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Aufgabenstellung

Die Fortschritte im Bereich Sensorik und Mikrotechnik ermoglichen heutzutage den kostengiin-
stigen Bau kleiner unbemannter Luftfahrzeuge (UAV, unmanned aerial vehicle, Drohne) wie Qua-
drokopter. Die Forschung und Entwicklung dieser Systeme wurde in den letzten Jahren aufgrund
der vielfiltigen Anwendungsmoglichkeiten stark vorangetrieben. Wenngleich im Bereich UAV
viel geforscht wurde, ist das Thema Autonomes Flugobjekt langst noch nicht vollstdndig behan-
delt. Insbesondere der Indoor-Betrieb ist aufgrund fehlender absoluter Positionsstiitzung durch
GPS problematisch. Der Aufbau eines eigenen autonomen Systems wird daher am Lehrstuhl Ae-
rospace Information Technology der Uni Wiirzburg erforscht und erprobt. Im Rahmen dieses
Forschungsvorhabens ist ein System zu entwickeln, dass in der Lage ist die Position des Quadro-
kopters an Hand von Wandabstandsinformationen (Abstandssensoren) und unter zu Hilfenahme

einer Karte zu bestimmen.

Hauptaugenmerk dieser Arbeit ist die Entwicklung eines Algorithmus zur Lokalisation fiir die
Verwendung mit Abstandssensoren. Der Algorithmus ist entsprechend der zu verwendenden Sen-
sorik, namentlich Infrarot bzw. Ultraschall, auszulegen. Als weitere Stiitze zur Lokalisation ste-
hen ein optischer Flusssensor sowie eine Karte einer bereits implementierten Mapping-Software
zur Verfiigung.

Im Rahmen der Arbeit ist zunédchst der Stand der Technik im Bereich autonome Lokalisation
aufzuarbeiten und zu beschreiben. Die implementierte Losung ist in das bestehende System zu

integrieren und an diesem ausgiebig zu evaluieren. Die Arbeit ist umfangreich zu dokumentieren.

Aufgabenstellung (Stichpunktartig):

» Aufarbeitung Stand der Technik: Lokalisationsverfahren und SLAM

* Implementierung Datenfusion: OF + Abstandssensorik zur Lokalisation

Einbettung Mapping und QT, Integration in Quadcopter

* Evaluierung am Quadcopter

Dokumentation



Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Verfahren zur kartengestiitzten Lokalisation eines autonomen
Quadrokopters entwickelt. Dieses benotigt au3er einer Karte Abstands- sowie Bewegungsinfor-
mationen, welche der Quadrokopter ohne externe Systeme messen kann. Dadurch ist kein Ver-
fahren wie GPS notig, was dieses System fiir den Indoorbetrieb priadestiniert. Desweiteren wurde
darauf geachtet, dass der Algorithmus auch mit eher unzuverldssigen bzw. ungenauen Sensoren
(wie z.B. Ultraschall-Abstandsmessern) noch brauchbare Ergebnisse erzielt. Die Anfangspositi-
on des Quadrokopters sollte bekannt sein, der Algorithmus ist aber auch in der Lage ohne diese

Information eine Lokalisation durchzufiihren.

Es konnte gezeigt werden, dass ein Lokalisationsalgorithmus fiir die Verwendung mit Abstands-
sensoren so implementiert werden kann, dass dieser bereits nach ca. 10-20 Iterationen eine Positi-
onsschitzung liefert. Aulerdem zeigte sich, dass das Verfahren auch mit eher ungenauer Sensorik
noch funktionsfihig ist. Obwohl die Zuverlissigkeit des Lokalisationsverfahrens noch einer Stei-
gerung bedarf, konnte mit dieser Arbeit eine Grundlage fiir einen Ausbau der Autonomie des

Quadrokopters geschaffen werden.
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Einleitung 1

1. Einleitung

Technische Systeme erfuhren in den letzten Jahrzehnten groe Fortschritte. Roboter wurden im-
mer schneller, stiarker und effizienter und erschlossen damit immer neue Anwendungsgebiete.
Gleichzeitig entwickelte sich auch die Computerindustrie rasanter als von manchem erwartet,
was Ingenieuren und Wissenschaftlern immer mehr Freiheiten bei der Entwicklung von Drohnen
und Robotern lie3. Damit wurde es moglich, diesen mehr und mehr ,,Intelligenz* und somit auch
Autonomie zu verleihen. Roboter konnen schon ldngst nicht mehr nur Autos zusammenbauen,
heutzutage mihen sie den Rasen, helfen Arzten bei komplizierten Eingriffen, werden vom Mili-

tdr eingesetzt oder messen sich in FuBballmeisterschaften.

Bei Drohnen handelt es sich um sog. UAVs (Unmanned Aerial Vehicles, dt. Unbemannte Luft-
fahrzeuge). Ein Spezialfall von Drohnen sind Quadrokopter, welche iiber vier nach unten wirken-
de Rotoren verfiigen. Dadurch wird dem Quadrokopter sowohl ein ,,Stehen* in der Luft wie bei
Hubschraubern als auch ein Mandvrieren im dreidimensionalen Raum erméglicht.

An der Julius-Maximilians-Universitidt Wiirzburg wird im Rahmen des AQopterI8-Projekts ein
Quadrokopter mit folgendem Ziel entwickelt: ,, Das fertige System soll in die Lage versetzt wer-
den, autonome Aufgaben aus den Bereichen Search & Rescue (z.B: Feuerwehreinsatz) sowie
Uberwachung und Kontrolle (Industrie- & Chemieanlage) durchzufiihren. “ (Gageik|[2013]])
Dabei ist der Begriff der Autonomie besonders hervorzuheben. Je autonomer sich ein Quadroko-
pter (und auch ein Roboter) verhilt, desto weniger ist Uberwachung und Kontrolle durch eine
Person notwendig.

Ein wichtiger Aspekt eines autonomen Quadrokopters ist die Moglichkeit zur Lokalisation. Diese
sollte ohne externe Hilfe und in moglichst vielen Situationen funktionieren. In Gebéduden kann
allerdings nicht davon ausgegangen werden kann, dass ,.klassische* Verfahren wie GPS funktio-

nieren, weshalb hier auf andere Methoden zuriickgegriffen werden muss. Desweiteren ist zu be-
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achten, dass das AQopterI8-Projekt auch mit der Absicht méglichst niedriger Kosten entwickelt
wird, was zu einer Verwendung von Low-Cost-Sensorik fiihrt. Die Verwendung der unruhigen
Plattform Quadrokopter stellt auBerdem hohe Anforderungen an die Fehlertoleranz des Loka-
lisationsalgorithmus. Das Lokalisationsverfahren muss also sowohl robust als auch schnell zu

berechnen sein.

