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Aufgabenstellung

Die Fortschritte im Bereich Sensorik und Mikrotechnik ermöglichen heutzutage den kostengün-

stigen Bau kleiner unbemannter Luftfahrzeuge (UAV, unmanned aerial vehicle, Drohne) wie Qua-

drokopter. Die Forschung und Entwicklung dieser Systeme wurde in den letzten Jahren aufgrund

der vielfältigen Anwendungsmöglichkeiten stark vorangetrieben. Wenngleich im Bereich UAV

viel geforscht wurde, ist das Thema Autonomes Flugobjekt längst noch nicht vollständig behan-

delt. Der Aufbau eines eigenen autonomen Systems wird daher am Lehrstuhl Aerospace Informa-

tion Technology der Uni Würzburg erforscht und erprobt. Beim vom Universitätsbund geförder-

ten Projekt Lebensretter mit Propellern wird ein System entwickelt, das autonom Räume durch-

suchen, Objekte finden sowie deren Position auf einer Karte angeben kann. Im Rahmen dieses

Forschungsvorhabens sind geeignete Verfahren zur Koordination der Suche (Suchalgorithmen)

zu untersuchen.

Hauptaugenmerk dieser Arbeit ist die Entwicklung eines Algorithmus, der die Suche des Qua-

drokopters steuert. Denkbar ist die Implementierung üblicher Algorithmen zur Suche wie z.B.

Breiten- und Tiefensuche. Die Arbeit soll Vor- und Nachteile unterschiedlicher Suchalgorithmen

bezogen auf diesen speziellen Anwendungsfall und unter Berücksichtigung der systemspezifi-

schen Rahmenbedingungen (Sensorik mit Fehlern, Instabiles System & Regelung) behandeln.

Die entwickelten Systeme sind in Software per Simulation und am realen System zu evaluieren.

Die Entwicklung des realen Systems, das Sensorik und Software zur Positionserfassung, Kollisi-

onsvermeidung und 6DOF Steuer- und Regelung besitzt, ist nicht Teil der Aufgabe. Im Rahmen

der Arbeit ist zunächst der Stand der Technik im Bereich autonome Suche aufzuarbeiten und

zu beschreiben. Die implementierte Lösung ist in das bestehende System zu integrieren und an

diesem ausgiebig zu evaluieren. Die Arbeit ist umfangreich zu dokumentieren.

Aufgabenstellung (Stichpunktartig):

• Aufarbeitung Stand der Technik: Autonome Suche

• Implementierung verschiedener Suchalgorithmen

• Simulation

• Einbettung QT, Integration in Quadrokopter

• Evaluierung am Quadrokopter

• Dokumentation



Zusammenfassung

Mit grundlegenden Elementen aus der allgemeinen Graphensuche, werden in dieser Arbeit meh-

rere Suchalgorithmen auf Basis eines Quadrokopters implementiert und getestet. Ausgegangen

wird von einer Karte bestehend aus Zellen. Diese Zellen können entweder frei oder belegt sein.

Die Karte soll komplett abgesucht werden. Für dieses Absuchen werden durch verschiedene Al-

gorithmen Wegpunkte erzeugt. Aufgrund der Komplexität von Karten mit Objekten und Wän-

den, wurde in dieser Arbeit von einer Karte ausgegangen, bei der keine Hindernisse vorhanden

sind. Dafür wurde eine grafische Oberfläche in QT implementiert. In dieser kann ein beliebi-

ger Suchalgorithmus, sowie eine beliebige Startposition ausgewählt werden, wofür Wegpunkte

erstellt werden. Weitergegeben werden die Wegpunkte über eine Drahtlosverbindung an einen

Quadrokopter. Für drei Suchalgorithmen (Breitensuche, Tiefensuche und ein Zick-Zack-Muster)

wurden ausführlich Versuche mit unterschiedlichen Parametern durchgeführt und evaluiert.
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Einleitung 1

1. Einleitung

Der Schwerpunkt dieser Arbeit liegt darin für einen Raum ohne Hindernisse verschiedene Algo-

rithmen zur Wegpunktgenerierung zu testen. Der Hintergrund dazu ist, sich in einem unbekannten

Raum anhand von reinen Onboard-Komponenten zurecht zu finden und diesen Raum systema-

tisch nach Objekten abzusuchen. In einem späteren Stadium soll der Quadrokopter anstelle eines

Feuerwehrmannes in ein brennendes Haus fliegen und dort nach Menschen suchen können.

Für das Projekt Lebensretter mit Propellern wird ein kostengünstiges System eines Quadroko-

pters der Universität Würzburg entwickelt. Dafür werden sowohl in Software als auch Hardware

entsprechende Komponenten hinzugefügt. Bisher ist der Quadrokopter in der Lage eine vorgege-

bene Position autonom anzufliegen, ein oder mehrere Objekte (farbige Kugeln) per Webcam zu

erfassen und eine Karte anhand von Ultraschallsensoren zu erstellen. Ebenfalls ist eine Kollisi-

onserkennung bereits implementiert.

Für eine Umgebung in einem brennenden Haus müssen mehrere Komponenten des bisherigen

Projektes kombiniert werden. Es wird eine Methode des SLAM (Simultanious Localization And

Mapping) benutzt werden, bei der man gleichzeitig eine Karte seiner Umgebung anhand von

Sensoren erstellen und seine eigene Position ermitteln wird. Bereits während man diese Kar-

te erstellt, müssen Wegpunkte nacheinander abgeflogen werden um eine vollständige Karte zu

erhalten. Auch während dieses Erstellens wird je nach Leistung des Quadrokopters die Objekter-

kennung parallel laufen können. Das heißt manche Bereiche der Karte werden bereits allein durch

das Erstellen der Karte nach Objekten, beziehungsweise Menschen abgesucht sein. Zu beachten

ist, dass der Quadrokopter dynamisch eine Kollisionserkennung und -vermeidung umsetzen kön-

nen werden muss, da ein brennendes Haus keine statische Umgebung sein wird. Die Veränderung

von Wänden und Objekten soll dynamisch in der intern gespeicherten Karte aktualisiert werden.

Die Wegpunkte, egal ob zum Erstellen der Karte oder zum Absuchen dieser, sollten sich abhängig

von der Kollisionserkennung und der bisher abgesuchten Bereiche (siehe 6.3) dynamisch verän-
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dern können. Ebenfalls sollte der Quadrokopter in der Lage sein, bei nicht genauem Erkennen des

Suchobjektes, zur selben Stelle zurückzukehren,um eine genauere Betrachtung zu machen (zum

Beispiel Flughöhe veringern um ein besseres Bild zu bekommen).

Die komplette Verarbeitung dieser Aufgaben muss in Echtzeit funktionieren. Dafür muss eine

gewisse Rechenleistung auf dem Quadrokopter garantiert werden.
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2. Stand der Wissenschaft

Suchvorgänge und -algorithmen sind jeden Tag allgegenwärtig: Beginnend im Alltag bei Kreuz-

worträtseln, dem Rubik’s Cube und automatisch einparkenden Autos, bis hin zu Bereichen in

Wissenschaft und Forschung wie bei menschenähnlichen Robotern, GPS-navigierenden UAVs

(unmanned aerial vehicle, Drohnen), künstliche Intelligenz in Computerspielen, Andockmanö-

ver im Weltraum aber auch in der „computational biology“ [LaValle, 2006] zur Darstellung von

chemischen Formeln. [LaValle, 2006] Für jedes dieser Gebiete müssen grundlegende Suchkon-

zepte individuell angepasst und optimiert werden. Einige dieser Suchen werden im Folgenden

vorgestellt.

2.1. Grundlagen für eine Suche

Wie wird eine Suche definiert? Was ist eine Suche? Allgemein ist „Suche“ ein sehr abstrak-

ter Begriff und wird häufig in der Graphentheorie verwendet. Es gibt Zustände (Knoten), die

gewisse Informationen beinhalten um festzustellen, wann ein Zielzustand erreicht ist. Außer-

dem gibt es Kanten, die den Übergang von einem Knoten zu einem weiteren Knoten be-

schreiben. Meist geht man von einer baumförmigen Struktur aus, bei der die Suche bei der

Wurzel beginnt und über einen oder mehrere der Wege einen Zielzustand erreicht. Es las-

sen sich viele Probleme zu einer abstrakten Graphstruktur umformulieren. Um Suchverfah-

ren zu vergleichen hat man im Allgemeinen zwei Größen. Es wird einerseits die Zeit (Time)

bis der Zielknoten erreicht wurde, andererseits der Speicherbedarf (Space) für den bisher zu-

rückgelegten Weg zum Zielknoten betrachtet. Weiterhin ist es wichtig, ob ein Suchalgorith-

mus den Suchraum vollständig absucht und ob eine optimale Lösung, das heißt der vom Start-

knoten am wenigsten entfernte Zielknoten, gefunden wird. Es müssen jedoch viele Vereinfa-

chungen des Graphen getroffen werden, um eine einheitliche Suchumgebung vorauszusetzen.
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1. Sei L die Liste der Startknoten für das Problem
(ab jetzt wird L immer die Liste der noch nicht überprüften Knoten darstellen).

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wähle einen Knoten n aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls ersetze in L den Knoten n durch seine Nachfolgeknoten.
Markiere dabei die neuen Knoten mit dem jeweils zugehörigen Pfad vom Startknoten.

5. Weiter mit Schritt 2!

Abbildung 2.2.: Generische Suche [Görz, 2003]

Abbildung 2.1.: Suchbaum
mit b=2
und d=3

Hier wird von einer Baumstruktur ausgegangen, bei der ein Verzwei-

gungsgrad b angibt, wie viele Kinderknoten aus jedem Elternknoten

hervorgehen. Jede Ebene von Knoten befindet sich auf einer bestimm-

ten Tiefe d, die auch als Abstand vom Wurzelknoten gesehen werden

kann. Die Wurzel befindet sich auf Tiefe d = 0 (Abbildung 2.1).

Als Grundbaustein für die hier betrachteten Suchverfahren kann man

einen leicht erweiterbaren Algorithmus festlegen (Abbildung 2.2). Bei

diesem Algorithmus ist der Zustandsraum in Form von Knoten gege-

ben. Man verwaltet den Weg, das heißt die bisher noch nicht überprüf-

ten Knoten, mit einer Liste L.

Neben dem regulären Vorgehen einer Suche vom Start- zum Zielknoten kann man bei genügend

Informationen über den Zielzustand und unter der Vorraussetzung, dass die Übergangsoperatoren

invertierbar sind, die Suche auch umkehren. Das heißt man vertauscht Start- und Zielknoten und

exploriert den Suchraum von der anderen Seite. Einige Suchprobleme lassen sich auf diese Weise

einfacher und schneller lösen [Görz, 2003].

2.2. Autonome Suchverfahren

Bei Graphensuchen gibt es zwei verschiedene Gruppen für Suchverfahren, die sich durch die

Informationslage bezüglich des Zielzustandes unterscheiden. Bei uninformierten Suchverfahren
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sind während des Suchvorgangs keine Informationen über die Lage des Zielzustands vorhanden.

Das heißt man muss, um den Zielzustand zu erreichen, den vorhandenen Graphen vollständig

systematisch durchsuchen und dabei einen möglichst günstigen Weg vom Wurzelknoten zum

Zielknoten ermitteln.

Die informierten Suchverfahren, auch heuristische Suchverfahren genannt, haben bereits von An-

fang an die Position des Zielzustands gegeben. Dies ist zum Beispiel der Fall bei einem Parkma-

növer. Man weiß genau an welcher Stelle man einparken will, und muss nur noch einen Weg

zum Parkplatz finden. Informierte Suchverfahren beschäftigen sich also hauptsächlich damit den

geringst möglichen Aufwand, um den Zielknoten zu erreichen, zu ermitteln (Stichwort Kosten).

