Julius-Maximilians-

Fakultit fiir Mathematik und Informatik UWNUI nglsjlgé T

Julius-Maximilians-Universitit Wiirzburg

3N

L
| ¢

z

(@)
&

N2
e

Lehrstuhl fiir Informatik 8 Prof. Dr. Sergio Montenegro

]

Informationstechnik fiir Luft- und Raumfahrt @%ﬁ

Bachelorarbeit

Implementierung und Evaluierung verschiedener Algorithmen zur

autonomen Suche eines Quadrokopters

Vorgelegt von
Paul Barth

Matr.-Nr.: 1766250

Priifer: Prof. Dr. Sergio Montenegro

Betreuende wissenschaftliche Mitarbeiter: Dipl.-Ing. Nils Gageik

Wiirzburg, 12.08.2013

Erklarung

Ich versichere, dass ich die vorliegende Arbeit einschlieBlich aller beigefiigter Materialien selbst-
standig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Alle Stellen, die wortlich oder sinngemif aus verdffentlichten oder unverdffentlichten Werken
entnommen sind, sind in jedem Einzelfall unter Angabe der Quelle deutlich als solche kenntlich
gemacht. Die Arbeit ist in gleicher oder dhnlicher Form noch nicht als Priifungsarbeit eingereicht
worden.

Mir ist bekannt, dass Zuwiderhandlungen gegen diese Erkldrung und bewusste Tauschungen die

Benotung der Arbeit mit der Note 5.0 zur Folge haben kann.

Wiirzburg, 12.08.2013

Paul Barth

Aufgabenstellung

Die Fortschritte im Bereich Sensorik und Mikrotechnik ermdglichen heutzutage den kostengiin-
stigen Bau kleiner unbemannter Luftfahrzeuge (UAV, unmanned aerial vehicle, Drohne) wie Qua-
drokopter. Die Forschung und Entwicklung dieser Systeme wurde in den letzten Jahren aufgrund
der vielfiltigen Anwendungsmoglichkeiten stark vorangetrieben. Wenngleich im Bereich UAV
viel geforscht wurde, ist das Thema Autonomes Flugobjekt ldngst noch nicht vollstindig behan-
delt. Der Aufbau eines eigenen autonomen Systems wird daher am Lehrstuhl Aerospace Informa-
tion Technology der Uni Wiirzburg erforscht und erprobt. Beim vom Universitdtsbund geforder-
ten Projekt Lebensretter mit Propellern wird ein System entwickelt, das autonom Réume durch-
suchen, Objekte finden sowie deren Position auf einer Karte angeben kann. Im Rahmen dieses
Forschungsvorhabens sind geeignete Verfahren zur Koordination der Suche (Suchalgorithmen)
zu untersuchen.

Hauptaugenmerk dieser Arbeit ist die Entwicklung eines Algorithmus, der die Suche des Qua-
drokopters steuert. Denkbar ist die Implementierung iiblicher Algorithmen zur Suche wie z.B.
Breiten- und Tiefensuche. Die Arbeit soll Vor- und Nachteile unterschiedlicher Suchalgorithmen
bezogen auf diesen speziellen Anwendungsfall und unter Beriicksichtigung der systemspezifi-
schen Rahmenbedingungen (Sensorik mit Fehlern, Instabiles System & Regelung) behandeln.
Die entwickelten Systeme sind in Software per Simulation und am realen System zu evaluieren.
Die Entwicklung des realen Systems, das Sensorik und Software zur Positionserfassung, Kollisi-
onsvermeidung und 6DOF Steuer- und Regelung besitzt, ist nicht Teil der Aufgabe. Im Rahmen
der Arbeit ist zunédchst der Stand der Technik im Bereich autonome Suche aufzuarbeiten und
zu beschreiben. Die implementierte Losung ist in das bestehende System zu integrieren und an
diesem ausgiebig zu evaluieren. Die Arbeit ist umfangreich zu dokumentieren.

Aufgabenstellung (Stichpunktartig):
* Aufarbeitung Stand der Technik: Autonome Suche

* Implementierung verschiedener Suchalgorithmen

¢ Simulation

Einbettung QT, Integration in Quadrokopter

Evaluierung am Quadrokopter

Dokumentation

Zusammenfassung

Mit grundlegenden Elementen aus der allgemeinen Graphensuche, werden in dieser Arbeit meh-
rere Suchalgorithmen auf Basis eines Quadrokopters implementiert und getestet. Ausgegangen
wird von einer Karte bestehend aus Zellen. Diese Zellen kénnen entweder frei oder belegt sein.
Die Karte soll komplett abgesucht werden. Fiir dieses Absuchen werden durch verschiedene Al-
gorithmen Wegpunkte erzeugt. Aufgrund der Komplexitit von Karten mit Objekten und Wén-
den, wurde in dieser Arbeit von einer Karte ausgegangen, bei der keine Hindernisse vorhanden
sind. Dafiir wurde eine grafische Oberfliche in QT implementiert. In dieser kann ein beliebi-
ger Suchalgorithmus, sowie eine beliebige Startposition ausgewihlt werden, wofiir Wegpunkte
erstellt werden. Weitergegeben werden die Wegpunkte iiber eine Drahtlosverbindung an einen
Quadrokopter. Fiir drei Suchalgorithmen (Breitensuche, Tiefensuche und ein Zick-Zack-Muster)

wurden ausfiihrlich Versuche mit unterschiedlichen Parametern durchgefiihrt und evaluiert.

Inhaltsverzeichnis

Inhaltsverzeichnis

|1. Elnleltun§|

2. _Stand der Wissenschatft

[2.1. Grundlagen fureme Suchel o0 oL

2.2.2. Heuristisch hverfahren|

[2.2.2.1. Bergsteigen|

[2.2.2.2. Optimistisches Bergsteigen|
[2.2.2.3. Gierige Suche] o Lo

231

Flugzeugahnliche UAVs|o o000

n32.

Helikopterahnliche UAVs|

O o0 N 9 U

10
10
11
11
12
12
12
13
14

Inhaltsverzeichnis ii

[3.3. Wegpunkt-basiertes Suchen|. o oo L 0oL 16
[3.3.1. Problematik der Austuhrung| 0oL 17

[3.3.2. Losungsansitze| 18

4. Implementierung| 20
4.1, Uberblickl 20
@4.2. Anpassung der Suchverfahren| oo oL, 21
M3 GUI 22
4.3.1. Benutzte Suchalgorithmen| 0L, 25

4.3.2. Weitere iterative Suchalgorithmen| 28

4.4, Kartenerstellungs-Tool| 30

(5. Evaluierung| 33
5L _Uberblickl 33
0.2, Simulation|. 33
0.2.1. Breitensuchel 34

.22, Tiefensuchel. oo 35

0.23. Zick-Zack-Musterl L 36
BIPraxisl « - o o vt 37
0.3.1. Breitensuchel oo o 38

B32. Tefensuchel 42

0.3.3. Zick-Zack-Musterl 46

[5.4. Zusammenfassung| e 49

6. Diskussion und Ausblick 50
[6.1. Suche in komplexen Umgebungen| 50

[6.2. Kombination von Suchalgorithmen mit Objekterkennung und Kollisionserkennung| 51

[6.3. Feedback uiber bereits abgesuchte Bereiche] 51
0.4, Simulation von Heuristischen Suchenlo oo 51
[6.5. Anpassen von iterativ generierten Wegpunkten|.00 52

7 Literai ichnis 53

Inhaltsverzeichnis

iii

55

Einleitung 1

1. Einleitung

Der Schwerpunkt dieser Arbeit liegt darin fiir einen Raum ohne Hindernisse verschiedene Algo-
rithmen zur Wegpunktgenerierung zu testen. Der Hintergrund dazu ist, sich in einem unbekannten
Raum anhand von reinen Onboard-Komponenten zurecht zu finden und diesen Raum systema-
tisch nach Objekten abzusuchen. In einem spéteren Stadium soll der Quadrokopter anstelle eines
Feuerwehrmannes in ein brennendes Haus fliegen und dort nach Menschen suchen kénnen.

Fiir das Projekt Lebensretter mit Propellern wird ein kostengiinstiges System eines Quadroko-
pters der Universitdt Wiirzburg entwickelt. Dafiir werden sowohl in Software als auch Hardware
entsprechende Komponenten hinzugefiigt. Bisher ist der Quadrokopter in der Lage eine vorgege-
bene Position autonom anzufliegen, ein oder mehrere Objekte (farbige Kugeln) per Webcam zu
erfassen und eine Karte anhand von Ultraschallsensoren zu erstellen. Ebenfalls ist eine Kollisi-
onserkennung bereits implementiert.

Fiir eine Umgebung in einem brennenden Haus miissen mehrere Komponenten des bisherigen
Projektes kombiniert werden. Es wird eine Methode des SLAM (Simultanious Localization And
Mapping) benutzt werden, bei der man gleichzeitig eine Karte seiner Umgebung anhand von
Sensoren erstellen und seine eigene Position ermitteln wird. Bereits wihrend man diese Kar-
te erstellt, miissen Wegpunkte nacheinander abgeflogen werden um eine vollstindige Karte zu
erhalten. Auch wihrend dieses Erstellens wird je nach Leistung des Quadrokopters die Objekter-
kennung parallel laufen konnen. Das hei3t manche Bereiche der Karte werden bereits allein durch
das Erstellen der Karte nach Objekten, beziehungsweise Menschen abgesucht sein. Zu beachten
ist, dass der Quadrokopter dynamisch eine Kollisionserkennung und -vermeidung umsetzen kon-
nen werden muss, da ein brennendes Haus keine statische Umgebung sein wird. Die Verdnderung
von Winden und Objekten soll dynamisch in der intern gespeicherten Karte aktualisiert werden.
Die Wegpunkte, egal ob zum Erstellen der Karte oder zum Absuchen dieser, sollten sich abhéngig

von der Kollisionserkennung und der bisher abgesuchten Bereiche (siehe dynamisch verén-

Einleitung 2

dern konnen. Ebenfalls sollte der Quadrokopter in der Lage sein, bei nicht genauem Erkennen des
Suchobjektes, zur selben Stelle zuriickzukehren,um eine genauere Betrachtung zu machen (zum
Beispiel Flughohe veringern um ein besseres Bild zu bekommen).

Die komplette Verarbeitung dieser Aufgaben muss in Echtzeit funktionieren. Dafiir muss eine

gewisse Rechenleistung auf dem Quadrokopter garantiert werden.

Stand der Wissenschaft 3

2. Stand der Wissenschaft

Suchvorginge und -algorithmen sind jeden Tag allgegenwirtig: Beginnend im Alltag bei Kreuz-
wortrétseln, dem Rubik’s Cube und automatisch einparkenden Autos, bis hin zu Bereichen in
Wissenschaft und Forschung wie bei menschenéhnlichen Robotern, GPS-navigierenden UAVs
(unmanned aerial vehicle, Drohnen), kiinstliche Intelligenz in Computerspielen, Andockmané-
ver im Weltraum aber auch in der ,,computational biology* [LaValle, 2006] zur Darstellung von
chemischen Formeln. [LaVallel, 2006] Fiir jedes dieser Gebiete miissen grundlegende Suchkon-
zepte individuell angepasst und optimiert werden. Einige dieser Suchen werden im Folgenden

vorgestellt.

2.1. Grundlagen fur eine Suche

Wie wird eine Suche definiert? Was ist eine Suche? Allgemein ist ,,.Suche* ein sehr abstrak-
ter Begriff und wird hiufig in der Graphentheorie verwendet. Es gibt Zustinde (Knoten), die
gewisse Informationen beinhalten um festzustellen, wann ein Zielzustand erreicht ist. AuB3er-
dem gibt es Kanten, die den Ubergang von einem Knoten zu einem weiteren Knoten be-
schreiben. Meist geht man von einer baumférmigen Struktur aus, bei der die Suche bei der
Wurzel beginnt und iiber einen oder mehrere der Wege einen Zielzustand erreicht. Es las-
sen sich viele Probleme zu einer abstrakten Graphstruktur umformulieren. Um Suchverfah-
ren zu vergleichen hat man im Allgemeinen zwei Gréen. Es wird einerseits die Zeit (Time)
bis der Zielknoten erreicht wurde, andererseits der Speicherbedarf (Space) fiir den bisher zu-
riickgelegten Weg zum Zielknoten betrachtet. Weiterhin ist es wichtig, ob ein Suchalgorith-
mus den Suchraum vollstindig absucht und ob eine optimale Losung, das heillit der vom Start-
knoten am wenigsten entfernte Zielknoten, gefunden wird. Es miissen jedoch viele Vereinfa-

chungen des Graphen getroffen werden, um eine einheitliche Suchumgebung vorauszusetzen.

Stand der Wissenschaft 4

1. Sei L die Liste der Startknoten fiir das Problem
(ab jetzt wird L immer die Liste der noch nicht {iberpriiften Knoten darstellen).

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wihle einen Knoten # aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls ersetze in L den Knoten n durch seine Nachfolgeknoten.
Markiere dabei die neuen Knoten mit dem jeweils zugehorigen Pfad vom Startknoten.

5. Weiter mit Schritt 2!

Abbildung 2.2.: Generische Suche [|Go6rz, 2003

Hier wird von einer Baumstruktur ausgegangen, bei der ein Verzwei-
gungsgrad b angibt, wie viele Kinderknoten aus jedem Elternknoten
hervorgehen. Jede Ebene von Knoten befindet sich auf einer bestimm-
ten Tiefe d, die auch als Abstand vom Wurzelknoten gesehen werden
kann. Die Wurzel befindet sich auf Tiefe d = 0 (Abbildung[2.1).
Als Grundbaustein fiir die hier betrachteten Suchverfahren kann man
einen leicht erweiterbaren Algorithmus festlegen (Abbildung[2.2). Bei Abbildung 2.1.: Suchbaum
diesem Algorithmus ist der Zustandsraum in Form von Knoten gege- EE; d:3b=2
ben. Man verwaltet den Weg, das heif3t die bisher noch nicht iiberpriif-
ten Knoten, mit einer Liste L.

Neben dem regulidren Vorgehen einer Suche vom Start- zum Zielknoten kann man bei geniigend
Informationen iiber den Zielzustand und unter der Vorraussetzung, dass die Ubergangsoperatoren
invertierbar sind, die Suche auch umkehren. Das hei3t man vertauscht Start- und Zielknoten und

exploriert den Suchraum von der anderen Seite. Einige Suchprobleme lassen sich auf diese Weise

einfacher und schneller 16sen [|Gorz, 2003]].

2.2. Autonome Suchverfahren

Bei Graphensuchen gibt es zwei verschiedene Gruppen fiir Suchverfahren, die sich durch die

Informationslage beziiglich des Zielzustandes unterscheiden. Bei uninformierten Suchverfahren

Stand der Wissenschaft 5

sind wihrend des Suchvorgangs keine Informationen iiber die Lage des Zielzustands vorhanden.
Das heifit man muss, um den Zielzustand zu erreichen, den vorhandenen Graphen vollstindig
systematisch durchsuchen und dabei einen moglichst giinstigen Weg vom Wurzelknoten zum
Zielknoten ermitteln.