In Kapitel [2| werden zunichst giingige Lokalisationsverfahren vorgestellt und ein Uberblick iiber
sog. SLAM-Verfahren (Simultaneous Localization And Mapping, dt. simultane Lokalisation und
Kartenerstellung, s. Kap. [2.4) gegeben, welche auch eine Lokalisation in vorher vollkommen un-
bekannten Gebieten ermoglichen. Nach einer Gegeniiberstellung dieser Verfahren wird dann in
Kapitel [3| das fiir dieses Projekt geeignetste Verfahren ausgewihlt und entwickelt. Kapitel | be-
handelt die konkrete Umsetzung des zuvor erarbeiteten Konzepts. Diese wird dann in Kapitel [3]
evaluiert. AbschlieBend werden in Kapitel 6| die erzielten Ergebnisse diskutiert und ein Ausblick

auf mogliche weitere Entwicklungen gegeben.
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2. Grundlagen & Stand der Technik

In diesem Kapitel werden, nach kurzer Erlduterung der wichtigsten mathematischen Grundlagen,
einige Verfahren zur Lokalisation und zur Losung des sog. SLAM-Problems (s. Kap.[2.4) vorge-
stellt.

Da sich die Thematik dieser Arbeit nicht nur auf bodengebundene Roboter, sondern auch auf
Fluggerite wie Quadrokopter erstreckt, werden diese Systeme im weiteren Verlauf zusammen-

fassend als Agenten bezeichnet.

2.1. Mathematische Grundlagen

Zunichst werden in moglichst kompakter und verstdndlicher Form einige mathematische Zusam-
menhinge erldutert, die fiir das Verstindnis dieser Arbeit von Bedeutung sind. Auf weiterfithrende

Literatur wird an den entsprechenden Stellen verwiesen.

2.1.1. Pose

Im Folgenden wird der Begriff der Pose haufig Verwendung finden. Die Pose beschreibt die X-, Y-
und ggf. Z-Koordinaten der Position eines Agenten (je nach dem, ob man sich in einer Ebene oder
im Raum bewegt) sowie dessen Orientierung 6 ggii. einem globalen kartesischen Referenzsystem.
In dieser Arbeit findet nur die zweidimensionale Pose (x, i, §) Anwendung.

Abb. [2.1] verdeutlicht eine Pose. Desweiteren ist zu sagen, dass Agenten hiufig vereinfacht durch
einen Kreis dargestellt werden, wobei eine Linie vom Mittelpunkt zum Kreisrand die Orientierung

darstellt.
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<0.0>
Abbildung 2.1.: Pose eines Roboters. Quelle: Thrun et al. [2005]]

2.1.2. Zustandsschatzung

Das Lokalisierungsproblem lésst sich in etwas abstrakter Form als das Problem, den aktuellen
Systemzustand zu schitzen, beschreiben. Dieser Zustand umfasst dabei sowohl alle fiir das auto-
nome System relevanten Eigenschaften der Umgebung (also die Position von Winden und Tiiren,
der Aufenthaltsort von Personen, etc.), als auch den Zustand des Agenten selbst (Pose, Geschwin-
digkeit, Zustand der Sensoren, etc.). Da viele dieser Eigenschaften kaum direkt gemessen werden
konnen muss sich der Agent auf seine Sensorik sowie bisher erfasste Messungen verlassen, um
aus den Messdaten auf die benétigten Eigenschaften schliefen zu konnen. Genau das ist mit
Zustandsschitzung gemeint: Es soll aus fehlerbehafteten Messungen, die nur einen kleinen Teil
der Umgebung erfassen konnen, der aktuelle Zustand des Systems berechnet werden. Der Agent
glaubt also, den Systemzustand = zum Zeitpunkt ¢ berechnet zu haben, was sich wie folgt aus-

driicken ldsst:

bel(l’t) = p(ﬂft | Zl:taul:t) (2.1)

21+ sind alle Messungen, u1.; alle Steuerbefehle, die bis zum Zeitpunkt ¢ durchgefiihrt wurden.
Damit beschreibt p(x; | 21,4, u.;) - respektive bel(x;) - die Wahrscheinlichkeit, dass x; der aktuelle
Systemzustand ist, wenn zuvor die Messwerte z;.; erfasst und die Steuerbefehle wu,.; ausgefiihrt
wurden.

Desweiteren lédsst sich ausdriicken, welcher Systemzustand erwartet wird, bevor Messungen zum

Zeitpunkt ¢ durchgefiihrt werden:

@(mt) = p(@¢ | 21—1, Un:) 2.2)

Der vor der Durchfithrung der Messungen erwartete Systemzustand muss nach Durchfithrung

der Messungen korrigiert werden, um die aktuelle Systemzustandsvermutung zu erhalten. Diese
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Aufteilung in Vorhersage- und Berichtigungsschritt ist charakteristisch fiir viele Losungen des

Lokalisierungs- und SLAM-Problems (vgl. Thrun etal.|[2005], Kap. 2.3).

2.1.3. Bayes Filter-Algorithmus

Eine allgemeine Losung zur rekursiven Berechnung der aktuellen Systemzustandsvermutung ist
der Bayes Filter-Algorithmus. Er basiert auf dem Bayestheorem, welches die Umkehrung einer

bedingten Wahrscheinlichkeit erlaubt:

ply | ©)p(x)

2.3
p(y) @3

p(xly) =

Das bedeutet: Sind die Wahrscheinlichkeiten fiir das Eintreten von = und y bekannt, und ist die
bedingte Wahrscheinlichkeit, dass y eintritt, wenn x eingetreten ist, bekannt, lisst sich die Wahr-
scheinlichkeit berechnen, dass x eintritt, wenn y eingetreten ist.