Hier steht also die Pfadfindung (Pathfinding) im Vordergrund [Patnaik, 2006],[Siegwart et al.,

2011]).

2.2.1. Uninformierte Suchverfahren

Im Allgemeinen haben uninformierte Suchverfahren einen deutlich größeren Speicherbedarf für

die Liste der zu betrachtenden Knoten, als heuristische Suchverfahren, da man hierbei den ge-

samten Suchraum betrachten muss. Der Zeitbedarf ist dementsprechend bei Weitem größer als

der Zeitbedarf einer heuristischen Suche, da eben nicht der kürzeste Weg vom Startknoten so-

fort gefunden werden kann, sondern zuerst nach dem Ziel "gesucht"werden muss. Hier gilt es

stukturiert und sinnvoll den Suchraum nach einem Ziel zu durchforsten.

2.2.1.1. Breitensuche

Abbildung 2.3.: Beispiel: Breitensuche [Kleiner und Nebel, 2013]

Die Breitensuche (Breadth-First-Search, kurz BFS) wird dadurch charakterisiert, dass die Su-

che ebenenweise (also die Breite priorisierend) den Suchgraph absucht (Abbildung 2.3). Dies
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1. Sei L die Liste der Startknoten für das Problem.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wähle den ersten Knoten n aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und füge seine Nachfolgeknoten am Ende von L an.
Markiere dabei wieder die neuen Knoten mit dem jeweils zugehörigen Pfad vom Start-
knoten.

5. Weiter mit Schritt 2!

Abbildung 2.4.: Breitensuche [Görz, 2003]

geschieht indem man den generischen Suchalgorithmus aus Abbildung 2.2 dahingehend verän-

dert, dass man nicht mehr einen willkürlichen Knoten der Liste betrachtet, sondern den ersten.

Weiterhin werden zu dem aktuell betrachteten Knoten die Kinderknoten am Ende der Liste der zu

betrachtenden Knoten einfügt. Daraus ergibt sich ein Suchalgorithmus der jeden Ring vom Wur-

zelknoten aus absucht (Abbildung 2.4). Da die Breitensuche ebenenweise vorgeht, wird, falls es

mehrere Zielknoten gibt, derjenige Zielknoten zuerst gefunden, der den geringsten Abstand zum

Wurzelknoten hat. Außerdem wird mit einer Breitensuche der Suchraum vollständig abgesucht.

Der Speicherbedarf für die Breitensuche ist

Space(BFS) = bd

wobei b der Verzweigungsgrad und d die Tiefe des Suchbaumes sind. Das heißt der Speicherbe-

darf steigt „ exponentiell in der Tiefe des Suchbaumes!“ [Görz, 2003]

Nachdem man für die Breitensuche ebenenweise den Graph absucht, ergibt sich für die Annahme,

dass der Zielknoten in der untersten Ebene des Graphen liegt, ein worst-case Zeitbedarf von:

Time(BFS) = O(bd)

[Görz, 2003]
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2.2.1.2. Gleiche-Kosten-Suche

Häufig sind die Kanten eines Graphen mit einer Kosten-Variable c(n → n′) beschriftet, die je

nach Aufwand von einem Zustand n zum nächsten Zustand n’ zu wechseln, unterschiedlich groß

ist. Die Kosten können sowohl bei uninformierter als auch bei informierter Suche als Unter-

stützung des Suchverfahrens verwendet werden. Bei heuristischen Suchen können die Kosten

gewisse Informationen enthalten, beispielsweise wie weit man vom Zielknoten aktuell entfernt

ist. Bei uninformierten Suchen ist zu überlegen, wie man die Kanten sinnvoll beschriftet. Bei der

Breitensuche könnte man jede Kante mit 1 beschriften, da die Kosten zur optimalen Lösung da-

mit eindeutig ermittelt werden [Görz, 2003]. Gleiche-Kosten-Suche expandiert vorrangig zuerst

diejenigen Knoten, zu denen die Kosten der entsprechenden Kanten möglichst gering sind. Hier-

bei ist zu beachten, dass Kosten niemals kleiner als eine bestimmte positive untere Schranke ε

werden.

c(n→ n′) ≥ ε > 0

Bei Suchräumen, die keine Bäume sind, können mehrere Pfade zu dem selben Knoten führen

(zum Beispiel Zyklen). In diesem Fall wird beim zweiten Betrachten des Knotens entschieden

welcher Pfad geringere Kosten vom Startknoten besitzt, und der andere Pfad mit höheren Kosten

gelöscht [Görz, 2003].

2.2.1.3. Tiefensuche

Betrachtet man die Breitensuche aus Kapitel 2.2.1.1, ist die Tiefensuche (Depth-First-Search,

kurz DFS) quasi das invertierte Gegenstück. Hierbei werden nun nicht mehr Ebene für Ebene

die Kinderknoten expandiert, sondern priorisiert in die Tiefe gesucht. Das heißt, der erste Knoten

in der Liste L wird expandiert, und die Kinderknoten werden direkt an den Anfang der Liste

gesetzt. Dies geschieht so lange, bis entweder der Zielknoten gefunden wird, oder der aktuell

betrachtete Knoten keine Kinderknoten mehr besitzt. Falls ein Knoten nicht weiter expandierbar

ist, geht die Suche so lange schrittweise zurück bis ein bisher nicht betrachteter Kind-Knoten

auftaucht (Abbildung 2.5).

Der Speicherbedarf der Tiefensuche ist deutlich kleiner als der der Breitensuche, da lediglich der
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1. Sei L die Liste der Startknoten für das Problem.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wähle den ersten Knoten n aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und füge seine Nachfolgeknoten am Anfang von L an.
Markiere dabei wieder die neuen Knoten mit dem jeweils zugehörigen Pfad vom Start-
knoten.

5. Weiter mit Schritt 2!

Abbildung 2.5.: Tiefensuche [Görz, 2003]

Pfad vom Startknoten bis zur Tiefe (maximale Tiefe des Graphen d) des Zielknotens gespeichert

werden muss.

Space(DFS) = O(d)

Für den Zeitbedarf des Suchverfahrens, zeigt die Tiefensuche im durchschnittlichen Suchablauf

(average-case) keine Veränderung gegenüber der Breitensuche (Berechnung [Görz, 2003]).

Time(DFS) = O(bd)

Tiefensuche ist im Gegensatz zur Breitensuche nicht immer vollständig, da der Algorithmus ei-

nem unendlich langen Wurzelpfad folgen würde und somit nie den Zielknoten erreichen kann.

Außerdem findet die Tiefensuche auch nur bedingt den optimalen Zielknoten. Da zuerst in die

Tiefe die Kinderknoten betrachtet werden, würde bei mehreren Zielknoten immer der Zielknoten

links unterhalb des optimalen Knoten zuerst geliefert werden [Görz, 2003].

2.2.1.4. Schrittweise vertiefende Suche

Da die Tiefensuche einen deutlich kleineren Speicherbedarf und in günstigen Suchräumen auch

einen besseren Zeitbedarf als die Breitensuche aufweist, hat man einen Algorithmus entwickelt,

der von beiden Suchalgorithmen die positiven Aspekte kombiniert. Die schrittweise vertiefen-

de Suche (iterative deepening, kurz ID) führt im Wesentlichen eine ebenenweise Tiefensuche

durch (Abbildung 2.6). Dies garantiert das Finden der optimalen Lösung und gleichzeitig auch
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1. Sei c = 1 (c steht für die maximale Suchetiefe).

2. Sei L die Liste der Startknoten für das Problem.

3. Ist L leer, so erhöhe c um 1 und
mache weiter mit Schritt 2!
Andernfalls sei n der erste Knoten in L.

4. Stellt n einen Zielknoten dar,
so melde Erfolg und liefere den Pfad vom Startknoten zu n.

5. Andernfalls entferne n aus L.
Befand sich n auf einer Tiefe kleiner als c,
so füge an den Anfang von L die Nachkommen von n an.
Markiere dabei die neuen Knoten jeweils mit dem zugehörigen Wurzelpfad, der beim
Startknoten beginnt.

6. Weiter mit Schritt 3!

Abbildung 2.6.: schrittweise vertiefende Suche [Görz, 2003]

die Vollständigkeit des Suchverfahrens mit dem Speicherbedarf der Tiefensuche und einen maxi-

mal dreifachen Zeitbedarf der Tiefensuche [Görz, 2003].

2.2.2. Heuristische Suchverfahren

Bei uninformierten Suchen ist der Zeitbedarf immer O(bd) [Hopcroft und Ullman, 1979], solange

die Suche „Anspruch auf Vollständigkeit erhebt“[Görz, 2003]. Das heißt die Zeit steigt exponen-

tiell abhängig von der Tiefe des Suchraumes. Um diesen Zeitbedarf deutlich zu verringern benutzt

man Informationen über den zu findenden Zielzustand, beziehungsweise Informationen über die

Suchumgebung. Man benötigt eine heuristische Schätzfunktion h, welche eine Entscheidung für

einen Nachfolgeknoten herbeiführt, der näher am Zielknoten ist als andere Knoten.

Im Folgenden liegt der Fokus der Suchalgorithmen darauf, möglichst schnell und effizient einen

Zielzustand zu erreichen. Hierbei kann jedoch nicht immer garantiert werden, dass der Aufwand

wirklich minimal ist. In manchen Fällen verfolgt der Algorithmus seinen Pfad in eine Sackgasse

und findet keinen Zielzustand [Lunze, 1994].
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1. Sei L die Liste der Startknoten für das Problem, sortiert nach der jeweils geschätzten
Distanz h zum Ziel.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wähle den ersten Knoten n aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und füge seine Nachfolgeknoten, sortiert nach der jeweils
geschätzten h Distanz zum Ziel, am Anfang von L an.
Markiere dabei die neuen Knoten mit dem jeweils zugehörigen Pfad vom Startknoten.

5. Weiter mit Schritt 2!

Abbildung 2.7.: Das Bergsteigerverfahren [Görz, 2003]

2.2.2.1. Bergsteigen

Das Bergsteigerverfahren (hill climbing with backtracking, kurz BTHC) nutzt die heuristische

Schätzfunktion um die expandierten Knoten zu sortieren. Beim Suchvorgang wird dann der Kno-

ten mit dem besten Wert an den Anfang der Liste gesetzt und demnach auch als nächstes betrach-

tet (Abbildung 2.7). „Läßt man die heuristische Schätzfunktion jeden Knoten mit 0 bewerten, so

degeneriert die Bergsteigersuche zur reinen Tiefensuche.“[Görz, 2003] Vollständigkeit kann in

unendlichen Suchräumen vom Bergsteigerverfahren nicht gewährleistet werden [Görz, 2003].

2.2.2.2. Optimistisches Bergsteigen

Im Vergleich zum Bergsteigerverfahren, wird beim optimistischen Bergsteigen (strict hill clim-

bing, kurz SHC) nicht jeder Kindknoten in die Liste L aufgenommen, sondern nur der Beste (Ab-

bildung 2.8). Dies senkt den Speicherbedarf des Verfahrens deutlich im Vergleich zum Bergstei-

gerverfahren. Dadurch, dass nicht alle Kinderknoten betrachtet werden, können einige Kompli-

kationen im Suchvorgang auftreten. Beispielsweise kann sich der Algorithmus in einem lokalen

Minimum, welches nicht zwingend ein Zielknoten sein muss, verrennen und dort nie wieder her-

ausfinden. Der Suchalgorithmus findet auch nur extrem langsam einen Zielknoten, wenn mehrere

oder alle Kinderknoten die gleiche heuristische Distanz haben (Plateus). Es gibt einige Ideen,
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1. Sei L die Liste der Startknoten für das Problem, sortiert nach der jeweils geschätzten
Distanz h zum Ziel.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wähle den ersten Knoten n aus L.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und füge (nur) den besten Nachfolgeknoten von n (den
mit minimaler geschätzter Distanz h zum Ziel) am Anfang von L an.
Markiere dabei den neuen Knoten mit dem zugehörigen Pfad vom Startknoten.