Die informierten Suchverfahren, auch heuristische Suchverfahren genannt, haben bereits von An-
fang an die Position des Zielzustands gegeben. Dies ist zum Beispiel der Fall bei einem Parkma-
nover. Man weil3 genau an welcher Stelle man einparken will, und muss nur noch einen Weg
zum Parkplatz finden. Informierte Suchverfahren beschiftigen sich also hauptsichlich damit den
geringst moglichen Aufwand, um den Zielknoten zu erreichen, zu ermitteln (Stichwort Kosten).
Hier steht also die Pfadfindung (Pathfinding) im Vordergrund [Patnaik, 2006],[Siegwart et al.,
2011]).

2.2.1. Uninformierte Suchverfahren

Im Allgemeinen haben uninformierte Suchverfahren einen deutlich groeren Speicherbedarf fiir
die Liste der zu betrachtenden Knoten, als heuristische Suchverfahren, da man hierbei den ge-
samten Suchraum betrachten muss. Der Zeitbedarf ist dementsprechend bei Weitem grofer als
der Zeitbedarf einer heuristischen Suche, da eben nicht der kiirzeste Weg vom Startknoten so-
fort gefunden werden kann, sondern zuerst nach dem Ziel "gesucht"werden muss. Hier gilt es

stukturiert und sinnvoll den Suchraum nach einem Ziel zu durchforsten.

2.2.1.1. Breitensuche

Abbildung 2.3.: Beispiel: Breitensuche [Kleiner und Nebel, 2013

Die Breitensuche (Breadth-First-Search, kurz BFS) wird dadurch charakterisiert, dass die Su-

che ebenenweise (also die Breite priorisierend) den Suchgraph absucht (Abbildung [2.3). Dies

Stand der Wissenschaft 6

1. Sei L die Liste der Startknoten fiir das Problem.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wihle den ersten Knoten n aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und fiige seine Nachfolgeknoten am Ende von L an.
Markiere dabei wieder die neuen Knoten mit dem jeweils zugehorigen Pfad vom Start-
knoten.

5. Weiter mit Schritt 2!

Abbildung 2.4.: Breitensuche [Gorz, [2003]]

geschieht indem man den generischen Suchalgorithmus aus Abbildung [2.2] dahingehend veriin-
dert, dass man nicht mehr einen willkiirlichen Knoten der Liste betrachtet, sondern den ersten.
Weiterhin werden zu dem aktuell betrachteten Knoten die Kinderknoten am Ende der Liste der zu
betrachtenden Knoten einfiigt. Daraus ergibt sich ein Suchalgorithmus der jeden Ring vom Wur-
zelknoten aus absucht (Abbildung [2.4)). Da die Breitensuche ebenenweise vorgeht, wird, falls es
mehrere Zielknoten gibt, derjenige Zielknoten zuerst gefunden, der den geringsten Abstand zum
Wurzelknoten hat. AuBBerdem wird mit einer Breitensuche der Suchraum vollstédndig abgesucht.

Der Speicherbedarf fiir die Breitensuche ist
Space(BFS) = b?

wobei b der Verzweigungsgrad und d die Tiefe des Suchbaumes sind. Das hei3t der Speicherbe-
darf steigt ,, exponentiell in der Tiefe des Suchbaumes!* [Gorz, 2003
Nachdem man fiir die Breitensuche ebenenweise den Graph absucht, ergibt sich fiir die Annahme,

dass der Zielknoten in der untersten Ebene des Graphen liegt, ein worst-case Zeitbedarf von:
Time(BFS) = O(b")

[[Gorz, [2003]]

Stand der Wissenschaft 7

2.2.1.2. Gleiche-Kosten-Suche

Hiufig sind die Kanten eines Graphen mit einer Kosten-Variable c¢(n — n’) beschriftet, die je
nach Aufwand von einem Zustand n zum néchsten Zustand n’ zu wechseln, unterschiedlich grof3
ist. Die Kosten konnen sowohl bei uninformierter als auch bei informierter Suche als Unter-
stiitzung des Suchverfahrens verwendet werden. Bei heuristischen Suchen konnen die Kosten
gewisse Informationen enthalten, beispielsweise wie weit man vom Zielknoten aktuell entfernt
ist. Bei uninformierten Suchen ist zu iiberlegen, wie man die Kanten sinnvoll beschriftet. Bei der
Breitensuche konnte man jede Kante mit 1 beschriften, da die Kosten zur optimalen Losung da-
mit eindeutig ermittelt werden [[Gorz, |2003[]. Gleiche-Kosten-Suche expandiert vorrangig zuerst
diejenigen Knoten, zu denen die Kosten der entsprechenden Kanten méglichst gering sind. Hier-
bei ist zu beachten, dass Kosten niemals kleiner als eine bestimmte positive untere Schranke ¢
werden.

cln—=n)>e>0

Bei Suchriaumen, die keine Bidume sind, konnen mehrere Pfade zu dem selben Knoten fithren
(zum Beispiel Zyklen). In diesem Fall wird beim zweiten Betrachten des Knotens entschieden
welcher Pfad geringere Kosten vom Startknoten besitzt, und der andere Pfad mit hheren Kosten

geloscht [Gorz, 2003]].

2.2.1.3. Tiefensuche

Betrachtet man die Breitensuche aus Kapitel 2.2.1.1] ist die Tiefensuche (Depth-First-Search,
kurz DFS) quasi das invertierte Gegenstiick. Hierbei werden nun nicht mehr Ebene fiir Ebene
die Kinderknoten expandiert, sondern priorisiert in die Tiefe gesucht. Das heift, der erste Knoten
in der Liste L wird expandiert, und die Kinderknoten werden direkt an den Anfang der Liste
gesetzt. Dies geschieht so lange, bis entweder der Zielknoten gefunden wird, oder der aktuell
betrachtete Knoten keine Kinderknoten mehr besitzt. Falls ein Knoten nicht weiter expandierbar
ist, geht die Suche so lange schrittweise zuriick bis ein bisher nicht betrachteter Kind-Knoten
auftaucht (Abbildung[2.5)).

Der Speicherbedarf der Tiefensuche ist deutlich kleiner als der der Breitensuche, da lediglich der

Stand der Wissenschaft 8

1. Sei L die Liste der Startknoten fiir das Problem.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wihle den ersten Knoten n aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und fiige seine Nachfolgeknoten am Anfang von L an.
Markiere dabei wieder die neuen Knoten mit dem jeweils zugehorigen Pfad vom Start-
knoten.

5. Weiter mit Schritt 2!

Abbildung 2.5.: Tiefensuche [Gorz, [2003]]

Pfad vom Startknoten bis zur Tiefe (maximale Tiefe des Graphen d) des Zielknotens gespeichert

werden muss.

Space(DFS) = O(d)

Fiir den Zeitbedarf des Suchverfahrens, zeigt die Tiefensuche im durchschnittlichen Suchablauf

(average-case) keine Veridnderung gegeniiber der Breitensuche (Berechnung [Gorz, 2003]]).
Time(DFS) = O(b%)

Tiefensuche ist im Gegensatz zur Breitensuche nicht immer vollstindig, da der Algorithmus ei-
nem unendlich langen Wurzelpfad folgen wiirde und somit nie den Zielknoten erreichen kann.
AuBerdem findet die Tiefensuche auch nur bedingt den optimalen Zielknoten. Da zuerst in die
Tiefe die Kinderknoten betrachtet werden, wiirde bei mehreren Zielknoten immer der Zielknoten

links unterhalb des optimalen Knoten zuerst geliefert werden [Gorz, [2003]].

2.2.1.4. Schrittweise vertiefende Suche

Da die Tiefensuche einen deutlich kleineren Speicherbedarf und in giinstigen Suchrdumen auch
einen besseren Zeitbedarf als die Breitensuche aufweist, hat man einen Algorithmus entwickelt,
der von beiden Suchalgorithmen die positiven Aspekte kombiniert. Die schrittweise vertiefen-
de Suche (iterative deepening, kurz ID) fiihrt im Wesentlichen eine ebenenweise Tiefensuche

durch (Abbildung [2.6)). Dies garantiert das Finden der optimalen Losung und gleichzeitig auch

Stand der Wissenschaft 9

1. Sei ¢ = 1 (c steht fiir die maximale Suchetiefe).
2. Sei L die Liste der Startknoten fiir das Problem.

3. Ist L leer, so erhohe ¢ um 1 und
mache weiter mit Schritt 2!
Andernfalls sei n der erste Knoten in L.

4. Stellt n einen Zielknoten dar,
so melde Erfolg und liefere den Pfad vom Startknoten zu n.

5. Andernfalls entferne » aus L.
Befand sich n auf einer Tiefe kleiner als c,
so fiige an den Anfang von L die Nachkommen von #n an.
Markiere dabei die neuen Knoten jeweils mit dem zugehorigen Wurzelpfad, der beim
Startknoten beginnt.

6. Weiter mit Schritt 3!

Abbildung 2.6.: schrittweise vertiefende Suche [Gorz, 2003]]

die Vollstindigkeit des Suchverfahrens mit dem Speicherbedarf der Tiefensuche und einen maxi-

mal dreifachen Zeitbedarf der Tiefensuche [[Gorz, 2003]).

2.2.2. Heuristische Suchverfahren

Bei uninformierten Suchen ist der Zeitbedarf immer O(bd) [Hopcroft und Ullman, [1979], solange
die Suche ,,Anspruch auf Vollstindigkeit erhebt“[|Gorz, 2003]. Das heif3t die Zeit steigt exponen-
tiell abhéngig von der Tiefe des Suchraumes. Um diesen Zeitbedarf deutlich zu verringern benutzt
man Informationen iiber den zu findenden Zielzustand, beziehungsweise Informationen iiber die
Suchumgebung. Man benétigt eine heuristische Schitzfunktion 4, welche eine Entscheidung fiir
einen Nachfolgeknoten herbeifiihrt, der ndher am Zielknoten ist als andere Knoten.

Im Folgenden liegt der Fokus der Suchalgorithmen darauf, moglichst schnell und effizient einen
Zielzustand zu erreichen. Hierbei kann jedoch nicht immer garantiert werden, dass der Aufwand
wirklich minimal ist. In manchen Fillen verfolgt der Algorithmus seinen Pfad in eine Sackgasse

und findet keinen Zielzustand [Lunze, [1994].

Stand der Wissenschaft 10

1. Sei L die Liste der Startknoten fiir das Problem, sortiert nach der jeweils geschitzten
Distanz h zum Ziel.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wihle den ersten Knoten n aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und fiige seine Nachfolgeknoten, sortiert nach der jeweils
geschitzten h Distanz zum Ziel, am Anfang von L an.
Markiere dabei die neuen Knoten mit dem jeweils zugehorigen Pfad vom Startknoten.

5. Weiter mit Schritt 2!

Abbildung 2.7.: Das Bergsteigerverfahren [|Go6rz, 2003

2.2.2.1. Bergsteigen

Das Bergsteigerverfahren (hill climbing with backtracking, kurz BTHC) nutzt die heuristische
Schitzfunktion um die expandierten Knoten zu sortieren. Beim Suchvorgang wird dann der Kno-
ten mit dem besten Wert an den Anfang der Liste gesetzt und demnach auch als nichstes betrach-
tet (Abbildung [2.7)). ,,.Lat man die heuristische Schitzfunktion jeden Knoten mit O bewerten, so
degeneriert die Bergsteigersuche zur reinen Tiefensuche.“[Gorz, [2003]] Vollstindigkeit kann in

unendlichen Suchrdaumen vom Bergsteigerverfahren nicht gewihrleistet werden [Gorz, 2003]].

2.2.2.2. Optimistisches Bergsteigen

Im Vergleich zum Bergsteigerverfahren, wird beim optimistischen Bergsteigen (strict hill clim-
bing, kurz SHC) nicht jeder Kindknoten in die Liste L aufgenommen, sondern nur der Beste (Ab-
bildung [2.8)). Dies senkt den Speicherbedarf des Verfahrens deutlich im Vergleich zum Bergstei-
gerverfahren. Dadurch, dass nicht alle Kinderknoten betrachtet werden, konnen einige Kompli-
kationen im Suchvorgang auftreten. Beispielsweise kann sich der Algorithmus in einem lokalen
Minimum, welches nicht zwingend ein Zielknoten sein muss, verrennen und dort nie wieder her-
ausfinden. Der Suchalgorithmus findet auch nur extrem langsam einen Zielknoten, wenn mehrere

oder alle Kinderknoten die gleiche heuristische Distanz haben (Plateus). Es gibt einige Ideen,

Stand der Wissenschaft 11

1. Sei L die Liste der Startknoten fiir das Problem, sortiert nach der jeweils geschitzten
Distanz h zum Ziel.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wihle den ersten Knoten n aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und fiige (nur) den besten Nachfolgeknoten von n (den
mit minimaler geschitzter Distanz h zum Ziel) am Anfang von L an.
Markiere dabei den neuen Knoten mit dem zugehérigen Pfad vom Startknoten.

5. Weiter mit Schritt 2!

Abbildung 2.8.: Optimistisches Bergsteigen [Gorz, 2003

um diese Probleme zu behandeln. Eine Variante beginnt, um nicht in einem lokalen Minimum

gefangen zu sein, die Suche an einer zufdlligen Stelle im Graphen wieder neu [Gorz, 2003].

Space(SHC') = O(b)

2.2.2.3. Gierige Suche

Die gierige Suche (greedy search, kurz GS) betrachtet nicht wie das Bergsteigerverfahren nur die
Nachfolgeknoten mit der heuristischen Schitzfunktion, sondern erweitert den Bereich auf den ge-
samten Graphen (Abbildung [2.9). Das heifit die Nachfolgeknoten werden danach ausgewihlt, ob
sie geschdtzt am nidhesten zum Zielknoten sind. Allgemein ist die Gierige Suche nicht vollstédn-
dig. Fiir endliche Suchrdume ist sie jedoch vollstindig. Der Speicherbedarf der Gierigen Suche

ist deutlich groBer als der des Bergsteigerverfahrens [Gorz, [2003].

2.2.2.4. A*-Suche

Wihrend die Gierige Suche und das Bergsteigerverfahren Schwierigkeiten mit lokalen Minima
hat, zieht der A* Algorithmus den kompletten Suchraum in Betracht und versucht einen mog-
lichst besten, also oben liegenden Knoten zu finden. Die heuristische Schitzfunktion wihlt den
Nachfolgeknoten abhingig von der Tiefe des Zielknotens und gleichzeitig den Knoten, welcher

schitzungsgemiB am nihesten zum Zielknoten liegt. In Abbildung [2.10] wird die Ausfiihrung des

Stand der Wissenschaft 12

1. Sei L die Liste der Startknoten fiir das Problem.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wihle denjenigen Knoten n aus L, der dem Ziel schdtzungsgemdfs am néich-
sten ist.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und fiige alle seine Nachfolgeknoten in die Liste L ein.
Markiere dabei wieder die neuen Knoten mit dem jeweils zugehorigen Pfad vom Start-
knoten.

5. Weiter mit Schritt 2!

Abbildung 2.9.: Gierige Suche [Go6rz, 2003]]

A* Algorithmus gezeigt. Fiir genauere Informationen zur Schitzfunktion und dem A* Algorith-

mus siehe [Gorz, [2003|], [Hart et al., [1968]] und [Lunzel, [1994]].

