the quadrocopter elements 14

 2.2.1 Free motion of the quadrocopter 14

 2.2.2 External forces 23

 2.2.3 Quadrocopter’s actuators 29

 2.2.4 Discrete elements 30

 2.2.3 Mathematical model of the quadrocopter 30

3 Design of the Control System

37

 3.1 Pole-placement method: Ackermann approach 37

 3.2 Linear time-invariant mathematical model of the quadrocopter 40

 3.3 Desired poles for 2
nd

 order system 42

 3.4 Attitude control 45

 3.4.1 Design of controllers 45

 3.4.2 Simulation results 49

 3.5 Altitude control 51

 3.5.1 Design of controllers 51

 3.5.2 Simulation results 52

4 Implementation of the Control System 55

 4.1 Transfer functions for pitch and roll orientation 55

 4.1.1 Elements of the system 55

 4.1.2 A linear model for test bench 1 57

 4.1.3 Coefficients calculation and verification 60

 4.2 Controller Design for pitch and roll orientation 63

5

 4.2.1 Implementation of the regulator 65

 4.2.2 Implementation of the controller 68

4.3 Controller for yaw orientation 70

4.4 The altitude control system 74

5 Conclusion and Recommendations

5.1 Conclusion

5.2 Recommendations for a future work

78

78

79

Bibliography

80

Appendix A: Calculations 83

Appendix B: Scripts 85

6

Abbreviations

CoG center of gravity

CoM center of mass

CST Control System Toolbox

DOF degree of freedom

EMF electromotive force

MM mathematical model

MoI moment of inertia

TF transfer function

ToI tensor of inertia

UAV unmanned aerial vehicle

YPR yaw-pitch-roll

7

Chapter 1 Introduction

1.1 Motivation and tasks of this work

 A quadrocopter is a flying object, which changes its altitude and attitude by four

rotating blades. Quadrocopters are a variation of multicopters, which are

rotorcrafts. During 20
th

 century there were several attempts to implement manned

quadrocopters, earliest known cases are in 1922 by Etienne Oemichen in France

[25] and by George Bothezat in USA [26]. However, during the progress in

rotorcrafts industry, the helicopters with different schemes of rotors adjusting were

chosen.

 In last decades, because of great achievements in technologies such as

electronics, microcontrollers, motors, sensors and software, an opportunity of

building small unmanned aerial vehicles (UAVs) became wide world available.

This one leads to growing research and engineering interest to quadrocopters,

which can be easily built. Nowadays quadrocopters are used mostly as toys, objects

for teaching purposes in universities and for panorama video recording, but ones

have good prospects in other areas. For expansion of application areas they should

be more autonomous and intelligent. They are planned to be used in rescue

operations [28], as a fire-fighter [27] or working as a group for fulfillment tasks

with general purposes [29].

 Quadrocopters have advantages such as a high maneuverability, a relatively

cheap price and a simple construction and have a great potential for using as

robotic autonomous devices. However, there are several problems that should be

solved or improved for making ones closer to real applications. One of these

problems is a real time 6DOF control system that can control a position and an

orientation of a quadrocopter, its linear and angular velocities. Such type of the

control system is very important for fulfillment series of tasks, e.g. grasping other

objects, tracking other objects or transmitting video information about other

objects. Some good results of controlling a quadrocopter behavior were obtained

and demonstrated by GRASP laboratory of Pennsylvania University [30] and inside

project ‘Flying Machine Area’ from Zürich University [31].

8

 Hereby, the main motivation of this project is creating real time a 6DOF control

system. This control system should control a position and an orientation of a

quadrocopter.

 For creating such time of the system, several tasks should be solved. At the

beginning a mathematical model of a quadrocopter should be created. Then, based

on this mathematical model, a 6DOF control system should be designed. At the

end, designed control system should be implemented as a code in a microcontroller

for a real quadrocopter.

 A quadrocopter that will be under consideration in this thesis is the one from

‘AQopterI8’ project, which is developed at Aerospace Information Technology

Department, University of Würzburg.

1.2 State of the Art

 A mathematical model of a quadrocopter consists of describing rigid body

dynamics, kinematics of fixed and body reference frames and forces applied to the

quadrocopter. There are several variants of the model. Firstly they vary in

describing of rigid body dynamics; it can be done by Euler equations [5], Euler-

Newton approach [20] or Lagrangian approach [21]. Secondly they vary in end

representations of kinematics and direction of z axis of body reference frame.

Thirdly, they differ in how many forces and other effects are taken into account.

The most complete model is represented by S. Bouabdallah [21], the simplest

variant by R. Beard [5] and the variant in the ‘middle’ by T. Luukkonnen [20].

Also some researchers simplified a model of a motor, which rotates a blade, as

proportional coefficients [5], and some of them as a 1
st
 order transfer function [21].

A model for this thesis is based on models from two works [20], [5].

 Control designs used in many works are based on the mathematical model.

Usually, original model is linearized to linear continuous time invariant model [20,

5] or to discrete one [24]. A controller for attitude control is usually PD [23] and

there are several variants for altitude control. Hover control represented by

N.Michael and others [23] was chosen for the quadrocopter control. There are

several variants for the structure of control system for a whole plant. The variant

from N.Michael and others [23] was chosen.

9

1.3 Chapters overview

 In chapter 2 ‘Mathematical model of the quadrocopter’ several issues are

discussed. At the beginning an analysis of quadrocopter physical processes is done

and collected as one process. Then deferential equations described each process are

represented. Based on these equations transfer functions were obtained and

implemented as a model in Matlab/Simulink.

 Chapter 3 ‘Design of the Control System’ dedicates to choosing structures of

controllers and calculation their coefficients. It starts from short discussion about

pole-placement approach. A method for choosing poles based on quality

requirements is discussed. Then calculation feedback coefficients by Ackerman

method is represented. At the end, implementation in Matlab/Simulink is described

and results of simulation are shown.

 Chapter 4 ‘Implementation of the Control System’ contains information about

experiments for a validation the mathematical model and a controllers adjusting.

Firstly, the validation of the mathematical model for the pitch/roll, the calculation

for controllers for pitch/roll and a comparison of modeling and experimental results

were represented. Afterwards, the same information about the yaw was described.

Then experiments with a flying prototype were shown and compared.

 Chapter 5 ‘Conclusion’ contains discussion of the results and recommendation

for a future work.

10

Chapter 2 Mathematical model of the quadrocopter

2.1 Analysis of the quadrocopter

 The quadrocopter consists of four sticks, where each two are set symmetrically

and perpendicularly to each other. On the end of each stick, symmetrically to

geometrical center of the quadrocopter, actuators that provide flying are set. Each

actuator consists of a motor and a blade, where the blade is fixed to the motor’s

shaft (fig. 2.1). Rotation of these blades can lead to qudrocopter’s motion.

fig. 2.1 Structure of the quadrocopter

 The quadrocopter has 6DOF that means it has linear and angular motions. This

complex motion (called free motion) can be fully determined by two vectors: a

position vector pst and an orientation vectorort . The position vector has current

position of the quadrocopter in Earth reference frame and the orientation vector has

current orientation angles of the quadrocopter comparing to Earth reference frame.

For calculation current values of pst the following parameters should be known: a

vector of linear velocity v , a vector of linear acceleration a . For calculation the

11

current values of ort the following parameters should be known: a vector of

angular velocity  , a vector of angular acceleration  . Also initial conditions of all

6 vectors mentioned above should be known. In addition, external forces and

torques, which could be substituted by net force netF and net torquenet , lead to

changing in the linear and the angular acceleration of the quadrocopter and these

changing influences on the position and the orientation. Hereby, for creating the

mathematical model (MM) the equations, for calculation vectors pst and ort based

on vectors mentioned above, should be declared (fig. 2.2)

fig. 2.2 Logical diagram for calculation the position and the orientation of the

quadrocopter

 There are three sources of external forces such as gravitational field, air drag

and rotations of the blades in the air. These sources create a gravitational force mgF ,

a drag force dragF and a thrust force T respectively. External torque H is created

only by blades rotation (fig 2.3).

12

fig. 2.3 Logical diagram for calculation net force and net torque

In total there four blades and four BLDC motors. Assume that motors are

numbered from 1 to 4. Each blade is rotated by the corresponding motor with

particular angular velocity bl i , where index i indicates the number of the motor.

Angular velocity of the motor’s shaft is regulated by a power bridge and each

power bridge is regulated by a microcontroller (fig. 2.4).

fig. 2.4 Logical diagram for calculation angular velocities of the blades

Hereby, the whole process of moving a quadrocopter in 6DOf can be described as:

a microcontroller sets signals (analogous or digital) that are transferred through

power bridges and motors to angular velocities of the blades. A rotation of the

blades creates forces and torques that together with gravitational and drag forces

change the quadrocopter position and orientation (fig. 2.5).

13

fig. 2.5 Logical diagram for creation the MM of the quadrocopter

The controller needs feedback information such as the position, orientation and

appropriate parameters (e.g. linear angular velocity) that should be measured by

sensors. Based on desired values of the position and the orientation and current

feedback values measured by the sensors the designed controller should generate

appropriate values for the power bridges (fig. 2.6).

fig. 2.6 Logical diagram for the MM and the controller

It can be concluded that the MM is consists of transfer functions that describe or

estimate elements and processes shown on fig. 2.6. So the behavior of the

14

quadrocopter in 6DOF should be described by differential equations. Then

relationships between angular velocities of the blades and net force and net torque

should be shown. External forces that cannot be controlled: gravitational and drag

forces should be discussed. Elements that are needed for creating force and torque

for moving: analogous elements (blades, motors, power bridges) and digital

elements (sensors, a microcontroller) should be described. Based on the MM the

controller can be designed.

2.2 Mathematical description of the quadrocopter elements

 The MM should approximate the process shown on fig. 2.5. A description of

this process includes free motion of the quadrocopter, influence from applied

forces, how blades rotations are produced and effects of digital elements (sensors, a

microcontroller).

2.2.1 Free motion of the quadrocopter

 For describing the quadrocopter’s free motion (process is shown on fig. 2.2), the

theory of free motion of a rigid body is used. According to this one, free motion of

the rigid body is considered as a complex motion, which consists of two simple

motions:

 translation motion of a point with mass equals to the mass of the body (point

mass), where the point is any point of the body

 angular rotation of the body around a fixed point, where the point mass

chosen above is considered as the fixed one.

Translation motion of a point is described as:

d p
netF

dt
 , (2.1)

where netF is a net force of all external forces applied to the point mass, p is

linear momentum of the point mass and
d

dt
 is differential operator.

Angular rotation of a body around the fixed point can be described as:

15

d L
net

dt
  , (2.2)

where net is a vector sum of all external torques and L is an angular momentum

of the body.

Translation motion of a point mass

 For describing translation motion of a pointed mass a fixed reference frame

should be chosen. In some arbitrary point of the space, noted as ‘O’, a fixed

reference frame XYZ is created. Position of a point mass in frame XYZ can be

described by radius vector r (fig. 2.7).

fig. 2.7 Position of the point mass in XYZ fixed reference frame

To apply eq. (2.1) to this point mass, a linear momentum of the point mass should

be described:

*p m v , (2.3)

where m is a mass of the point mass and v is a linear velocity of the point mass.

With taking into account eq. (2.3), eq. (2.1) can be rewritten as:

2

* *
dv d r

netF m m
dt dt

  , (2.4).

The changing in position of the point can be expressed from eq. (2.4) as:

16

netF
r

m
 , (2.5).

Scalar form of eq. (2.5) is:

X
X

Y
Y

Z
Z

netF
r

m

netF
r

m

netF
r

m







, (2.6).

Angular rotation around a fixed point

 As it was mentioned above, for describing free motion of a body, an angular

rotation around a fixed point should be considered. Assume a fixed reference frame

xyz with origin in a fixed point of a rigid body (fig. 2.8).

fig. 2.8 Rotation of a rigid body around a fixed point in xyz fixed reference frame

Rotation of the rigid body with random shape around the fixed point can be

described in fixed reference frame xyz . For using eq. (2.2) the angular momentum

of the body should be calculated.