5. Weiter mit Schritt 2!

Abbildung 2.8.: Optimistisches Bergsteigen [Görz, 2003]

um diese Probleme zu behandeln. Eine Variante beginnt, um nicht in einem lokalen Minimum

gefangen zu sein, die Suche an einer zufälligen Stelle im Graphen wieder neu [Görz, 2003].

Space(SHC) = O(b)

2.2.2.3. Gierige Suche

Die gierige Suche (greedy search, kurz GS) betrachtet nicht wie das Bergsteigerverfahren nur die

Nachfolgeknoten mit der heuristischen Schätzfunktion, sondern erweitert den Bereich auf den ge-

samten Graphen (Abbildung 2.9). Das heißt die Nachfolgeknoten werden danach ausgewählt, ob

sie geschätzt am nähesten zum Zielknoten sind. Allgemein ist die Gierige Suche nicht vollstän-

dig. Für endliche Suchräume ist sie jedoch vollständig. Der Speicherbedarf der Gierigen Suche

ist deutlich größer als der des Bergsteigerverfahrens [Görz, 2003].

2.2.2.4. A*-Suche

Während die Gierige Suche und das Bergsteigerverfahren Schwierigkeiten mit lokalen Minima

hat, zieht der A* Algorithmus den kompletten Suchraum in Betracht und versucht einen mög-

lichst besten, also oben liegenden Knoten zu finden. Die heuristische Schätzfunktion wählt den

Nachfolgeknoten abhängig von der Tiefe des Zielknotens und gleichzeitig den Knoten, welcher

schätzungsgemäß am nähesten zum Zielknoten liegt. In Abbildung 2.10 wird die Ausführung des
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1. Sei L die Liste der Startknoten für das Problem.

2. Ist L leer, so melde einen Fehlschlag.
Andernfalls wähle denjenigen Knoten n aus L, der dem Ziel schätzungsgemäß am näch-
sten ist.

3. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten zu
n.

4. Andernfalls entferne n aus L und füge alle seine Nachfolgeknoten in die Liste L ein.
Markiere dabei wieder die neuen Knoten mit dem jeweils zugehörigen Pfad vom Start-
knoten.

5. Weiter mit Schritt 2!

Abbildung 2.9.: Gierige Suche [Görz, 2003]

A* Algorithmus gezeigt. Für genauere Informationen zur Schätzfunktion und dem A* Algorith-

mus siehe [Görz, 2003], [Hart et al., 1968] und [Lunze, 1994].

2.2.3. Chaosdrive

Roboter die im häuslichen Gebrauch nützliche Aufgaben übernehmen, wie zum Beispiel den

Rasen mähen, oder Staubsaugen, wird die Aufgabe der Suche mit Hilfe von Zufall deutlich ver-

einfacht. Das Prinzip ist so stupide wie einfach: Der Roboter fährt geraudeaus, bis er eine Wand

oder künstliche Begrenzung trifft, dreht sich in einem zufälligen Winkel von der Wand weg und

fährt dann weiter. [Sommer, 2008] Mit dieser Vorgehensweise kann nur auf eine unendlich lange

Zeit garantiert werden, dass der komplette Bereich abgesucht wurde. Durch den Faktor Zufall

kann man auch statistisch keine Versuche mit Chaosdrive auswerten. Man müsste sich damit zu-

friedengeben, dass der Roboter nur einen gewissen Teil des Suchgebiets besucht hat.

2.3. UAV Suchen

2.3.1. Flugzeugähnliche UAVs

Aufgrund der physikalischen Eigenschaften von flugzeugähnlichen UAVs müssen Suchverfahren

möglichst lange Strecken geradeaus abfliegen. Als Muster zum Absuchen von Gebieten bietet

sich ein zeilenweises Abscannen der Umgebung an. Am Ende jeder Zeile wird dann eine 180 ◦
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1. Initialisiere die Agenda L
mit dem Startknoten s für das Problem: L:={s}.

2. Initialisiere die Liste bereits erschlossener Knoten C mit ∅.
3. Ist L leer, so melde einen Fehlschlag.

4. Andernfalls wähle denjenigen Knoten n aus L, für den

f(n) = g(n) + h(n)

minimal ist (dabei bezeichne g(n)) die Kosten des günstigsten Pfads vom Startknoten s
zu n, der bis jetzt gefunden wurde),
entferne n aus L und trage n in C ein.

5. Stellt n einen Zielknoten dar, so melde Erfolg und liefere den Pfad vom Startknoten s
zu n.

6. Andernfalls füge alle Nachfolgeknoten von n, die nicht schon in C enthalten sind, in
die Liste L ein.
Markiere dabei die neuen Knoten mit dem jeweils zugehörigen Pfad vom Startknoten
s.
Sollte einer der in L aufzunehmenden Nachfolgeknoten c von n bereits in L enthal-
ten sein, so mache keine neue Kopie, sondern ändere die Markierung von c auf den
kürzesten Pfad vom Startknoten s, der bis jetzt gefunden wurde.

7. Weiter mit Schritt 3!

Abbildung 2.10.: A*-Suche [Görz, 2003]

Drehung (U-Turn) durchgeführt. Dieser U-Turn sollte außerhalb des Suchbereichs liegen, da die

Kamera bei einer so scharfen Drehung nicht mehr exakt auf den Boden gerichtet wird [Bishop,

2010],[Coleman et al., 2012].

2.3.2. Helikopterähnliche UAVs

Für helikopterähnliche UAVs gibt es zwei unterschiedliche Anwendungsgebiete. Im Gegensatz zu

flugzeugähnlichen UAVs können Helikopter auch im Indoor-Bereich arbeiten. Dies bringt sowohl

Vor- als auch Nachteile mit sich. Man ist im Inneren eines Gebäudes nicht mehr in der Lage

die Position über GPS zu lokalisieren. Man benötigt also die Möglichkeit seine eigene Position

festzustellen. Dafür bietet sich SLAM (Simultanous Localization And Mapping) an. Um sich in

einer Umgebung zurecht zu finden kann man eine Kamera benutzen und mithilfe der Änderung

des Kamerabildes feststellen in welche Richtung man sich bewegt [Soundararaj et al., 2009].
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Weiterhin werden für Abstandsmessungen der Umgebung bei einigen Projekten Laser-Sensoren

verwendet [Grzonka et al., 2009]. Man muss innerhalb von Gebäuden, vor allem beim autonomen

Fliegen, den Fokus viel mehr auf Kollisionserkennung legen, als im Outdoor-Bereich.

2.4. Suchen mit mehreren Robotern

In [Sarid und Shapiro, 2009] wird ausführlich eine Vorgehensweise für das Absuchen einer Um-

gebung mit Wänden und Objekten mit mehreren bodenständigen Robotern erklärt. Dabei wird die

Umgebung vom Startpunkt aus erst in den umgebendenden Kreis und dann von dort in weitere

Ringe nach außen hin unterteilt. Jedem Roboter wird ein Bereich zum Absuchen zugeteilt. Der

Roboter nutzt eine Kollisionserkennung um nicht mit Wänden oder anderen Robotern zu kollidie-

ren. Die einzelnen Gebiete werden per Tiefensuche vom Roboter abgesucht und dann per Kom-

munikation mit den anderen Robotern ein weiter außen liegender, noch nicht zugewiesener Ring

erforscht. Für Quadrokopter gibt es die Möglichkeit des Formationsflugs, wobei die Quadrokopter

ebenfalls untereinander kommunizieren. Somit wäre eine Suche mit mehreren Quadrokoptern in

einem ähnlichen Schema durchaus denkbar.
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3. Konzept

3.1. Überblick

Abbildung 3.1.: Gesamtkonzept

Das Ziel dieser Arbeit ist, mithilfe einer übergebenen Karte, für den Quadrokopter Wegpunkte

zu erstellen, welche diese Karte vollständig absuchen. Um eine Karte zu erstellen gibt es neben

dem Mapping-Verfahren, welches in der Arbeit „Intelligentes Mapping für Indoor-Quadrokopter“

von [Schmitt, 2012] angewandt wird die Möglichkeit, die Karte per GUI (Graphical User Inter-

face) selbst zu “zeichnen“. Die zu erzeugenden Wegpunkte sind davon abhängig welcher Algo-

rithmus verwendet werden soll, um die Karte abzusuchen. Zusätzlich ist die Startposition je nach

Algorithmus ein wichtiger Parameter. Da die Priorität auf einem uninformierten Suchprinzip liegt,
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wurde die Komplexität der Karte auf ein Minimum herunter gesetzt. Die Karte zum Generieren

der Wegpunkte ist komplett leer, bis auf eine Begrenzung am Rand. Neben dem Vorhaben, in der

übergebenen Karte Objekte zu finden, muss auch die Kollisionserkennung in komplexeren Umge-

bungen beachtet werden, da der Quadrokopter ein sehr instabiles Flugmodel hat (siehe Kapitel 5.3

und Kapitel 6.2).

3.2. Iteratives Suchen

Meist wird in der Robotik bei Suchproblemen von bodenständigen Robotern ausgegangen, wel-

che problemlos schrittweise (iterativ) das Vorgehen im Suchverlauf berechnen können. Dies ist

ein herausragender Vorteil gegenüber fliegender Roboter (UAVs, zum Beispiel Quadrokopter), da

diese bereits beim Auf-der-Stelle-Fliegen deutliche Abweichungen zur gewünschten Position ha-

ben. Dies rührt daher, dass die Sensorik der Positionsbestimmung durch Vibrationen veränderte

Messwerte erhalten, und somit eine Bewegung berechnet wird. Außerdem ist der Quadrokopter

ein instabiles System, da die Regelung der Motoren abhängig von der verbauten Hardware je-

weils neu an das veränderte Gewicht optimiert werden muss. Ein bodenständiger Roboter kann

im Allgemeinen davon ausgehen, dass seine Koordinaten sich nicht verändern, während er steht.

Bei einer Suche dieses Roboters ist es folglich nicht wichtig, wie lange die Berechnung der näch-

sten Position dauert. Beim Anfliegen eines Punktes, kippt der Quadrokopter, was eine veränderte

Messung des optischen Flusssensors zur Folge hat. Laut dieser Messung denkt der Quadrokopter

ein kleines Stück zurück geflogen zu sein, jedoch hat sich seine Position nicht verändert, sondern

er wurde nur gekippt. Wenn der Quadrokopter mehrere einzelne Wegpunkte auf einer geraden

Strecke anfliegt, werden viele dieser Messfehler erhalten, folglich versucht man möglichst weni-

ge Wegpunkte zu erstellen.

3.3. Wegpunkt-basiertes Suchen

Anhand der in Kapitel 3.2 beschriebenen Problematik muss für das Quadrokopter-Projekt nach

einer besseren Vorgehensweise gesucht werden. Es wurde durch empirische Versuche festgestellt,

dass der Quadrokopter auf einer langen geraden Strecke Schwierigkeiten hat, die einzelnen Zwi-

schenpunkte anzufliegen. Deshalb liegt die Überlegung nahe, dem Quadrokopter nur den letzten
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Wegpunkt der Strecke zu übergeben. Der Schwerpunkt dieser Arbeit liegt also darin, diese Weg-

punkte möglichst sinnvoll zu wählen.