2.2.3. Chaosdrive

Roboter die im héuslichen Gebrauch niitzliche Aufgaben tibernehmen, wie zum Beispiel den
Rasen mihen, oder Staubsaugen, wird die Aufgabe der Suche mit Hilfe von Zufall deutlich ver-
einfacht. Das Prinzip ist so stupide wie einfach: Der Roboter fihrt geraudeaus, bis er eine Wand
oder kiinstliche Begrenzung trifft, dreht sich in einem zufélligen Winkel von der Wand weg und
fahrt dann weiter. [Sommer, 2008] Mit dieser Vorgehensweise kann nur auf eine unendlich lange
Zeit garantiert werden, dass der komplette Bereich abgesucht wurde. Durch den Faktor Zufall
kann man auch statistisch keine Versuche mit Chaosdrive auswerten. Man miisste sich damit zu-

friedengeben, dass der Roboter nur einen gewissen Teil des Suchgebiets besucht hat.

2.3. UAV Suchen

2.3.1. Flugzeugahnliche UAVs

Aufgrund der physikalischen Eigenschaften von flugzeugéhnlichen UAVs miissen Suchverfahren
moglichst lange Strecken geradeaus abfliegen. Als Muster zum Absuchen von Gebieten bietet

sich ein zeilenweises Abscannen der Umgebung an. Am Ende jeder Zeile wird dann eine 180 °

Stand der Wissenschaft 13

1. Initialisiere die Agenda L
mit dem Startknoten s fiir das Problem: L:={s}.

2. Initialisiere die Liste bereits erschlossener Knoten C mit ().
3. Ist L leer, so melde einen Fehlschlag.

4. Andernfalls wéhle denjenigen Knoten n aus L, fiir den

fln) = g(n) + h(n)

minimal ist (dabei bezeichne g(n)) die Kosten des giinstigsten Pfads vom Startknoten s
zu n, der bis jetzt gefunden wurde),
entferne n aus L und trage n in C ein.

5. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten s
Zu n.

6. Andernfalls fiige alle Nachfolgeknoten von n, die nicht schon in C enthalten sind, in
die Liste L ein.
Markiere dabei die neuen Knoten mit dem jeweils zugehorigen Pfad vom Startknoten
s.
Sollte einer der in L aufzunehmenden Nachfolgeknoten ¢ von n bereits in L enthal-
ten sein, so mache keine neue Kopie, sondern dndere die Markierung von c auf den
kiirzesten Pfad vom Startknoten s, der bis jetzt gefunden wurde.

7. Weiter mit Schritt 3!

Abbildung 2.10.: A*-Suche [Gorz, [2003]

Drehung (U-Turn) durchgefiihrt. Dieser U-Turn sollte au3erhalb des Suchbereichs liegen, da die
Kamera bei einer so scharfen Drehung nicht mehr exakt auf den Boden gerichtet wird [Bishop,

2010],[|Coleman et al., [2012].

2.3.2. Helikopterahnliche UAVs

Fiir helikopterdhnliche UAVs gibt es zwei unterschiedliche Anwendungsgebiete. Im Gegensatz zu
flugzeugidhnlichen UAVs konnen Helikopter auch im Indoor-Bereich arbeiten. Dies bringt sowohl
Vor- als auch Nachteile mit sich. Man ist im Inneren eines Gebédudes nicht mehr in der Lage
die Position iiber GPS zu lokalisieren. Man benétigt also die Moglichkeit seine eigene Position
festzustellen. Dafiir bietet sich SLAM (Simultanous Localization And Mapping) an. Um sich in
einer Umgebung zurecht zu finden kann man eine Kamera benutzen und mithilfe der Anderung

des Kamerabildes feststellen in welche Richtung man sich bewegt [Soundararaj etal., 2009].

Stand der Wissenschaft 14

Weiterhin werden fiir Abstandsmessungen der Umgebung bei einigen Projekten Laser-Sensoren
verwendet [|Grzonka et al., | 2009]]. Man muss innerhalb von Geb#uden, vor allem beim autonomen

Fliegen, den Fokus viel mehr auf Kollisionserkennung legen, als im Outdoor-Bereich.

2.4. Suchen mit mehreren Robotern

In [Sarid und Shapiro, [2009] wird ausfiihrlich eine Vorgehensweise fiir das Absuchen einer Um-
gebung mit Winden und Objekten mit mehreren bodenstindigen Robotern erklirt. Dabei wird die
Umgebung vom Startpunkt aus erst in den umgebendenden Kreis und dann von dort in weitere
Ringe nach aufen hin unterteilt. Jedem Roboter wird ein Bereich zum Absuchen zugeteilt. Der
Roboter nutzt eine Kollisionserkennung um nicht mit Winden oder anderen Robotern zu kollidie-
ren. Die einzelnen Gebiete werden per Tiefensuche vom Roboter abgesucht und dann per Kom-
munikation mit den anderen Robotern ein weiter auflen liegender, noch nicht zugewiesener Ring
erforscht. Fiir Quadrokopter gibt es die Moglichkeit des Formationsflugs, wobei die Quadrokopter
ebenfalls untereinander kommunizieren. Somit wére eine Suche mit mehreren Quadrokoptern in

einem dhnlichen Schema durchaus denkbar.

Konzept 15

3. Konzept

3.1. Uberblick

_ Erstellung einer
. entwickelte Karte durch
Komponenten Ultraschallsensoren
. Eestehendes
System

Kartenerstellungs-Toal

Einstellungen der
Simulation

Wegpunktgenerierung

Quadrokopter Kollisienserkennung

Objekterkennung

Abbildung 3.1.: Gesamtkonzept

Das Ziel dieser Arbeit ist, mithilfe einer iibergebenen Karte, fiir den Quadrokopter Wegpunkte
zu erstellen, welche diese Karte vollstindig absuchen. Um eine Karte zu erstellen gibt es neben
dem Mapping-Verfahren, welches in der Arbeit ,,Intelligentes Mapping fiir Indoor-Quadrokopter
von 2012]] angewandt wird die Moglichkeit, die Karte per GUI (Graphical User Inter-
face) selbst zu “zeichnen®. Die zu erzeugenden Wegpunkte sind davon abhédngig welcher Algo-
rithmus verwendet werden soll, um die Karte abzusuchen. Zusitzlich ist die Startposition je nach

Algorithmus ein wichtiger Parameter. Da die Prioritét auf einem uninformierten Suchprinzip liegt,

Konzept 16

wurde die Komplexitit der Karte auf ein Minimum herunter gesetzt. Die Karte zum Generieren
der Wegpunkte ist komplett leer, bis auf eine Begrenzung am Rand. Neben dem Vorhaben, in der
tibergebenen Karte Objekte zu finden, muss auch die Kollisionserkennung in komplexeren Umge-

bungen beachtet werden, da der Quadrokopter ein sehr instabiles Flugmodel hat (siehe Kapitel[5.3|

und Kapitel [6.2)).

3.2. lteratives Suchen

Meist wird in der Robotik bei Suchproblemen von bodenstindigen Robotern ausgegangen, wel-
che problemlos schrittweise (iterativ) das Vorgehen im Suchverlauf berechnen konnen. Dies ist
ein herausragender Vorteil gegeniiber fliegender Roboter (UAVs, zum Beispiel Quadrokopter), da
diese bereits beim Auf-der-Stelle-Fliegen deutliche Abweichungen zur gewiinschten Position ha-
ben. Dies riihrt daher, dass die Sensorik der Positionsbestimmung durch Vibrationen veridnderte
Messwerte erhalten, und somit eine Bewegung berechnet wird. Aulerdem ist der Quadrokopter
ein instabiles System, da die Regelung der Motoren abhiingig von der verbauten Hardware je-
weils neu an das veridnderte Gewicht optimiert werden muss. Ein bodenstindiger Roboter kann
im Allgemeinen davon ausgehen, dass seine Koordinaten sich nicht verdndern, wihrend er steht.
Bei einer Suche dieses Roboters ist es folglich nicht wichtig, wie lange die Berechnung der néich-
sten Position dauert. Beim Anfliegen eines Punktes, kippt der Quadrokopter, was eine verdnderte
Messung des optischen Flusssensors zur Folge hat. Laut dieser Messung denkt der Quadrokopter
ein kleines Stiick zuriick geflogen zu sein, jedoch hat sich seine Position nicht verdndert, sondern
er wurde nur gekippt. Wenn der Quadrokopter mehrere einzelne Wegpunkte auf einer geraden
Strecke anfliegt, werden viele dieser Messfehler erhalten, folglich versucht man moglichst weni-

ge Wegpunkte zu erstellen.

3.3. Wegpunkt-basiertes Suchen

Anhand der in Kapitel beschriebenen Problematik muss fiir das Quadrokopter-Projekt nach
einer besseren Vorgehensweise gesucht werden. Es wurde durch empirische Versuche festgestellt,
dass der Quadrokopter auf einer langen geraden Strecke Schwierigkeiten hat, die einzelnen Zwi-

schenpunkte anzufliegen. Deshalb liegt die Uberlegung nahe, dem Quadrokopter nur den letzten

Konzept 17

Wegpunkt der Strecke zu iibergeben. Der Schwerpunkt dieser Arbeit liegt also darin, diese Weg-

punkte moglichst sinnvoll zu wihlen.

3.3.1. Problematik der Ausfuhrung

Dadurch, dass man nicht permanent seine Um-

gebung fiir den néchsten Schritt betrachten

kann, ergeben sich sehr viele Fille, die nicht

trivial zu 10sen sind. Deutlich wird dies an ei-

nem einfachen Beispiel:
Der Quadrokopter will von einem zum néch-

sten Wegpunkt fliegen. Jedoch liegt der néch-

ste Wegpunkt in einer Wand. Was soll er tun?

Dies ist bei weitem nicht der einzige Fall, bei ‘

dem eine Entscheidung gefillt werden muss.

Je nach Suchalgorithmus, entstehen auch Pro-

bleme wenn eine freie Zelle der Karte kom-

plett von Winden oder Objekten umgeben ist.
Der Algorithmus wirde dann versuchen die- Abbildung 3.2.: Ziel im Korridor nicht erreichbar
sen Punkt zu erreichen, obwohl er unnerreich-
bar ist.
Wenn sich ein Zielzustand am Ende eines langen Korridors befindet, dessen Eingang jedoch vom
jetzigen Zustand abgewandt ist, muss der Suchalgorithmus diesen finden, wenn die Wegpunkte
am Eingang vorbeifithren wiirden. Der rot schraffierte Bereich in Abbildung [3.2] kann per Weg-
punktgenerierung nicht erreicht werden. Der Quadrokopter wiirde per Pathfinding um die Winde
herum fahren und keine Wegpunkte beim Ziel (hier: griiner Stern) erstellen.

Bei einem simplen zeilenweisen Absuchen eines Raumes, der Winde und/oder Objekte enthilt,
kann allein schon darin die Schwierigkeit bestehen, den Startpunkt des Absuchens festzulegen.
Dies wire eine heuristische Suche zu einer beliebigen Ecke im Raum. In ungiinstigen Fillen,

ist der Aufwand den Startpunkt zu finden bereits hoher, als der Aufwand den Zielzustand zu

erreichen! In Abbildung [3.3| wire zum Beispiel ein zeilenweises Absuchen des Raumes mit Aus-

Konzept 18

gangspunkt in der linken unteren Ecke nicht vollstindig, beziehungsweise der Aufwand in die

linke unterste Ecke zu kommen bereits selbst ein Suchproblem.

3.3.2. Lésungsansatze

Da diese Arbeit im Wesentlichen Breiten- und Tiefensuche be-

handelt, werden im Folgenden primir fiir diese Verfahren An-
sitze fiir die Probleme aus Kapitel [3.3.1] besprochen.
Breitensuche:

Um die Zellen von Innen nach Auflen zu betrachten, ohne eine
Zelle zu vergessen, wird in den Zellen zusitzlich zur Wie-Oft-

Besucht-Variable noch eine Ring-Variable gespeichert. Diese

Ring-Variable wird beim Start der Simulation mit einem Wert
von 0...c0 belegt, wobei der Wert angibt wie weit die Zel- Abbildung 3.3 g;%:ﬁ;t;ig:;sl;ﬂg:;
le vom Startpunkt entfernt ist. (Den Wert oo sollte also kei-

ne Ring-Variable einer Zelle erreichen, solange die Karte nicht unendlich grof ist.) Wenn der
Suchalgorithmus startet, werden die Wegpunkte so gelegt, dass zuerst alle Zellen des niedrigsten
Rings abgesucht werden, soweit moglich. Wenn die Suche auf einem hoheren Ring ist und ei-
ne Zelle mit niedrigerem Ring passiert, wird der Algorithmus in die Zelle mit niedrigerem Ring
fortgesetzt. Zu beachten ist, dass belegte Zellen (Winde und Ahnliches) mit keiner Ring-Variable

belegt werden miissen, da diese sowieso nicht betrachtet werden. Diese Ringvariable wird bei der

Entscheidungsfillung bei einer Wand auf zwei verschiedene Arten verwendet.

* Prioritdt Innen: Beim Vorfinden einer Wand geht der Algorithmus priorisiert auf einen
niedrigeren Ring, auch wenn dieser bereits betrachtet worden ist, und versucht dadurch

einen Weg zum nachfolgenden Wegpunkt zu finden.

* Prioritdt Aufsen: Trifft der Algorithmus auf eine Wand verfolgt er solange seinen bishe-
rigen Pfad zuriick, bis der Weg zum nichst hoheren Ring frei ist. Dies sorgt dafiir, dass
bereits betrachtete Zellen nicht unnétig oft betrachtet werden. Beachte: Der Algorithmus
geht hierbei trotzdem auf einen niedrigeren Ring zuriick, sobald eine noch nicht betrachtete

Zelle mit niedrigerem Ring betrachtet wird.

Konzept 19

Tiefensuche:
Fiir die Tiefensuche wurden zwei Varianten entworfen, die jedoch teilweise Wegpunkte nah bei-

einander erstellen.

* Man hilt an dem einfachen Schema fest: ,,Laufe geradeaus bis eine Wand kommt oder du
bereits dort warst, biege dann rechts ab!*“ Unter Betrachtung von Winden oder Objekten im
Raum ergibt sich das Problem, dass durch das Schema manche Bereiche gar nicht betrachtet
werden. Deshalb miisste man sich entweder beim Abbiegen merken, ob auf der anderen
Seite (hier: in Flugrichtung links) ein bisher unbesuchter Bereich liegt. Diesen muss man

sich dann merken und spdter wieder anfliegen.

* Alternativ konnte man das Schema etwas abédndern: ,Laufe geradeaus bis eine Wand
kommt oder du bereits dort warst, biege dann rechts ab! Betrachte permanent die Um-
gebung links von dir und biege links ab, sobald der Bereich frei und unbesucht ist.* Dieses
Schema wiirde dazu fiihren, dass man einen Raum von auf3en nach innen absucht, und dabei

immer kleinere Ringe zieht.

Da die Problematik unter Betrachtung der Winde eher Losungsansitze im Bereich Pathfinding
benotigt, wurde im Rahmen dieser Arbeit davon ausgegangen Wegpunkte zum Absuchen eines

leeren Raumes zu generieren.

Implementierung 20

4. Implementierung

4.1. Uberblick

Einstellungen Einstellungen
der Karte l der Suche
Start der
Sirmulation

!