 The body is considered as a system of point masses, where mass of each point is

dm and position of any of these points can be determined by vector  from origin

of xyz till the element dm . In this case the angular momentum is:

17

*dmL v dm  , (2.7), [9]

where  is an integral in the volume of the body, dmv is a linear velocity of

particular element. Eq. (1.7) in non-vector form is:

 

 

 

* * *

* * *

* * *

x z y

y x z

z y x

L y v z v dm

L z v x v dm

L x v y v dm

 

 

 







, (2.8), [9]

where x , y , z are coordinates of an element dm (or in other words coordinates of

correspondent radius vector ),
xv ,

yv ,
zv are projections of the velocity of this

element.

Linear velocity of each element dmv can be described as:

* *

* *

* *

y z

el z x

x y

z y

v x z

y x

 

   

 

 
 

    
  

, (2.9), [9]

where  is angular velocity of the body and , ,x y z   are its projections in xyz .

By rewriting eq. (2.7) with taking into account (2.9) the angular momentum is:

   2 2*(* *) *(* *) * *() * * * * *x x y z x x y zL y y x z x z dm y z x y z x dm               
2 2* ()* * (*)* * (*)*x y zy z dm x y dm z x dm        ,

   2 2*(* *) *(* *) * *() * * * * *y y z x y y z xL z z y x y x dm z x z y x y dm               
2 2* ()* * * * * * *y z xz x dm z y dm x y dm        ,

   2 2*(* *) *(* *) * *() * * * * *z z x y z z x yL x x z y z y dm x y x z y z dm               
2 2* ()* * * * * * *z x yx y dm x z dm y z dm        ,

or in vector form:

18

2 2

2 2

2 2

()* (*)* (*)*

(*)* ()* * * * *

(*)* * * ()*

x x

y y

z z

y z dm x y dm z x dm
L

L L x y dm z x dm z y dm J

L
z x dm z y dm x y dm



 



   
    
         
       

      
 

  

  

  

, (2.10) , [9]

where J is so-called tensor of inertia (ToI) and its components can be rewritten as

follow:

2 2

2 2

2 2

()* (*)* (*)*

(*)* ()* * *

(*)* * * ()*

xx xy xz

yx yy yz

zx zy zz

y z dm x y dm z x dm
J J J

J x y dm z x dm z y dm J J J

J J J
z x dm z y dm x y dm

   
  
         
      

 

  

  

  

, (2.11) , [9]

where 1st index of J corresponds to the index of L and second one to the index of

 and ; ; ;xy yx xz zx yz zyJ J J J J J   .

 Each component of inertia tensor is a moment of inertia (MoI) around particular

axis. These components are constant, since origin of reference frame xyz is

connected to the body. Tensor of inertia (ToI) can be simplified in a case if axes of

reference frame xyz are coincident with principal axes of the body (axes of

symmetry). To provide this case for rotating body, the axes of the reference frame

should be fixed with the body. Assume new reference frame b b bx y z , which axes are

coincidence with principal axes of the body and origin is in the fixed point of the

body. In reference frame ‘ b b bx y z ’ components 0xy xz yzJ J J   [9] and eq. (2.10)

and eq. (2.11) can be rewritten as:

0 0

0 0 * *

0 0

b b b b

b b b b

b b b b

x x x x

y y y y

z z z z

L J

L L J J

L J



 



     
     

       
          
     

, (2.12), [9]

To derive the angular momentum, an equation for the relative motion is used:

a br r r   , (2.13), [1]

where ar is an arbitrary vector in inertial reference frame, br is the same vector in

body (non - inertial) reference frame,  is an angular velocity of the body

19

reference frame in the fixed reference frame. Derivation of angular momentum

d L

dt
 according to eq. (2.13), leads to so-called Euler’s equation [2]:

(*)
* * *

d L d J d
net J J J

dt dt dt

 
           , (2.14), [2].

Eq. (2.14) in more detail form is:

0 0 0 0

0 0 * 0 0 *

0 0 0 0

b b b b b b b b

b b b b b b b b

b b b b b b b b

x x x x x x x x

y y y y y y y y

z z z z z z z z

net J J

net net J J

net J J

   

    

   

           
           

               
                      
           

 

 

 

* ** * *

* * * * *

* * * *

b b b b b b
b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b b b b b b b
b b b b

z z y y y z
x x x x x x x x x x

y y y y y y y y y y x x z z x z

z z z z z z z z z z
y y x x x

J JJ J J

J J J J J

J J J J J

    

     

    

       
       

           
              

        *
b by

 
 
 
 
 
 

,

or in short form:

 

 

 

* * *

* * *

* * *

b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b

x x x x z z y y y z

y y y y x x z z x z

z z z z y y x x x y

net J J J

net J J J

net J J J

   

   

   

  

  

  

 , (2.16), [2].

Eq. (2.16) should be rewritten in the form for finding changing in angular velocity

as:

20

 

 

 

* *

* *

* *

b b b b b b b

b

b b

b b b b b b b

b

b b

b b b b b b b

b

b b

x z z y y y z

x

x x

y x x z z x z

y

y y

z y y x x x y

z

z z

net J J

J

net J J

J

net J J

J

  


  


  


 


 


 


, (2.17), [2].

 As it was mentioned above, description of rotation in body reference frame

b b bx y z instead of fixed reference frame xyz simplifies calculation of angular

momentum L to eq. 2.12. On the other hand because of this simplification,

another equation, that links angular velocity  in b b bx y z and orientation b b bx y z

relatively to xyz , is also needed. Orientation of the body is defined by unique

rotation around instantaneous axis of rotation. This rotation can be considered as

sum of three simple rotations. Sequences of simple rotations are not unique [4].

Commonly used sequence in Aerospace applications for flying objects is yaw-

pitch-roll (YPR) rotation, where angles e.g. noted as , ,   correspondingly

(fig. 2.9).

fig. 2.9 Orientation of the body reference frame b b bx y z by yaw-pitch-roll angles in fixed

reference frame xyz

Changes in orientation are connected with  by following equation:

21

1 * *

0 *

0

b

b

b

x

y

z

sn t c t

c sn

sn c

c c

    

   

   

 

 
   
   

     
         

 

, (2.18). [5]

Hereby, for a block ‘6DOF’ (from fig. 2.2) three equations are needed: eq. (2.6)

describes dynamics of linear motion, eq. (2.18) describes kinematics of angular

motion and eq. (2.17) describes dynamics of angular motion.

Tensor of inertia and mass of the quadrocopter

 For calculation ToI, a real structure of the quadrocopter (fig. 2.1) is simplified

to the structure, which consists of spherical dense center with mass M , radius R

and several point masses of mass Mm located at distance l (fig. 2.10).[5]

fig. 2.10 Simplified structure of the quadrocopter

ToI of the simplified structure based on eq. (2.11) and eq. (2.12) can be described

as:

2 2

2 2

2 2

()* 0 0 0 0

0 ()* 0 0 0

0 00 0 ()*

b b

b b

b b

b b
x x

b b y y

z z
b b

y z dm J

J z x dm J

Jx y dm

   
   
     
        






, (2.19)

22

where
2

22* *
2* *

5b b b bx x y y M

M R
J J l m   and

2
22* *

4* *
5b bz z M

M R
J l m  .

Eq. (2.19) supplements eq. (2.17).

In case of chosen approximation the mass of quadrocopter is:

4* Mm M m  , (2.20),

where Mm is total mass of the motor and the blade, M is mass of the spherical

dense or in other words mass of the rest parts of the quadrocopter.

Eq. (2.14) supplements eq. (2.6).

Summary of equations for motion in 6DOF

 Hereby, based on written in section 2.1, free motion of the quadrocopter can be

represented in reference frame XYZ (fig. 2.11).

fig. 2.11 The quadrocopter’s free motion

Parameters and functions of this motion can be determined in several steps. Initial

conditions are set accordingly to current experiment (e.g. equal to zero). Then mass

and ToI are calculated based on eq. (2.19) and eq.(2.20). Afterwards dynamics and

kinematics of orientation are calculated based on eq. (2.18) and eq. (2.17) and

dynamics of linear motion is calculated based on eq. (2.6).

23

2.2 External Forces

 A position and an orientation of the quadrocopter can be found by eq. (2.6) and

eq. (1.17) when the external net force netF and external net torquenet are known.

As it was mentioned before there are three sources of external forces: gravitational

field, air drag and rotations of the blades in the air, which lead to a gravitational

force mgF , a drag force dragF and a thrust force T respectively. Forces and torques

from blades can be controlled. Gravitational and drag force cannot be controlled.

Gravitational forces

 Forces of gravitational field applied to a body can be represented as a net

gravitational force applied to a center of gravity (CoG) of the body. Direction of

this force is constant and pointed to the center of the Earth. Relation between this

force and acceleration of an object corresponds to Newton law and can be written

as:

*mgF m g , (2.21)

where m is mass of the quadrocopter and g is gravitational acceleration.

For simplification assume that the CoG coincides with the CoM of the

quadrocopter.

Air drag force

When an object moves through the air, it overcomes air resistant. Air drag force

can be described as:

2* * *drag dF C S v , (2.22),[8]

where dC is drag coefficient,  is mass density of the air fluid, S reference area of

the object, v is the speed of the object relative to the air fluid.

Coefficient dC , which depends on the shape of the object, should be measured in

advance in a wind tunnel. Drag coefficients for several shapes are well known and

available in the form of the tables, e.g. for square shape dC equals to 0.64 [8] .

Mass density of the air  depends on the height above the see level, e.g. for 1

24

meter above sea level with temperature about 15 degree, air density equals to 1.226

[8].

For movement in 3D eq. (2.22) can be rewritten as:

 * * *| |*drag dF C S v v , (2.23),

Forces from blades

 Interaction between a rotating blade and air can be described by vortex theory

[7]. Assume that a blade is rotating with some angular velocity
bl in

counterclockwise direction. This rotation leads to producing a number of forces. To

find net forces, the blade surface is theoretically divided by small elements and the

force that applied to an element represented as sum of vertical force elT and

horizontal force elQ (fig. 2.12). Sum of all vertical forces elT can be substituted by

thrust force T and sum of all horizontal force elQ as hub torque H .

fig. 2.12 Net force and torque from interaction between a blade and the air

The thrust force T and hub torque H can be described as:

2*T blT b  , (1.24), [21]

2*H blH b  , (1.25) , [21]

where pb and bb are proportional coefficients, which depends on air density, angle

of blade and area of blade.

25

 The quadrocopter has four actuators; each of them consists of a blade, a motor

and a power bridge. Notate linear movement of the quadrocopter as forward,

backward, left and right and number actuators from 1 to 4 (fig. 2.13). Blades 2 and

4 rotate in counterclockwise direction with angular speed
2 ,

4 while blades 1

and 3 rotate in clockwise direction with angular speed 1 ,
3 .

fig. 1.13 Quadrocopter structure

These rotations lead to four couples of thrust forces and hub torques (fig. 2.14).

fig. 2.14 Thrust and hub forces from each blade

These 4 forces can be replaced by net thrust force T and 4 hub torques by net hub

torque H (fig. 2.15).

26

fig. 2.15 Thrust force and hub torque applied to the quadrocopter (an arbitrary direction of

H is chosen)

Thrust force T can be represented as:

1 2 3 4T T T T T    , (2.26) , [21].

Hub torque H can be represented as:

 

 

   

2 4

3 1

1 3 2 4

*

*

b

b

b

x

y

z

l T TH

H H l T T

H H H H H

    
        
    

     
 

, (2.27) , [21]

where sign minus corresponds to negative direction of roll, pitch and yaw angles.

Equation (2.27) supplements eq. (2.17) for calculation orientation of the

quadrocopter, so (2.17) can be rewritten as:

   

   

     

2 4

3 1

1 3 2 4

* * *

* * *

* *

b b b b b b

b

b b

b b b b b b

b

b b

b b b b b b

b

b b

z z y y y z

x

x x

x x z z x z

y

y y

y y x x x y

z

z z

l T T J J

J

l T T J J

J

H H H H J J

J

 


 


 


  


  


    


, (2.28).