Wie bereits in Kap. [2.1.2]erwihnt wird die Berechnung in einen Vorhersage- und einen Korrektur-
schritt aufgeteilt. Hierzu werden genaue mathematische Modelle der Sensorik und der Bewegung
des Agenten benétigt, welche in der Praxis meist nur schwierig erstellt werden konnen.

Da es sich beim Bayes Filter-Algorithmus um eine sehr allgemeine Losung handelt, die viel
zu komplex zu berechnen wire, wurden verschiedene Anniherungen und Vereinfachungen ent-
wickelt, die eine konkrete Berechnung durch einen Computer erlauben. Eine Anwendung pro-
babilistischer Verfahren wie des Bayes Filter-Algorithmus auf das Lokalisierungsproblem bei
mobilen Robotern wird auch als Markov-Lokalisation bezeichnet (vgl. Fox|[1998])). Einige dieser

Umsetzungen werden in Kap. [2.3]besprochen.

2.1.4. Kalman Filter

1960 entwickelte Rudolf E. Kdlméan den nach ihm benannten Kalman-Filter. Basierend auf Bayes’
Filter erlaubt er, sowohl vergangene als auch in der Zukunft liegende Zustédnde eines linearen, zeit-
diskreten Systems zu schitzen, wobei die Messfehler als normalverteilt angesehen werden (vgl.
Welch und Bishop| [2001])). Dieser Filter kann sehr recheneffizient implementiert werden und lie-
fert fiir Systeme, die den Anforderungen (linear, normalverteiltes Rauschen) entsprechen, sehr
gute Ergebnisse. Durch Modifizierungen ist es auch moglich, ihn bis zu einem gewissen Grad auf

nichtlineare Systeme anzuwenden. Dazu kann z.B. mittels einer Taylorentwicklung das System
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lokal linearisiert werden, was Extended Kalman Filter (EKF) genannt wird. Diese Linearisierung
kann auch durch statistische Techniken wie die Unscented Transformation, welche im Unscented
Kalman Filter (UKF) zum Einsatz kommt, berechnet werden, wodurch teilweise bessere Ergeb-
nisse erzielt werden konnen. Das geht allerdings auf Kosten der Recheneffizienz (s. Thrun etal.

[2005]).

2.2. Kartendarstellung

Eine wichtige Rolle spielt die Karte der Umgebung, da sie die Grundlage der Lokalisierung dar-
stellt. Um ein moglichst gutes Verhiltnis zwischen Detailgrad und Speicherbedarf zu erhalten
ist es notwendig, gewisse Ungenauigkeiten in Kauf zu nehmen und fiir den Agenten unwichti-
ge Details zu vernachlidssigen. Hier haben sich einige Ansitze durchgesetzt, von denen zwei der

verbreitetsten hier kurz vorgestellt werden.

2.2.1. Feature-basiert

Die Idee dieser Karte ist es, komplett aus sog. Features (manchmal auch ,,Landmarks®, dt. Land-
marken, genannt) aufgebaut zu sein. Ein Feature ist ein vom Agenten leicht zu identifizierendes
Merkmal der Umgebung, z.B. Bidume, Tiiren oder kiinstliche Markierungen wie bunt angestri-
chene Pfihle. Der groBe Vorteil dieser Reprédsentation der Umgebung ist, dass ein Feature in
der Regel nur mit einem 2- oder 3-Tupel, welches die Koordinaten in der Ebene oder im Raum
darstellt, gespeichert werden kann. Dies macht diese Darstellung besonders effizient hinsichtlich
des Speicherbedarfs. Allerdings birgt dieses Verfahren auch Risiken, wobei insb. zwei zu nennen
sind: Zum einen miissen die Features aus den Messungen extrahiert werden. Dies kann, je nach
Art der Features, komplexe Prozesse wie die Analyse von Kamerabildern erforderlich machen.
Zum andern muss gewihrleistet werden, dass die erkannten Features intern auch den richtigen
Features der Karte zugeordnet werden (héufig als ,,Data Association Problem*, dt. Datenassozia-

tionsproblem, bezeichnet).
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2.2.2. Occupancy Grid Map

Ein Gegenstiick zu feature-basierten Karten sind Occupancy Grid Maps. Statt sich auf besondere
Eigenschaften der Umgebung zu konzentrieren, wird iiber den gesamten relevanten Bereich ein
(meist zweidimensionales) Gitter gelegt. Den dadurch entstandenen Zellen wird nun jeweils ein
Wert zugeordnet, der die Wahrscheinlichkeit, dass die Zelle belegt ist, repriasentiert (s. |Hdahnel
[20035]). Dies kostet in der Regel viel Speicher, da das Gitter nicht zu grob sein darf, um die
Umgebung genau genug abzubilden. Dafiir bietet diese Kartendarstellung aber den Vorteil, dass
zur Erstellung einfache Entfernungsmessungen reichen, die auch relativ einfach in die Karte in-
tegriert werden konnen (s. Schmitt [2012]). Es ist also im Gegensatz zu feature-basierten Karten
nicht nétig, aus den Messwerten zunichst die Features zu extrahieren.

Ein praktischer Nebeneffekt ist auBerdem, dass die Daten auch von Menschen sehr gut als Karte

interpretiert werden konnen (s. Abb. [2.2)).

Abbildung 2.2.: Occupancy Grid Map einer grofSen Ausstellungsflache. Je dunkler ein Pixel, desto
wahrscheinlicher ist die zugehorige Zelle belegt. Quelle: Thrun et al.| [2005]]



Grundlagen & Stand der Technik 8

2.3. Lokalisationsverfahren

Ein Agent muss, um autonom agieren zu konnen, stets Kenntnis iiber seine eigene Position im
Raum haben. Wihrend dies im Freien heutzutage dank GPS recht einfach zu bewerkstelligen ist,
muss in Gebduden auf andere Verfahren zuriickgegriffen werden, da das schwache GPS-Signal
dort nur noch schwierig zu empfangen ist (was zusitzlich durch Effekte wie Reflektionen in Héu-
serschluchten erschwert wird). Die gingigsten dieser Verfahren werden in den folgenden Teilka-

piteln vorgestellt.