Generiers) Darstellung

Wegpunte der Wegpunkte
schicke starte
Wegpunkte an p———1 |
Flug
Quadrokopter

Abbildung 4.1.: Software

Wie man in Abbildung sehen kann, werden fiir die Generierung der Wegpunkte zuerst
die Einstellungen der Karte (ZellgroBe, KartengroBe, Winde) und die Einstellungen der Suche
(Startposition, Suchalgorithmus) fixiert. Durch diese Einstellungen konnen die Wegpunkte fiir die
meisten Algorithmen direkt erstellt werden (Ausnahme: Chaosdrive oder Ahnliche, da keine Ab-
bruchbedingung). Die Darstellung der Wegpunkte bezeichnet die Umsetzung der Grafik im GUI,
welche entweder die Wegpunkte direkt einzeichnet, oder in einer Simulation diese schrittweise
anfihrt. Nachdem die Wegpunkte erstellt worden sind, miissen diese zuerst an den Quadrokopter

geschickt werden. Darauthin muss ein Start-Kommando zum Fliegen gesendet werden.

Implementierung 21

BMPO8& ™
® . |GP2YOA710KOF
Infrared
Pressure
Ultrasonic
4x BLCTRL) ADC

nfrared{sP2Y0AQ2YK

UC3A0512 short

USART USART

&

4x BL-Motor KA20-22L DSM-RC-Receiver Bluetooth Module Optical Flow

Abbildung 4.2.: Bestehendes System

Im Rahmen dieser Arbeit wurde an der Hardware Struktur nahezu nichts verdndert. Zusitzlich
zu der in Abbildung [4.2) dargestellten Komponenten wurde ein Infrarot-Sender am Quadrokopter
befestigt. Dieser dient dazu die Position des Quadrokopters mit Hilfe der vier Kameras des opti-
schen Tracking-Systems aufzunehmen.

Zum Abfliegen der Wegpunkte nutzt der Quadrokopter seine intern bekannte Position. Diese wird

durch den optischen Flusssensor berechnet [Strohmeier, 2012]].

4.2. Anpassung der Suchverfahren

Allgemein geht man bei einer autonomen Suche von einem Graphen (zum Beispiel in Baumform)
aus. Bei dem vorliegenden Fall muss man das Suchverfahren anpassen. Die Umgebung besteht
aus einer zweidimensionalen Karte, welche Zellen von bestimmter Breite und Hohe beinhaltet.

Die Breite und Hohe des Quadrokopters ist von Anfang an vorgegeben. Das heif3t der Quadroko-

Implementierung 22

pter belegt bereits von selbst eine gewisse Anzahl von Zellen, abhéngig davon welche Gro3e die
Zellen haben. Um einen Suchvorgang zu betreiben, wurde folgende Uberlegung angestellt: Bei
der Suche betrachtet man immer die direkt anliegenden Zellen in acht Richtungen und summiert
den Wert, wie oft eine Zelle bereits besucht worden ist, auf eine jeweilige Variable auf. Mit die-
ser Vorgehensweise kann getestet werden, in welcher Richtung der Quadrokopter sich bisher am
wenigsten aufgehalten hat. Die Umsetzung dieser Uberlegungen ist nur teilweise im Endergebnis
ibrig geblieben. Einige Suchverfahren konnten in der Praxis nicht getestet werden. (siehe dazu
Kapitel 4.3.2))

In Abbildung[4.3] wird davon ausgegangen, dass der Quadrokopter (hier: roter Punkt) nicht direkt
auf dem Raster der Karte liegt. Wenn dieser direkt auf einer Rasterung liegt, wiirden andere Zel-
len aufsummiert werden. Man kann diesem Problem vorbeugen, indem man den Startpunkt des
Quadrokopters direkt auf ein festes Raster legt. Diese feste Rasterung wurde nicht implementiert,
da das Aufsummieren der besuchten Zellen keinen in der Praxis getesteten Suchalgorithmus be-

trifft, sondern lediglich zur Darstellung der betrachteten Zellen in der Simulation genutzt wurde.

6 7 8 6 8
6 3 5
4 5 3
1 3 5
1 2 3 11 3 3 2 2 2
(a) Richtungen (b) Ecken (c) Kanten

Abbildung 4.3.: Zihlvariablen

4.3. GUI

Das hier implementierte Graphical User Interface dient dazu einen von verschiedenen Suchalgo-
rithmen auszuwihlen und fiir den Quadrokopter eine Liste von Wegpunkten zu generieren. Dabei

kann man verschiedene Einstellungen vornehmen (Abbildung 4.4)):

Implementierung 23

= . Search Display
[¥] Einstellungen fixieren Ee P

Simulation | Mapcreator

Ereitensuche %
EE,
[send wayponts | [startFlight |
Toleranz (crm): 0) 7)
Sichtberaich {cm): |22 > 3 {
4 5 \ B in Zellen: il

Start Paise [¥] waypoints only

Zelt vegangen: 000:00:000 Save Image f 9)
_1' 2 Iterationen: 1} [gild skaliaren 1 0 .
Copter: Geschwindigkeit:
X 50 I 11
Y 50 |

Abbildung 4.4.: Simulations-Tab

1:
Combobox zur Auswahl der unterschiedlichen Algorithmen. Wird wihrend der Simulation deak-

tiviert

2:

Button zum Schicken der generierten Wegpunkte an den Quadrokopter. Die Liste der Wegpunkte
wird erst am Ende der Simulation generiert und so lange intern gespeichert, bis erneut auf den
Start-Button (4) gedriickt wird. Das heif3t die selben Wegpunkte konnen auch nach dem Resetten
des Quadrokopters erneut geschickt werden, ohne diese neu generieren zu miissen.

3:

Schickt dem Quadrokopter das Kommando den Flug zu starten. Vorher miissen die Wegpunkte
an den Quadrokopter geschickt werden (sieche 2)

4:

Deaktiviert alle Eingabeoptionen, aktiviert den Pause-Button (5). Genereriert die Wegpunkte fiir
den ausgewdhlten Algorithmus (1) und bewegt den Quadrokopter (roter Punkt), je nach Ein-
stellung der Waypoints-Only-Checkbox, direkt zu den Wegpunkten oder zeichnet die Zwischen-
schritte ein (sieche Abbildung[4.5).

5:

Unterbricht die Simulation der Wegpunktgenerierung und erlaubt einen anderen Suchalgorith-

mus (1) auszuwihlen. Die urspriingliche Idee dahinter war, dass man verschiedene Suchalgo-

Implementierung 24

(a) Eingeschaltet (b) Ausgeschaltet

Abbildung 4.5.: Waypoints only-Checkbox

rithmen hintereinander einsetzen kann um komplexe Umgebungen unterschiedlich abzusuchen.
Nachdem die ausgewdihlten Algorithmen zum Generieren der Wegpunkte aber nur fiir leere Riu-
me ausgelegt sind, wird dies nicht weiter bendotigt.

6:

Setzt die Grafik auf den Ausgangszustand zuriick. Erlaubt wieder alle Einstellungen zu verdndern.
7:

Die zu generierenden Wegpunkte werden um diesen Wert “herausgeschoben®, das heifit der Qua-
drokopter muss jeweils ein Stiick weiter fliegen um den Wegpunkt zu erreichen. Da der Qua-
drokopter bereits einige Zentimeter vor dem Wegpunkt ein Erreichen des Wegpunktes vermerkt,
kann mit dieser Variable das Anfliegen der Wegpunkte variiert beziechungsweise optimiert wer-
den. Genaueres sieche Kapitel [5.2]

8:

Der Sichtbereich kann abhéngig von den Kameraeinstellungen zur Erkennung von Objekten vari-
iert werden. Der abzudeckende Bereich der Kamera hingt vom Offnungswinkel der Kamera und
der Flughohe ab. Der hier einzustellende Paramter veridndert die Wegpunktgenerierung so, dass
die Wegpunkte fiir einen kleinen Sichtbereich nédher beieinander liegen, et vice versa.

9:
Speichert die aktuelle Grafikanzeige in einer Bilddatei (Dateitypen: jpg, png oder bmp).

10:
Wenn die Checkbox aktiviert ist, kann man per Mausrad die Grafik skalieren. Zusétzlich kann

man per Mausklick die Grafik verschieben, zum Beispiel wenn man zu nah heran gezoomt hat.

Implementierung 25

11:

Wird zum Einstellen der Simulationsgeschwindigkeit genutzt. Intern wird eine Zeitvariable zum
Verzégern verwendet, die in einem Bereich von zwei Sekunden bis eine Millisekunde skaliert
wird. Diese Einstellung beeinflusst nicht die Geschwindigkeit des Quadrokopters in der Realitiit
zum Anfliegen der Wegpunkte, sondern bestimmt lediglich die Geschwindigkeit der Simulation.
12:

Anzeige der aktuellen Koordinaten des Simulations-Quadrokopters, der vergangenen Zeit zum
Generieren der Wegpunkte und die Anzahl der gebrauchten Schritte zum bisherigen Wegpunkt.

Die vergangene Zeit wird erst aktualisiert wenn auf Pause (5) oder Reset (6) gedriickt wurde.

4.3.1. Benutzte Suchalgorithmen

Aufgrund der Komplexitit der Suche in einer nicht trivialen Umgebung, wurden hier die Suchal-
gorithmen fiir eine komplett freie Umgebung gewihlt (siehe Kapitel [3.3.1). Diese Algorithmen
dienen dazu einen Gegenstand in einem, durch die eingstellte Karte beschriankten, Raum zu su-
chen. Es wird davon ausgegangen, dass sich keine Hindernisse in Form von Winden oder Ob-
jekten in dem Raum befinden. Die Karte beschrinkt die Algorithmen in dem Sinne, dass per
Voreinstellung nur bestimmte Kartengréfen eingegeben werden konnen, da jede Teil-Karte min-
destens 64 Zellen haben muss. Man konnte manuell beliebig kleinere Winde einzeichnen, das
wire jedoch zu aufwendig. Die Umsetzung der Suchalgorithmen ist in zwei Teile unterteilt. Erst
werden die Wegpunkte anhand der Position des Startpunktes und der Belegung der Zellen gene-
riert. Im zweiten Schritt werden diese generierten Wegpunkte in der Grafik abgefahren. Das heil3t
die Generierung der Wegpunkte kann auch komplett von der Grafik unabhiingig geschehen. Aus-
nahme fiir diese Vorgehensweise sind die zwei Chaosdrive Varianten, da diese ihre Wegpunkte

erst bei der Bewegung in der Simulation speichern.

Breitensuche:

Eine Breitensuche bedeutet in dieser Versuchsanordnung, dass man zuerst seine néchsten
Nachbarn betrachtet und dann ebenenweise immer weiter voranschreitet. Dies wurde so um-
gesetzt, dass man jeweils um eine Linge der eingestellten Sichtweite weiter nach auflen
vorgeht. Wenn der Toleranz-Parameter grofer als O ist wird der Wegpunkt um diesen Be-

reich weiter nach auflen geschoben, so lange der Wegpunkt nicht in einer Wand liegt. Die

Implementierung 26

Wegpunkte werden spiralformig im Uhzeigersinn generiert. Beim Erreichen einer Begren-
zung wird nicht die Drehrichtung geédndert, sondern die bereits vorher betrachteten Berei-
che nochmals iiberflogen. Da der Quadrokopter ein instabiles System ist, fillt es ihm schwer
Wegpunkte, die nahe beieinander liegen, abzufliegen. Durch einen Richtungswechsel der
Drehrichtung miisste jedoch ein Wegpunkt direkt neben dem aktuellen erstellt werden, ob-
wohl der Quadrokopter noch den Schwung der langen Strecke vorher hat (Abbildung @.6).
Die folgende Abbruchbedingung wurde fiir die Generierung der

Wegpunkte entworfen: Es wird jeweils der kleinste und grofite X- | £ >
und Y-Wert gespeichert. Aus diesen Berechnet man die horizonta- 1 P N
le und vertikale Distanz vom jeweils kleinsten und groten Wert. £ >
Wenn sich die Distanz in der X- und Y-Richtung nach mehrma- ﬂ
ligem Betrachten nicht veridndert, wird die Generierung abgebro-

e Y ¥

chen und die Wegpunkte aus der Liste geloscht, welche zu viel

Abbildung 4.6.: Wegpunkte einer

generiert wurden. Die grafische Abarbeitung der Wegpunkte be- Breitensuche

schrinkt sich auf vier Richtungen: jeweils zwei horizontal und

vertikal.

Tiefensuche:

A

A

(a)

Abbildung 4.7.: (a) Wegpunkte der Tiefensuche; (b) Doppelt betrachtete Wegpunkte

Fiir die Tiefensuche wurde das erste Schema der Tiefensuche aus Kapitel [3.3.2] noch leicht
verdandert. Der erste Wegpunkt ist vom Startpunkt direkt nach oben. Dann wird im Uhrzeigersinn

jeweils so weit geradeaus geflogen, bis ein Hindernis auftaucht. Dabei wird die Groe der Karte in

Implementierung 27

SchrittgroBe gespeichert. Die Schritte werden fiir die horziontale und vertikale Richtung seperat
gespeichert und sind von der eingestellten Sichtweite abhédngig. In der weiteren Generierung wird
diese Schrittgrofe jeweils um eins verringert. Dies fiihrt dazu, dass immer kleinere Kreise gezo-
gen werden, bis die Mitte der Karte erreicht ist. Es werden lediglich die Zellen vom Startpunkt

nach oben und von dort nach rechts doppelt betrachtet (Abbildung [4.7).

Chaosdrive:

Der Chaosdrive-Algorithmus geht im Grunde genommen wie in Kapitel beschrieben vor.
Der Winkel, um sich von der Wand weg zu bewegen, wird aus einem Bereich von 90 ° bis 270 °
zusitzlich zum aktuellen Winkel zufillig berechnet. Die Wegpunkte werden beim Erreichen der
Wand gespeichert und sind vollkommen von den Parametern Sichtbereich und Toleranz unabhin-
gig. Der Sichtbereich beeinflusst lediglich das Einzeichnen in der Grafik. Der Algorithmus hat
keine Abbruchbedingung, und wird so lange ausgefiihrt, bis der Benutzer den Pause- oder Reset-
Button driickt. Sobald dies geschieht werden die generierten Wegpunkte gespeichert und konnen
an den Quadrokopter geschickt werden. Beim Pausieren wird die aktuelle Position ebenfalls als

Wegpunkt gespeichert. Beim Fortfahren wird wieder eine zuféllige neue Richtung ausgewihlt.

MyChaosdrive:

Angelehnt an der Chaosdrive-Idee, wurde dieser Algorithmus anhand der Uberlegungen mit der
Beschriankung auf acht Richtungen entworfen. Man hat als zufillige Parameter einerseits eine
der acht Richtungen (horizontal,vertikal,diagonal) und andererseits eine Variable, die die Linge
der nédchsten Bewegung vorgibt. Diese zweite Variable wurde deshalb gewdhlt, da der Algorith-
mus bei nur 8 zufilligen Richtungen lediglich an den vier Winden und in den Raumdiagonalen
Wegpunkte generieren wiirde. Wie bei Chaosdrive gibt es fiir MyChaosdrive bis auf die Benut-

zereingabe keine Abbruchbedingung.