For finding translation motion thrust force T should be represented in xyz as:

27

*b b b

b b b

x

x y z
x y zy xyz

z

T

T T R T

T

 
 

 
 
 
 

, (2.29),

where b b bx y z

xyzR is a rotation matrix.

Rotation matrix of YPR is:

     
1

* *b b bx y z

xyz x y zR R R R  


   

1

1 0 0 c 0 c 0

0 c * 0 1 0 * c 0

0 c 0 c 0 0 1

sn sn

sn sn

sn sn

   

   

   



       
      

        
            

1

*c *

* *c * * * * *

* *c * * * * *

c c sn s

sn sn c sn sn sn sn c c sn c

c sn sn sn c sn sn sn c c c

    

           

           



   
  

     
     

*c * * * * * *

* * *c * * * *

*

c sn sn sn c sn c sn c sn sn

c sn sn sn c c sn sn sn c c

c sn sn c c

           

           

    

   
 

 
 
  

, (2.30) , [4]

where c and sn are abbreviations for cosine and for sine respectively.

Thrust force is always aligned with
bz axis, therefore, with taking into account eq.

(2.30), eq. (2.29) can be rewritten as:

0

* * 0b b b b b b

x

x y z x y z
xyz y xyz xyz

z

T

T T R T R

T T

   
   

   
   

  
  

*c * * * * * * 0

* * *c * s * * * * 0

*

c sn sn s c sn c sn c sn sn

c sn sn sn c c sn sn c c

c sn sn c c T

           

           

    

     
   

   
   
      

28

* * *

s * * * *

*

c sn c sn sn

sn sn c c T

c c

    

    

 

 
 

 
 
 
 

, (2.31).

With taking into account eq. (2.31), gravitational force eq. (2.21) and drag force eq.

(2.23), eq. (2.6) can be rewritten as:

 

 

2

2

2

* * * * * * *

s * * * * * * *

* * * * * *

d X

X

d Y

Y

d Z
Z

c sn c sn sn T C S v
r

m

sn sn c c T C S v
r

m

c c T m g C S v
r

m

     

     

  

 


 


 


, (2.32).

Thereby, the free motion of the quadrocopter in 6DOF can be represented as linear

motion its center of the mass (CoM) with mass m in XYZ and angular rotation of

the quadrocopter around CoM. The rotation is described by rotation of the

quadrocopter in b b bx y z and orientation of b b bx y z relatively to xyz , where axes of

xyz are parallel to relative axes of XYZ (fig. 2.15).

fig. 2.15 Motion of the quadrocopter in 6DOF

The influence from applied forces is described by eq. (2.32) (instead of (2.6)) and

the influence from applied torques is described by eq. (2.28) (instead of 2.17).

29

2.2.3 Quadrocopter’s actuators

 The actuator consists of a blade, a motor and a power bridge. The behavior of

the blade is described in previous section by eq. (2.24), eq. (2.25).

 Angular velocities of the blades depend on angular velocities of corresponding

motors. For calculation a shaft velocity of a brushless DC motor (BLDC) a

mathematical model of the motor should be used. This model depends on motors

construction. In opposite to brushed DC motor, a BLDC motor needs a control

system for rotation of its rotor. Sometimes MM of BLDC is needed for creating

such type of the control system. However, for current case the MM is needed to

estimate relationship between the input and output. For this purpose MM of BLDC

can be substituted by MM of brushed DC [6].

The MM of brushed DC motor is based on four equations:

* * m

di
U i R L e

dt
   , (2.33)

*me k  , (2.34)

*mT k i , (2.35)

*
d

T J
dt


 , (2.36).

Eq. (2.33) describes the effect, when applied voltage leads to current in the

armature with resistance R and to inductance L and to back EMF
me . Eq. (2.34)

indicates that back-EMF
me proportional to angular velocity of the motor’s shaft,

where k is back-EMF constant. Eq. (2.35) denotes that produced torque is

proportional to the produced current, where
mk is the torque constant. Eq. (2.36)

describes transferring from the torque to angular acceleration of the plant, where J

is sum of the moment of inertia of the plant and motor shaft. For current case, the

plant is the blade, which has minimal MoI, so the plant MoI can be omitted.

 A power bridge can be represented as:

max*PWMu k u , (2.37)

30

where u is input voltage to the BLDC ,
maxu is maximum input voltage of BLDC

applied to the power bridge and
PWMk is percent of pulse-width modulation

(PWM). Time delay of the power bridge can be neglected since time for changing

the electrical signals is much smaller comparing to the time delay in mechanical

part of the system. The power bridge can be considered as continuous element.

2.2.4 Discrete elements

 The system has several discrete elements such as: a microcontroller and sensors.

These elements are discrete in time and level. They should be substituted by

quantizers with level of discretizations
Mld and

sld correspond to their calculation

precision and time discretizations
Mtd and

std correspond to their delays in time.

These parameters can be calculated as:

1 1
;

2 2
M SNmofBt NmofBt

ld ld  , (2.38)

where NmofBt is length of the microcontroller’s register in bites.

1
std

f
 , (2.39)

where f is frequency of the sensor in Hz.

*M instd N t , (2.40),

where N is number of instructions in a code and
inst is time for fulfillment of one

instruction.

2.3 Mathematical model of the quadrocopter

 The MM of the quadrocopter consists of transfer functions (TFs) of elements

described in previous sections. Logical diagram of this model with corresponding

equations is shown on fig. 2.16.

31

fig. 2.16 Logical diagram of MM of the quadrocopter in 6DOF

This model has the following simplifications:

 the quadrocopter is a rigid body

 center of mass (CoM) is in the geometrical center of the quadrocopter

 ToI of the quadrocopter is approximated as moment of inertia of several

objects

 CoG is coincided with CoM

 MoI of the blades is neglected

 Time delay of the power bridge is neglected

 For simulation purpose equations should be represented by transfer functions.

TF will be represented in a form suitable for realization in Matlab/Simulink. TF for

eq. (2.32) is:

32

2

2

2

2

2

2

1 ()* () ()* ()* () * *
() * () *(())

1 s ()* () ()* ()* () * *
() * () *(())

1 ()* ()* * *
() * () *(())

d
X X

d
Y Y

d
Z Z

c s sn s c s sn s sn s C S
r s T s sr s

s m m

s sn s sn s c s c s C S
r s T s sr s

s m m

c s c s C S
r s T s g sr s

s m m

     

     

  

  
  

 

  
  

 

 
   

 

, (2.41)

where s is Laplace operator.

This TF is nonlinear since it has trigonometric functions and squaring of the inputs.

Based on eq. (2.41) it can be represented in Matlab/Simulink (fig. 2.17)

fig. 2.17 Representation of TF for translation motion in Matlab/Simulink

Block ‘TransTtoXYZ’ (fig. 2.17) has as inputs the thrust force ()T s and orientation

angles , ,   . These inputs shoud be calculated for finding a quadrocopter’s

position. The TFs for orientation angles are calculated based on eq. (2.18) and eq.

(2.28) as:

33

()() 1 ()* () ()* ()

() 0 () () * ()

() () () ()0
() ()

b

b

b

x

y

z

ss sn s t s c s t s

s s c s sn s s

s sn s c s s

c s c s

    

   

   

 

 
    
    

     
            
 

, (2.42)

 
 

 
 

   
 

2 4

3 1

1 3 2 4

() * () () * ()* ()

() * () () * ()* ()

1
() * () () () () * ()* ()

b b b b

b b b

b b b b

b b b b

b b b

b b b b

b b b b

b b b

b b b b

z z y y

x y z

x x x x

x x z z

y x z

y y y y

y y x x

z x y

z z z z

J Jl
s s T s T s s s

J J

J Jl
s s T s T s s s

J J

J J
s s H s H s H s H s s s

J J

  

  

  

 
  

 
  

 
    

,(2.43).

These TFs are nonlinear since they have trigonometric functions and multiplying of

the outputs. They can be represented in Matlab/Simulink as shown on fig. (2.18).

fig. 2.18 Representation of TF for angular rotation in Matlab/Simulink

The input of this block is hub torque ()H s . The inputs ()T s and ()H s can be

calculated based on eq., (2.24), (2.25), (2.26), (2.27). The TFs are:

2 2 2 2

1 1 2 2 3 3 4 4() * (); () * (); () * (); () * ()T bl T bl T bl T blT s b s T s b s T s b s T s b s       , (2.44)

2 2 2 2

1 1 2 2 3 3 4 4() * () ; () * () ; () * () ; () * ()H bl H bl H bl H blH s b s H s b s H s b s H s b s       , (2.45)

34

 2 2 2 2

1 2 3 4() * () () () ()T bl bl bl blT s b s s s s       , (2.46)

 

 

   

2 4

3 1

1 3 2 4

* () ()()

() * () ()

() () () () ()

b

b

b

x

y

z

l T s T sH s

H s l T s T s

H s H s H s H s H s

    
       
    

     
 

, (2.47).

These TFs are nonlinear since they have squaring outputs. They can be represented

in Matlab/Simulink as it shown on fig. (2.19).

fig. 2.19 Representation of TFs in Matlab/Simulink for creating ()T s and ()H s

 MM of BLDC is designed based on eqs. (2.33 - 36). Applying Laplace

transformation to eq. (2.33), (2.34) leads to:

() * ()
()

U s k s
I s

R sL

 



 , (2.48)

and to eq. (2.35), (2.36) leads to:

* () * ()mk I s J s s . (2.49)

35

Transfer function can be obtained by combining eq. (2.48) and (2.49) as:

 
() * ()

* * () () * * () * ()m

m

U s k s J
k J s s U s R sL s s k s

R sL k





  


    



2

1
()* ()

* *
*

m m

U s s
J L J R

s s k
k k



 

 

, (2.50)

where
2

1
()

* *
*

m m

G s
J L J R

s s k
k k





 

 is 2
nd

 order TF.

More common form of eq. (2.50), where parameters J , L and
mk are substituted, is

represented in more appropriate form as:

2
2 2

1 1

1
()

* * * * * * * 1
* * * * 1

* *
m e m

m m m m

k k
G s

J L J R J R L J R s s
s s k s s

k k k k R k k

 



 

  
  

 
   

or in short way

2

1

()
* * * 1m e m

k
G s

s s



  


 
, (2.51)

where
*

*
m

m

J R

k k
  is mechanical constant and

e

L

R
  is electrical constant.

Implementation of TF based on eq. (2.51) is shown on fig. 2.20.

fig. 2.20 Representation of BLDC TF in Simulink

36

Thereby the TF functions of continuous elements of the quadrocopter can be

represented as shown on fig. 2.21.

fig. 2.21 Representation of TF of continuous part in Matlab/Simulink

37

Chapter 3 Design of the Control System

 A goal of a controller design is to reach a new plant’s behavior, which

corresponds to desired quality requirements. Any controller design procedure is

based on information how inputs and outputs of the plant are connected. In most

cases relation between inputs and outputs is described by mathematical model of

the plant. The MM can be created by three methods: mathematical description of

physical processes, identification procedure and a sum of two previous methods.

MMs obtained based on these procedures are called white box, black box and grey

box respectively [12]. Most of design procedures are based on the linear MM of the

plant and most popular procedures are root-locus method, pole placement method

and by Bode diagrams. As soon as the quadrocopter should have intelligent control

system, the pole-placement method from mentioned one is chosen.

3.1 Pole-placement method: Ackermann approach

 Pole placement method is a method, where a designed controller should change

poles of characteristic equation of the MM to the poles that give the system desired

quality such as a settling time, an overshoot, a steady state error.

However, it should be mentioned that this method has serious limitations such as:

sensitiveness to how adequate the model is and not observability of particular

connected to real physical parameters. Advantage of pole placement method is that

the controller designed by this method can be easily expanded to an optimal or

adaptive controller.