3.3.1. Problematik der Ausführung

Abbildung 3.2.: Ziel im Korridor nicht erreichbar

Dadurch, dass man nicht permanent seine Um-

gebung für den nächsten Schritt betrachten

kann, ergeben sich sehr viele Fälle, die nicht

trivial zu lösen sind. Deutlich wird dies an ei-

nem einfachen Beispiel:

Der Quadrokopter will von einem zum näch-

sten Wegpunkt fliegen. Jedoch liegt der näch-

ste Wegpunkt in einer Wand. Was soll er tun?

Dies ist bei weitem nicht der einzige Fall, bei

dem eine Entscheidung gefällt werden muss.

Je nach Suchalgorithmus, entstehen auch Pro-

bleme wenn eine freie Zelle der Karte kom-

plett von Wänden oder Objekten umgeben ist.

Der Algorithmus würde dann versuchen die-

sen Punkt zu erreichen, obwohl er unnerreich-

bar ist.

Wenn sich ein Zielzustand am Ende eines langen Korridors befindet, dessen Eingang jedoch vom

jetzigen Zustand abgewandt ist, muss der Suchalgorithmus diesen finden, wenn die Wegpunkte

am Eingang vorbeiführen würden. Der rot schraffierte Bereich in Abbildung 3.2 kann per Weg-

punktgenerierung nicht erreicht werden. Der Quadrokopter würde per Pathfinding um die Wände

herum fahren und keine Wegpunkte beim Ziel (hier: grüner Stern) erstellen.

Bei einem simplen zeilenweisen Absuchen eines Raumes, der Wände und/oder Objekte enthält,

kann allein schon darin die Schwierigkeit bestehen, den Startpunkt des Absuchens festzulegen.

Dies wäre eine heuristische Suche zu einer beliebigen Ecke im Raum. In ungünstigen Fällen,

ist der Aufwand den Startpunkt zu finden bereits höher, als der Aufwand den Zielzustand zu

erreichen! In Abbildung 3.3 wäre zum Beispiel ein zeilenweises Absuchen des Raumes mit Aus-
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gangspunkt in der linken unteren Ecke nicht vollständig, beziehungsweise der Aufwand in die

linke unterste Ecke zu kommen bereits selbst ein Suchproblem.

3.3.2. Lösungsansätze

Abbildung 3.3.: Ungünstiger Fall für
Zeilenweises Suchen

Da diese Arbeit im Wesentlichen Breiten- und Tiefensuche be-

handelt, werden im Folgenden primär für diese Verfahren An-

sätze für die Probleme aus Kapitel 3.3.1 besprochen.

Breitensuche:

Um die Zellen von Innen nach Außen zu betrachten, ohne eine

Zelle zu vergessen, wird in den Zellen zusätzlich zur Wie-Oft-

Besucht-Variable noch eine Ring-Variable gespeichert. Diese

Ring-Variable wird beim Start der Simulation mit einem Wert

von 0. . .∞ belegt, wobei der Wert angibt wie weit die Zel-

le vom Startpunkt entfernt ist. (Den Wert ∞ sollte also kei-

ne Ring-Variable einer Zelle erreichen, solange die Karte nicht unendlich groß ist.) Wenn der

Suchalgorithmus startet, werden die Wegpunkte so gelegt, dass zuerst alle Zellen des niedrigsten

Rings abgesucht werden, soweit möglich. Wenn die Suche auf einem höheren Ring ist und ei-

ne Zelle mit niedrigerem Ring passiert, wird der Algorithmus in die Zelle mit niedrigerem Ring

fortgesetzt. Zu beachten ist, dass belegte Zellen (Wände und Ähnliches) mit keiner Ring-Variable

belegt werden müssen, da diese sowieso nicht betrachtet werden. Diese Ringvariable wird bei der

Entscheidungsfällung bei einer Wand auf zwei verschiedene Arten verwendet.

• Priorität Innen: Beim Vorfinden einer Wand geht der Algorithmus priorisiert auf einen

niedrigeren Ring, auch wenn dieser bereits betrachtet worden ist, und versucht dadurch

einen Weg zum nachfolgenden Wegpunkt zu finden.

• Priorität Außen: Trifft der Algorithmus auf eine Wand verfolgt er solange seinen bishe-

rigen Pfad zurück, bis der Weg zum nächst höheren Ring frei ist. Dies sorgt dafür, dass

bereits betrachtete Zellen nicht unnötig oft betrachtet werden. Beachte: Der Algorithmus

geht hierbei trotzdem auf einen niedrigeren Ring zurück, sobald eine noch nicht betrachtete

Zelle mit niedrigerem Ring betrachtet wird.
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Tiefensuche:

Für die Tiefensuche wurden zwei Varianten entworfen, die jedoch teilweise Wegpunkte nah bei-

einander erstellen.

• Man hält an dem einfachen Schema fest: „Laufe geradeaus bis eine Wand kommt oder du

bereits dort warst, biege dann rechts ab!“ Unter Betrachtung von Wänden oder Objekten im

Raum ergibt sich das Problem, dass durch das Schema manche Bereiche gar nicht betrachtet

werden. Deshalb müsste man sich entweder beim Abbiegen merken, ob auf der anderen

Seite (hier: in Flugrichtung links) ein bisher unbesuchter Bereich liegt. Diesen muss man

sich dann merken und später wieder anfliegen.

• Alternativ könnte man das Schema etwas abändern: „Laufe geradeaus bis eine Wand

kommt oder du bereits dort warst, biege dann rechts ab! Betrachte permanent die Um-

gebung links von dir und biege links ab, sobald der Bereich frei und unbesucht ist.“ Dieses

Schema würde dazu führen, dass man einen Raum von außen nach innen absucht, und dabei

immer kleinere Ringe zieht.

Da die Problematik unter Betrachtung der Wände eher Lösungsansätze im Bereich Pathfinding

benötigt, wurde im Rahmen dieser Arbeit davon ausgegangen Wegpunkte zum Absuchen eines

leeren Raumes zu generieren.
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4. Implementierung

4.1. Überblick

Abbildung 4.1.: Software

Wie man in Abbildung 4.1 sehen kann, werden für die Generierung der Wegpunkte zuerst

die Einstellungen der Karte (Zellgröße, Kartengröße, Wände) und die Einstellungen der Suche

(Startposition, Suchalgorithmus) fixiert. Durch diese Einstellungen können die Wegpunkte für die

meisten Algorithmen direkt erstellt werden (Ausnahme: Chaosdrive oder Ähnliche, da keine Ab-

bruchbedingung). Die Darstellung der Wegpunkte bezeichnet die Umsetzung der Grafik im GUI,

welche entweder die Wegpunkte direkt einzeichnet, oder in einer Simulation diese schrittweise

anfährt. Nachdem die Wegpunkte erstellt worden sind, müssen diese zuerst an den Quadrokopter

geschickt werden. Daraufhin muss ein Start-Kommando zum Fliegen gesendet werden.
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Abbildung 4.2.: Bestehendes System

Im Rahmen dieser Arbeit wurde an der Hardware Struktur nahezu nichts verändert. Zusätzlich

zu der in Abbildung 4.2 dargestellten Komponenten wurde ein Infrarot-Sender am Quadrokopter

befestigt. Dieser dient dazu die Position des Quadrokopters mit Hilfe der vier Kameras des opti-

schen Tracking-Systems aufzunehmen.

Zum Abfliegen der Wegpunkte nutzt der Quadrokopter seine intern bekannte Position. Diese wird

durch den optischen Flusssensor berechnet [Strohmeier, 2012].

4.2. Anpassung der Suchverfahren

Allgemein geht man bei einer autonomen Suche von einem Graphen (zum Beispiel in Baumform)

aus. Bei dem vorliegenden Fall muss man das Suchverfahren anpassen. Die Umgebung besteht

aus einer zweidimensionalen Karte, welche Zellen von bestimmter Breite und Höhe beinhaltet.

Die Breite und Höhe des Quadrokopters ist von Anfang an vorgegeben. Das heißt der Quadroko-
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pter belegt bereits von selbst eine gewisse Anzahl von Zellen, abhängig davon welche Größe die

Zellen haben. Um einen Suchvorgang zu betreiben, wurde folgende Überlegung angestellt: Bei

der Suche betrachtet man immer die direkt anliegenden Zellen in acht Richtungen und summiert

den Wert, wie oft eine Zelle bereits besucht worden ist, auf eine jeweilige Variable auf. Mit die-

ser Vorgehensweise kann getestet werden, in welcher Richtung der Quadrokopter sich bisher am

wenigsten aufgehalten hat. Die Umsetzung dieser Überlegungen ist nur teilweise im Endergebnis

übrig geblieben. Einige Suchverfahren konnten in der Praxis nicht getestet werden. (siehe dazu

Kapitel 4.3.2)

In Abbildung 4.3 wird davon ausgegangen, dass der Quadrokopter (hier: roter Punkt) nicht direkt

auf dem Raster der Karte liegt. Wenn dieser direkt auf einer Rasterung liegt, würden andere Zel-

len aufsummiert werden. Man kann diesem Problem vorbeugen, indem man den Startpunkt des

Quadrokopters direkt auf ein festes Raster legt. Diese feste Rasterung wurde nicht implementiert,

da das Aufsummieren der besuchten Zellen keinen in der Praxis getesteten Suchalgorithmus be-

trifft, sondern lediglich zur Darstellung der betrachteten Zellen in der Simulation genutzt wurde.

(a) Richtungen (b) Ecken (c) Kanten

Abbildung 4.3.: Zählvariablen

4.3. GUI

Das hier implementierte Graphical User Interface dient dazu einen von verschiedenen Suchalgo-

rithmen auszuwählen und für den Quadrokopter eine Liste von Wegpunkten zu generieren. Dabei

kann man verschiedene Einstellungen vornehmen (Abbildung 4.4):
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Abbildung 4.4.: Simulations-Tab

1:
Combobox zur Auswahl der unterschiedlichen Algorithmen. Wird während der Simulation deak-

tiviert

2:
Button zum Schicken der generierten Wegpunkte an den Quadrokopter. Die Liste der Wegpunkte

wird erst am Ende der Simulation generiert und so lange intern gespeichert, bis erneut auf den

Start-Button (4) gedrückt wird. Das heißt die selben Wegpunkte können auch nach dem Resetten

des Quadrokopters erneut geschickt werden, ohne diese neu generieren zu müssen.

3:
Schickt dem Quadrokopter das Kommando den Flug zu starten. Vorher müssen die Wegpunkte

an den Quadrokopter geschickt werden (siehe 2)

4:
Deaktiviert alle Eingabeoptionen, aktiviert den Pause-Button (5). Genereriert die Wegpunkte für

den ausgewählten Algorithmus (1) und bewegt den Quadrokopter (roter Punkt), je nach Ein-

stellung der Waypoints-Only-Checkbox, direkt zu den Wegpunkten oder zeichnet die Zwischen-

schritte ein (siehe Abbildung 4.5).

5:
Unterbricht die Simulation der Wegpunktgenerierung und erlaubt einen anderen Suchalgorith-

mus (1) auszuwählen. Die ursprüngliche Idee dahinter war, dass man verschiedene Suchalgo-
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(a) Eingeschaltet (b) Ausgeschaltet

Abbildung 4.5.: Waypoints only-Checkbox

rithmen hintereinander einsetzen kann um komplexe Umgebungen unterschiedlich abzusuchen.