Zick-Zack

Das Zeilenweise abfliegen eines Raumes wiirde jeweils zwei Wegpunkte direkt nebeneinander
erzeugen. Dies ist fiir den Quadrokopter nicht einfach. Deshalb liegt als Uberlegung fiir ein tri-

viales Abfliegen eines leeren Raumes nahe, ein Zick-Zack-Muster zu erzeugen. Dieses Muster

Implementierung 28

d
%r‘\r‘_v‘v ¥ v f Y

(a) Zeilenweise (b) Zick-
Zack

Abbildung 4.8.: Vergleich (a) Zeilenweise- zu (b) Zick-Zack-Muster

bekommt als Startpunkt (beziehungsweise als ersten Wegpunkt) die linke untere Ecke des Raum-
es, geht von dort aus senkrecht nach oben und geht danach schridg nach unten bis zur nédchsten
Wand im Abstand von genau einem Sichtbereich zum links liegenden Wegpunkt. Dies wird so

lange wiederholt, bis der ganze Bereich abgedeckt ist. (Abbildung [4.8)

4.3.2. Weitere iterative Suchalgorithmen

Die nachfolgenden Algorithmen wurden implementiert, aber ab einer gewissen Programmversion
nicht weiter angepasst. Das heiflt die Algorithmen funktionieren in der Abgabeversion des Pro-

gramms nicht. Es gibt mehrere Griinde, warum die Algorithmen nicht weiter bearbeitet wurden:

* Die Suchalgorithmen haben bei weitem zu viele Zwischenschritte generiert. Die Schritte
wurden iterativ generiert. Zur Ubertragung auf den Quadrokopter ist eine Obergrenze an
Wegpunkten eingestellt. Diese ist zwar veridnderbar, aber bei einer GroBenordnung von

500-1000 Wegpunkten ist es sinnlos, diese permanent anzupassen.

* Anhand der vorgegebenen Karte wurden die Suchalgorithmen selbst entworfen. Daher kann
fiir diese keine Vollstindigkeit gewihrleistet werden. Die Laufzeit bis der Raum komplett
abgesucht worden ist, kann bei manchen Algorithmen extrem lange dauern, da teilweise

Wege “verbaut* werden, indem man auf bereits besuchte Zellen nicht zuriick geht.

* Die generierten Wegpunkte der Suchalgorithmen sind jeweils nur einen Zellenabstand von-

einander entfernt. Diese Distanz ist bei Weitem zu kurz um die Wegpunkte sinnvoll mit

Implementierung 29

dem Quadrokopter abzufliegen. Zum Bestitigen, dass ein Wegpunkt erreicht wurde, hat
der Quadrokopter einen eingestellten Wert. Dieser Wert war zum Zeitpunkt der Praxis-
Versuche auf 20cm eingestellt. Die ZellgroBBe bei der Praxis war auf 3cm eingestellt. Das
heifit beim geraudeaus Fliegen wiirden im Rahmen der 20cm Toleranz 6 Wegpunkte einfach
tibersprungen werden. Das geradeaus Fliegen ist in den hier betrachteten Suchalgorithmen
jedoch eine Seltenheit, was zur Folge hat, dass die Wegpunkte wild verteilt angeflogen

werden.

* Anfangs wurde bei der Generierung der Wegpunkte nicht darauf geachtet, dass der Quadro-
kopter ein so groBes Uberschwingen beim Abfliegen der Wegpunkte hat. Der nachfolgende
Wegpunkt kann prompt direkt in der entgegengesetzten Richtung angegeben werden. Dies

kann zum Beispiel bei einer Sackgasse passieren.

Fiir die Algorithmen MyBFS und MyDFS wurde die, in Kapitel erklarte, Methode genutzt,

die benachbarten Zellen zu betrachten und zu kontrollieren, wo der beste nichste Wegpunkt ist.

MyBFS:

Die Idee fiir MyBFS kam von der klassischen Breitensuche und hat sich mit der Grundlage der
Karte entwickelt. Der Startpunkt der Suche wird gespeichert und zum Berechnen der aktuelle
Distanz von diesem genutzt. Der Algorithmus betrachtet in jedem Schritt die benachbarten Zel-
len. Von den aufsummierten Werten wird eine bestimmte Anzahl der besten (diejenigen, welche
den geringsten Wert haben) herausgepickt. Mithilfe der jetzt bekannten Richtungen wird der Ab-
stand des dann auszufithrenden Schrittes zum Startpunkt berechnet. Von diesen wird derjenige
ausgewihlt, der den geringsten Abstand zum Startpunkt hat. Das hei3t man bewegt sich grund-
sdtzlich immer von den Zellen weg, welche man bereits besucht hat, aber versucht gleichzeitig
den Abstand zum Startpunkt klein zu halten. Es ergibt sich keine spiralférmige Bewegung in ei-

nem Drehsinn, sondern je nach Zellbelegung eine immer drehende Spiralbewegung.

MyDFS:

MyDFS ist im Grunde genommen nur eine kleine Verdnderung zur MyBFS-Suche. Man versucht

weiterhin von den bisher besuchten Zellen weg zu kommen, nur nutzt man dieses Mal die Distanz

Implementierung 30

zum Startpunkt um eine groere Entfernung zu diesem zu bekommen. Die Bewegung fiihrt also
dazu, dass man primér in eine Ecke des Raumes fihrt. Diese wird dann spiralférmig ausgefiillt,
so lange bis man an einer Kante entlang in die ndchste Ecke gelangt. Sind alle Ecken ausgefiillt,
fahrt der Algorithmus spiralférmig in Richtung des Startpunktes. In ungiinstigen Fillen versucht

der Algorithmus iiber bereits besuchte Zellen wieder vom Startpunkt weg zu fahren.

Randomsearch:

Randomsearch wurde anfiinglich genutzt um eine Bewegung in der Simulation zu erzeugen. Der
Algorithmus nimmt zwei zufillig generierte Zahlen und rechnet diese auf einen der drei Werte
-1,0,1 herunter. Dieser Wert wird mit der Zellgrée multipliziert und dann jeweils fiir eine X- und
Y-Koordinate eingesetzt. Der Quadrokopter bewegt sich also immer um maximal eine Zelle in

eine zufillige Richtung.

4.4. Kartenerstellungs-Tool

Das hier angefertigte Tool wird dazu verwendet um selbst Karten zu zeichnen. (Abbildung §.9)
Es wurde dafiir entwickelt, um moglichst simpel und schnell eine Umgebung fiir einen beliebig
komplexen Raum zu erstellen. Anhand der Karte konnen verschiedene Suchalgorithmen in der
Simulation getestet werden, und auch die Wegpunkte fiir eine reale Karte generiert werden.

1:

Combobox, die fiir die Aktivitit in der Grafik zusténdig ist. Die Option “Startpunkt verschieben
erlaubt den Quadrokopter (roter Punkt) per Drag-And-Drop auf eine beliebige Startposition zu
verschieben. Dabei wird die Kollision des Objekts mit den Winden (belegten Zellen) beachtet,
so dass der Startpunkt nicht in einer Wand liegen kann.

Die selbe Moglichkeit gibt die Option “Suchobjekt verschieben®, jedoch wurde das Suchobjekt
per Define aus der Grafik entfernt. Anfangs war es so gedacht, dass man die Position des zu fin-
denden Objekts bereits voreinstellen kann. Jedoch wird im Allgemeinen davon ausgegangen, dass
Suchobjekte zufillig im Raum verteilt sein konnen. Fiir die uninformierte Suche ist es obsolet,
kann jedoch in Zukunft fiir heuristische Suchen wieder eingesetzt werden.

Des Weiteren ist als Option “Wénde/Objekte erstellen* auswihlbar. Diese Option erlaubt Win-

Implementierung 31

Search Display

13—| Einstellungen fixieren
T)

Simulation = Mapcreator

Starfpunkt verschishen s —
P Eingabe der Koordinaten:

Ommrr— -
3L _epoiwp] swwnier op) (emeiney

(4 256 “ cm
{ 5 | Seitenldnge einstellen Zelengrtiie: 4 B)
{ 6 Map lidschen 7

Zeit vegangen: 000:00:000 Save Image | T !

12 Iterationen:] [eild skalieren 1 0 .

Copter: Geschwindigkeit: |

bt s0 i L
- |

Y. 50

Abbildung 4.9.: MapCreator-Tab

de per Mausklick auf folgende Weise einzuzeichnen. Per linker Maustaste kann man Zellen als
belegt oder frei markieren. Eine Zelle wird als belegt markiert, wenn sie vorher frei war, und um-
gekehrt. Wenn man die Taste gedriickt ldsst und die Maus bewegt, werden die jeweiligen Zellen
im selben Zustand wie die zuerst angeklickte Zelle markiert. Das heillit wenn zum Beispiel die
erste Zelle per Linksklick als frei markiert wird und man bewegt die Maus bei gedriickter linker
Maustaste weiter, werden alle anderen beriithrten Zellen auch als frei markiert.

2:

Ermoglicht eine bereits gespeicherte oder erzeugte Karte zu importieren. Aktualisiert die Grafik.

3:
Speichert die aktuell sichtbare Karte in einer .map Datei [Schmitt, 2012].

4:

Wird als Einstellung fiir die Seitenlédnge der Karte verwendet. Die Seitenldnge ist dabei abhéngig
von der minimalen Grofe an Teil-Karten, welche sich auf 64 Zellen belduft. Als maximaler Wert
ist das dreifache der minimalen Seitenlédnge (64xZellgroBe) eingestellt, da zum Zeitpunkt der Im-
plementierung die Zeichenmethode der Grafik jede Zelle als einzelnes Grafikobjekt verwaltet hat.
Bereits bei dieser maximalen Grof3e gab es beim Erstellen der Grafik deutliche Verzogerungen.

5:
Loscht die aktuelle Karte und iibernimmt die Einstellung von 4.

Implementierung 32

6:

Loscht die aktuelle Karte und erzeugt eine neue Standard-Karte. Die Standard-Karte hat die du-
Bersten Zellen belegt, eine ZellgroBBe von 4cm und eine Seitenldnge von 256cm in einer quadrati-
schen Form.

7:

Neben der Variante den Startpunkt per Drag-And-Drop zu setzen (siehe 1), kann man die Start-
position direkt eingeben und einstellen.

8:

Verindert die ZellgroBe der aktuellen Karte. Dabei wird nicht die Karte geloscht, sondern ledid-
lich die GroBe veridndert. Alle als belegt markierten Zellen bleiben auch markiert.

9-12
Siehe Kapitel 4.3]

13

Verhindert, dass weitere Einstellungen an der Karte beziehungsweise der Startposition vorgenom-

men werden. Aktiviert im Simulationstab den Start-Button.

Evaluierung 33

5. Evaluierung

5.1. Uberblick

In den nachfolgenden Kapiteln werden drei ausgewihlte Algorithmen sowohl in der Software als
auch in der Praxis ausgewertet. Betrachtet werden Breitensuche, Tiefensuche und ein Zick-Zack-
Muster. Im Kapitel Software (5.2)) wird darauf eingegangen, wie die Wegpunkte am Computer
fiir den Quadrokopter erstellt werden. Die praktischen Versuche (Kapitel [5.3)) zeigen in Form von

grafisch aufgetragenen X- und Y-Werten die Flugbahn des Quadrokopters.

5.2. Simulation

Die Evaluierung der Simulation beschrinkt sich darauf zu testen, ob die Wegpunkte am Compu-
ter richtig generiert werden, damit diese dem Quadrokopter iibergeben werden konnen und dort
weiter benutzt werden.

Das Andern der ZellgroBe, verindert die gesamte KartengroBe.

Dies kommt daher, dass die Karte [Schmitt, [2012]] eine minimal

Anzahl von Zellen hat (hier: 64). Das heif3t die kleinste Grof3e der \24 5
Karte ist 64+ZellgroBe, wobei die ZellgroBe in einem Wertebe- . .
reich von 1....20cm ist [Schmitt, 2012]. hd
Weiterhin ldsst sich der Sichtbereich des Quadrokopters variie- "4

ren. Daraus folgt eine Verdnderung der Wegpunktgenerierung. Je Abbildung 5.1.: Wegpunkte mit
Toleranzver-

groBer der Sichtbereich eingestellt ist, desto weiter sind die Weg- schichung bei

punkte voneinander entfernt, et vice versa. eilner Breitensu-
cne

Ein weiterer Parameter ist die Toleranz der Wegpunkte. Dieser Pa-

rameter verschiebt die Wegpunkte in Flugrichtung um den entsprechenden Wert weiter. Der je-

Evaluierung 34

weils nachfolgende Wegpunkt wird dabei jedoch nicht in die selbe Richtung verschoben! Die
Auswirkung dieser Verschiebung wird fiir jeden Algorithmus einzeln betrachtet. Abbildung [5.1]
zeigt ein Beispiel fiir die Breitensuche mit Toleranzverschiebung. Hintergrund dieser Verschie-
bung ist, dass der Quadrokopter beim Flug ungefihr 20cm vor dem Erreichen des Wegpunkt
ebendiesen bereits als erreicht markiert. Man kann ohne den Code des Quadrokopters dndern zu
miissen, mit dem Toleranz-Parameter testen, wie genau der Quadrokopter die Wegpunkte in der
Realitit anfliegt. Dies ist wichtig um den abzusuchenden Bereich vollstindig abzudecken.

Die Wegpunktgenerierung ist ebenfalls abhédngig von der Lage des
Startpunktes. Dies hat fiir jeden Algorithmus individuell Auswirkun-
gen und wird im jeweils entsprechenden Kapitel betrachtet. Dadurch,
dass der Startpunkt rasterlos verschiebbar ist, werden teilweise Zel-
len, die nur gerade so beriihrt werden, bereits als betrachtet markiert.
Dies kann in ungiinstigen Fillen dazu fiihren, dass Objekte zwischen

zwei Wegpunktstrecken nicht erkannt werden, da sie von beiden Sei- Abbildung 5.2.: Zellen am
oberen und

ten als betrachtet markiert worden sind, jedoch nicht wirklich kom- rechten
) Rand nicht
plett gescannt worden sind. betrachtet

Beim Testen hat sich gezeigt, dass die Wegpunkte teilweise am obe-

ren und rechten Rand der Karte eine Zelle zu wenig betrachten. (siche Abbildung [5.2)) Dies liegt
zu groBBer Wahrscheinlichkeit an der internen Kollisionserkennung des Grafikobjekts fiir den Qua-
drokopter. Diese erlaubt nicht den Quadrokopter auf eine Wand zu bewegen und fragt unter Um-

standen eine Zellenreihe zu viel ab.

5.2.1. Breitensuche

Die Toleranzverschiebung wirkt sich bei der Breitensuche folgendermallen aus: Da die Wegpunk-
te spiralformig vom Startpunkt wegfiihren wird jeder einzelne Wegpunkt in Flugrichtung um den
Toleranzbereich geraudeaus “geschoben®. Diese Verschiebung wirkt sich jedoch nur fiir diesen
einzelnen Wegpunkt aus und verédndert nicht die Position der anderen Wegpunkte. Der Vergleich
der Abbildungen [5.3zeigt die Auswirkung der Verschiebung.

Die Verinderung des Sichtbereichs wurde in der Praxis mit einem fiir die Toleranz fixen Wert
von 10cm getestet, deshalb sieht man in Abbildung|[5.4]den Vergleich der in der Software erstell-

ten Wegpunkte.