 One of the simplest and direct ways to design a system with chosen poles is

using Ackerman equation. This equation transfers state space model in control

canonical form and calculate new coefficients for feedbacks [11]. In general the TF

look like:

 
1

1 1 0

1

1 1 0

* *

* *

n

n
p n n

n

b s b s b
G s

s a s a s a









  


   
, (3.1).

The control canonical form for a 3
rd

 order system is represented on fig. 3.1.

38

fig. 3.1 Structure diagram of control canonical form [10]

The state equations for n-order system in control canonical form are:

() * () * ()

() * () * ()

x t A x t B u t

y t C x t D u t

 

 
, (3.2)

where

0 1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

n

A

a a a a 

 
 
 
 
 
 
     

,

0

0

0

1

B

 
 
 
 
 
 
  

,  0 1 2 1nC b b b b  ,

0D  .

 The idea of Ackerman approach is to calculate new coefficients K that

supplement existing coefficients to make roots of a closed-loop system equal to

desired poles. Consider the case when the input of the system is zero, so called

regulator control. In this case ()u t consists only of feedback signals and can be

described as:

() ()u t Kx t  , (3.3).

39

So close-loop matrix
fA can be written by substituting result of eq. (3.3) to eq.

(3.2):

   1 2 1

0 1 2 1

0 1 0 0 0

0 0 1 0 0

*

0 0 0 1 0

1

f n n

n

A A BK K K K K

a a a a





   
   
   
       
   
   
         

0 1 1 2 2 3 1

0 1 0 0

0 0 1 0

0 0 0 1

n na K a K a K a K

 
 
 
 
 
 
         

, (3.4)

Matrix K can be calculated as:

   
1

2 10 0 ... 0 1 * * ... * * *n n

cK B A B A B A B A


     , (3.5),

where  c A is matrix polynomial formed with coefficients of the desired

characteristic equation  c s . The desired closed-loop characteristic equation can

be described as:

       1

1 1 0 1 2* * * 0n n

c n ns s s s s s s      

          , (3.6)

where 1 n   are desired poles.

Matrix polynomial  c A is described as:

  1

1 1 0* * *n n

c nA A A A I   

     , (3.7),

where I is identity matrix with dimension equals to dimension of A.

Thereby, pole placement procedure has three steps. First step is obtaining the MM

of the system , where the MM should be linear continuous time invariant model.

Next step is calculation desired poles based on requirements to quality of the

40

system. Last step is calculation feedback coefficients that change poles of the MM

to desired ones.

3.2 Linear time-invariant mathematical model of the quadrocopter

 The MM developed in chapter 2 cannot be used for controller design by pole

placement method and should be simplified. One of the approaches is known as

small disturbance theory [13]. Based on the assumption that motion of the flying

object consists of small deviations around a steady flight conditions, multiplication

of angular velocity components can be omitted and eq. (2.43) can be rewritten as:

 

 

   

2 4

3 1

1 3 2 4

() * () ()

() * () ()

1
() * () () () ()

b

b b

b

b b

b

b b

x

x x

y

y y

z

z z

l
s s T s T s

J

l
s s T s T s

J

s s H s H s H s H s
J







 

 

   

 , (3.8).

Another simplification which leads from this fact is that changes in orientation

angles equal to angular velocity and eq. (2.42) can be rewritten as:

()()

() ()

() ()

b

b

b

x

y

z

ss

s s s

s s



 

 

  
  

   
       

, (3.9).

Combination of eq. (3.8) and eq. (3.9) can be shown as:

 

 

   

2 42

3 12

1 3 2 42

() * () ()

() * () ()

1
() * () () () ()

b b

b b

b b

x x

y y

z z

l
s T s T s

s J

l
s T s T s

s J

s H s H s H s H s
s J







 

 

   

, (3.10).

Another assumption is that TFs between PWM values and forces/torques can be

substituted by proportional coefficient or (if dynamics of the motors should be

41

taken into account) 1
st
 order TF. In the case of keeping dynamics into account, eq.

(2.44), (2.45), (2.51), (2.37) can be rewritten as:

max

max

max

max

1 *

()
* *

() * 1 * 1 * 1

1 *

()
* *

() * 1 * 1 * 1

T

T
T

PWM m m m

H

H
H

PWM m m m

b u

T s k k k
b u

k s s s s

b u

H s k k k
b u

k s s s s

 

 

  

  

  
  

  
  

, (3.11)

where max*T
T

b u
k

k
 and max*H

H

b u
k

k
 .

In the case, if dynamics of the motors is small comparing to dynamics of whole

system eq. (3.11) can be simplified to:

()

()

()

()

T

PWM

H

PWM

T s
k

k s

H s
k

k s





, (3.12).

Combination of eq. (3.10) and (3.12) gives:

 

2

2 4

2

3 1

2

1 3 2 4

()

() ()

()

() ()

()

() () () ()

PWM PWM

PWM PWM

PWM PWM PWM PWM

ks

k s k s s

s k

k s k s s

ks

k s k s k s k s s




















  

, (3.13)

where
*

b b

T

x x

l k
k

J
  ,

*

b b

T

y y

l k
k

J
  and

b b

H

z z

k
k

J
  .

Eq. (2.41) that describes quadrocopter’s motion in XYZ can be simplified by

neglected drag forces [5] and can be modified to:

42

2

2

2

1 ()* () ()* ()* ()
() * ()

1 s ()* () ()* ()* ()
() * ()

1 ()* ()
() * ()

X

Y

Z

c s sn s c s sn s sn s
r s T s

s m

s sn s sn s c s c s
r s T s

s m

c s c s
r s T s g

s m

    

    

 

 
  

 

 
  

 

 
  

 

, (3.14).

For design purpose this TF should be linearized to:

2

2

2

1 ()* ()*
() * ()

1 ()* *
() * ()

1 1
() * ()

X

Y

Z

s c s sn
r s T s

s m

s sn c
r s T s

s m

r s T s g
s m

   

   

 
  

 

 
  

 

 
  

 

, (3.15)

where  1 2 3 4() * () () () ()T PWM PWM PWM PWMT s k k s k s k s k s    .

Thereby, changes in the quadrocopter attitude and altitude can be described by 2
nd

order functions from eq. (3.13) and eq. (3.15). So an approach for choosing desired

poles for 2
nd

 order system should be described and controllers for 2
nd

 order system

by Ackerman equation should be designed.

3.3 Desired poles for 2
nd

 order system

 Stability and quality of a system are determined by its characteristic equation.

Choice of desired poles depends on required quality of the system. The simplest

way of choosing poles for 2
nd

 order system is to use standard approach described

e.g. in [11]. According to this approach a TF of 2
nd

 order system should be

represented as:

2

2 2
()

2* *

n

n n

G s
s



  


 
, (3.16)

where n is natural frequency and  is damping ratio.

43

 This TF is analyzed in time domain by step input. Based on the step response

the quality of the system can be estimated. Typical step response with all

specifications is shown on fig. 3.2.

fig. 3.2 Step response of a 2

nd
 order system [10]

The following quality parameters are shown: rise time, peak time, overshoot,

settling time, steady state error. Usually for design purpose minimum settling time

and overshooting should be specified.

 Percent of overshoot percOvSh can be set by varying damping ratio  (eq.

3.17) and settling time sT by varying natural frequency n (eq. 3.18).

2* / 1
*100percOvSh e

   
 , (3.17)

4

*
s

n

T
 

 , (3.18).

For finding damping ratio  and natural frequency n eq. (3.17) and (3.18) is

rewritten as:

44

2

1
*ln

100

1
1 *ln

100

percOvSh

percOvSh






 
 
 

 
  
 

, (3.19)

4

*
n

sT



 , (3.20).

Based on  and n the desired poles can be calculated as:

2

1,2 * * 1n ns j        , (3.21).

Thereby, by choosing quality parameters: overshooting and settling time sT , the

damping ratio  and natural frequency n can be calculated (eq. 3.19 and 3.20).

Based on the last ones the desired poles can be found by eq. (3.21).

For control of the quadrocopter, as for most of other systems, the fastest response

with minimal overshooting should be provided. The damping ratio  for this

behavior is well known and equals to 0.707 that corresponds to 4.32% of

overshooting. Settling time in the model can be close to zero by choosing n close

to infinity, but in real system it is not possible. Based on current experimental result

with the quadrocopter sT should be no more than0.8s , so 0.8sT s is chosen.

Based on chosen quality parameters 0.8sT s and 4.32%percOvSh  by using eq.

(3.19, 3.20, 3.21) the desired poles are calculated as:

1,2 -3.5357 j*3.5354s   (3.22).

The algorithm of calculation is realized as function ‘Dpoles.m’ in Matlab, where

inputs are percOvSh and settling time sT and outputs are desired poles (see App.

B).

45

3.4 Attitude control

3.4.1 Design of controllers

 Mathematical models from eq. (3.13) is 2
nd

 order and in general can be

represented as:

  1 0

2

1 0

*

*
p

b s b
G s

s a s a




 
, (3.23).

The state space equations in canonical form for a 2
nd

 order system are:

() * () * ()

() * ()

x t A x t B u t

y t C x t

 


, (3.24)

where
0 1

0 1
A

a a

 
  

  
,

0

1
B

 
  
 

,  0 1C b b ,

that can be represented as shown on fig. 3.3.

fig. 3.3 Canonical form of 2

nd
 order system

By comparing TF of quadrocopter (eq. 3.1) and 2
nd

 order TF in general form (eq.

3.23) :

  1 0

2 2

1 0

*
()

*
p p

b s b k
G s G s

s a s a s


  

 
, (3.25)

where k in general represents k , k or k (calculation of k , k and k is in eq.

3.13).

46

It can be concluded that coefficients 0b equals to k and 1b , 0a , 1a equal to 0. So

general state space form can be rewritten as:

0 1

0 0
A

 
  
 

,
0

B
k

 
  
 

,  1 0C  , (3.26).

The structure diagram is shown on fig. 3.4, where k is mentioned in eq. 3.25.

fig. 3.4 Structure diagram of the pitch angle model

For chosen system (eq. (3.25)), desired characteristic equation, from eq. (3.6), can

be written as:

   2

1 2 1 2* * 0c s s s         , (3.27),

and with taking into account that
1,2 3.5357 j*3.5354   (eq. (3.22)), it can be

stated that:

  2 7.0714* 25 0c s s s     , (3.28).

By combining eq. (3.26) with eq. (3.28) and eq. (3.7) it can be declared that:

  2
0 1 0 1 0 1

7.0714* 25* * 7.0714*
0 0 0 0 0 0

c A A A I
     

          
     

1 0 0 0 0 7.0714 25 0
25*

0 1 0 0 0 0 0 25

       
           

       

25 7.0714

0 25

 
  
 

, (3.29).

47

Calculate the 2
nd

 element from eq. (3.5). For current system it corresponds to the

following equation:

 
1

*B A B


, (3.30)

 where
0 1 0

* *
0 0 0

k
A B

k

     
      
     

, so

 
1

1 0 0
*

0 0

k k
B A B

k k



    
    
   

, (3.31).

Thus, from eq. (3.29) and (3.31), eq. (3.5) can be rewritten as:

       
1 0 25 7.0714

0 1 * * * 0 1 * *
0 0 25

c

k
K B A B A

k


    
     

   

   
0 25*

0 1 * 25* 7.0714*
25* 7.0714*k

k
k k

k

 
  

 
, or result in short form is:

   1 2 25* 7.0714*K K K k k  , (3.32).

Thereby, closed-loop system matrix fA (eq. (3.4)) can be represented as:

0 1 1 2

0 1 0 1

25* 7.0714*k
fA

a K a K k

   
           

, (3.33)

The state-space equations for closed-loop system are:

() * () * ()

() * ()

fx t A x t B u t

y t C x t

 


, (3.34)

where
0 1

25* 7.0714*k
fA

k

 
  

  
,

0

1
B

 
  
 

,  1 0C  .