Grundsitzlich lassen sich Lokalisationsverfahren anhand mehrerer Aspekte unterscheiden (vgl.
Thrun et al.|[2005]], Kap. 7.1). Eine der einfachsten Aufgaben besteht in der lokalen Lokalisation,
da hier die Anfangsposition im Raum bekannt ist. Der Agent besitzt somit einen Referenzpunkt,
auf den er seine Berechnungen aufbauen kann. Ist die Anfangsposition jedoch unbekannt spricht
man von globaler Lokalisation. Hier muss der Agent, bevor er seine Position verfolgen kann,
diese zunidchst bestimmen. Dies wird z.B. durch symmetrische und repetitive Umgebungen wei-
ter erschwert, da meist mehrere Vermutungen existieren, an welcher Position man sich befinden
konnte. Allerdings ist ein globales Lokalisationsverfahren, sobald es implementiert wurde, deut-
lich robuster als ein lokales Verfahren, da es in der Lage ist, den kompletten Verlust der Positions-
vermutung auszugleichen. Sollte jedoch ein lokales Verfahren seine Position verlieren (z.B. durch
zu grofle Messfehler oder eine falsche Anfangsposition) ist der Agent in sehr vielen Situationen
unfihig, sich jemals wieder zu lokalisieren.

Ein weiterer Aspekt ist das sog. Kidnapped Robot Problem. Es beschreibt die Situation, in der
der Agent plotzlich an eine andere Position ,teleportiert” wird, ohne dass er dies bemerkt. Ein
verlisslicher Algorithmus sollte in der Lage sein, nach kurzer Zeit zu merken, dass seine Po-
sitionsvermutung auf einmal vollkommen falsch ist und deshalb die aktuelle Vermutung nicht
weiter verfolgen. Eine ,, Teleportation® ist selbstverstindlich unwahrscheinlich, allerdings besteht
immer die Moglichkeit, dass sich ein Algorithmus irrt und deshalb eine falsche Position verfolgt.
In diesem Fall ist es wichtig, dass sich der Algorithmus von diesem Fehler erholt und seine Posi-

tionsvermutung berichtigt.

Ein weiterer Aspekt sind dynamische Umgebungen, also Umgebungen, in denen sich immer
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wieder etwas dndert. Dies kann bspw. durch umherlaufende Personen oder sich 6ffnende und

schlieBende Tiiren verursacht sein. Unverdnderliche Umgebungen werden als statisch bezeichnet.

Von groBler Bedeutung ist die Art der Verteilung, die die Positionsvermutung(en) repriasentiert.
Eine unimodale Verteilung kann nur eine Vermutung gleichzeitig modellieren, was zwar meist
recheneffizient, dafiir aber nicht sehr robust ist. Sie setzt voraus, dass der Lokalisierungsalgorith-
mus so genau arbeitet, dass nie die Moglichkeit mehrerer gleichberechtigter Vermutungen besteht.
Noch schwieriger ist es, mit einer unimodalen Verteilung eine globale Lokalisierung durchzufiih-
ren. Dies ist in Umgebungen mit mehreren sehr dhnlichen Rdumen fast immer zum Scheitern
verurteilt, da sich der Algorithmus von Anfang an fiir einen dieser Rdume entscheiden muss.

Genau hier konnen multimodale Verteilungen Abhilfe schaffen (wie u.a. von |Cox und Leonard
[1994] vorgeschlagen), da sie die Moglichkeit mehrerer Positionsvermutungen erlauben. Aller-
dings sind diese Verteilungen tendenziell schwieriger zu implementieren, da hier das gegenteilige
Problem der Fall ist: Es muss dafiir gesorgt werden, dass sich der Algorithmus moglichst schnell
fiir eine der Vermutungen entscheidet - eine Information wie ,,Der Agent konnte hier oder hier

oder aber hier sein‘ ist z.B. fiir Navigationsaufgaben zu ungenau.

2.3.1. Koppelnavigation

Eines der einfachsten und intuitivsten Lokalisationsverfahren ist die Koppelnavigation (im
Englischen Dead Reckoning). Hierbei wird zunichst die aktuelle Position als Ursprung defi-
niert oder dem Agenten mitgeteilt, an welcher (globalen) Position er beginnt. Sobald sich der
Agent bewegt, misst er seine Bewegung mittels dafiir geeigneter Sensorik. Bei bodengebun-
denen Robotern mit Rddern werden héufig Inkrementalgeber genutzt, welche die Radumdre-
hungen mit mehreren Rechtecksignalen wiedergeben (sog. Gray Codes), woraus sich Drehrich-
tung und -geschwindigkeit berechnen lassen. Besteht hingegen kein Bodenkontakt konnen bspw.
Beschleunigungs- und Drehratensensoren eingesetzt werden.

Nach einer gewissen Zeit (einige Millisekunden bis mehrere Sekunden) berechnet der Agent aus
den Messdaten seine zuletzt ausgefiihrte Bewegung und addiert diese zur zuletzt bestimmten Po-
sition, wodurch er seine aktuelle Position erhilt. Daraufhin wird wieder die Bewegung gemessen,
diese auf die zuletzt bestimmte Position addiert usw. usf.

Der Vorteil dieses Verfahrens liegt eindeutig in seiner Einfachheit, da es nicht nur verstdndlich,
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sondern auch effizient zu berechnen ist. Allerdings sind alle Messungen mit Fehlern behaftet,
was sich insb. bei Low-Cost-Sensorik bemerkbar macht. Da bei der fortlaufenden Addition der
Bewegung zur letzten Position nicht nur die Bewegung selbst, sondern auch der Messfehler auf-
summiert wird, ist die berechnete Position mit einem umso groleren Fehler behaftet, je ldnger
das Verfahren lauft. Dieser Fehler kann nur von auflen, durch eine absolute Positionsreferenz,

behoben werden, bspw. durch das Anfahren einer Dockingstation mit exakt bekannter Position.

2.3.2. EKF-Lokalisation

Eine deutliche Verbesserung der einfachen Koppelnavigation kann erreicht werden, wenn Mes-
sungen der Umgebung laufenden Einfluss auf die Positionsbestimmung haben, also eine Korrek-
tur der Odometrie erfolgt. Die EKF-Lokalisation benétigt dazu eine feature-basierte Karte und
einen entsprechenden Sensor, mit dessen Hilfe Features in der Umgebung des Agenten eindeutig
und sicher identifiziert werden konnen. Desweiteren miissen die Anfangsposition des Agenten
sowie ein Modell der Bewegung und der Messungen bekannt sein.