Nachdem die ausgewählten Algorithmen zum Generieren der Wegpunkte aber nur für leere Räu-

me ausgelegt sind, wird dies nicht weiter benötigt.

6:
Setzt die Grafik auf den Ausgangszustand zurück. Erlaubt wieder alle Einstellungen zu verändern.

7:
Die zu generierenden Wegpunkte werden um diesen Wert “herausgeschoben“, das heißt der Qua-

drokopter muss jeweils ein Stück weiter fliegen um den Wegpunkt zu erreichen. Da der Qua-

drokopter bereits einige Zentimeter vor dem Wegpunkt ein Erreichen des Wegpunktes vermerkt,

kann mit dieser Variable das Anfliegen der Wegpunkte variiert beziehungsweise optimiert wer-

den. Genaueres siehe Kapitel 5.2.

8:
Der Sichtbereich kann abhängig von den Kameraeinstellungen zur Erkennung von Objekten vari-

iert werden. Der abzudeckende Bereich der Kamera hängt vom Öffnungswinkel der Kamera und

der Flughöhe ab. Der hier einzustellende Paramter verändert die Wegpunktgenerierung so, dass

die Wegpunkte für einen kleinen Sichtbereich näher beieinander liegen, et vice versa.

9:
Speichert die aktuelle Grafikanzeige in einer Bilddatei (Dateitypen: jpg, png oder bmp).

10:
Wenn die Checkbox aktiviert ist, kann man per Mausrad die Grafik skalieren. Zusätzlich kann

man per Mausklick die Grafik verschieben, zum Beispiel wenn man zu nah heran gezoomt hat.
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11:
Wird zum Einstellen der Simulationsgeschwindigkeit genutzt. Intern wird eine Zeitvariable zum

Verzögern verwendet, die in einem Bereich von zwei Sekunden bis eine Millisekunde skaliert

wird. Diese Einstellung beeinflusst nicht die Geschwindigkeit des Quadrokopters in der Realität

zum Anfliegen der Wegpunkte, sondern bestimmt lediglich die Geschwindigkeit der Simulation.

12:
Anzeige der aktuellen Koordinaten des Simulations-Quadrokopters, der vergangenen Zeit zum

Generieren der Wegpunkte und die Anzahl der gebrauchten Schritte zum bisherigen Wegpunkt.

Die vergangene Zeit wird erst aktualisiert wenn auf Pause (5) oder Reset (6) gedrückt wurde.

4.3.1. Benutzte Suchalgorithmen

Aufgrund der Komplexität der Suche in einer nicht trivialen Umgebung, wurden hier die Suchal-

gorithmen für eine komplett freie Umgebung gewählt (siehe Kapitel 3.3.1). Diese Algorithmen

dienen dazu einen Gegenstand in einem, durch die eingstellte Karte beschränkten, Raum zu su-

chen. Es wird davon ausgegangen, dass sich keine Hindernisse in Form von Wänden oder Ob-

jekten in dem Raum befinden. Die Karte beschränkt die Algorithmen in dem Sinne, dass per

Voreinstellung nur bestimmte Kartengrößen eingegeben werden können, da jede Teil-Karte min-

destens 64 Zellen haben muss. Man könnte manuell beliebig kleinere Wände einzeichnen, das

wäre jedoch zu aufwendig. Die Umsetzung der Suchalgorithmen ist in zwei Teile unterteilt. Erst

werden die Wegpunkte anhand der Position des Startpunktes und der Belegung der Zellen gene-

riert. Im zweiten Schritt werden diese generierten Wegpunkte in der Grafik abgefahren. Das heißt

die Generierung der Wegpunkte kann auch komplett von der Grafik unabhängig geschehen. Aus-

nahme für diese Vorgehensweise sind die zwei Chaosdrive Varianten, da diese ihre Wegpunkte

erst bei der Bewegung in der Simulation speichern.

Breitensuche:

Eine Breitensuche bedeutet in dieser Versuchsanordnung, dass man zuerst seine nächsten

Nachbarn betrachtet und dann ebenenweise immer weiter voranschreitet. Dies wurde so um-

gesetzt, dass man jeweils um eine Länge der eingestellten Sichtweite weiter nach außen

vorgeht. Wenn der Toleranz-Parameter größer als 0 ist wird der Wegpunkt um diesen Be-

reich weiter nach außen geschoben, so lange der Wegpunkt nicht in einer Wand liegt. Die
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Wegpunkte werden spiralförmig im Uhzeigersinn generiert. Beim Erreichen einer Begren-

zung wird nicht die Drehrichtung geändert, sondern die bereits vorher betrachteten Berei-

che nochmals überflogen. Da der Quadrokopter ein instabiles System ist, fällt es ihm schwer

Wegpunkte, die nahe beieinander liegen, abzufliegen. Durch einen Richtungswechsel der

Drehrichtung müsste jedoch ein Wegpunkt direkt neben dem aktuellen erstellt werden, ob-

wohl der Quadrokopter noch den Schwung der langen Strecke vorher hat (Abbildung 4.6).

Abbildung 4.6.: Wegpunkte einer
Breitensuche

Die folgende Abbruchbedingung wurde für die Generierung der

Wegpunkte entworfen: Es wird jeweils der kleinste und größte X-

und Y-Wert gespeichert. Aus diesen Berechnet man die horizonta-

le und vertikale Distanz vom jeweils kleinsten und größten Wert.

Wenn sich die Distanz in der X- und Y-Richtung nach mehrma-

ligem Betrachten nicht verändert, wird die Generierung abgebro-

chen und die Wegpunkte aus der Liste gelöscht, welche zu viel

generiert wurden. Die grafische Abarbeitung der Wegpunkte be-

schränkt sich auf vier Richtungen: jeweils zwei horizontal und

vertikal.

Tiefensuche:

(a) (b)

Abbildung 4.7.: (a) Wegpunkte der Tiefensuche; (b) Doppelt betrachtete Wegpunkte

Für die Tiefensuche wurde das erste Schema der Tiefensuche aus Kapitel 3.3.2 noch leicht

verändert. Der erste Wegpunkt ist vom Startpunkt direkt nach oben. Dann wird im Uhrzeigersinn

jeweils so weit geradeaus geflogen, bis ein Hindernis auftaucht. Dabei wird die Größe der Karte in
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Schrittgröße gespeichert. Die Schritte werden für die horziontale und vertikale Richtung seperat

gespeichert und sind von der eingestellten Sichtweite abhängig. In der weiteren Generierung wird

diese Schrittgröße jeweils um eins verringert. Dies führt dazu, dass immer kleinere Kreise gezo-

gen werden, bis die Mitte der Karte erreicht ist. Es werden lediglich die Zellen vom Startpunkt

nach oben und von dort nach rechts doppelt betrachtet (Abbildung 4.7).

Chaosdrive:

Der Chaosdrive-Algorithmus geht im Grunde genommen wie in Kapitel 2.2.3 beschrieben vor.

Der Winkel, um sich von der Wand weg zu bewegen, wird aus einem Bereich von 90 ◦ bis 270 ◦

zusätzlich zum aktuellen Winkel zufällig berechnet. Die Wegpunkte werden beim Erreichen der

Wand gespeichert und sind vollkommen von den Parametern Sichtbereich und Toleranz unabhän-

gig. Der Sichtbereich beeinflusst lediglich das Einzeichnen in der Grafik. Der Algorithmus hat

keine Abbruchbedingung, und wird so lange ausgeführt, bis der Benutzer den Pause- oder Reset-

Button drückt. Sobald dies geschieht werden die generierten Wegpunkte gespeichert und können

an den Quadrokopter geschickt werden. Beim Pausieren wird die aktuelle Position ebenfalls als

Wegpunkt gespeichert. Beim Fortfahren wird wieder eine zufällige neue Richtung ausgewählt.

MyChaosdrive:

Angelehnt an der Chaosdrive-Idee, wurde dieser Algorithmus anhand der Überlegungen mit der

Beschränkung auf acht Richtungen entworfen. Man hat als zufällige Parameter einerseits eine

der acht Richtungen (horizontal,vertikal,diagonal) und andererseits eine Variable, die die Länge

der nächsten Bewegung vorgibt. Diese zweite Variable wurde deshalb gewählt, da der Algorith-

mus bei nur 8 zufälligen Richtungen lediglich an den vier Wänden und in den Raumdiagonalen

Wegpunkte generieren würde. Wie bei Chaosdrive gibt es für MyChaosdrive bis auf die Benut-

zereingabe keine Abbruchbedingung.

Zick-Zack

Das Zeilenweise abfliegen eines Raumes würde jeweils zwei Wegpunkte direkt nebeneinander

erzeugen. Dies ist für den Quadrokopter nicht einfach. Deshalb liegt als Überlegung für ein tri-

viales Abfliegen eines leeren Raumes nahe, ein Zick-Zack-Muster zu erzeugen. Dieses Muster
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(a) Zeilenweise (b) Zick-
Zack

Abbildung 4.8.: Vergleich (a) Zeilenweise- zu (b) Zick-Zack-Muster

bekommt als Startpunkt (beziehungsweise als ersten Wegpunkt) die linke untere Ecke des Raum-

es, geht von dort aus senkrecht nach oben und geht danach schräg nach unten bis zur nächsten

Wand im Abstand von genau einem Sichtbereich zum links liegenden Wegpunkt. Dies wird so

lange wiederholt, bis der ganze Bereich abgedeckt ist. (Abbildung 4.8)

4.3.2. Weitere iterative Suchalgorithmen

Die nachfolgenden Algorithmen wurden implementiert, aber ab einer gewissen Programmversion

nicht weiter angepasst. Das heißt die Algorithmen funktionieren in der Abgabeversion des Pro-

gramms nicht. Es gibt mehrere Gründe, warum die Algorithmen nicht weiter bearbeitet wurden:

• Die Suchalgorithmen haben bei weitem zu viele Zwischenschritte generiert. Die Schritte

wurden iterativ generiert. Zur Übertragung auf den Quadrokopter ist eine Obergrenze an

Wegpunkten eingestellt. Diese ist zwar veränderbar, aber bei einer Größenordnung von

500-1000 Wegpunkten ist es sinnlos, diese permanent anzupassen.

• Anhand der vorgegebenen Karte wurden die Suchalgorithmen selbst entworfen. Daher kann

für diese keine Vollständigkeit gewährleistet werden. Die Laufzeit bis der Raum komplett

abgesucht worden ist, kann bei manchen Algorithmen extrem lange dauern, da teilweise

Wege “verbaut“ werden, indem man auf bereits besuchte Zellen nicht zurück geht.

• Die generierten Wegpunkte der Suchalgorithmen sind jeweils nur einen Zellenabstand von-

einander entfernt. Diese Distanz ist bei Weitem zu kurz um die Wegpunkte sinnvoll mit
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dem Quadrokopter abzufliegen. Zum Bestätigen, dass ein Wegpunkt erreicht wurde, hat

der Quadrokopter einen eingestellten Wert. Dieser Wert war zum Zeitpunkt der Praxis-

Versuche auf 20cm eingestellt. Die Zellgröße bei der Praxis war auf 3cm eingestellt. Das

heißt beim geraudeaus Fliegen würden im Rahmen der 20cm Toleranz 6 Wegpunkte einfach

übersprungen werden. Das geradeaus Fliegen ist in den hier betrachteten Suchalgorithmen

jedoch eine Seltenheit, was zur Folge hat, dass die Wegpunkte wild verteilt angeflogen

werden.