Structure diagram that corresponds to closed-loop system with matrix fA is shown

on fig. 3.5.

48

fig. 3.5 Feedback system with desired poles

For implementation of this approach a function ‘AckCont’ in Matlab was written

(see App. B).

 By regulators the system keeps its position around zero. However, the attitude

controllers should follow desired values of pitch, roll and yaw. An output of a

closed-loop TF corresponds to an input, if a gain of the closed-loop TF equals to

one. So TF of the system from fig. 3.5 should be found. Represent the system as

shown on fig. 3.6.

fig. 3.6 Feedback system with desired poles: finding TF

In this case inner TF  1G s can be described as:

 1

2
2

*
1 *

k
ksG s

k s k k
k

s

 




, (3.35).

The TF of the regulator  G s with taking into account eq. (3.35) can be written as:

49

  2

2

2 1
1

2

1
*

*

1 * * *
1 * *

*

k

ks k k s
G s

k s k k s k k
k

s k k s


 

 




, (3.36).

Based on eq. (3.36) the gain of  G s can be found as:

 
1

1
0G

k
 , (3.37).

 Result of eq. (3.37) means that numerator of  G s should be multiplied by 1k . The

final TF of the controller is:

  1

2

2 1

*

* * *

k k
G s

s k k s k k


 
, (3.38).

3.4.2 Simulation results

Control of orientation is implemented in Simulink based on eq. (3.13) and eq.

(2.32) (fig. 3.7).

Blocks ‘roll_cont’, ‘pitch_cont’ and ‘yaw_cont’ are represented control laws that

are designed based on eq. (3.32). With taking into account eq. (3.38) controllers for

roll, pitch and yaw are created in Simulink for incorporation in whole system,

shown on fig. 3.7. Example for roll control is shown on fig. (3.8).

fig. 3.8 Implementation of attitude controllers as a block for incorporation in whole

model: Simulink

50

fig. 3.7 Orientation control scheme: Simulink

The system was analyzed with different step signals. Theoutput for unit step signal

is shown on fig. 3.9 for pitch angle and on fig. 3.10 for yaw angle (step response

for roll angle is omitted, since it is identical to the results on fig. 3.9).

fig. 3.9 Step response: pitch angle

51

fig. 3.10 Step response: yaw angle

It has clearly seen that controllers provide quality requirements as 0.8sT s and

4.32%percOvSh  . Additionally, it should be mentioned that steady state error for

this model is zero, because TFs of the MM (eq. 3.13) has 2
nd

 order integration

As soon as designed controllers show required result, they should be implemented

in a microcontroller and checked through experiments with real quadrocopter.

3.5 Altitude control

3.5.1 Design of controllers

 Position control is divided into two parts: height control along Z axis and 2D

control in XY plane.

 Height control is based on 3
rd

 equation from linearized model (eq. 3.15) and can

be calculated based on Ackerman approach (eq. 3.32), where Tk
k

m
 .

 For control law in XY plane the algorithm from [23] is chosen. Based on eq.

(3.15) required acceleration can be calculated as:

52

 

 

2 2

2 2

() * ()* ()*

() * ()* ()*

d

X Y

d

X Y

s g s r s sn s r s c

s g s r s c s r s sn

  

  

 

 
, (3.39)

where g is gravitational acceleration, d and ()d s are desired values. In case if

yaw angle equals to zero and constant during whole flight it can be even simplified

to:

2

2

() * ()*

() * ()*

d

Y

d

X

s g s r s c

s g s r s c

 

 

 


, (3.40)

3.5.2 Simulation results

Control law based on eq. (3.39) is realized in Matlab/Simulink as shown on fig.

(3.11).

fig. 3.11 Altitude Control: Matlab/Simulink

 Controllers ‘X_cont’, ‘Y_cont’, ‘Z_cont’ have the same structures as attitude

controls (fig. 3.8). Coefficients for ‘Z_cont’ are calculated based on Ackerman

approach; coefficients for ‘X_cont’, ‘Y_cont’ controllers are adjusted manually.

53

 Hereby, the structure of the whole system is implemented as shown on fig.

(3.12).

fig. 3.12 Altitude Control: Matlab/Simulink

Simulation results for 1, 1, 1,
6

d d d dX Y Z


    are shown on fig. (3.13).

fig. 3.13 a X position

54

fig. 3.13 b Y position

fig. 3.13 c Z position

There are no overshoots along X and Y axes and settling time about 3s. The

overshoot along Z axis is about 50% and settling time about 2s. These ones can be

accepted for some application, but in general it should be improved. For example if

a quadrocopter should record visual information during its movement from one

desired point to another one, the behavior shown on fig. 3.13 is unacceptable and

should be improved. On the other hand, if a quadrocopter should make several

photos in a stable state, this behavior is acceptable since the positioning by itself is

precise enough. Additionally, a steady state error along Z axis is about 0.14 m. It

can be eliminated by using integral component in controller for Z axis.

55

Chapter 4 Implementation of the Control System

 The MM of the quadrocopter, attitude and position control systems were

developed in previous chapters. To adapt the MM to the real quadrocopter and to

check controllers, several experiments should be fulfilled. First of all the MM

should be validated, afterwards control system should be implemented and tested.

For the MM validation and adjusting attitude control two test benches are used.

Test bench 1 has 2 DOF and used for validating and adjusting pitch orientation.

Test bench 2 has 3DOF and used for validating and adjusting yaw orientation.

Afterwards, position control system is checked in flying version.

 The control algorithms were implemented as a script in a frame of software

created inside Aerospace Information Technology Department, Würzburg

University. This software also was used though experiments for data sending and

recording.

4.1. Transfer functions for pitch and roll orientation

 Transfer function for pitch and roll was obtained in previous chapter. However,

structure of test bench 1 is different from free motion of the object; Because of this

fact the TF for pitch and roll should be modified for test bench 1.

4.1.1 Elements of the system

 For adjusting pitch controller test bench 1 is used (fig. 4.1). This one consists of

a cross-frame, four motors with propellers fixed on their shafts, four power bridges

for motor control, a gyro sensor and a microcontroller. It has 2DOF: pitch (an axis

of rotation shown as black line) and yaw orientation.

56

fig. 4.1 Test bench 1: 2DOF

The gyro sensor is set close to the center of the symmetry of the quadrocopter. The

orientation of the x and y axes of gyro sensor are parallel to correspondent axes of

xy (fig. 4.1). The pitch angle is limited by construction in the range of 18 18  

degree.

 Each actuator consists of power bridge BL-Ctrl1.2 [14], BLDC motor KA20-

22L [15], a blade EPP0845 [16]. The power bridge is controlled by the

microcontroller AT32UC3A0512-0ESAL fixed on evaluation board EVK1100

[17]. Relation between pitch angle and force and torque from a blade is shown on

fig. 4.2. An integer number in a range 0 255 should be send by the

microcontroller though I2C to the power bridge. The power bridge produces

control signals to rotate motor shaft with angular velocity which is proportional to

integer value , where 0 corresponds to stop and 255 to rotation with maximal

velocity. The blade which is fixed on the motor’s shaft begins to rotate and produce

thrust force and hub torque.

57

fig. 4.2 Structure diagram of actuator and feedback: test bench 1

 The forces from propellers move quadrocopter around axes of rotation and

change pitch angle. The angular velocity around pitch angle is measured by gyro

IMU3000 [18] in deg/sec .Integration of this value gives changing of pitch angle in

deg . Error between desired and current values of pitch angle should be changed

according to the design law. This output is transferred through the power bridges,

motors and blades to produce forces and torques. This motion corresponds to 2
nd

equation from eq. (3.13), but since the axis of rotation is not in the center of

symmetry of the quadrocopter additional force occurs. Thereby, 2
nd

 equation from

eq. (3.13) should be modified for applying to test bench 1.

4.1.2 Linear model for pitch angle on test bench 1

 Consider forces acting on the quadrocopter: thrust force from motor 1, thrust

force from motor 3 and gravitational force (fig. 4.3).

fig. 4.3 Forces applied to the quadrocopter: test bench 1

58

2
nd

 equation from eq. (3.10) can be rewritten as:

 3 1 * * * *sin

b

b b

y

y y

T T r m g b

J




  
 , (4.1)

where 3T  and 1T  are projections of thrust forces 3T and 1T on perpendiculars to

radius vector r ; r is a shortest distance between a point, where a force 3T or 1T

applied, and axis of rotation; *sinb  is the displacement vector for gravitational

force . These projections can be calculated as:

1 1

3 3

*cos

*cos

T T

T T












, (4.2)

where  is a constant angle between vector of force 3T / 1T and 3T  / 1T  . This

angle and radius vector r can be calculated as:

2 2

arctan
b

l

r b l

 

 

, (4.3)

where b is a shortest distance from the center of the quadrocopter’s symmetry to

axis of rotation, l is a shortest distance from force 3T / 1T to the center of the

quadrocopter’s symmetry.

 Forces 3T and 1T can be calculated by 1
st
 equation from eq. (3.12) in rewritten

form:

1 1

3 3

*

*

T

T

T u k

T u k




, (4.4)

where 1u and 3u are values in the range 0 255 .

 After combining eq. (4.1), (4.2), (4.3), (4.4), the relation between 1u , 3u and
by

can be written as:

59

  2 2

3 1 * * *cos arctan * * *sin

b

b b

T

y

y y

b
u u k b l m g b

l

J





 
   

  , (4.5)

or in a form of TF as:

 2

3 1() * () () *sinmgs s k u s u s k    , (4.6)

where

2 2* *cos arctan

b b

T

y y

b
k b l

l
k

J


 
  

  ,
* *

b b

mg

y y

m g b
k

J
 , 3 1() ()u s u s is input and

()s is output.

Hereby, the TF of pitch angle for test bench 1 can be stated as:

   3 12 2

1
* () () *sin ()mg

k
s u s u s k s

s s

    , (4.7)

 This TF is nonlinear continuous one and for linearization, element sin should

be substituted by a linear element. With taking into account that fixed construction

has pitch angle range approximately 18 18   degree, this element can be

substituted by  in radians [10]. So TF from eq. (3.13) can be rewritten as:

2

3 1

()
()

() ()
pitch

mg

s k
G s

u s u s s k


 

 
, (4.8).

The TF based on eq. (4.8) is created in Simulink and shown on fig. 4.4.

fig. 4.4 Open-loop TF of pitch orientation: test bench 1

60

4.1.3 Coefficients calculation and verification

Coefficients calculation

 To calculate coefficients , mgk k the length and weight of the quadrocopter should

be measured. Initial data for calculation are:

2
0.11 , 0.205 , 0.49 , 9.8

m
b m l m m kg g

s
    .

Moment of inertia component
b by yJ according to eq. (2.19) and parallel axis

theorem can be calculated as:

2
2 22* *

2* * * 0.0151
5b by y M

M R
J l m m b    , (4.9)

where R is chosen equal to l .

Coefficients
mgk and k based on eq.(4.6) are:

2 2* *cos arctan

0.4487

b b

T

y y

b
k b l

l
k

J


 
  

   , (4.10)

* *
34.9258

b b

mg

y y

m g b
k

J
 

where 0.0331Tk  coefficient for the motor taken from here [19].

So based on theoretical model
2

1
34.9258mgk

s
 and

2

1
0.4487k

s
 .

Coefficients verification

 Feedback coefficients for designed controller fit the MM. The more precise the

MM is, the more real behavior of the quadrocopter with designed controller

coefficients relates to simulation results. It has been done several simplifications

during creation MM and verification coefficients k and mgk through experiment

can improve MM. The verification procedure includes two types of experiments.