Der Algorithmus baut, wie der Name schon sagt, auf den Extended Kalman Filter auf. Er besteht

im Wesentlichen aus drei Schritten:

Vorhersage Berechnung der nichsten Position und der erwarteten Messungen, basierend auf
der vorherigen Position und dem Bewegungsmodell des Agenten. Die vermutete Position
ist mit einer groBeren Unsicherheit behaftet, da in diesem Schritt auch Messungenauigkei-

ten beriicksichtigt werden.

Fehler der erwarteten Messung Nach Durchfithrung der Messungen werden diese damit
verglichen, welche Messungen erwartet wurden. Aus der Abweichung lésst sich (aufgrund
eindeutiger Zuordnung der Landmarken) berechnen, wo der Agent gestanden haben miis-

ste, um die gemessenen Werte zu erhalten.

Korrektur der Positionsschatzung Der berechnete Messfehler wird auf die Positionsschit-
zung angewendet, wodurch der Agent seine Position nun besser und mit geringerer Unsi-

cherheit kennt.

Abb. [2.3] verdeutlicht diesen Algorithmus. Kreise mit einer Zahl sind Landmarken, durchgezo-

gene Linien zeigen den tatsdchlichen Weg des Agenten. Im oberen Bild représentiert die gestri-
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Abbildung 2.3.: Schematische Darstellung der EKF-Lokalisation. Quelle: Thrun et al

{[2005]]
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chelte Linie den von der Odometrie des Agenten gemessenen Weg. Diinne Linien zeigen, welche
Landmarken an der jeweiligen Position observiert wurden. Im unteren Bild ist die Positionsunsi-
cherheit vor (hellgrau) und nach (dunkelgrau) der Korrektur durch den EKF-Algorithmus einge-
zeichnet. Die gestrichelte Linie repriasentiert den gemessenen und korrigierten Weg.

Die Verwendung der EKF-Lokalisation erlaubt das Verfolgen einer Positionsvermutung, wobei
diese durch eine Normalverteilung reprisentiert wird. Es handelt sich um ein lokales Lokalisa-
tionsverfahren, da die Anfangsposition bekannt sein muss. Um eine zuverlidssige Funktion zu
gewdhrleisten, muss die Sensorik ausreichend genau arbeiten, was je nach Einsatzgebiet ein Pro-
blem sein kann. Es existieren zahlreiche Erweiterungen dieses Algorithmus, die sich verschiede-
ner nachteiliger Aspekte annehmen und sich bspw. um das Problem der Datenassoziation kiim-
mern oder das Verfolgen mehrerer Positionsvermutungen erlauben. Es ist zudem iiber Umwege
moglich, die EKF-Lokalisation zu einem globalen Lokalisationsverfahren auszubauen (s. [Thrun

et al. [2005]).

2.3.3. Lokalisation per Histogramm

Ein génzlich anderer Ansatz zur Lokalisation ist die Verwendung eines Histogramms (wie u.a. in
Thrun etal.| [2005]] vorgestellt). Jeder Zelle der Karte wird eine Wahrscheinlichkeit zugeordnet,
je nach dem, wie wahrscheinlich es ist, dass sich der Agent dort befindet. Bei jeder Bewegung
werden diese Wahrscheinlichkeiten mitbewegt und den entsprechenden Zellen neu zugeordnet.
Eine erneute Messung kann die Wahrscheinlichkeiten der Zellen wieder aktualisieren. Einfach
gesagt konnen im Verlauf des Algorithmus immer mehr Zellen ausgeschlossen werden, wodurch
sich im Endeffekt die aktuelle Position des Roboters herauskristallisiert. Abb. verdeutlicht
diesen Prozess nochmal an einem eindimensionalen Beispiel. Der Roboter ist in der Lage, Tiiren
zu erkennen. bel(x) stellt das Histogramm dar, an dem die aktuelle Positionsvermutung abgelesen
werden kann, p(z | ) gibt an, wie wahrscheinlich die aktuelle Messung an welchen Stellen der
Karte ist.

Dieses Verfahren bietet einige wichtige Vorteile gegeniiber auf Bayes’ Filter basierenden Al-
gortihmen. Da man nicht an eine Normalverteilung gebunden ist, konnen auch komplexe Vertei-
lungen représentiert werden - ohne deren mathematische Beschreibung kennen zu miissen. Dies
macht auch die praktische Implementierung relativ einfach. Auerdem entfillt, wie bei Occupan-

cy Grid Maps iiblich, die Notwendigkeit, Features aus der Umgebung extrahieren zu miissen, es
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kann also direkt mit den rohen Messwerten gearbeitet werden. Desweiteren handelt es sich um
ein globales Lokalisationsverfahren, wodurch der Agent in der Lage ist, sich auch ohne bekannte
Anfangsposition zu lokalisieren.

Ein Nachteil ist die grole zu verwaltende Datenmenge. Fiir eine genauere Lokalisierung sind
kleinere Zellen nétig, welche mehr Speicherplatz und Rechenzeit bendtigen. Dies ldsst die Hard-
wareanforderungen, insb. fiir dreidimensionale Karten, schnell in exorbitante Hohen schieB3en.
Abhilfe kann hier eine topologische, statt einer metrischen, Aufteilung der Karte schaffen. De-
tailarme Regionen konnen so effektiver beschrieben werden, wihrend komplexen Umgebungen
viel Speicher zugestanden wird. Hier konnen statt einer Occupancy Grid Map auch Landmarken

Verwendung finden. All das erhoht jedoch wieder den Anspruch der Implementierung.

2.3.4. Monte Carlo Localization

Dieses Verfahren ist heutzutage aufgrund seiner Einfachheit und seines Potentials einer der po-
pulédrsten Algorithmen zur Roboterlokalisation. Er wurde 1999 von [Fox etal. [[1999] vorgestellt.
Auf der Karte werden sog. Partikel verteilt, wobei jedes Partikel eine Posevermutung darstellt.
Bewegungen des Roboters werden auf alle Partikel iibertragen. Nach jeder Messung werden sie
nach Wichtigkeit gewichtet, wobei zur Messung passende Partikel hoher gewichtet werden. In
einem Resampling-Prozess werden von Zeit zu Zeit alle Partikel mit zu niedriger Wichtigkeit
aussortiert, gleichzeitig werden in der Umgebung wichtiger Partikel neue Partikel erzeugt.