• Anfangs wurde bei der Generierung der Wegpunkte nicht darauf geachtet, dass der Quadro-

kopter ein so großes Überschwingen beim Abfliegen der Wegpunkte hat. Der nachfolgende

Wegpunkt kann prompt direkt in der entgegengesetzten Richtung angegeben werden. Dies

kann zum Beispiel bei einer Sackgasse passieren.

Für die Algorithmen MyBFS und MyDFS wurde die, in Kapitel 4.2 erklärte, Methode genutzt,

die benachbarten Zellen zu betrachten und zu kontrollieren, wo der beste nächste Wegpunkt ist.

MyBFS:

Die Idee für MyBFS kam von der klassischen Breitensuche und hat sich mit der Grundlage der

Karte entwickelt. Der Startpunkt der Suche wird gespeichert und zum Berechnen der aktuelle

Distanz von diesem genutzt. Der Algorithmus betrachtet in jedem Schritt die benachbarten Zel-

len. Von den aufsummierten Werten wird eine bestimmte Anzahl der besten (diejenigen, welche

den geringsten Wert haben) herausgepickt. Mithilfe der jetzt bekannten Richtungen wird der Ab-

stand des dann auszuführenden Schrittes zum Startpunkt berechnet. Von diesen wird derjenige

ausgewählt, der den geringsten Abstand zum Startpunkt hat. Das heißt man bewegt sich grund-

sätzlich immer von den Zellen weg, welche man bereits besucht hat, aber versucht gleichzeitig

den Abstand zum Startpunkt klein zu halten. Es ergibt sich keine spiralförmige Bewegung in ei-

nem Drehsinn, sondern je nach Zellbelegung eine immer drehende Spiralbewegung.

MyDFS:

MyDFS ist im Grunde genommen nur eine kleine Veränderung zur MyBFS-Suche. Man versucht

weiterhin von den bisher besuchten Zellen weg zu kommen, nur nutzt man dieses Mal die Distanz
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zum Startpunkt um eine größere Entfernung zu diesem zu bekommen. Die Bewegung führt also

dazu, dass man primär in eine Ecke des Raumes fährt. Diese wird dann spiralförmig ausgefüllt,

so lange bis man an einer Kante entlang in die nächste Ecke gelangt. Sind alle Ecken ausgefüllt,

fährt der Algorithmus spiralförmig in Richtung des Startpunktes. In ungünstigen Fällen versucht

der Algorithmus über bereits besuchte Zellen wieder vom Startpunkt weg zu fahren.

Randomsearch:

Randomsearch wurde anfänglich genutzt um eine Bewegung in der Simulation zu erzeugen. Der

Algorithmus nimmt zwei zufällig generierte Zahlen und rechnet diese auf einen der drei Werte

-1,0,1 herunter. Dieser Wert wird mit der Zellgröße multipliziert und dann jeweils für eine X- und

Y-Koordinate eingesetzt. Der Quadrokopter bewegt sich also immer um maximal eine Zelle in

eine zufällige Richtung.

4.4. Kartenerstellungs-Tool

Das hier angefertigte Tool wird dazu verwendet um selbst Karten zu zeichnen. (Abbildung 4.9)

Es wurde dafür entwickelt, um möglichst simpel und schnell eine Umgebung für einen beliebig

komplexen Raum zu erstellen. Anhand der Karte können verschiedene Suchalgorithmen in der

Simulation getestet werden, und auch die Wegpunkte für eine reale Karte generiert werden.

1:
Combobox, die für die Aktivität in der Grafik zuständig ist. Die Option “Startpunkt verschieben“

erlaubt den Quadrokopter (roter Punkt) per Drag-And-Drop auf eine beliebige Startposition zu

verschieben. Dabei wird die Kollision des Objekts mit den Wänden (belegten Zellen) beachtet,

so dass der Startpunkt nicht in einer Wand liegen kann.

Die selbe Möglichkeit gibt die Option “Suchobjekt verschieben“, jedoch wurde das Suchobjekt

per Define aus der Grafik entfernt. Anfangs war es so gedacht, dass man die Position des zu fin-

denden Objekts bereits voreinstellen kann. Jedoch wird im Allgemeinen davon ausgegangen, dass

Suchobjekte zufällig im Raum verteilt sein können. Für die uninformierte Suche ist es obsolet,

kann jedoch in Zukunft für heuristische Suchen wieder eingesetzt werden.

Des Weiteren ist als Option “Wände/Objekte erstellen“ auswählbar. Diese Option erlaubt Wän-
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Abbildung 4.9.: MapCreator-Tab

de per Mausklick auf folgende Weise einzuzeichnen. Per linker Maustaste kann man Zellen als

belegt oder frei markieren. Eine Zelle wird als belegt markiert, wenn sie vorher frei war, und um-

gekehrt. Wenn man die Taste gedrückt lässt und die Maus bewegt, werden die jeweiligen Zellen

im selben Zustand wie die zuerst angeklickte Zelle markiert. Das heißt wenn zum Beispiel die

erste Zelle per Linksklick als frei markiert wird und man bewegt die Maus bei gedrückter linker

Maustaste weiter, werden alle anderen berührten Zellen auch als frei markiert.

2:
Ermöglicht eine bereits gespeicherte oder erzeugte Karte zu importieren. Aktualisiert die Grafik.

3:
Speichert die aktuell sichtbare Karte in einer .map Datei [Schmitt, 2012].

4:
Wird als Einstellung für die Seitenlänge der Karte verwendet. Die Seitenlänge ist dabei abhängig

von der minimalen Größe an Teil-Karten, welche sich auf 64 Zellen beläuft. Als maximaler Wert

ist das dreifache der minimalen Seitenlänge (64∗Zellgröße) eingestellt, da zum Zeitpunkt der Im-

plementierung die Zeichenmethode der Grafik jede Zelle als einzelnes Grafikobjekt verwaltet hat.

Bereits bei dieser maximalen Größe gab es beim Erstellen der Grafik deutliche Verzögerungen.

5:
Löscht die aktuelle Karte und übernimmt die Einstellung von 4.
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6:
Löscht die aktuelle Karte und erzeugt eine neue Standard-Karte. Die Standard-Karte hat die äu-

ßersten Zellen belegt, eine Zellgröße von 4cm und eine Seitenlänge von 256cm in einer quadrati-

schen Form.

7:
Neben der Variante den Startpunkt per Drag-And-Drop zu setzen (siehe 1), kann man die Start-

position direkt eingeben und einstellen.

8:
Verändert die Zellgröße der aktuellen Karte. Dabei wird nicht die Karte gelöscht, sondern ledid-

lich die Größe verändert. Alle als belegt markierten Zellen bleiben auch markiert.

9-12
Siehe Kapitel 4.3.

13
Verhindert, dass weitere Einstellungen an der Karte beziehungsweise der Startposition vorgenom-

men werden. Aktiviert im Simulationstab den Start-Button.
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5. Evaluierung

5.1. Überblick

In den nachfolgenden Kapiteln werden drei ausgewählte Algorithmen sowohl in der Software als

auch in der Praxis ausgewertet. Betrachtet werden Breitensuche, Tiefensuche und ein Zick-Zack-

Muster. Im Kapitel Software (5.2) wird darauf eingegangen, wie die Wegpunkte am Computer

für den Quadrokopter erstellt werden. Die praktischen Versuche (Kapitel 5.3) zeigen in Form von

grafisch aufgetragenen X- und Y-Werten die Flugbahn des Quadrokopters.

5.2. Simulation

Die Evaluierung der Simulation beschränkt sich darauf zu testen, ob die Wegpunkte am Compu-

ter richtig generiert werden, damit diese dem Quadrokopter übergeben werden können und dort

weiter benutzt werden.

Abbildung 5.1.: Wegpunkte mit
Toleranzver-
schiebung bei
einer Breitensu-
che

Das Ändern der Zellgröße, verändert die gesamte Kartengröße.

Dies kommt daher, dass die Karte [Schmitt, 2012] eine minimal

Anzahl von Zellen hat (hier: 64). Das heißt die kleinste Größe der

Karte ist 64∗Zellgröße, wobei die Zellgröße in einem Wertebe-

reich von 1. . . 20cm ist [Schmitt, 2012].

Weiterhin lässt sich der Sichtbereich des Quadrokopters variie-

ren. Daraus folgt eine Veränderung der Wegpunktgenerierung. Je

größer der Sichtbereich eingestellt ist, desto weiter sind die Weg-

punkte voneinander entfernt, et vice versa.

Ein weiterer Parameter ist die Toleranz der Wegpunkte. Dieser Pa-

rameter verschiebt die Wegpunkte in Flugrichtung um den entsprechenden Wert weiter. Der je-
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weils nachfolgende Wegpunkt wird dabei jedoch nicht in die selbe Richtung verschoben! Die

Auswirkung dieser Verschiebung wird für jeden Algorithmus einzeln betrachtet. Abbildung 5.1

zeigt ein Beispiel für die Breitensuche mit Toleranzverschiebung. Hintergrund dieser Verschie-

bung ist, dass der Quadrokopter beim Flug ungefähr 20cm vor dem Erreichen des Wegpunkt

ebendiesen bereits als erreicht markiert. Man kann ohne den Code des Quadrokopters ändern zu

müssen, mit dem Toleranz-Parameter testen, wie genau der Quadrokopter die Wegpunkte in der

Realität anfliegt. Dies ist wichtig um den abzusuchenden Bereich vollständig abzudecken.

Abbildung 5.2.: Zellen am
oberen und
rechten
Rand nicht
betrachtet

Die Wegpunktgenerierung ist ebenfalls abhängig von der Lage des

Startpunktes. Dies hat für jeden Algorithmus individuell Auswirkun-

gen und wird im jeweils entsprechenden Kapitel betrachtet. Dadurch,

dass der Startpunkt rasterlos verschiebbar ist, werden teilweise Zel-

len, die nur gerade so berührt werden, bereits als betrachtet markiert.

Dies kann in ungünstigen Fällen dazu führen, dass Objekte zwischen

zwei Wegpunktstrecken nicht erkannt werden, da sie von beiden Sei-

ten als betrachtet markiert worden sind, jedoch nicht wirklich kom-

plett gescannt worden sind.

Beim Testen hat sich gezeigt, dass die Wegpunkte teilweise am obe-

ren und rechten Rand der Karte eine Zelle zu wenig betrachten. (siehe Abbildung 5.2) Dies liegt

zu großer Wahrscheinlichkeit an der internen Kollisionserkennung des Grafikobjekts für den Qua-

drokopter. Diese erlaubt nicht den Quadrokopter auf eine Wand zu bewegen und fragt unter Um-

ständen eine Zellenreihe zu viel ab.

5.2.1. Breitensuche

Die Toleranzverschiebung wirkt sich bei der Breitensuche folgendermaßen aus: Da die Wegpunk-

te spiralförmig vom Startpunkt wegführen wird jeder einzelne Wegpunkt in Flugrichtung um den

Toleranzbereich geraudeaus “geschoben“. Diese Verschiebung wirkt sich jedoch nur für diesen

einzelnen Wegpunkt aus und verändert nicht die Position der anderen Wegpunkte. Der Vergleich

der Abbildungen 5.3 zeigt die Auswirkung der Verschiebung.

Die Veränderung des Sichtbereichs wurde in der Praxis mit einem für die Toleranz fixen Wert

von 10cm getestet, deshalb sieht man in Abbildung 5.4 den Vergleich der in der Software erstell-

ten Wegpunkte.
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(a) (b) (c)

Abbildung 5.3.: Breitensuche mit Sichtbereich = 30cm, Toleranz = (a) 0cm, (b) 10cm, (c) 20cm

Die Lage des Startpunktes hat für die Wegpunkte der Breitensuche keine besonderen Auswirkun-

gen. Nach dem hier implementierten Algorithmus ist es lediglich ungünstig, dass die Wegpunkte

über bereits betrachteten Wegen nochmals liegen. Bei einem länglichen, rechteckigen Raum bei-

spielsweise würden die Strecken am Rand extrem oft mehrfach abgedeckt werden.