61

Verification of coefficient
mgk

 First coefficient mgk was verified. This one corresponds to movements in

gravitational field without influence from blade’s forces. The quadrocopter fixed in

test bench 1 is inclined four times to random angular position and released to fall

till the limited angle. Changes in angular position were recorded and as graph

represented on fig. 4.5.

fig. 4.5 Changes in angular position during quadrocopter’s free falling: test bench 1

 Four initial angles are taken from these records and used as initial positions for

the MM from fig. 4.4. The same trajectories based on MM with
2

1
34.9258mgk

s


are shown on fig. 4.6 (colorful trajectories indicate experiment data and black ones

simulation). Comparing the sets of trajectories shows that current value of

does not describe the behavior of the quadrocopter adequate. It can be seen that

model is too fast, so it means that the calculated inertia momentum is less than real.

62

fig. 4.6 Experimental and theoretical trajectories:
2

1
34.9258mgk

s


 To make the model adequate was decreased until the longest trajectories

from both sets became as close as possible to each other’s (fig. 4.7).

fig. 4.7 Experiment and theoretical trajectories:
2

1
22.3006mgk

s


63

The new
mgk is renewed as

2

1
22.3006mgk

s
 . For making theoretical result close to

real one, the new value 1.72*R l is chosen.

Verification of coefficient k

 The idea of verification is to find equilibrium conditions between torques from

motor 1 and from gravitation force for various angles. Values of angular position

and for motor control were recorded (see table 4.1).

Table 4.1

angle, rad 0.3491 0.3316 0.2897 0.2548 0.2217 0.1658 0.1117

value 65 60 50 40 30 20 10

Based on the eq. (4.7), with taking into account that angular acceleration 2 0s   ,

the coefficient is calculated. It is value in the range0.1198 0.2491. The average

value 0.1844k  is chosen.

The script ‘DOF2_ver.m’ (see App. B) was written and used for processing and

representation experiment data, for simulation TF from fig. 4.4.

 After analyses and validation the MM of pitch angle (test bench1) was specified.

The mathematical model is represented in a form of linear continuous time

invariant transfer function (eq. 4.8) and can be used for controllers design.

4.2 Control design for pitch and roll orientation

 By comparing TF of 2
nd

 order function and TF of pitch orientation quadrocopter

(eq. 4.8) coefficients for state space model are calculated as :

  1 0

2 2

1 0

*
()

*
pitch

mg

b s b k
G s G s

s a s a s k


  

  
, (4.11).

It can be concluded that 0b equals to k ,
0a equals to mgk , 1b and 1a equal to zero.

64

Using the same logic as in section 3.4 and eq. (3.24 -3.29) feedback coefficients

can be obtained as (details see in App. A):

 1 2 25* 7.0714*kmgK K K k k     , (4.12).

Thereby, closed-loop system matrix
fA (eq. (3.4)) can be represented as:

0 1 1 2

0 10 1 0 1

25* 7.0714*k 25* 7.0714*k
f

mg mg

A
k k ka K a K k

    
                 

, (4.13)

The state-space equations for closed-loop system are:

() * () * ()

() * ()

fx t A x t B u t

y t C x t

 


, (4.14)

where
0 1

25 7.0714
fA

 
  

  
,

0

1
B

 
  
 

,  1 0C  .

Structure diagram that corresponds to closed-loop system with matrix fA is shown

on fig. 4.8.

fig. 4.8 Feedback system with desired poles

65

 Based on idea and equations mentioned above the script in Control System

Toolbox (CST) was written (see App. B ‘AckContSim.m’). The response of the

closed-loop with desired poles and initial conditions  1 0 (means initial position

is 1 radian and initial velocity is zero) is shown on fig. 4.9. It is clearly seen that for

the model the overshooting is minimal (less than 4.32%), settling time is about 0.8

seconds, steady-state error equals to zero.

fig. 4.9 Response for initial conditions

4.2.1 Implementation of the regulator

 Control law corresponds to closed-loop TF (fig. 4.8) and, with taking into

account that the gyroscope generates data in degrees, this law can be represented

as:

 1 2

1 1
() () * * * () *()* * ()dt t K DtR t K DtR t

k k
        , (4.15)

where 3 1() () ()d t u t u t   and
180

DtR


 .

66

In form applied to motor’s values it can be rewritten as:

1 1 2

3 1 2

1 1
() () *()* * () *()* * ()

1 1
() () *()* * () *()* * ()

u t t K DtR t K DtR t
k k

u t t K DtR t K DtR t
k k





  

  

    

 
       

 

, (4.16).

 Additionally, initial values of 3()u t and 1()u t should not be 0, because of two

reasons. First reason is a simplification of the model for which this controller was

designed. Time delays in changing velocities of quadrocopter’s blades were

neglected. The most important delay is during increasing the blade angular velocity

from zero to some value. So the blades should always have some non-zero

velocities. Moreover, there is some value of speed that provides hovering of the

quadrocopter and all changes in control should be around this value. With taking

into account these facts eq. (4.16) should be rewritten as:

1 min

3 min

() ()

() ()

hov

hov

u t u u t

u t u u t









  

  
, (4.17),

where ()t is defined by eq. (4.16), minu is a minimal angular velocity of the

blades, hovu is an angular velocity for hovering.

 The designed control law (eq. (4.17)) is incorporated in the software. Fulfilled

experiments consist of two simple steps:

 change the quadrocopter pitch angle from 0 by some external force

 record system response

Results are shown on fig. 4.10, the data are recorded with discretization of 100 Hz.

67

fig. 4.10 Responses of regulator on changing of initial conditions

The system should return its pitch to zero. It is inclined four times and returns to

initial zero. For settling time estimation an area from fig. 4.10 is zoomed (fig.

4.11).

fig. 4.11 Response signal (zoomed part from fig. 4.10)

 It can be seen that the settling time is about 0.6 second and a static error about

0.3 degree. Settling time in experiment is close to settling time from model. There

is no static error in the model, since the model does not take into account all facts,

68

e.g. some friction in test bench joint that can be the source of this error. This error

can be compensate by an integral component.

4.2.2 Implementation of the controller

 To provide control for general input, the gain of the TF should be set to one. TF

of the system from fig. 4.8 is:

_ 2

2 1

()
* (*)

pitch f

mg

k
G s

s k s k k k


  
, (4.18),

and it’s gain is:

_

1

(0)
*

pitch f

mg

k
G

k k k



, (4.19).

So a coefficient, which is inversed to _ (0)pitch fG , should be set between the

reference signal that represents desired pitch angle and input of feedback TF. As

soon as a desiredt angle is in degree and the model in radian, transfer coefficients:

180


 between reference signal and input signal and

180


 between output signal and

results should be added (fig. 4.12).

fig. 4.12 Pitch angle: control system for non-zero input

It means that for experiment the control law is:

1
1 2

1 1
() ()* * * *()* () *()* ()d

m

K
t t DtR DtR K t K t

k k k
   

   
       

   
, (4.20).

69

After corresponding changes in microcontroller one more experiment was fulfilled.

Response function is shown on fig. 4.13.

fig. 4.13 Pitch angle: control system for non-zero input

Quality parameters are summarized in table 4.2.

Table 4.2

input signals, deg output signal, deg settling time, sec overshooting, deg

0 0.12 -- 0.3

2 2.31 0.6 0.4

-2 -2.21 0.6 0.4

5 5.9 0.65 0.4

-5 -5.6 0.65 0.4

Quality parameters are inside required range, so pitch and roll attitude control is

designed.

 Results of experiments show that system works with required quality

(overshooting and settling time) for both cases: zero input and non-zero input.

Static error for both cases is inside 0.5 degree. With taking into account many

approximations, this error is relatively small. To reduce steady state error

integration should be used.

70

Roll controller by using the same logic can be stated as the following equations:

2 min

4 min

() ()

() ()

hov

hov

u t u u t

u t u u t









  

  
, (4.18),

where
1 2

1 1
() *()* * () *()* * ()t K DtR t K DtR t

k k
      .

Results of roll controller are identical to results of pitch controller.

4.3 Controller for yaw orientation

 Controller for yaw orientation is checked on test bench 2, which has 3DOF. Test

bench 2 has a structure close to test bench 1, but fix point of test bench 2 is close to

CoM of the quadrocopter.

 The TF of yaw rotation based on 3
rd

 line from eq. (3.13) can be stated as an

equation:

  2

1 3 2 4

()

() () () ()

ks

u s u s u s u s s




  
, (4.21)

where

b b

H

z z

k
k

J
  .

Component 0.0226
b bz zJ  is calculated by eq. (2.19). Coefficient k is measured

by an experiment. Inputs 1()u s and 3()u s were set to value of hover and yaw

rotation was recorded (fig. 4.14).

In the range 10 12sec released and stop manually. Angular velocity is about

1.084 /secrad . Coefficient Hk was adjusted until angular rate of yaw in the model

(file ‘’) became 1.084 /secrad ; new 30.5*10Hk  and 0.0211k  .

 Controller for yaw orientation is calculated based on eq. (3.23) where k k .

Settling time is chosen equal to 3.5sec instead of 0.8sec .It is done to make

feedback coefficients lower.

71

fig. 4.14 Yaw rotation open-loop: test bench 2

 Implementation of yaw controller can be described as the following equations:

1 min

2 min

3 min

4 min

() ()

() ()

() ()

() ()

hov

hov

hov

hov

u t u u t

u t u u t

u t u u t

u t u u t

















  

  

  

  

, (4.22),

where 1 2

1 1
() *()* * () *()* * ()t K DtR t K DtR t

k k
      .

 Experiments showed that when all three controllers for attitude control have

high coefficients the system has very thin linear zone, which leads to big

oscillations. Results are shown on fig. 4.15. It can be seen that’s settling time is

about 3.5sec and precision from 1 to 2 degree.

72

fig. 4.15 Yaw rotation closed-loop: test bench 2

Thereby attitude control can be described by following equations:

1 min

2 min

3 min

4 min

() () ()

() () ()

() () ()

() () ()

hov

hov

hov

hov

u t u u t t

u t u u t t

u t u u t t

u t u u t t

 

 

 

 

 

 

 

 

   

   

   

   

, (4.23).

Results of attitude controller are received by test bench 2 and shown on fig. 4.16.

The quadrocopter was inclined several times and one returned to original positions.

Moments of inclination are marked as: roll1, roll2, pitch1, pitch2, yaw1, yaw2.

73

fig. 4.16 Attitude Controller: test bench 2

Dynamics of the system corresponds to required quality. However original

positions are changed during the time from 0 to 5 degree. This disadvantage can be

eliminated by using integral component and by separating in time pitch-roll and

yaw controllers.

4.4 The Altitude Control System

 The altitude control system consists of the controller for quadrocopter’s hover

and position controllers (see section 3.5.1).

 Implementation of the hover controller can be described as the following

equations:

1 min

2 min

3 min

4 min

() ()

() ()

() ()

() ()

hov z

hov z

hov z

hov z

u t u u t

u t u u t

u t u u t

u t u u t









  

  

  

  

, (4.23),

where 1 2

1 1
() *()* () *()* ()z t K z t K z t

k k
     and Tk

k
m

 .

74

Result of experiment with a flying prototype for the hover control is shown on

fig. 4.17, where a green line is desired height and a red line is a current height.

fig. 4.17 The hover Controller with calculated coefficients: flying mode

In the case when coefficients of the hover controller are calculated perfectly, the

behavior of current height (red line) should correspond to the modeling result

(fig. 3.13c). However it does not since proportional coefficient (
1K) is low and

velocity/derivative coefficient (
2K) is extremely low. After slightly increasing of

1K and big increasing of
2K (about ten times) the new experiment was conducted

(fig. 4.18). The behavior of the system is better, but still is not acceptable. For

better results the 2K was increased (in total about 30 times comparing to original

2K) and an integral component for elimination steady state error was added.

Appropriate result is shown on fig. 4.19.

75

fig. 4.18 The hover Controller with

2 10K  : flying mode

fig. 4.19 The hover Controller with

2 35K  : flying mode

76

 Implementation of position controller corresponds to eq. (3.40). The behavior of

the quadrocopter in the flying mode with coefficients used in the simulation is

shown on fig. 4.20, where green line corresponds to the desired height and other

ones to changing along X and Y .

fig. 4.20 Position Controller with calculated coefficients: flying mode

It can be clearly seen that the system is unstable and simulation results (fig. 3.13a

and fig. 3.13b) do not match to experimental ones. New coefficients for position

controllers were found though adjusting, results are shown on fig. 4.21, where

green line is desired position along Y axis and red line is current position of the

quadrocopter along Y axis. Also it should be mentioned that new
1K is ten times

less than
1K from simulation and new

2K is thirty times more than original
2K .