Monte Carlo Localization erlaubt eine globale Lokalisation und kann auf das Kidnapped Robot-
Problem erweitert werden, indem immer einige Partikel zufillig hinzugefiigt werden. Deswei-
teren ist es moglich, die Partikelzahl dynamisch zu verdndern, was eine Anpassung an die mo-
mentan zur Verfiigung stehenden Rechenkapazititen ermoglicht. Wie bei der Lokalisation per
Histogramm ist man nicht auf Normalverteilungen eingeschriankt und kann mehrere Vermutun-
gen gleichzeitig verfolgen. Aulerdem ist dieses Verfahren sowohl fiir Feature-basierte Karten wie

auch fiir Occupancy Grid Maps geeignet.

2.4. Das SLAM-Problem

Die Abkiirzung SLAM (Simultaneous Localization And Mapping) beschreibt die Problematik,

gleichzeitig eine Lokalisation durchzufiihren und eine Karte der Umgebung zu erstellen. Falls
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bereits eine Karte vorhanden ist (wie im vorherigen Kapitel beschrieben) ist eine Lokalisation
vergleichsweise einfach durchzufiihren. Ebenso ist das Aufzeichnen einer Karte bei bekannter
Position relativ einfach. Beginnt der Agent jedoch ohne eine Karte und kann seine Position nur
unzureichend genau verfolgen steht man vor dem SLAM-Problem. Dieses lasst sich auch als
Henne-Ei-Problem betrachten: Ohne Karte keine Lokalisation, ohne Lokalisation keine Karte.

Die meisten SLAM-Verfahren lassen sich anhand folgender Aspekte einteilen:

Full vs. Online SLAM Wihrend beim Online SLAM neben der Karte die aktuelle Pose des
Roboters von Interesse ist, wird bei Full SLAM-Algorithmen der gesamte bisher zuriick-
gelegte Weg gespeichert und im weiteren Verlauf beriicksichtigt. Dies erhoht zwar die Ge-

nauigkeit des Algorithmus, wird aber schnell rechen- und speicherintensiv.

Volumetric vs. Feature-based SLAM Dies bezieht sich auf die Art der genutzten Karten-
darstellung. Wihrend bei Volumetric SLAM eine metrische Karte wie z.B. eine Occupancy

Grid Map zum Einsatz kommt, wird die Karte bei Feature-based SLAM aus Landmarken

aufgebaut. Vgl. auch Kap.[2.2]

Active vs. passive SLAM Bisher wurde immer angenommen, dass der Agent seine Steuer-
befehle von auBlerhalb, z.B. durch einen Menschen erhilt. Im Fall von SLAM spricht man
dann von passive SLAM. Bei active SLAM steuert sich der Agent hingegen selbst, um aktiv

zur Bildung der Karte und zur eigenen Lokalisierung beizutragen.

Die folgenden Kapitel geben eine kurzen Uberblick iiber einige der giingigen Losungen des

SLAM-Problems.

2.4.1. SLAM mittels Kalman Filter

Hier sei besonders EKF SLAM erwihnt, welches mit zu den frithesten SLAM-Implementierungen
gehort (vgl. [Thrun et al.|[2005], Kap. 10.2.1). Voraussetzung sind eindeutig identifizierbare Land-
marken und ein dementsprechend guter Erkennungsalgorithmus. Vereinfacht gesagt handelt es
sich um eine EKF-Lokalisation, bei der nicht nur die Roboterpose, sondern auch die Position
aller erkannten Landmarken geschitzt wird. Der Algorithmus eignet sich nicht fiir gro3e Karten,
da die Berechnungen sonst zu rechenintensiv werden.

Es existieren diverse weitere Implementierungen mit Kalman Filter (vgl. [Thrun etal.| [2005]),
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u.a. UKF SLAM, EIF (Extended Information Filter, {iberfiihrt den EKF in die kanonische Form)
SLAM und SEIF (Sparse EIF, fiihrt eine zusitzliche sparsification der Daten durch, wodurch nur
noch benachbarte Features korreliert werden; deutlich effizienter als EKF SLAM, allerdings et-
was ungenauer) SLAM. Allen ist gemeinsam, dass sie nur fiir kleinere bis mittelgroe Karten

geeignet sind.

2.4.2. GraphSLAM

Der GraphSLAM-Algorithmus ermoglicht eine Losung des Full SLAM-Problems. GraphSLAM
korreliert Features und Poses und baut daraus einen Graphen auf. Dieser Graph wird immer wie-
der iiberarbeitet, indem versucht wird, Features mit in der Realitiit identischen Koordinaten zu
finden, was also ein Feature ist, das falschlicherweise mehrmals in den Graphen eingetragen wur-
de. Dadurch wird der Graph immer wieder korrigiert, wodurch mit diesem Algorithmus gute
Ergebnisse zu erzielen sind.

Die Grundlagen fiir diesen Algorithmus wurden 1997 durch eine Veréffentlichung von |Lu und

Milios| [[1997] gelegt.

2.4.3. FastSLAM

FastSLAM wurde 2002 von Michael Montemerlo entwickelt (Montemerlo et al.|[2002]]) und zihlt
heutzutage mit zu den effektivsten SLAM-Verfahren tiberhaupt. Aufbauend auf einem Partikel-
filter 16st dieser Algorithmus sowohl das Online als auch das Full SLAM-Problem und ist fiir
Feature Based wie fiir Occupancy Grid Maps geeignet. Jedes Partikel enthilt eine eigene Pfad-
schitzung sowie Schitzungen fiir alle Features der Karte, welche jeweils durch EKFs reprisentiert
werden. FastSLLAM existiert auch als Version 2.0, welche nochmals verbessert wurde (Montemer-
lo etal.|[2003]).

Aufbauend auf FastSLAM 1.0 wurde der sog. Distributed Particle (DP) SLAM entwickelt, wel-
cher den effizienten Umgang mit mehreren Kartenversionen gleichzeitig erlaubt (Eliazar und Parr
[2003]). Dieser wurde ebenfalls zu Version 2.0 ausgebaut, mit nochmals gesteigerter Effizienz

(Eliazar und Parr| [[2004]).
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2.5. Zusammenfassung

Die bisher vorgestellten Techniken ermoglichen heutzutage nicht nur eine zuverlédssige Lokalisa-
tion, sondern auch eine Losung des SLAM-Problems. Dennoch ist die dazu benotigte Hardware
(insb. mit einem hochwertigen Quadrokopter als Plattform) nach wie vor zu teuer, um Systeme
zur moglicherweise einmaligen Verwendung zu entwerfen.