(a) (b) (c)

Abbildung 5.4.: Breitensuche mit Sichtbereich = (a) 21cm, (b) 30cm, (c) 51cm, Toleranz = 10cm

5.2.2. Tiefensuche

Ebenso wie bei der Breitensuche werden die Wegpunkte mit der Toleranz weiter in Flugrich-

tung nach vorne versetzt. Die Wegpunkte werden wie in Abbildung 5.5 generiert und wirken

verwirrend, da die Startposition und der davon ausgehende nächste Wegpunkt senkrecht nach

oben eingezeichnet sind. Der Startpunkt befindet sich wie bei der Breitensuche links unten (Ko-

ordinaten 50/50 bei Gesamtgröße von 192/192). Bei Abbildung 5.5 (c) werden die Wegpunkte

direkt in der Mitte der Karte nicht exakt erstellt. Die Toleranzverschiebung wirkt sich nicht auf
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die Abbruchbedingung der Wegpunkterstellung aus. Das heißt der letzte Wegpunkt wird als “im

Zentrum“ erkannt, jedoch noch um die Toleranz weiter verschoben.

(a) (b) (c)

Abbildung 5.5.: Tiefensuche mit Sichtbereich = 30cm, Toleranz = (a) 0cm, (b) 10cm, (c) 20cm

Für den Sichtbereich wurden ebenfalls die selben Werte wie bei der Breitensuche verwendet

(Abbildung 5.6).

(a) (b) (c)

Abbildung 5.6.: Tiefensuche mit Sichtbereich = (a) 21cm, (b) 30cm, (c) 51cm, Toleranz = 10cm

Der Startpunkt hat für die Tiefensuche deutlich weniger Auswirkungen als für die Breitensu-

che, da die Wegpunkte der Tiefensuche immer gleich sind. Es wird vom Startpunkt aus senkrecht

nach oben und von dort nach rechts jeweils ein Wegpunkt generiert und ab diesem Wegpunkt

würde für jeden beliebigen Startpunkt die selbe Flugbahn verfolgt werden.

5.2.3. Zick-Zack-Muster
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Abbildung 5.7.: Zick-Zack
mit Sichtbe-
reich=30cm,
Toleranz=0cm

Bei einem simplen Muster wie diesem Zick-Zack eine Toleranz-

verschiebung einzustellen, macht nur bedingt Sinn. Im hier imple-

mentierten Code würden die Wegpunkte außerhalb des Bereichs

der Karte, also in eine Wand verschoben werden. Wegen der Kol-

lisionsabfrage des Grafikobjekts erlaubt die Simulation nicht, die

Wegpunkte einzuzeichnen. Aus diesem Grund kann hier keine

grafische Auswertung für dieses Muster erfolgen. Die Wegpunkte

werden trotzdem erstellt, da der Toleranzparameter lediglich zum

Testen für das Abfliegen der Wegpunkte dient. Im Regelfall wird

davon abgeraten beim Zick-Zack-Muster eine Toleranz größer als 0 einzustellen. Der erste Weg-

punkt (links unten) bleibt unabhängig vom Startpunkt immer der gleiche und wird mit der To-

leranz nicht nur nach unten sondern auch nach links verschoben, um das Erreichen des Quadro-

kopters zu testen. Durch die Veränderung des Sichtbereichs werden mehr (kleiner Sichtbereich)

beziehungsweise weniger (großer Sichtbereich) Wegpunkte erstellt. Abbildung 5.7 zeigt beispiel-

haft die Wegpunkte des Zick-Zack-Musters. Daran zu sehen ist, dass die rechten Wegpunkte sich

teilweise überschneiden, da der äußere Rand sonst nicht komplett betrachtet werden würde.

5.3. Praxis

Für die Auswertung der Flugbahn hat man drei verschiedene Anhaltspunkte: Die Wegpunkte

selbst, die Odometrie und das optische Tracking-System. Die Wegpunkte wurden von den Te-

lemetriedaten des Quadrokopters als nächster Soll-Wegpunkt empfangen. Die Odometrie ist die

Position des Quadrokopters, welche er selbst anhand des optischen Flusssensors berechnet hat.

Das optische Tracking arbeitet mit vier Infrarot-Kameras, welche den Quadrokopter mithilfe ei-

nes Infrarot-Senders erkennen. Zur Auswertung ist der wichtigste Vergleich zwischen den Koor-

dinaten der Wegpunkte mit den Daten des optischen Trackings, da die Odometrie lediglich die

internen Koordinaten des Quadrokopters verwaltet.

Für die Versuchsanordnung wurden Wegpunkte mit verschiedenen Parametern erzeugt. Die Ein-

stellung der Karte wurde fest am Anfang eingestellt. Die Zellgröße wurde auf 3cm fixiert. Daraus

ergibt sich eine Kartengröße von 1,92m∗1,92m. Der Sichtbereich berechnet sich aus der Kar-

tengröße abzüglich der jeweils äußeren Zellen, welche im GUI als Wand markiert sind. Die



Evaluierung 38

Startposition des Quadrokopters liegt bei 50cm/50cm. Das interne Koordinatensystem hat den

Ursprung von X und Y in der linken unteren Ecke. Y läuft in positiver Richtung nach oben, X

nach rechts. Die generierten Wegpunkte belaufen sich ungefähr in einem X- und Y-Bereich von

3cm bis 189cm. Ungefähr deshalb, weil der Sichtbereich und die Toleranz je nach Algorithmus

teilweise Werte außerhalb beziehungsweise Werte weiter innerhalb dieses Bereichs erzeugen.

Da parallel zum Abfliegen der Wegpunkte keine Kollisionserkennung auf dem Quadrokopter ge-

laufen ist, wurden die Versuche ohne Wände in einem größeren Bereich abgeflogen. Im Allge-

meinen ist der Quadrokopter auch oft aus dem Bereich der Karte heraus geflogen. Dies hat zur

Folge, dass man in späteren Versuchreihen mit Wänden entweder die Wegpunkte in größerem

Abstand zur Wand erstellen, oder die Wegpunkte mit Rückkopplung von der Kollsionserkennung

nachbessern müsste.

Wie in Kapitel 5.2 wurden bei den Praxis-Versuchen die Parameter Sichtweite und Toleranz ver-

ändert. Es wurden insgesamt 23 Messungen durchgeführt. Dabei wurden teilweise die selben

Parametereinstellung verwendet. Als Vergleichsmessungen sind jeweils mit einer Toleranz von

10cm die Sichtweiten von 21cm, 30cm und 51cm getestet worden. Weiterhin wurde die Tole-

ranz von 0cm und 20cm bei einer festen Sichtweite von 30cm für jeden Algorithmus getestet. Im

Folgenden werden nur einzelne Beispiele gezeigt, alle Messungen befinden sich im Anhang.

5.3.1. Breitensuche

In Abbildung 5.8 ist der Quadrokopter sehr deutlich aus dem abgesteckten Bereich heraus geflo-

gen. Man kann erkennen, dass er ungefähr die Wegpunkte angeflogen ist, jedoch sind teilweise

starke Schwankungen vorhanden, die dann eine große nicht betrachtete Lücke zurück lassen.

Dies ist besonders deutlich beim letzten Wegpunkt (rechts unten) zu erkennen. Dort ist der Sicht-

bereich von 21cm zwischen den zwei Wegpunktpfaden definitv nicht abgedeckt. Die Lücke dort

ist ungefähr 50cm groß, das beträgt mehr als das doppelte vom Soll-Wert! Der überschwingende

Bogen des Quadrokopters kommt daher, dass der Quadrokopter eine längere gerade Strecke zu

Fliegen hatte als vorher und deshalb noch eine Restbeschleunigung übrig bleibt. Eine ähnliche

Kurve sieht man auch auf der linken Seite.
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Abbildung 5.8.: Breitensuche mit Sichtbereich = 21cm, Toleranz = 10cm

Abbildung 5.9 zeigt den Flug bei einem größeren Sichtbereich. Offensichtlich liegt hier ein

deutlicher Fehler in der Odometrie des Quadrokopters vor. Beim Vergleich der Daten des Op-

tischen Trackings mit den Wegpunkten ist jedoch ein sehr schönes Ergebnis vorzuzeigen. Der

Quadrokopter ist weiterhin deutlich über die Wegpunkte hinausgeflogen, die tatsächliche Positi-

on ist allerdings sehr nahe am gewünschten Wegpunkt. Der abgedeckte Sichtbereich ist überall

ziemlich im Rahmen des Sollwertes, nur im rechten Teil ist eine größere Lücke.
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Abbildung 5.9.: Breitensuche mit Sichtbereich = 30cm, Toleranz = 10cm

Das Überschwingen des Quadrokopters durch die lange gerade Bewegung zuvor erkennt man

besonders gut in Abbildung 5.10. Betrachtet man den Sichtbereich, merkt man, dass dieser sehr

gut abgedeckt ist.

Abbildung 5.10.: Breitensuche mit Sichtbereich = 51cm, Toleranz = 10cm



Evaluierung 41

Bei einem Toleranzbereich von 0cm liegen die Wegpunkte auf komplett geraden Strecken. (Ab-

bildung 5.11) Offensichtlich kann der Quadrokopter auch diese Wegpunkte nicht im abgesteckten

Rahmen ideal abfliegen. Laut der Odometrie-Kurve schien der Quadrokopter verhältnismäßig gut

die Wegpunkte abzuarbeiten. Das optische Tracking jedoch zeigt, dass der Quadrokopter nach

links deutlich über das Ziel hinaus geschossen ist. Der Sichtbereich sollte sich bis auf den äußer-

sten Kreis im Rahmen von 30cm befinden.

Abbildung 5.11.: Breitensuche mit Sichtbereich = 30cm, Toleranz = 0cm

Bei einer Toleranz von 20cm verhält sich der Quadrokopter relativ ähnlich wie zuvor bereits

beschrieben. (Abbildung 5.12) Er bewegt sich außerhalb des Bereichs von 0cm bis 192cm und

hat ein deutliches Überschwingen nach Erreichen der Wegpunkte. Der Sichtbereich ist relativ

schlecht abgedeckt, wie man an den großen weißen Flächen links vom Startpunkt und etwas wei-

ter rechts gut erkennen kann.

Zusammenfassend lässt sich sagen, dass der abzusuchende Bereich für die Erstellung der Weg-

punkte deutlich kleiner gewählt werden sollte, als der tatsächlich abzufliegende Bereich, da der

Quadrokopter während des Fluges deutlich über die Wegpunkte hinaus fliegt. Die Flugbahn mit

dem großen Sichtbereich von 51cm scheint am konstantesten zu sein. Durch die vielen Änderun-

gen der Flugbahn mit mehreren Wegpunkten kommen Fehler in die Odometrie. Je nach Kame-

rawinkel sollte der Sichtbereich vermutlich trotzdem kleiner als der tatsächliche Kamerawinkel
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gewählt werden, damit man einen gewissen Spielraum hat. Dabei zu beachten ist, dass man Ob-

jekte so mehrfach finden kann. Die Toleranz hat die Flugbahn nicht wie gedacht zum Positiven

hin verändert. Das Problem mit dem Überschwingen wird dadurch nicht behoben, sondern eher

verstärkt.