Evaluierung 35

(a) (b) (©)

Abbildung 5.3.: Breitensuche mit Sichtbereich = 30cm, Toleranz = (a) Ocm, (b) 10cm, (c) 20cm

Die Lage des Startpunktes hat fiir die Wegpunkte der Breitensuche keine besonderen Auswirkun-
gen. Nach dem hier implementierten Algorithmus ist es lediglich ungiinstig, dass die Wegpunkte
tiber bereits betrachteten Wegen nochmals liegen. Bei einem lidnglichen, rechteckigen Raum bei-

spielsweise wiirden die Strecken am Rand extrem oft mehrfach abgedeckt werden.

() (b) (©

Abbildung 5.4.: Breitensuche mit Sichtbereich = (a) 21cm, (b) 30cm, (c) S1cm, Toleranz = 10cm

5.2.2. Tiefensuche

Ebenso wie bei der Breitensuche werden die Wegpunkte mit der Toleranz weiter in Flugrich-
tung nach vorne versetzt. Die Wegpunkte werden wie in Abbildung [5.5] generiert und wirken
verwirrend, da die Startposition und der davon ausgehende nichste Wegpunkt senkrecht nach
oben eingezeichnet sind. Der Startpunkt befindet sich wie bei der Breitensuche links unten (Ko-
ordinaten 50/50 bei Gesamtgrofie von 192/192). Bei Abbildung [5.5] (c) werden die Wegpunkte

direkt in der Mitte der Karte nicht exakt erstellt. Die Toleranzverschiebung wirkt sich nicht auf

Evaluierung 36

die Abbruchbedingung der Wegpunkterstellung aus. Das heif3t der letzte Wegpunkt wird als “im

Zentrum* erkannt, jedoch noch um die Toleranz weiter verschoben.

(a) (b) ()

Abbildung 5.5.: Tiefensuche mit Sichtbereich = 30cm, Toleranz = (a) Ocm, (b) 10cm, (c) 20cm

Fiir den Sichtbereich wurden ebenfalls die selben Werte wie bei der Breitensuche verwendet

(Abbildung [5.6).

(a) (b) ()

Abbildung 5.6.: Tiefensuche mit Sichtbereich = (a) 21cm, (b) 30cm, (¢) 51cm, Toleranz = 10cm

Der Startpunkt hat fiir die Tiefensuche deutlich weniger Auswirkungen als fiir die Breitensu-
che, da die Wegpunkte der Tiefensuche immer gleich sind. Es wird vom Startpunkt aus senkrecht
nach oben und von dort nach rechts jeweils ein Wegpunkt generiert und ab diesem Wegpunkt

wiirde fiir jeden beliebigen Startpunkt die selbe Flugbahn verfolgt werden.

5.2.3. Zick-Zack-Muster

Evaluierung 37

Bei einem simplen Muster wie diesem Zick-Zack eine Toleranz- B |
verschiebung einzustellen, macht nur bedingt Sinn. Im hier imple-
mentierten Code wiirden die Wegpunkte auBlerhalb des Bereichs
der Karte, also in eine Wand verschoben werden. Wegen der Kol-

lisionsabfrage des Grafikobjekts erlaubt die Simulation nicht, die

Wegpunkte einzuzeichnen. Aus diesem Grund kann hier keine
grafische Auswertung fiir dieses Muster erfolgen. Die Wegpunkte Abbildung 5.7.: Zick-Zack

mit Sichtbe-
werden trotzdem erstellt, da der Toleranzparameter lediglich zum reich=30cm,

Toleranz=0Ocm

Testen fiir das Abfliegen der Wegpunkte dient. Im Regelfall wird

davon abgeraten beim Zick-Zack-Muster eine Toleranz groBer als O einzustellen. Der erste Weg-
punkt (links unten) bleibt unabhéngig vom Startpunkt immer der gleiche und wird mit der To-
leranz nicht nur nach unten sondern auch nach links verschoben, um das Erreichen des Quadro-
kopters zu testen. Durch die Verdnderung des Sichtbereichs werden mehr (kleiner Sichtbereich)
beziehungsweise weniger (groBer Sichtbereich) Wegpunkte erstellt. Abbildung|[5.7)zeigt beispiel-
haft die Wegpunkte des Zick-Zack-Musters. Daran zu sehen ist, dass die rechten Wegpunkte sich

teilweise liberschneiden, da der duflere Rand sonst nicht komplett betrachtet werden wiirde.

5.3. Praxis

Fiir die Auswertung der Flugbahn hat man drei verschiedene Anhaltspunkte: Die Wegpunkte
selbst, die Odometrie und das optische Tracking-System. Die Wegpunkte wurden von den Te-
lemetriedaten des Quadrokopters als nédchster Soll-Wegpunkt empfangen. Die Odometrie ist die
Position des Quadrokopters, welche er selbst anhand des optischen Flusssensors berechnet hat.
Das optische Tracking arbeitet mit vier Infrarot-Kameras, welche den Quadrokopter mithilfe ei-
nes Infrarot-Senders erkennen. Zur Auswertung ist der wichtigste Vergleich zwischen den Koor-
dinaten der Wegpunkte mit den Daten des optischen Trackings, da die Odometrie lediglich die
internen Koordinaten des Quadrokopters verwaltet.

Fiir die Versuchsanordnung wurden Wegpunkte mit verschiedenen Parametern erzeugt. Die Ein-
stellung der Karte wurde fest am Anfang eingestellt. Die Zellgroe wurde auf 3cm fixiert. Daraus
ergibt sich eine Kartengrofe von 1,92m=1,92m. Der Sichtbereich berechnet sich aus der Kar-

tengrofe abziiglich der jeweils duBleren Zellen, welche im GUI als Wand markiert sind. Die

Evaluierung 38

Startposition des Quadrokopters liegt bei 50cm/50cm. Das interne Koordinatensystem hat den
Ursprung von X und Y in der linken unteren Ecke. Y lduft in positiver Richtung nach oben, X
nach rechts. Die generierten Wegpunkte belaufen sich ungefdhr in einem X- und Y-Bereich von
3cm bis 189cm. Ungefihr deshalb, weil der Sichtbereich und die Toleranz je nach Algorithmus
teilweise Werte auflerhalb beziehungsweise Werte weiter innerhalb dieses Bereichs erzeugen.
Da parallel zum Abfliegen der Wegpunkte keine Kollisionserkennung auf dem Quadrokopter ge-
laufen ist, wurden die Versuche ohne Winde in einem groBeren Bereich abgeflogen. Im Allge-
meinen ist der Quadrokopter auch oft aus dem Bereich der Karte heraus geflogen. Dies hat zur
Folge, dass man in spiteren Versuchreihen mit Wénden entweder die Wegpunkte in groBBerem
Abstand zur Wand erstellen, oder die Wegpunkte mit Riickkopplung von der Kollsionserkennung
nachbessern miisste.

Wie in Kapitel wurden bei den Praxis-Versuchen die Parameter Sichtweite und Toleranz ver-
dndert. Es wurden insgesamt 23 Messungen durchgefiihrt. Dabei wurden teilweise die selben
Parametereinstellung verwendet. Als Vergleichsmessungen sind jeweils mit einer Toleranz von
10cm die Sichtweiten von 21cm, 30cm und 51cm getestet worden. Weiterhin wurde die Tole-
ranz von Ocm und 20cm bei einer festen Sichtweite von 30cm fiir jeden Algorithmus getestet. Im

Folgenden werden nur einzelne Beispiele gezeigt, alle Messungen befinden sich im Anhang.

5.3.1. Breitensuche

In Abbildung [5.8]ist der Quadrokopter sehr deutlich aus dem abgesteckten Bereich heraus geflo-
gen. Man kann erkennen, dass er ungefihr die Wegpunkte angeflogen ist, jedoch sind teilweise
starke Schwankungen vorhanden, die dann eine groBe nicht betrachtete Liicke zuriick lassen.
Dies ist besonders deutlich beim letzten Wegpunkt (rechts unten) zu erkennen. Dort ist der Sicht-
bereich von 21cm zwischen den zwei Wegpunktpfaden definitv nicht abgedeckt. Die Liicke dort
ist ungefdhr 50cm grof3, das betrdgt mehr als das doppelte vom Soll-Wert! Der iiberschwingende
Bogen des Quadrokopters kommt daher, dass der Quadrokopter eine ldngere gerade Strecke zu
Fliegen hatte als vorher und deshalb noch eine Restbeschleunigung iibrig bleibt. Eine dhnliche

Kurve sieht man auch auf der linken Seite.

Evaluierung

39

Breitensuche

25

Sichtbereich: 21crm, Toleranz: 10cm

PR Sy
P R %% %n 0 mma s any

Yim

+ Odometrie

Optisches Tracking
—m—Wegpunkte

05

05

258
Him

Abbildung 5.8.: Breitensuche mit Sichtbereich = 21cm, Toleranz = 10cm

Abbildung [5.9] zeigt den Flug bei einem groBeren Sichtbereich. Offensichtlich liegt hier ein
deutlicher Fehler in der Odometrie des Quadrokopters vor. Beim Vergleich der Daten des Op-
tischen Trackings mit den Wegpunkten ist jedoch ein sehr schones Ergebnis vorzuzeigen. Der

Quadrokopter ist weiterhin deutlich iiber die Wegpunkte hinausgeflogen, die tatséchliche Positi-

on ist allerdings sehr nahe am gewiinschten Wegpunkt. Der abgedeckte Sichtbereich ist tiberall
ziemlich im Rahmen des Sollwertes, nur im rechten Teil ist eine gro3ere Liicke.

40

Evaluierung
Breitensuche
Sichtbereich 30crm, Toleranz: 10cm
2
15
“ :
.
% + Odometrie
:' Optisches Tracking
c . —m—Wegpunkte
- a5 ¥ H
5 * O'
D
+
] !

==}
o
P

05

-
a5 F Tt maaminn e =

.
-
e
.ot
e =
-
L——.----'

Abbildung 5.9.: Breitensuche mit Sichtbereich = 30cm, Toleranz = 10cm

Das Uberschwingen des Quadrokopters durch die lange gerade Bewegung zuvor erkennt man

besonders gut in Abbildung [5.10] Betrachtet man den Sichtbereich, merkt man, dass dieser sehr

gut abgedeckt ist.
Breitensuche
Sichthereich: 81cm, Toleranz: 10cm
2
Ot il 29
e Y
%
LY
Y
H
: [}
it 3
T3} H
1 [13 + Odomstrie
7oA H Optisches Tracking
E ,“ “ —m—\Wegpunkte
= : 4
.
H
05t
H
.
.
A
-
\ P
o .-'w-u..n"".‘
05 o 05 1 15 2
05

Him

Abbildung 5.10.: Breitensuche mit Sichtbereich = 51cm, Toleranz = 10cm

Evaluierung 41

Bei einem Toleranzbereich von Ocm liegen die Wegpunkte auf komplett geraden Strecken. (Ab-
bildung[5.11)) Offensichtlich kann der Quadrokopter auch diese Wegpunkte nicht im abgesteckten
Rahmen ideal abfliegen. Laut der Odometrie-Kurve schien der Quadrokopter verhéltnismifBig gut
die Wegpunkte abzuarbeiten. Das optische Tracking jedoch zeigt, dass der Quadrokopter nach
links deutlich iiber das Ziel hinaus geschossen ist. Der Sichtbereich sollte sich bis auf den duf3er-

sten Kreis im Rahmen von 30cm befinden.

Breitensuche

Sichtbereich 30cm, Toleranz: Ocm

25

Sty
{ 3
i L]
15 < k]
§
I [A —— ; & Odometrie
; 9 3 Optisches Tracking
A J
c . i 3 N —8— Wegpunkte
= 3 ;-
£ TR P
;o
- ;9
{ i
05 \) %
(] o -t
A e N

-

05 1}

05

Him

Abbildung 5.11.: Breitensuche mit Sichtbereich = 30cm, Toleranz = Ocm

Bei einer Toleranz von 20cm verhilt sich der Quadrokopter relativ dhnlich wie zuvor bereits
beschrieben. (Abbildung [5.12) Er bewegt sich auflerhalb des Bereichs von Ocm bis 192cm und
hat ein deutliches Uberschwingen nach Erreichen der Wegpunkte. Der Sichtbereich ist relativ
schlecht abgedeckt, wie man an den groBBen weillen Fldachen links vom Startpunkt und etwas wei-
ter rechts gut erkennen kann.

Zusammenfassend ldsst sich sagen, dass der abzusuchende Bereich fiir die Erstellung der Weg-
punkte deutlich kleiner gewahlt werden sollte, als der tatsdachlich abzufliegende Bereich, da der
Quadrokopter withrend des Fluges deutlich iiber die Wegpunkte hinaus fliegt. Die Flugbahn mit
dem groBen Sichtbereich von 51cm scheint am konstantesten zu sein. Durch die vielen Anderun-
gen der Flugbahn mit mehreren Wegpunkten kommen Fehler in die Odometrie. Je nach Kame-

rawinkel sollte der Sichtbereich vermutlich trotzdem kleiner als der tatsdchliche Kamerawinkel

Evaluierung 42

gewihlt werden, damit man einen gewissen Spielraum hat. Dabei zu beachten ist, dass man Ob-
jekte so mehrfach finden kann. Die Toleranz hat die Flugbahn nicht wie gedacht zum Positiven
hin verandert. Das Problem mit dem Uberschwingen wird dadurch nicht behoben, sondern eher

verstarkt.

Breitensuche

Sichtbereich: 30cm, Toleranz: 20cm

25

+ Odometrie
Optisches Tracking
—— Wegpunkte

¥im

Rk}

05

Xim

Abbildung 5.12.: Breitensuche mit Sichtbereich = 30cm, Toleranz = 20cm

5.3.2. Tiefensuche

Wie bereits fiir die Breitensuche in Kapitel [5.3.1] festgestellt, fliegt der Quadrokopter nach langen
geraden Strecken iiber das Ziel hinaus. Dies sieht man bei allen nachfolgenden Abbildungen vor
allem fiir die duBersten Kreise, die nach dem Startpunkt direkt abgeflogen werden.

In Abbildung [5.13] gibt es leichte Unterschiede zwischen den Werten der Odometrie und des
optischen Trackings. Dies fiihrt dazu dass ein sehr grofer Bereich iiberhaupt nicht abgedeckt
worden ist! Im zweiten Ring von au3en hat sich der Quadrokopter laut optischem Tracking nicht

befunden. Der Bereich in der Mitte der Karte hingegen wurde iiberméfig gut abgedeckt.

43

Evaluierung

Tiefensuche

Sichtbereich: 21crm, Toleranz: 10cm

25

+ Odometrie
Optisches Tracking

—m—Wegpunkte

Yim

25

05

05
Him

Abbildung 5.13.: Tiefensuche mit Sichtbereich = 21cm, Toleranz = 10cm
Der Quadrokopter hat in Abbildung [5.14]die Wegpunkte zwar nicht akurat angeflogen, jedoch

in Betrachtung des Sichtbereichs bis auf den duflersten Ring alles gut abgedeckt.

Tiefensuche

Sichtbereich: 30cm, Toleranz: 10cm

25

15 [
i
4 + Odometrie
b Optisches Tracking
c ; : —— Wegpunkte
= :
H
.
+
.
.
05 ‘o
.
by
25

Rk} 05

05
Abbildung 5.14.: Tiefensuche mit Sichtbereich = 30cm, Toleranz = 10cm

Der Versuch in Abbildung [5.15] zeigt, dass der Quadrokopter teilweise Wegpunkte zu friih

“abhakt®. Die Odometrie Kurve weicht deutlich von den Wegpunkten ab, wohingegen der Qua-

Evaluierung 44

drokopter per optischen Tracking relativ gut die Wegpunkte verfolgt hat. Fiir den eingestellten

Sichtbereich ist das Ergebnis gut.