Um diesen Problem zu begegnen wird im Rahmen des AQopterI8-Projekts ein Quadrokopter von
Grund auf neu entworfen, sodass dieser sowohl hinsichtlich Funktionalitét als auch niedriger Ko-
sten optimiert werden kann. Wie bereits in Kap. [I| erwiéhnt ist es von groer Bedeutung, diesen
Quadrokopter mit einem hohen Grad an Autonomie auszustatten, damit er die Aufgaben erfiil-
len kann, die fiir Menschen evtl. zu gefihrlich sind. Um einen wichtigen Beitrag zur Autonomie
des Quadrokopters zu leisten wird im weiteren Verlauf dieser Arbeit ein Lokalisationsverfahren

entwickelt, dass sowohl robust arbeitet als auch schnell zu berechnen ist.
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3. Konzept

3.1. Uberblick

In diesem Kapitel wird das dieser Arbeit zugrunde liegende Konzept vorgestellt. Dazu werden
zunichst die an das Lokalisationsverfahren zu stellenden Anforderungen beschrieben, welche in
den daran anschliefenden Vergleich der bisher vorgestellten Lokalisationsverfahren (s. Kap.[2.3)

einflieBen. Das daraus gewihlte Verfahren wird schlieflich weiter ausgearbeitet.

3.1.1. Anforderungen

Wie bereits in Kap. [I] erwihnt, wird das zu erarbeitende Lokalisationsverfahren im Rahmen des
AQopterl8-Projekts entwickelt. Daraus ergibt sich aus mehreren Griinden eine hohe Robustheit

als Anforderung an das Lokalisationsverfahren:

Plattform Quadrokopter Wihrend bei einem bodengebundenen Roboter davon ausgegangen
werden kann, dass er seine Position nur dndert, wenn er seinen Antrieb einsetzt, muss bei
Quadrokoptern stets mit Ungenauigkeiten und Drift gerechnet werden. Ein Quadrokopter
ist duBeren Einfliissen, insb. Wind bzw. Luftzirkulationen, deutlich stdrker ausgesetzt als
ein auf dem Boden stehender Agent. Selbst bei Windstille muss die Positionsregelung ei-
nes Quadrokopters immer wieder einen kleinen Drift ausgleichen, was zu minimalen Be-
wegungen fiihrt.

Desweiteren bedeutet jede Bewegung eines Quadrokopters auch eine Neigung der Platt-
form, was Sensormessungen mit festen Richtungen (z.B. senkrecht zum Boden oder in der
Rotorebene) verfilscht. Diese Messungen konnten bspw. per Sensorfusion mit einem Nei-

gungssensor verbessert werden.
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Aspekt LowCost Neben einer Verfilschung von Sensorwerten durch z.B. unberiicksichtigte
Neigungen der Plattform sind v.a. die Eigenschaften der Sensoren selbst fiir deren Zuver-
lassigkeit ausschlaggebend. Das Lokalisationsverfahren muss auch mit Sensorik funktio-
nieren, die nicht immer hochgenau und ohne jeden Drift arbeitet. Der Einsatz deutlich bes-
serer Sensorik ist in diesem Fall keine Losung, da der erhebliche finanzielle Mehraufwand
den Zielen des AQopterIS8-Projekts widerspricht. AuBlerdem ist ein Lokalisationsverfahren,
dass ausschlieBlich mit hochgenauen Messwerten funktionsfihig ist, per se nicht robust.
Aus diesem und dem vorherigen Punkt dieser Liste geht hervor, dass das zu wihlende Lo-
kalisationsverfahren auch mit eher ungenauen und unzuverlidssigen Messungen umgehen

kOnnen muss.

Geplantes Einsatzgebiet In der Einleitung dieser Arbeit wurde bereits zitiert, dass das AQo-
pterl8-Projekt entwickelt wird, um z.B. Rettungskriften eine weitere Moglichkeit zur Su-
che nach Menschen in brennenden Gebéduden oder eingestiirzten Minenschéchten zur Ver-
fiigung zu stellen (vgl. Kap. [I). Aus diesem Grund werden hohe Anspriiche an die Auto-
nomie des Quadrokopters gestellt, welche insb. durch eine zuverldssige Lokalisation (vgl.
Kap. [2.3) gewihrleistet werden muss. Es erscheint daher sinnvoll, ein Lokalisationsverfah-
ren zu wiahlen, dass das Problem der globalen Lokalisation (s. Kap. l6sen kann. So
ist gewdhrleistet, dass der Quadrokopter in der Lage ist, sich auch nach einem Verlust sei-
ner Positionsschitzung (was nie komplett ausgeschlossen werden kann, sei es durch eine
sich verindernde Umgebung oder Ungenauigkeiten im Lokalisationsverfahren) erneut zu

lokalisieren.

Ressourcenbedarf Das Lokalisationsverfahren muss moglichst sparsam mit den Ressour-
cen (Speicher und Rechenzeit) des Quadrokopters umgehen, da aufgrund der fliegenden
Plattform Quadrokopter Gewicht und GroB3e der mitgefiihrten Hardware begrenzt ist. Ein
schnelles und sparsames Lokalisationsverfahren ermoglicht den Einsatz etwas leistungs-
schwicherer Hardware, welche wiederum weniger Platz, Gewicht, Kiihlung und Energie
benotigt, was dem Flugverhalten des Quadrokopters (Schnelligkeit, Manovrierfihigkeit,

Flugdauer, etc.) zugutekommt.
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Neben diesen Aspekten muss darauf geachtet werden, dass sich das gewihlte Verfahren gut fiir
eine Occupancy Grid Map, wie sie im AQopterlS8-Projekt genutzt wird (vgl. [Schmitt [2012]),

umsetzen lasst.