Abbildung 5.12.: Breitensuche mit Sichtbereich = 30cm, Toleranz = 20cm

5.3.2. Tiefensuche

Wie bereits für die Breitensuche in Kapitel 5.3.1 festgestellt, fliegt der Quadrokopter nach langen

geraden Strecken über das Ziel hinaus. Dies sieht man bei allen nachfolgenden Abbildungen vor

allem für die äußersten Kreise, die nach dem Startpunkt direkt abgeflogen werden.

In Abbildung 5.13 gibt es leichte Unterschiede zwischen den Werten der Odometrie und des

optischen Trackings. Dies führt dazu dass ein sehr großer Bereich überhaupt nicht abgedeckt

worden ist! Im zweiten Ring von außen hat sich der Quadrokopter laut optischem Tracking nicht

befunden. Der Bereich in der Mitte der Karte hingegen wurde übermäßig gut abgedeckt.
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Abbildung 5.13.: Tiefensuche mit Sichtbereich = 21cm, Toleranz = 10cm

Der Quadrokopter hat in Abbildung 5.14 die Wegpunkte zwar nicht akurat angeflogen, jedoch

in Betrachtung des Sichtbereichs bis auf den äußersten Ring alles gut abgedeckt.

Abbildung 5.14.: Tiefensuche mit Sichtbereich = 30cm, Toleranz = 10cm

Der Versuch in Abbildung 5.15 zeigt, dass der Quadrokopter teilweise Wegpunkte zu früh

“abhakt“. Die Odometrie Kurve weicht deutlich von den Wegpunkten ab, wohingegen der Qua-
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drokopter per optischen Tracking relativ gut die Wegpunkte verfolgt hat. Für den eingestellten

Sichtbereich ist das Ergebnis gut.

Abbildung 5.15.: Tiefensuche mit Sichtbereich = 51cm, Toleranz = 10cm

Dadurch, dass Odometrie und optisches Tracking durch Messfehler in der Odometrie teilweise

unterschiedlich sind, wird in Abbildung 5.16 wieder ein größerer Bereich nicht richtig betrachtet.

In diesem Bereich, rechts im Bild, sieht man die Odometrie genau in der Mitte, jedoch keinen

Wert vom optischen Tracking.
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Abbildung 5.16.: Tiefensuche mit Sichtbereich = 30cm, Toleranz = 0cm

Im Versuch aus Abbildung 5.17 wird der Sichtbereich relativ gut abgedeckt. Hier bleibt ledig-

lich das Problem, dass der Quadrokopter aus dem Bereich der Karte hinaus fliegt.

Zusammenfassend lässt sich ähnlich der Breitensuche sagen, dass die Wegpunkte für einen klei-

neren Bereich generiert werden sollten. Eventuell wäre es sinnvoll die äußersten Wegpunkte etwas

zurückzusetzen, damit der Quadrokopter mehr Platz zum Überschwingen hat. Der Sichtbereich

wurde bei einer Einstellung von 30cm am besten abgedeckt. Der Toleranzparameter hat wie bei

der Breitensuche lediglich das Überschwingen verstärkt.
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Abbildung 5.17.: Tiefensuche mit Sichtbereich = 30cm, Toleranz = 20cm

5.3.3. Zick-Zack-Muster

Das Zick-Zack-Muster hat von den drei getesteten Algorithmen mit Abstand am schlechtesten

abgeschnitten. Die Anordnung der Wegpunkte war offensichtlich extrem ungünstig mit dem An-

fliegen von Koordinaten des Quadrokopters umsetzbar.

In Abbildung 5.18 ist zwar der Suchbereich relativ gut abgedeckt, jedoch ist der Quadrokopter

gleich am Anfang extrem weit aus diesem Bereich herausgeflogen. Am Ende ist der Quadrokopter

ebenfalls deutlich zu weit außerhalb geflogen. Zusätzlich dazu ist der Quadrokopter den Bereich

nicht zeilenweise abgeflogen, sondern hat immer wieder merkwürdige Kurvenbewegungen aus-

geführt.
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Abbildung 5.18.: Zick-Zack mit Sichtbereich = 21cm, Toleranz = 10cm

Neben dem bereits bekannten Überschwingen ist der Quadrokopter in Abbildung 5.19 eine

extrem merkwürdige Flugbahn abgeflogen. Teilweise wurden Bereiche doppelt abgesucht, dafür

wurden andere Bereiche überhaupt nicht betrachtet, zum Beispiel gleich am Anfang (oben links).

Abbildung 5.19.: Zick-Zack mit Sichtbereich = 30cm, Toleranz = 10cm
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Bis auf ein kleines Überschwingen am Ende wird in Abbildung 5.20 relativ gut der Bereich

abgesucht. Hier kann man gut erkennen, dass die Odometrie bereits ein ganzes Stück vor dem

Erreichen des Wegpunktes umdreht. Dadurch, dass der letzte Wegpunkt weit außerhalb des Such-

bereichs angeflogen worden ist, ist die Abdeckung in diesem Bereich nicht wirklich ausreichend.

Abbildung 5.20.: Zick-Zack mit Sichtbereich = 51cm, Toleranz = 10cm

In Hinblick auf das optische Tracking, wurde in der Versuchsanordnung aus Abbildung 5.21

der Suchbereich relativ gut abgeflogen. Wenn man jedoch die Odometrie beachtet, merkt man,

dass der Quadrokopter teilweise die Wegpunkte nicht ganz abgearbeitet hat.

Da der Quadrokopter teilweise merkwürdige Flugbahnen verfolgt hat, sollte man eher auf einen

der anderen Algorithmen zurückgreifen. Die Toleranz sollte im Wesentlichen nicht größer als 0

eingestellt werden, da sonst Wegpunkte anhand der Karte bereits in eine Wand generiert werden

würden. Den Sichtbereich kann man je nach Schwerpunkt einstellen. Für ein relativ “sauberes“

Abfliegen der Wegpunkte bietet sich ein größerer Wert an, jedoch kann es dann passieren, dass

Bereiche nicht betrachtet werden.
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Abbildung 5.21.: Zick-Zack mit Sichtbereich = 30cm, Toleranz = 0cm

5.4. Zusammenfassung

Die Evaluierung der Simulation und der Praxis-Versuche ist allgemein positiv ausgefallen. Die

Wegpunkte werden für verschiedene Parameter richtig generiert. Bei der Praxis hat sich gezeigt,

dass der Quadrokopter jeweils ein kleines Stück über den Wegpunkt hinaus fliegt, je nachdem

wie lang die “Beschleunigungsstrecke“ vom vorherigen Wegpunkt ist. Der Sichtbereich sollte ab-

hängig von den Eigenschaften der Kamera (Öffnungswinkel) und der Flughöhe angepasst werden

und besser etwas kleiner als der echte Sichtbereich gewählt werden, da der Quadrokopter sonst

unter Umständen manche Bereiche nicht abfliegt. Dabei sollte beachtet werden, dass manche Be-

reiche mehrfach im Sichtbereich der Kamera sind. Der Toleranz-Parameter ist sinnvoll bei nah

beieinander liegenden Wegpunkten zu verwenden, da der Quadrokopter die einzelnen Wegpunk-

te sonst gar nicht anfliegen würde. Dies ist zum Beispiel bei der Tiefensuche der Fall. Von der

allgemeinen Flugbahn jedoch hat sich gezeigt, dass der Quadrokopter bei großer Toleranz das

Überschwingen über einen Wegpunkt verstärkt. Um dies zu vermeiden sollte man die Toleranz

möglichst klein wählen, beziehungsweise auf Null setzen.
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6. Diskussion und Ausblick

6.1. Suche in komplexen Umgebungen

Abbildung 6.1.: Zick-Zack: merkwürdige Flugbahn

Anhand der Evaluierung der hier imple-

mentierten Wegpunktlisten muss in zu-

künftigen Projekten darauf geachtet wer-

den, dass der Quadrokopter relativ weit

von den in der Theorie erstellten Koor-

dinaten abweicht. Bei komplexen Umge-

bungen mit Wegpunkten, die nah an ech-

ten Wänden liegen ist dringend auf die

Kollisionserkennung zu achten. Das Er-

stellen der Wegpunkte für nicht triviale

Umgebungen sollte darauf ausgelegt sein,

Wegpunkte möglichst über lange gerade

Strecken zu legen, und dann an den Qua-

drokopter jeweils nur den letzten Weg-

punkt der Gerade zu übergeben. Komplizierte Wendemanöver sollten vermieden werden. An der

Auswertung der Zick-Zack-Bewegung sieht man besonders gut, dass der Quadrokopter bei einer

Drehung um fast 180 ◦ ziemlich merkwürdige Flugbahnen verfolgt. (siehe Abbildung 6.1)
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6.2. Kombination von Suchalgorithmen mit

Objekterkennung und Kollisionserkennung

Das eigentliche Ziel, das Finden eines Objekts, wurde im Rahmen dieser Arbeit nicht getestet.

Dies ist einer der nächsten Schritte für das Projekt Lebensretter mit Propellern. Es muss dar-

auf geachtet werden, dass der Quadrokopter durch Schwankungen beziehungsweise durch die

generierten Wegpunkte über den selben Ort mehrfach fliegen kann. Zusätzlich muss eine Rück-

kopplung zur Kollisionserkennung mit den Wegpunkten eingerichtet werden. Das heißt wenn der

Quadrokopter durch die Kollisionserkennung merkt, dass er zu nahe an der Wand ist, müssten die

Wegpunkte um einen gewissen Wert zurückgesetzt werden.

6.3. Feedback über bereits abgesuchte Bereiche

Da die tatsächliche Bewegung des Quadrokopters weit von der in der simulierten Bewegung ab-

weicht, müsste man eine Korrektur beziehungsweise eine Rückkopplung vom Quadrokopter wäh-

rend des Fluges berechnen lassen. Dies wäre zum Beispiel durch eine Regelung der Odometrie-

Werte mit den Verbindungsstrecken der Wegpunkte umsetzbar. Beziehungsweise muss anhand

der Odometrie gemerkt werden, wo der Quadrokopter sein sollte, jedoch bisher noch nicht war.

Diese Bereiche müssten neben den restlichen Wegpunkten noch abgesucht werden.

6.4. Simulation von Heuristischen Suchen

Anhand der hier implementierten GUI kann sehr einfach eine komplexe Umgebung erstellt wer-

den. Es dient als Grundlage für die Simulation beliebiger Suchalgorithmen. In dieser Arbeit wur-

de der Fokus auf uninformierte Suchen gelegt, jedoch können auch heuristische Suchen in dieser

Umgebung umgesetzt werden. Hierbei muss dringend darauf geachtet werden, dass die Weg-

punkte in genügendem Abstand zu Wänden erstellt werden, da der Quadrokopter in der Realität

teilweise weit von den generierten Wegpunkten abweicht.
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6.5. Anpassen von iterativ generierten Wegpunkten

Da in der hier verwendeten Version des Quadrokopters, die Wegpunkte bereits 20cm vor dem ei-

gentlichen Erreichen, diese als erreicht vermerkt werden, muss man für beliebige iterative Suchal-

gorithmen versuchen mehrere Wegpunkte zusammenzufassen. Man kann die Wegpunkte, welche

auf geraden Strecken hintereinander liegen, über einen einzigen, den letzten Wegpunkt an den

Quadrokopter übergeben. Auch für versetzte Wegpunkte die auf einer Kurve liegen, kann unter

der Berücksichtigung, dass der Quadrokopter über manche Wegpunkte hinaus fliegt, eine ähnliche

Zusammenfassung genutzt werden.
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A. Anhang

Bilder zur Evaluierung der Praxis:
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