Position error of the system is inside 10 centimeters.

 Thereby, it can be concluded that results of the simulation are different from

results from real experiment. For the hover controller
1K from the simulation is

close to real one, but 2K should be increased in thirty times. For the position

control, both coefficients obtained from the simulation should be changed,
1K

should be decreased in ten times and
2K should be increased in thirty times.

77

fig. 4.21 Position Controller with adjusted coefficients: flying mode

78

5 Conclusion and Recommendations

5.1 Conclusion

 In this work all stages of a control system development were done. Starting from

the analysis of the quadrocopter as a flying object, the mathematical model was

created and modified for using in design purposes. After choosing an appropriate

design method, the 6DOF control system for the quadrocopter was developed and

implemented for using on the real quadrocopter. Experiments for estimation

theoretical results were fulfilled.

 Process of calculation coefficients for the 6DOF control system is organized as

one script in Matlab. The input parameters are the mass of the quadrocopter, the

dimensions of the quadrocopter and the gains of the actuators. Based on these

inputs coefficients for all 6 controllers (pitch one, roll one, yaw one, hover one and

two for the position) are calculated.

 The validating procedures for the attitude part of the mathematical model are

shown in sections 4.1.3 and 4.3. These procedures are necessary part of the

modeling, since they helped to improve the coefficients of the model. Based on the

experimental results the parameter R (eq.2.19) for calculation MoI was improved

(p. 63). However, the equations for roll and pitch from the mathematical model

(1
st
 one and 2

nd
 one from 3.13) cannot be used directly for applying to test

bench1and should be modified as it was described in section 4.1.2. The attitude

controller, designed based on the improved model, shows in simulation the

behavior close to required one. The same controller after implementation shows

experimental results closed to the simulation ones.

 The control system for hover and position control obtained from simulation

shows not adequate results. Only the proportional coefficient for hover control is

close to the real one. The proportional coefficient for position control is ten times

more that real one and all derivative coefficients for altitude control are about thirty

times less than real ones.

 Chosen structure for all controllers in general corresponds to PD control.

According to the theory all systems that are 1
st
 order and higher (they have pure

integration component in their TFs) have no steady state error [11]. However in

reality the quadrocopter has steady state error in the attitude (e.g. fig. 4.16) and the

79

attitude (fig. 4.21), it means that international components should be added to all

controllers.

5.2 Recommendations for a future work

 Several improvements for the mathematical model and the control system can

be done.

 First of all, a time delay of the actuator (BLDC and the blade) should be taken

into account (eq. 3.11). In this work settling time for the system is about 0.8

seconds and in general typical time for a mechanical constant is about 0.3 seconds.

If e.g. a required settling time should be less than 0.3 seconds, a model without

mentioned time delay cannot show adequate behavior of the system. Moreover,

because of the blade the time delay is different during increasing and decreasing

angular velocity of the blade. This factor also should be taken into account.

 Another important improvement is about the model by itself. In the work it is

continuous one, but it should be transferred to discrete one. The discrete model

helps to estimate influence of time delays of the sensors and microcontrollers.

 Additionally, the structure of chosen controllers should be changed and

supplemented by integral components. In case of making first mentioned

improvement, the structure of the controllers should be expanding to three

coefficients. Also, a third order polynomial for desired poles should be chosen.

 One more improvement can be done with the control system. In current work it

is a real time one, but with fixed coefficients. A more profound control system can

calculate/recalculate coefficients depend on the current quadrocopter behavior.

Also another control algorithm such as e.g. back stepping algorithm or LQR can be

used.

80

Bibliography

1. S. Windnall, J. Peraire, Relative Motion using Rotating Axes, Lecture Notes in

Dynamics, MIT, Boston, USA, 2008 http://ocw.mit.edu/courses/aeronautics-and-

astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec08.pdf

2. D. Kleppner, R.J. Kolenkow, An Introduction to Mechanics, McGraw-Hill, New

York, USA, 1973

3. Drag coefficient, http://en.wikipedia.org/wiki/Drag_coefficient

4. J.B. Kuipers, Quaternions and Rotation Sequences, Princeton University Press,

Princeton,USA, 1999

5. R. W. Beard, Quadrotor dynamics and control, Lecture notes, Brigham Young

University, Provo, USA, 2008,

http://rwbclasses.groups.et.byu.net/lib/exe/fetch.php?media=quadrotor:beardsquadr

otornotes.pdf access 01.07. 2013

6. O. J. Oguntoyinbo, PID control of brushless DC Motor and robot trajectory

planning and simulation in MATLAB/Simulink, Thesis, University of Applied

Sciences, Vaasa, Finland 2009, access 22.07.2013 available:

http://publications.theseus.fi/bitstream/handle/10024/7467/Oludayo%20Oguntoyin

bo.pdf

7. E.B. Mikirtumov, Aircraft Models, DOSAAF, Moscow, Russia, 1956 (in

Russian)

8. G. Miklashevski, Handbook of Young Aircraft Builder, ONTI, Moscow, Russia,

1936 (in Russian)

9. E.L. Nikolai, Theory of gyroscopes, OGIZ, Moscow, Russia, 1948 (in Russian)

10. R.C. Dorf, R.H. Bishop, Modern Control Systems, 11
th
 ed., Prentice Hall,

Bergen, USA, 2007

11. C.L. Phillips, R. D. Harbor, Feedback Control Systems, 4
th

 ed., Prentice Hall,

Bergen, USA, 2000

12. L. Ljung, System Identification: Theory for the User, 2
nd

 ed., Prentice Hall,

Bergen, USA, 1999

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec08.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec08.pdf
http://en.wikipedia.org/wiki/Drag_coefficient
http://rwbclasses.groups.et.byu.net/lib/exe/fetch.php?media=quadrotor:beardsquadrotornotes.pdf
http://rwbclasses.groups.et.byu.net/lib/exe/fetch.php?media=quadrotor:beardsquadrotornotes.pdf
http://publications.theseus.fi/bitstream/handle/10024/7467/Oludayo%20Oguntoyinbo.pdf
http://publications.theseus.fi/bitstream/handle/10024/7467/Oludayo%20Oguntoyinbo.pdf

81

13. R. Nelson, Flight Stability and Automatic Control, 2
nd

 ed., McGraw-Hill, New-

York, USA, 1997

14. Power Bridge BL-Ctrl 1.2, access 15.08.2013 available:

http://mikrokopter.de/ucwiki/en/BL-Ctrl_V1.2

15. Motor BLDC KA20-22L, access 15.08.2013 available:

http://www.quadroufo.com/product_info.php?cPath=2_9&products_id=47&osCsid

=kf0uvl36ffqnkkaefvi9plufg5

16. Blades EPP1045, access 15.08.2013 available:

http://www.quadroufo.com/product_info.php?products_id=43&osCsid=dh0c5ejh8s

s2a7q63l4bl0jp94

17. Evaluation board EVK1100, access 15.08.2013 available:

http://www.atmel.com/tools/EVK1100.aspx

18. Gyroscope IMU3000 combo, access 15.08.2013 available:

http://www.invensense.com/mems/gyro/imu3000.html

19. F. Kämpf , Praktikumsbericht zur Erstellung einer Messstation zwecks

Bestimmung der Ubertragungsfunktion zwischen Neigungswinkel und

Regelereinstellung einer Quadrokopterachse, Würzburg University, Germany ,

2012

20. T. Luukkonnen, Modelling and control of quadrocopter, Independent Research

project in applied mathematics, Aalto University, Espoo, Finland 2011

21. S. Bouabdallah, Design and control of quadrotors with application to

autonomous flying, EPFL, Lausanne, Switzerland, 2007

22. S. Raza and Wail Gueaieb, Intelligent Flight Control of an Autonomous

Quadrotor, Motion Control, InTech, University of Ottawa, Canada, 2010

23. N. Michael and etc., The GRASP Multiple Micro UAV Testbed, Robotics and

Automation Magazine, IEEE (Volume: 17 Issue: 3), 2010

24. I. Sonnevend, Analysis and model based control of a quadrotor helicopter,

Pazmany Peter Catholic University, Budapest, Hungary, 2010

http://mikrokopter.de/ucwiki/en/BL-Ctrl_V1.2
http://www.quadroufo.com/product_info.php?cPath=2_9&products_id=47&osCsid=kf0uvl36ffqnkkaefvi9plufg5
http://www.quadroufo.com/product_info.php?cPath=2_9&products_id=47&osCsid=kf0uvl36ffqnkkaefvi9plufg5
http://www.quadroufo.com/product_info.php?products_id=43&osCsid=dh0c5ejh8ss2a7q63l4bl0jp94
http://www.quadroufo.com/product_info.php?products_id=43&osCsid=dh0c5ejh8ss2a7q63l4bl0jp94
http://www.atmel.com/tools/EVK1100.aspx
http://www.invensense.com/mems/gyro/imu3000.html

82

25. Description of Oemichen’s helicopter, access 12.08.2013 available:

http://www.aviastar.org/helicopters_eng/oemichen.php

26. Description of De Bothezat helicopter, access 12.08.2013 available:

http://www.aviastar.org/helicopters_eng/bothezat.php

27. Fire-fighter quadrocopter prototype, access 13.08.2013 available:

http://www.jurmol.com/uav.html

28. Ocean rescue drone, access 13.08.2013 available:

http://www.wired.co.uk/news/archive/2013-03/27/iranian-rescue-robot

29. A swarm of nano quadrocopters, access 13.08.2013 available:

http://www.youtube.com/watch?v=YQIMGV5vtd4

30. V. Kumar, Robots that fly and cooperate, GRASP, University of Pennsylvania,

access 13.08.2013 available:

http://www.youtube.com/watch?v=4ErEBkj_3PY

31. R. D’Andrea, The astounding athletic power of quadrocopters, Zürich

University, access 13.08.2013 available:

http://www.youtube.com/watch?v=w2itwFJCgFQ

http://www.aviastar.org/helicopters_eng/oemichen.php
http://www.aviastar.org/helicopters_eng/bothezat.php
http://www.jurmol.com/uav.html
http://www.wired.co.uk/news/archive/2013-03/27/iranian-rescue-robot
http://www.youtube.com/watch?v=YQIMGV5vtd4
http://www.youtube.com/watch?v=4ErEBkj_3PY
http://www.youtube.com/watch?v=w2itwFJCgFQ

83

Appendix A Calculations

 1. Calculation feedback coefficients for pitch orientation: test bench 1

State-space form from eq. (4.10) looks like:

0 1

0mg

A
k

 
  
 

,
0

B
k

 
  
 

,  1 0C  , (a.1)

Characteristic equation can be obtained by combining eq. (a.1) with eq. (3.18) and

eq. (3.7) as:

  2
0 1 0 1 0 1

7.0714* 25* * 7.0714*
0 0 0c

mg mg mg

A A A I
k k k


     

          
     

0 0 7.07141 0 25 0
25*

0 7.0714* 00 1 0 25

mg

mg mg

k

k k

      
          

      

25 7.0714

7.0714* 25

mg

mg mg

k

k k

 
  

 

, (a.2).

The 2
nd

 element from eq. (3.5) can be calculated as:

 
1

*B A B


,(a.3)

 where
0 1 0

* *
0 0mg

k
A B

k k

     
      

    
, so

 
1

1 0 0
*

0 0

k k
B A B

k k



    
    
   

, (a.4).