Tiefensuche

Sichtbereich 51crm, Toleranz: 10cm

25

+ Odometrie
Optisches Tracking
—m—Wegpunkte

05

i} 05 1 15 2 25

Rk}

Him

Abbildung 5.15.: Tiefensuche mit Sichtbereich = 51cm, Toleranz = 10cm

Dadurch, dass Odometrie und optisches Tracking durch Messfehler in der Odometrie teilweise
unterschiedlich sind, wird in Abbildung[5.16|wieder ein groBerer Bereich nicht richtig betrachtet.
In diesem Bereich, rechts im Bild, sieht man die Odometrie genau in der Mitte, jedoch keinen

Wert vom optischen Tracking.

Evaluierung 45

Tiefensuche

Sichtbereich 30cm, Toleranz: Ocm

25

+ Odometrie
Optisches Tracking
—m—Wegpunkte

PP
e -‘..

Yim

..
(N
Ty
.,
Sveasniing

05

ammet o
nemes mesmase s W a

-
- ”—

o
o
/'\‘ ...
3
"
3
\
.

-
- -
M‘-.-‘.-Q.ﬂl-‘..‘.. + o

05 05 1

05

Him

Abbildung 5.16.: Tiefensuche mit Sichtbereich = 30cm, Toleranz = Ocm

Im Versuch aus Abbildung wird der Sichtbereich relativ gut abgedeckt. Hier bleibt ledig-
lich das Problem, dass der Quadrokopter aus dem Bereich der Karte hinaus fliegt.
Zusammenfassend lésst sich dhnlich der Breitensuche sagen, dass die Wegpunkte fiir einen klei-
neren Bereich generiert werden sollten. Eventuell wire es sinnvoll die duBBersten Wegpunkte etwas
zuriickzusetzen, damit der Quadrokopter mehr Platz zum Uberschwingen hat. Der Sichtbereich

wurde bei einer Einstellung von 30cm am besten abgedeckt. Der Toleranzparameter hat wie bei

der Breitensuche lediglich das Uberschwingen verstirkt.

Evaluierung

Tiefensuche

Sichtbereich 30cm, Toleranz: 20cm

25

Yim

+ Odometrie

Optisches Tracking
—m—Wegpunkte

"
\~ PP
s mas we s

L]
.

05 0a

25
05

Him

Abbildung 5.17.: Tiefensuche mit Sichtbereich = 30cm, Toleranz = 20cm

5.3.3. Zick-Zack-Muster

Das Zick-Zack-Muster hat von den drei getesteten Algorithmen mit Abstand am schlechtesten
abgeschnitten. Die Anordnung der Wegpunkte war offensichtlich extrem ungiinstig mit dem An-
fliegen von Koordinaten des Quadrokopters umsetzbar.
In Abbildung [5.18]ist zwar der Suchbereich relativ gut abgedeckt, jedoch ist der Quadrokopter
gleich am Anfang extrem weit aus diesem Bereich herausgeflogen. Am Ende ist der Quadrokopter
ebenfalls deutlich zu weit auBBerhalb geflogen. Zusitzlich dazu ist der Quadrokopter den Bereich

nicht zeilenweise abgeflogen, sondern hat immer wieder merkwiirdige Kurvenbewegungen aus-
gefiihrt.

46

Evaluierung 47

Zick-Zack
Sichtbereich: 21crm, Toleranz: 10cm

25

+ Odometrie
Optisches Tracking
—m—Wegpunkte

T,
Mrnsimenee?®

Yim

05

Him

Abbildung 5.18.: Zick-Zack mit Sichtbereich = 21cm, Toleranz = 10cm

Neben dem bereits bekannten Uberschwingen ist der Quadrokopter in Abbildung eine
extrem merkwiirdige Flugbahn abgeflogen. Teilweise wurden Bereiche doppelt abgesucht, dafiir

wurden andere Bereiche iiberhaupt nicht betrachtet, zum Beispiel gleich am Anfang (oben links).

Zick-Zack

Sichtbereich: 30cm, Toleranz: 10cm

+ Odometrie
: Optisches Tracking
£ ;i —— Wegpunkte
= !

2N

g e

o 1Y

<R dusmensls
QM‘ "

05

[X})

25

..,

<. A-

05

Abbildung 5.19.: Zick-Zack mit Sichtbereich = 30cm, Toleranz = 10cm

Evaluierung 48

Bis auf ein kleines Uberschwingen am Ende wird in Abbildung relativ gut der Bereich
abgesucht. Hier kann man gut erkennen, dass die Odometrie bereits ein ganzes Stiick vor dem
Erreichen des Wegpunktes umdreht. Dadurch, dass der letzte Wegpunkt weit aulerhalb des Such-

bereichs angeflogen worden ist, ist die Abdeckung in diesem Bereich nicht wirklich ausreichend.

Zick-Zack

Sichtbereich: 1cm, Toleranz: 10cm

+ Odometrie
Optisches Tracking
—— Wegpunkte

¥im

n0a

0B

04

02

25

Abbildung 5.20.: Zick-Zack mit Sichtbereich = 51cm, Toleranz = 10cm

In Hinblick auf das optische Tracking, wurde in der Versuchsanordnung aus Abbildung [5.21]
der Suchbereich relativ gut abgeflogen. Wenn man jedoch die Odometrie beachtet, merkt man,
dass der Quadrokopter teilweise die Wegpunkte nicht ganz abgearbeitet hat.

Da der Quadrokopter teilweise merkwiirdige Flugbahnen verfolgt hat, sollte man eher auf einen
der anderen Algorithmen zuriickgreifen. Die Toleranz sollte im Wesentlichen nicht gro3er als O
eingestellt werden, da sonst Wegpunkte anhand der Karte bereits in eine Wand generiert werden
wiirden. Den Sichtbereich kann man je nach Schwerpunkt einstellen. Fiir ein relativ “sauberes*
Abfliegen der Wegpunkte bietet sich ein grolerer Wert an, jedoch kann es dann passieren, dass

Bereiche nicht betrachtet werden.

Evaluierung

49

Zick-Zack

Sichtbereich 30cm, Toleranz: Ocm

el ?
P
+
-

aswe
ettt
el
-
-
o
eamsrens et

,
.
e
.
|

+ Odometrie
Optisches Tracking
—B— Wegpunkte

Yim

Rk} 1}

05

Him

Abbildung 5.21.: Zick-Zack mit Sichtbereich = 30cm, Toleranz = Ocm

5.4. Zusammenfassung

Die Evaluierung der Simulation und der Praxis-Versuche ist allgemein positiv ausgefallen. Die
Wegpunkte werden fiir verschiedene Parameter richtig generiert. Bei der Praxis hat sich gezeigt,
dass der Quadrokopter jeweils ein kleines Stiick iiber den Wegpunkt hinaus fliegt, je nachdem
wie lang die “Beschleunigungsstrecke* vom vorherigen Wegpunkt ist. Der Sichtbereich sollte ab-
hingig von den Eigenschaften der Kamera (Offnungswinkel) und der Flughhe angepasst werden
und besser etwas kleiner als der echte Sichtbereich gewihlt werden, da der Quadrokopter sonst
unter Umstidnden manche Bereiche nicht abfliegt. Dabei sollte beachtet werden, dass manche Be-
reiche mehrfach im Sichtbereich der Kamera sind. Der Toleranz-Parameter ist sinnvoll bei nah
beieinander liegenden Wegpunkten zu verwenden, da der Quadrokopter die einzelnen Wegpunk-
te sonst gar nicht anfliegen wiirde. Dies ist zum Beispiel bei der Tiefensuche der Fall. Von der
allgemeinen Flugbahn jedoch hat sich gezeigt, dass der Quadrokopter bei groler Toleranz das

Uberschwingen iiber einen Wegpunkt verstirkt. Um dies zu vermeiden sollte man die Toleranz

moglichst klein wihlen, beziehungsweise auf Null setzen.

Diskussion und Ausblick

6. Diskussion und Ausblick

6.1. Suche in komplexen Umgebungen

Anhand der Evaluierung der hier imple-
mentierten Wegpunktlisten muss in zu-
kiinftigen Projekten darauf geachtet wer-
den, dass der Quadrokopter relativ weit
von den in der Theorie erstellten Koor-
dinaten abweicht. Bei komplexen Umge-
bungen mit Wegpunkten, die nah an ech-
ten Winden liegen ist dringend auf d;ie
Kollisionserkennung zu achten. Das Er-
stellen der Wegpunkte fiir nicht triviale
Umgebungen sollte darauf ausgelegt sein,
Wegpunkte moglichst iiber lange gerade
Strecken zu legen, und dann an den Qua-

drokopter jeweils nur den letzten Weg-

punkt der Gerade zu iibergeben. Komplizierte Wendemandover sollten vermieden werden. An der
Auswertung der Zick-Zack-Bewegung sieht man besonders gut, dass der Quadrokopter bei einer

Drehung um fast 180 © ziemlich merkwiirdige Flugbahnen verfolgt. (siche Abbildung[6.1)

05

Zick-Zack

Sichtbereich: 30cm, Toleranz: 10cm

P s 22
£

Abbildung 6.1.: Zick-Zack: merkwiirdige Flugbahn

+ Odametrie
Optisches Tracking
——"Wegpunkte

Diskussion und Ausblick 51

6.2. Kombination von Suchalgorithmen mit

Objekterkennung und Kollisionserkennung

Das eigentliche Ziel, das Finden eines Objekts, wurde im Rahmen dieser Arbeit nicht getestet.
Dies ist einer der nichsten Schritte fiir das Projekt Lebensretter mit Propellern. Es muss dar-
auf geachtet werden, dass der Quadrokopter durch Schwankungen beziehungsweise durch die
generierten Wegpunkte iiber den selben Ort mehrfach fliegen kann. Zusitzlich muss eine Riick-
kopplung zur Kollisionserkennung mit den Wegpunkten eingerichtet werden. Das heifit wenn der
Quadrokopter durch die Kollisionserkennung merkt, dass er zu nahe an der Wand ist, miissten die

Wegpunkte um einen gewissen Wert zuriickgesetzt werden.

6.3. Feedback Uber bereits abgesuchte Bereiche

Da die tatsidchliche Bewegung des Quadrokopters weit von der in der simulierten Bewegung ab-
weicht, miisste man eine Korrektur beziehungsweise eine Riickkopplung vom Quadrokopter wih-
rend des Fluges berechnen lassen. Dies wire zum Beispiel durch eine Regelung der Odometrie-
Werte mit den Verbindungsstrecken der Wegpunkte umsetzbar. Beziehungsweise muss anhand
der Odometrie gemerkt werden, wo der Quadrokopter sein sollte, jedoch bisher noch nicht war.

Diese Bereiche miissten neben den restlichen Wegpunkten noch abgesucht werden.

6.4. Simulation von Heuristischen Suchen

Anhand der hier implementierten GUI kann sehr einfach eine komplexe Umgebung erstellt wer-
den. Es dient als Grundlage fiir die Simulation beliebiger Suchalgorithmen. In dieser Arbeit wur-
de der Fokus auf uninformierte Suchen gelegt, jedoch konnen auch heuristische Suchen in dieser
Umgebung umgesetzt werden. Hierbei muss dringend darauf geachtet werden, dass die Weg-
punkte in geniigendem Abstand zu Winden erstellt werden, da der Quadrokopter in der Realitit

teilweise weit von den generierten Wegpunkten abweicht.

Diskussion und Ausblick 52

6.5. Anpassen von iterativ generierten Wegpunkten

Da in der hier verwendeten Version des Quadrokopters, die Wegpunkte bereits 20cm vor dem ei-
gentlichen Erreichen, diese als erreicht vermerkt werden, muss man fiir beliebige iterative Suchal-
gorithmen versuchen mehrere Wegpunkte zusammenzufassen. Man kann die Wegpunkte, welche
auf geraden Strecken hintereinander liegen, iiber einen einzigen, den letzten Wegpunkt an den
Quadrokopter iibergeben. Auch fiir versetzte Wegpunkte die auf einer Kurve liegen, kann unter
der Beriicksichtigung, dass der Quadrokopter iiber manche Wegpunkte hinaus fliegt, eine dhnliche

Zusammenfassung genutzt werden.

7. Literaturverzeichnis 53

7. Literaturverzeichnis

[Bishop 2010] BISHOP, Jacob: Search Pattern Generation and Path Management for Search

over Rough Terrain with a Small UAV: Master Thesis. 2010

[Coleman etal. 2012] COLEMAN, Catherine ; FUNK, Joseph ; SALVATI, James ; WHIPPLE,

Christopher: Design of an Autonomous Platform for Search and Rescue UAV Networks. 2012

[Gorz 2003] GORZ, Giinther: Handbuch der kiinstlichen Intelligenz. 4. Miinchen and Wien :
Oldenbourg, 2003. — ISBN 9783486272123

[Grzonka etal. 2009] GRZONKA, Slawomir ; GRISETTI, Giorgio ; BURGARD, Wolfram: 7o-

wards a Navigation System for Autonomous Indoor Flying. 2009

[Hart etal. 1968] HART, P. ; NILSSON, N. ; RAPHAEL, B.: A formal basis for the heuristic
determination of minimum cost paths. In: Aus: IEEE Transactions Of Systems Science And

Cybernetics, Vol Ssc-4(1968),2 ,5.100-107 (1968)

[Hopcroft und Ullman 1979] HOPCROFT, John E. ; ULLMAN, Jeffrey D.: [Introduction to
automata theory, languages, and computation. Reading and Mass : Addison-Wesley, 1979
(Addison-Wesley series in computer science). — ISBN 9780201029888

[Kleiner und Nebel 2013] KLEINER, Alexander ; NEBEL, Bernhard: Search Algorithms and
Pathfinding. 2013. — URL http://www.informatik.uni-freiburg.de/~ki/
teaching/wsl011/imap/04_SearchAlgorithmsAndPathPlanningMAS_

PartA.pdf

[LaValle 2006] LAVALLE, Steven M.: Planning algorithms. Cambridge and New York :
Cambridge University Press, 2006. — ISBN 9780521862059

http://www.informatik.uni-freiburg.de/~ki/teaching/ws1011/imap/04_SearchAlgorithmsAndPathPlanningMAS_PartA.pdf
http://www.informatik.uni-freiburg.de/~ki/teaching/ws1011/imap/04_SearchAlgorithmsAndPathPlanningMAS_PartA.pdf
http://www.informatik.uni-freiburg.de/~ki/teaching/ws1011/imap/04_SearchAlgorithmsAndPathPlanningMAS_PartA.pdf

7. Literaturverzeichnis 54

[Lunze 1994] LUNZE, Jan: Kuenstliche Intelligenz fuer Ingenieure: Methodische Grundlagen
und Softwaretechnologie. Miinchen : Oldenbourg, 1994 (Methodische Grundlagen und Soft-
waretechnologie). — ISBN 9783486222876

[Patnaik 2006] PATNAIK, Srikanta: Studies in computational intelligence. Bd. 8: Innovations

in robot mobility and control. Berlin and New York : Springer, 2006. — ISBN 9783540268925

[Sarid und Shapiro 2009] SARID, Shahar ; SHAPIRO, Amir: Classifying the multi robot path

finding problem into a quadratic competitive complexity class. 2009

[Schmitt 2012] SCHMITT, Norbert: Intelligentes Mapping fiir Indoor-Quadrocopter: Bachelor
Thesis. 2012

[Siegwart etal. 2011] SIEGWART, Roland ; NOURBAKHSH, Illah R. ; SCARAMUZZA, Davide:
Introduction to autonomous mobile robots. 2. Cambridge and MA [u.a.] : MIT Press, 2011

(Intelligent robotics and autonomous agents series). — ISBN 0262015358

[Sommer 2008] SOMMER, Ulli: Roboter selbst bauen: Das grosse Praxisbuch fiir Einsteiger

und Fortgeschrittene. Poing : Franzis, 2008 (Franzis Experimente). — ISBN 3772341098

[Soundararaj etal. 2009] SOUNDARARAJ, Sai P. ; SUJEETH, Arvind ; SAXENA, Ashutosh:

Autonomous Indoor Helicopter Flight using a Single Onboard Camera. 2009

[Strohmeier 2012] STROHMEIER, Michael: Implementierung und Evaluierung einer Positions-

regelung unter Verwendung des optischen Flusses: Bachelor Thesis. 2012

Anhang

55

A. Anhang

Bilder zur Evaluierung der Praxis

Wi

cliy
T tiee 51 . Savg ‘io‘%w@ﬂﬂ.ttoo‘.l
LY o P
] e TS et

5z
stt7 o/ﬂ .o.poo
7 L]
. .
{2se
\ o
._. ’0
\ F
.
K s
% S
apqundias, —m— o. m
Buiyaed] sayasndo o.
sulalopD & %
&o
Oook e,
Y

e -
Tretwrs e Wiiw e e wnsle e e ®

ST
LI3Q] SZUBIB|0] W7 UISIeuaS

aljonsualalg

50

Wik

56

Anhang

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

LU
! S0 ,,0ve oo -
g oy ..t * .
PR "

N l.ii
T e = o
L]
*
s_.ﬂo\ < «l. -
a3 ¢ . o
¥ * » N ﬂ
.
pS *
] A
» » - "
L) * * ﬂ. -
* -
& m * & - .
Py # * * *
o . I : :
P * bl AL N
$8 e * * * * A
- L 3 * *
P E 3 ¥ m -w
* % *
S R =
- * ..r_
- * o
. ! 'o..lnl!l‘“oﬂ”ft.t.oo v ., P L S B
: . * Tttt e s s e
] . B
&S +
M s o,
- i‘f
| =
‘}4’ T oo Yoo s " . *
'Q‘o' t - - . ® = & # 0...1..-.*
.-.l.-.'t g

* . ="
AR T ARPOER Y S

LI2[ZUes3 |0 WO0g yDialamyols

alonsuslialg

i

57

Anhang

W

Lo
]

(]

WA

1208 BHE &
i bl L Y

Ge BRMENG BODAL 22400008 200t sesrrrrrren

apqundfas, —m—
Buiyael] sayasndo @
SUIBWORO -. m.. _
i Wf.‘o d.o AR 1&0.
i iél‘%luuﬂﬂuh
* L -t
“ -*®
‘000 ol]

-
‘WWS‘
$
N
*
4
-
.
2’-
:
'3 b
AT
*
*
]
*
E
¥
¥
‘t
Y
b

|
a4 -

* * ¥
* sty L
+...f .ﬁlVi‘ T ibarsnne s go sbbb s)

-t

LI2Q (ZUBIA|O] 'LIDQE YDIslaqiyals

alonsualalg

58

Anhang

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

L
_..I
.ltt.!l-_tl
wee” 5D
A =
IPELARTE R "o
- 1&.’
[] ‘.1
* 1‘.._ *)
_...__ooo.voo utcv...f._o)
+ 50 #. +3* 00 50
s b+ % P |
& N » _H_
]
: 1,
) -
* -
wq N
L o
2 50
*
. -
s .
% .
*
* *
L
Jo
*
— o
|
- -
*
-
.f'
o
.
¥ !
&+
*
s_’: * # * ® & & ¥ * ¥ » - * I
[..-.“’.v MLl L PP 90.._‘ i))
L J
i

L1200 |, (ZUBJA|0] 'LID0E Y218da0iyas

alonsuslialg

i

59

Anhang

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

W
St 8y
oot Y
*
t_.!‘._.-:v._os.rb.-_.._:ba
m_m . - m_ L _..n ‘*ﬂ“.“‘.. *y
- h.
* -’)
: +*
o - “
'. . :
- ‘ ’
+ cai 4 :
4 »
S P ‘ 5
. "
’ *
*
- “
*
L % i
'. * . :
. ! '
" o.. { L #
L s K
L H]
.
#.- 3 09-
-
L] ss_ g u
fo . * :
b - TR RS e w W e ay
.’ - .v.-_ooo-o.rto * 1##&&9.—.4.#0.1. wo..
- - » .
g L
’c.ﬁ”‘&tp‘ﬂﬂg -
. fn.- - e " - . ¥ *
1 P e bbbl -

LI207 (ZUBJA|0] 'LIDDE Y218da0iyas

alonsuslialg

50

i

60

Anhang

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

Wi

. .
‘:‘tlt‘!
..
-

LI207 (ZUBJA|0] 'LIDDE Y218da0iyas

alonsuslialg

i

61

Anhang

apundbas, —m—
Buiyaed] sayasdo +
SUIBLUORO #

W

*

- o wn -

- N T e
e ikt

*
-

*

LIoQ] ZUEJAD] 'WID]G Ydialamylls

alonsualalg

o
. .a¢ S0
w0
.
%
f *
. .
s .
i 5o
" *
.]
.
$i
-
.
*
s
*
ek
* g
3
*
*
‘.
A P
ey
il

WA

Anhang

62

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

Wi

m__.. LR

g

* ¥
g ®EE et MR TP

'
=3
b x 3 arrd d

g

*

R S bk e dn i

i

*
-
’ t._ ol.“ ﬂ‘o
* -
*
Qoq Fp. o o
* ‘.’i
F i
T
* »
* s
+
N I
» * “
{] - %
! - :
*
. 4
F
§ .
L] .
L]
‘. *
. ®
* % .
PP # - e it
* Lo
. -
W B

,,o

L]
‘tl'ttft t“eit\’#t

Fan 3wl

foan, e v "
[

L R IR I
s

T

L2 | (ZUBJAI0] 'LIDLF 218180y as

aljonsuslal]

i

Anhang

63

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

Wi

o # B bW FET VR bWy ,,
-

-~
..‘. ".'..‘." ..‘..
' ™ ' * 4, *
=} ._._o+ —.ooato-ocmﬁ_ .
* . ov
- . v . v " #'i‘i!ﬂ”
* . T o
T "_’
-
.._t.rv
"4

L
,.,..ooo."

bk Bk X L 2

L2 | (ZUBJAI0] 'LIDLF 218180y as

aljonsuslal]

i

64

Anhang

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

Wi

L0
0

[}

L0
0

et

)

ONL\”

-
Py i

LI2[ZUes3 |0 WO0g yDialamyols

aljonsuslal]

i

65

Anhang

-

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

Wi

—

otooon...:...a_v....ot
P T 4...;..0...
] * 1
Sl . + L S0
—
. *
M = 0
‘.“
t.‘v
‘\.
A * » 2 att
. -
f +] M
* 3 il ¥
1 i e :
L o]
*
[]
Ve .
- m *
LI 4
* 4 +
-ou ... :
. *
“0 & .o
i :
4 *
L : 4.._
LE) " :
0- * . W
- - *
" Y HE N
- " | 3
| :

/;

-
PP . ** * ‘1&-_" tvol.‘
os.l“tit_ in.‘. *aﬂ
e e w -
* ag 'o“

ot

it ¥
ll.“h-..‘oi_

*

LI2[ZUes3 |0 WO0g yDialamyols

aljonsuslal]

i

66

Anhang

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

Wi

L I B R

50

* *
o L1

T
Y

0 ..—w g0
E .
e T
a .

*

*

+
. * e v **
' . » !
gl L 50
.
T
-
" - P
. ..-ooo-o.. -ﬁool_

P R R R R Bt
+

s * - -
oo"‘.t‘ hﬂvmf »
-

&

*
*
*

*
*

-
gy * - -
g 1
* .
$
-
* N o Jaut *
* » g
*
- ' . -y
= »
Py *
* - * A
. * -
* .w :
£ *e
* -
¥ .
* »
) _-r_._
-
y L)
i 5

*
¥
- LE LY L] -
- *
#0.. ki prr tl‘
-
- -

H
L .
e ba b sas byt

*
+
», . *

/{/ l_...” Sredie e
L il

LI2[ZUes3 |0 WO0g yDialamyols

aljonsuslal]

i

Anhang

67

apundbapy, —m—
Buaes) sayasidg #
BUBWOPD #

LU
G-
gl
—.. . * g # Fa & Ll
X) ety
. * * . * - " =31 e, .._oc
} | L _H_ * m_
‘ '.‘ D L] D
P e tcottiit‘n.!..uﬂl\hltt Touy ') p
Pl tremy .
" * .‘.' y
: %, - ¥
u M afp .
$ - : Ve
. : \ R
* oﬂ : :
- ' :
.. .' ‘ 0.
4 : -
* ..t. . ‘
v . i
R u .
L] N M |
L] .. .“
S - | u
] 3 o .w
. 1 f m
' Y .. ;
[! _
. i : m
L) “ utoti...aan-.v..rio — oy o B
.“.. .
-

oo *
3mt1..l~ﬂﬂu oo

Lagy -
01 ‘ZUedB|0L "WI0E YIBIeoyals

alonsusiall

e

i

68

Wi

L

1 ¥ *]
R LI WU-O Faen . 0 g0
—t % & |* e ® * : ..:roo..‘o . 0

* * *s *
» P ‘ + * s_oa. ®
* N L, *
% » M *
* *
H | X0
: M KA
X Mo
B ‘i .’ -
i s .
Ot ﬁ +
3 H ﬂo o.._
e Vo
apqundbag, —m— % .ew . *
fuael| sayasidg + ou- " : :
aulawopn # * N

*
-

iy
& * o

*
| #*
*
. ™ - il
ey JUNRUNPE e ..\
.t FF T R R
Y *
? z

- -
Il_ .llii..._t-tl_vttt.-l
L T L T T X L

;.‘iii*‘l i 4 B - S

Anhang

L1200 |, (ZUBJA|0] 'LID0E Y218da0iyas

aljonsuslal]

i

69

Anhang

*

et e a,

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

Wi

*
., * -
LR
- B *raly
- -"“l’l.
*

.-_ooso-o.-_ooto._

LI207 ZURJA|0] 'UI20E Jla4ag

aljonsuslal]

215

i

70

BUjBLIOPO @

Anhang

apundbapy, —m—
Buiyaelr) sayasndg #

W
! '
C Sl L =3 .
L
Lt .440091-14_0‘. .
*
3
» —_— u
.+ * S R -
- 5 ¢-_t300"_¢r¢%.
-
OC
‘..
*
L3
.
-
*
*
-
i

-
-
-t
.

-
¥
*

* - -
- PR

9.1.0 -e a8 e e
e e

5T
LI207 (ZUBJA|0] 'LIDDE Y218da0iyas

aljonsuslal]

*

i

Anhang

71

apundbapy, —m—
Buiyaelr) sayasndg #
aljalopn

L
g0
= g g1 L 50 . 0
Y AL * .._o a
L !
- & -y s_o \
X N B h
b .
.-_- ..4 ,¢ .
* - ‘“‘O
0.” ﬁ"
2 .+
w T
.o -
,m s
uw i
7 $
h] *
SR N S
S gl
* == | \\
L) LK ™ P
oo * X * Jo..o.ou_otfa o\. o
L aere’t \t.-.. UL A
oMﬁi‘- P hmse - ‘l_!‘t_
ooo._.otc.._ el
il..loo‘ £
-
=

LI20 | (ZUBJRI0] 'LID |G 218da0IyaIs

aljonsuslal]

i

Anhang

72

Zick-Zack

Sichthereich: 21cm, Taleranz: 10cm

25

IZTTR

L 3

#*

-

+

e,

4 Optisches Tracking

——"Wegpunkte

Odometrie

* &
*
sk ®
.O‘

*

#*

o

oy,

Fes

i

25

0.5

Him

Anhang

73

Zick-Zack

Sichtbereich: 30cm, Toleranz: Ocm

4 Optisches Tracking

——"Wegpunkte

Odometrie

*
o‘..
hadt]
.Q-.ll“-.. M

i

05

05

Him

Anhang

74

Zick-Zack

Sichtbereich: 30cm, Toleranz: Ocm

Odometrie

4 Optisches Tracking

——"Wegpunkte

25

15

05

05

i

Him

Anhang

4 Optisches Tracking

——"Wegpunkte

Odometrie

Zick-Zack

Sichthereich: 30cm, Taleranz: 10cm

{ %" D
o Tt P T, e o N, fus)
T - ..'%;} 01-40'.':]. ‘\ v
LN | L
’:ﬁ.

*ow

Qr.uﬂio'ﬁﬂi'*-"-ﬁ. L

0.5

i

Him

Anhang

76

Zick-Zack

Sichthereich: 30cm, Taleranz: 10cm

Odometrie

4 Optisches Tracking

——"Wegpunkte

bt £ LR T .

£
P

o

i

25

05

05

Him

Anhang

77

Zick-Zack

Sichthereich: 1cm, Taleranz: 10cm

4 Optisches Tracking

——"Wegpunkte

Odometrie

Lo
(']
(']
Lo
—
—
Lo
]
"
-
-he=-
st missme e s @ e
* e baastb b b ppa P F(FEEE N
: (]
(]

=1 [} —
— —

Him

	Titelseite
	Inhaltsverzeichnis
	Einleitung
	Stand der Wissenschaft
	Grundlagen für eine Suche
	Autonome Suchverfahren
	Uninformierte Suchverfahren
	Breitensuche
	Gleiche-Kosten-Suche
	Tiefensuche
	Schrittweise vertiefende Suche

	Heuristische Suchverfahren
	Bergsteigen
	Optimistisches Bergsteigen
	Gierige Suche
	A*-Suche

	Chaosdrive

	UAV Suchen
	Flugzeugähnliche UAVs
	Helikopterähnliche UAVs

	Suchen mit mehreren Robotern

	Konzept
	Überblick
	Iteratives Suchen
	Wegpunkt-basiertes Suchen
	Problematik der Ausführung
	Lösungsansätze

	Implementierung
	Überblick
	Anpassung der Suchverfahren
	GUI
	Benutzte Suchalgorithmen
	Weitere iterative Suchalgorithmen

	Kartenerstellungs-Tool

	Evaluierung
	Überblick
	Simulation
	Breitensuche
	Tiefensuche
	Zick-Zack-Muster

	Praxis
	Breitensuche
	Tiefensuche
	Zick-Zack-Muster

	Zusammenfassung

	Diskussion und Ausblick
	Suche in komplexen Umgebungen
	Kombination von Suchalgorithmen mit Objekterkennung und Kollisionserkennung
	Feedback über bereits abgesuchte Bereiche
	Simulation von Heuristischen Suchen
	Anpassen von iterativ generierten Wegpunkten

	Literaturverzeichnis
	Anhang