Thus, from eq. (a.2) and (a.4), eq. (3.5) can be rewritten as:

       
1 25 7.07140

0 1 * * * 0 1 * *
7.0714* 250

mg

c

mg mg

kk
K B A B A

k kk


   
        

84

 
 

 
 

7.0714* * 25 *
0 1 * 25 * 7.0714*k

25 * 7.0714*k

mg mg

mg

mg

k k k k
k k

k k

 
    
  

 

, or result

in short form is:

 [1 2] 25 * 7.0714*kmgK K K k k   
 

, (a.5).

85

Appendix B. Scripts

List of the files.

 Name Description

 JforQuad Function for calculation ToI (eq. 2.19)

01 fullMM.mdl Implementation of the MM (fig. 2.16).

01 fullMM_Int.m Initial conditions for simulation the MM

02

linMM.mdl

Implementation of the MM after linearization

(eq. 3.13 and 3.39)

02 linMM_Int.m Initial conditions for simulation linearized MM

Dpoles.m

Function for calculation desired poles of 2
nd

order system, based on settling time and

damping ration coefficients

 AckCont.m Function for calculation feedback coefficients of

2
nd

 order system, based on TF in state-space.

03

Att.mdl

Implementation of attitude control for linearized

MM

03 Att_Int.m Initial conditions for attitude control

04

Pos.mdl

Implementation of position control

04 Pos_Int.m Initial conditions for position control

DOF2_Ver.m

Script for verification coefficients k and kmgk

 UnresMotRad.mdl

Simulink model for test bench 1 pitch angle

 2013_04_24_processed.xlsx

file with data from experiment

Functions of blocks incorporated in the mathematical model in Simulink: file

‘fullMM.mdl’.

function for finding angular acceleration of the quadrocopter (eq. 2.17)
function [dtOmx, dtOmy, dtOmz] = EulerRot(taux, tauy,tauz, Omx, Omy, Omz, J)
%#codegen
Jx = J(1,1); Jy = J(2,2); Jz = J(3,3);

86

dtOmx = (taux-(Jz-Jy)*Omy*Omz)/Jx;
dtOmy = (tauy-(Jx-Jz)*Omx*Omz)/Jy;
dtOmz = (tauz-(Jy-Jx)*Omx*Omy)/Jz;

function 2 changing in orientation angles based on angular velocity (eq. 2.18)
function [dphi1, dtheta1, dpsi1] = OrientAngles(omx, omy,omz,phi, theta, psi)
%#codegen

dphi1 = [1 sin(phi)*tan(theta) cos(phi)*tan(theta)]*[omx omy omz]'
dtheta1 = [0 cos(phi) -sin(phi)]*[omx omy omz]'
dpsi1 = [0 sin(phi)/cos(theta) cos(phi)/cos(theta)]*[omx omy omz]'

function 3 TF for blades (example for 2
nd

 blade eq. 2.24, 2.25)

function [T2,H2] = TandH2(u,b)
%#codegen

T2 = b(1)*u;
H2 = b(2)*u;

function 4 transfer thrust force from b b bx y z to xyz (eq. 2.31)
function [Tx,Ty,Tz] = TransTtoXYZ(Tb, phi,theta,psi)
%#codegen

Tx = (sin(theta)*cos(psi) + sin(phi)*cos(theta)*sin(psi))*Tb;
Ty = (sin(theta)*sin(psi) - sin(phi)*cos(theta)*cos(psi))*Tb;
Tz = cos(phi)*cos(theta)*Tb;

function 2.1 Dpoles

calculation desired poles for 2nd order system, based on required settling time and

overshoot
% function for calculation desired poles for 2nd order system
% - inputs: settling time, sec; overshooting, in %;
%
% - outputs: two poles
% 09.07.2013 Alex

function [poles] = Dpoles1(SetTime , OverSh)
% set input arguments
 if ~exist ('SetTime','var'), SetTime = 0.8; end
 if ~exist ('OverSh','var'), OverSh = 4.32; end

 % transfer overshooting from % to real value
 overshD=OverSh/100; % overshooting in %

 % calculate parameters for 2nd order TF

87

 % damping ratio
 zeta=abs(log(overshD)*1/pi*sqrt(1/((log(overshD)/pi)^2+1)));
 % natural frequency
 wn=4/(SetTime*zeta);

 % calculate desired poles
 RealPart=-zeta*wn; ImPart=wn*sqrt(1-zeta^2);
 poles = [RealPart+ImPart*1i RealPart-ImPart*1i]; % desired poles

function 2.2 AckContSim

calculation feedback coefficients for 2
nd

 order system based on Ackerman equation
% function for calculation feedback coefficients for 2nd order system
% - inputs: Ts, a0, b0, a1, b1
%
% - outputs: vector K with two coefficients k1 and k2
% 09.08.2013 Alex

function [K] = AckContSim(Ts, b0, a0, a1)
% set input arguments
 if ~exist ('Ts','var'), Ts = 0.8; end
 if ~exist ('b0','var'), b0 = 1; end
 if ~exist ('a0','var'), a0 = 0; end
 if ~exist ('a1','var'), a1 = 0; end

%***********
% state -space form
% *************
 A=[0 1; a0 a1];
 B=[0; b0];
 C=[1 0];
 D=[0];

% find desired poles
 Dp = Dpoles(Ts);
% find feedback coefficients
 K=acker(A,B,Dp)

% simulation
 SysF = ss((A-B*K), B,C, D);
figure(1)
initial(SysF, [1;0])
grid on
hold on

Script 3.1 ‘DOF2_ver.m’
% 2013-08-05
% Task
 % unrestricted motion

88

 % The quadro was inclined and released. The data during the falling

(unrestricted motion)
 % were recorded. Records are saved in file 2013_04_24_processed.xlsx.

% Description
 % Code of this file
 % - step 1 processes data and plots data from file

2013_04_24_processed.xlsx
 % - step 2 calculates unrestricted motion based on model
 % - step 3 find optimal coefficient kmg for the model

clear all
close all
% STEP 1
% put data from file in variable 'data'
 test_data = importdata('2013_04_24_processed.xlsx');
 data=test_data.data.Tabelle1
% transfer degree in radian
dTr=pi/180;

% data from test 1
 % create time and angle vectors
 t0=data(1,1);
 time1=zeros(6,1);
 for i=1:6
 time1(i,1)=data(i,1)-t0;
 end
 vector_angularPosition1=data(1:6,2)*dTr;

 % plot time and angle vectors
 figure(1)
 p1=plot(time1,vector_angularPosition1,'-*')
 ylabel('AngularPosition,rad')
 xlabel('time, s')
 grid on
 set(p1,'Color','red','LineWidth',1)

% test 2
 % create time and angle vectors
 t0=data(1,4);
 time2=zeros(5,1);
 for i=1:5
 time2(i,1)=data(i,4)-t0;
 end
 vector_angularPosition2=data(1:5,5)*dTr;

 % plot time and angle vectors
 hold on
 p2=plot(time2,vector_angularPosition2,'-*')
 set(p2,'Color','green','LineWidth',1)

% test 3
 % create time and angle vectors
 t0=data(1,7);
 time3=zeros(4,1);

89

 for i=1:4
 time3(i,1)=data(i,7)-t0;
 end
 vector_angularPosition3=data(1:4,8)*dTr;

 % plot time and angle vectors
 hold on
 p3=plot(time3,vector_angularPosition3,'-*')
 set(p3,'Color','blue','LineWidth',1)

% test 4
 % create time and angle vectors
 t0=data(1,10);
 time4=zeros(2,1);
 for i=1:2
 time4(i,1)=data(i,10)-t0;
 end
 vector_angularPosition4=data(1:2,11)*dTr;

 % plot time and angle vectors
 hold on
 p4=plot(time4,vector_angularPosition4,'-*')
 set(p4,'Color','yellow','LineWidth',2)

% STEP 2
% intial conditions for kmg calculation
 m=730*10^-3 ; % kg
 mM = 57*10^-3; % mass of one motor
 l = 21*10^-2; % m
 J = JforQuad(m, mM, l, l);
 Jy = J(1,1); % 0.0139
 b= 0.11; % m
 g=9.8;
 Jtb1=Jy+m*(b)^2; % 0.0227
 kmg=m*g*b/Jtb1; % 34.64

amountOfTests=4; % how many times experiments were made
%prepare initial condition for each experiment
phiInitial=zeros(amountOfTests,1);
 phiInitial(1,1)=vector_angularPosition1(1,1);
 phiInitial(2,1)=vector_angularPosition2(1,1);
 phiInitial(3,1)=vector_angularPosition3(1,1);
 phiInitial(4,1)=vector_angularPosition4(1,1);
% for comparing data simulation time = 0.5 seconds is enough
 Ts = 0.01;
 n=50;
 integrator= 'ode45';
 sim_model = 'UnresMotRad';

 % input and output signals
 y_data = zeros(n,amountOfTests);
 t_data = zeros(n,amountOfTests);

 % Simulation
 for jj=1:amountOfTests

90

 phi= phiInitial(jj,1)
 simoptions = simset('Solver',integrator,'MaxRows',0);
 eval(['[sizes,x0] = ' sim_model '([],[],[],0);']);
 ref_old = 0;
 t = -Ts;
 for i=1:n,
 t = t + Ts;
 %simulation
 utmp=[t-Ts,ref_old;t,ref_old];
 simoptions.InitialState=x0;
 [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp);
 x0 = x0(size(x0,1),:)';
 y = y(size(y,1),:)';
 % save output and time value for current step
 y_data(i,jj) = y;
 t_data(i,jj) = t;
 end
 figure(1);
 axis([0 0.6 0 0.4])
 hold on
 title({'Simulation with theoretical kmg=34.64','Colorful lines are data

from experiment, Black ones from simulation'}) ;
 h=plot(t_data(:,jj)',y_data(:,jj)');
 set(h,'LineWidth',1,{'Color'},{'black'});
 xlabel('time, s'); ylabel('AngularPosition,radian');
 grid on
 end

 % STEP 3 optimization kmg
 % as soon as model with kmg=33.5455, calcualted based on theory,
 % shows the behaviour of the system not precise, the new value of kmg
 % should be found.
 % after several attepts it was found that optimal value is around
 kmg=22.3006;

 % to pove this
 % plot experiment data in new figure (for example fig.2)
 figure(2)
 p1=plot(time1,vector_angularPosition1,'-*')
 title({'Simulation with optimal kmg=22.3006','Colorful lines are data

from experiment, Black ones from simulation'}) ;
 ylabel('AngularPosition,rad')
 xlabel('time, s')
 grid on
 set(p1,'Color','red','LineWidth',1)
 hold on
 p2=plot(time2,vector_angularPosition2,'-*')
 set(p2,'Color','green','LineWidth',1)
 hold on
 p3=plot(time3,vector_angularPosition3,'-*')
 set(p3,'Color','blue','LineWidth',1)
 hold on
 p4=plot(time4,vector_angularPosition4,'-*')
 set(p4,'Color','yellow','LineWidth',2)

91

% simulate the system with new kmg=22.3006

% for comparing data simulation time = 0.5 seconds is enough
Ts = 0.01;
n=50;
integrator= 'ode45';
sim_model = 'UnresMotRad';

% input and output signals
y_data = zeros(n,amountOfTests);
t_data = zeros(n,amountOfTests);

%**************
% Simulation
for jj=1:amountOfTests
 phi= phiInitial(jj,1)
 simoptions = simset('Solver',integrator,'MaxRows',0);
 eval(['[sizes,x0] = ' sim_model '([],[],[],0);']);
 ref_old = 0;
 t = -Ts;

 for i=1:n,
 t = t + Ts;

 %simulation
 utmp=[t-Ts,ref_old;t,ref_old];
 simoptions.InitialState=x0;
 [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp);
 x0 = x0(size(x0,1),:)';
 y = y(size(y,1),:)';

 % save output and time value for current step
 y_data(i,jj) = y;
 t_data(i,jj) = t;

 end
 figure(2);
 hold on
 axis([0 0.6 0 0.4])
 h=plot(t_data(:,jj)',y_data(:,jj)');
 set(h,'LineWidth',1,{'Color'},{'black'});
 xlabel('time, s'); ylabel('AngularPosition,radian');
 grid on
end