3.1.2. Auswahl eines geeigneten Lokalisationsverfahrens

Es werden lokale Globalisationsverfahren aus den in Kap. [3.1.1] genannten Anforderungen aus-
geschlossen werden. Dabei soll auch die EKF-Lokalisation ausgeschlossen, da sie zwar auf eine
globale Lokalisation ausgebaut werden kann (s. Kap. [2.3.2)), dies aber mit deutlichem Aufwand
verbunden ist. Zudem eignet sich EKF primir fiir Landmarken-basierte Karten, auBerdem kann
eine Reprisentation der Positionsschitzung mittels einer GauBBschen Verteilung z.B. in der Nihe
von Winden oder Ecken problematisch sein. Hier besteht insb. in komplexen Innenrdumen die
Gefahr, dass eine Positionsschidtzung durch z.B. Rundungs- oder Messfehler durch eine nahe-
gelegene Wand ,,springt* (sich der Quadrokopter also plotzlich auf der anderen Seite der Wand
befindet).

Damit bleiben noch zwei Verfahren: Lokalisation per Histogramm oder Monte-Carlo-
Lokalisation bzw. Lokalisation per Partikelfilter. Grundsitzlich sollten beide Verfahren geeignet
sein, da sie sich fiir Occupancy Grid Maps sehr gut eignen, eine globale Lokalisation ermoglichen,
sehr viele Verteilungsformen annihern konnen (was zur Robustheit beitrdgt) und (im Vergleich zu
z.B. Kalman Filter-basierten Verfahren) relativ einfach zu implementieren sind. Allerdings bietet

ein Partikelfilter noch einige Vorteile gegeniiber einer Histogrammlokalisation:

Effizienz Wie bereits in Kap. beschrieben stellt ein Histogramm keine sehr effiziente
Moglichkeit dar, Positionsschdtzungen anzunihern. Bei einem Partikelfilter kann hingegen
(insb. tiber die Anzahl der Partikel) die bendtigte Rechenleistung auf Kosten der Genauig-

keit - selbst wiahrend der Laufzeit - deutlich beeinflusst werden.

Erweiterbarkeit Aufgrund der Speicherauslastung ist es bei einer Lokalisation per Histogramm
mit groBem Aufwand verbunden, das Verfahren effizient auf sehr gro3e oder gar dreidimen-
sionale Karten auszuweiten. Ein Partikelfilter kann hingegen deutlich einfacher von der
Karte getrennt implementiert werden, wodurch in der Zukunft evtl. ndtige Erweiterungen

etwas einfacher umzusetzen sind.
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Verbreitung Partikelfilter sind aufgrund ihrer Einfachheit und Effizienz weit verbreitet (vgl.
Kap.[2.3.4), wodurch eine groe Menge an Informationen (insb. im Internet) diesbeziiglich
zur Verfiigung steht. Auerdem kann damit gerechnet werden, dass Partikelfilter aufgrund
ihrer Verbreitung stets weiterentwickelt und verbessert werden, was eine evtl. notige zu-
kiinftige Verbesserung des in dieser Arbeit entwickelten Systems vereinfacht. Nicht zuletzt
basieren einige sehr effektive SLAM-Verfahren (z.B. FastSLAM, s. Kap. [2.4.3) auf Parti-
kelfiltern, was eine Erweiterung eines Partikel-basierten Lokalisationsverfahrens zu einem

SLAM-Verfahren ebenfalls etwas beschleunigen kann.

Damit fallt die Wahl schlussendlich auf ein Partikel-basiertes Lokalisationsverfahren. Dieses wird

im folgenden Kapitel entworfen.

3.2. Struktur

3.2.1. Ubersicht

Die grundlegende Struktur des Lokalisationsverfahrens verdeutlicht Abb.

Zentrales Element des Verfahrens ist der sog. ParticleController. Dieser verwaltet, wie der Name

Simulierte Messwerte Verwendet

Virtuelle Sensorik

. Messwerte .
Sensorik »| ParticleController

Erfasst

Verwaltet Pt Kennen -
7 Pactikal [ [

Partikel

Karte der Umgebung

Abbildung 3.1.: Grobe Struktur des Lokalisationsverfahrens

schon andeutet, alle existierenden Partikel. Das bedeutet, dass er neue Partikel erzeugt, bestehen-
de Partikel weiterentwickelt und zu schlechte Partikel wieder 10scht. Jedes Partikel steht dabei
fiir eine mogliche Pose des Quadrokopters. Diese miissen regelmifBig auf Plausibilitét iberpriift
werden. Dazu nutzt der ParticleController eine Karte der Umgebung, in der er fiir jedes Partikel
berechnen kann, welche Abstandsmessungen der Sensorik erwartet werden. Durch einen Ver-
gleich der erwarteten Sensormessungen mit den tatséchlichen Messungen kann dann festgestellt

werden, wie weit das betroffene Partikel der wahren Pose des Quadrokopters entsprechen konnte.
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Sollten fiir ein Partikel mehrere Messungen in Folge nicht stimmen, wird es geldscht. Ein neues
Partikel wird dann in der Nihe eines bestehenden, plausiblen Partikels platziert. Sollte ein solches
nicht existieren, wird das neue Partikel stattdessen zufillig in der Karte platziert.

Neben Abstandsmessungen bendtigt der ParticleController auch Bewegungsinformationen. So-
bald diese erhalten wurden, werden sie auf alle Partikel angewendet, diese bewegen sich also
so, wie durch die gemessene Bewegung vorgegeben. Der Grund hierfiir ist, dass nie bekannt ist,
welche Partikel der wahren Pose des Quadrokopters entsprechen, weshalb alle so behandelt wer-
den, als ob sie stimmen wiirden. Aus diesem Grund bewegen sich alle Partikel so, wie es der
Quadrokopter wahrgenommen hat (im Prinzip handelt es sich hierbei um eine sehr kurzfristige
Koppelnavigation fiir viele veschiedene Poses). Der Vorgang des Anwendens von Bewegungs-
informationen und Abstandsmessungen auf alle Partikel wird im weiteren Verlauf der Arbeit als
Weiterentwicklung der Partikel in die nichste Generation bezeichnet.

Die folgenden Kapitel vertiefen einzelne Aspekte des Lokalisationsverfahrens weiter. Alle IN
KAPITALCHEN gesetzten Begriffe sind Parameter, die vor oder wihrend der Laufzeit des Loka-
lisationsverfahrens definiert werden konnen. Sie werden im Folgenden als gegeben betrachtet.

Eine genauere Erlduterung dieser Parameter findet sich in Anh. [A]

3.2.2. Partikel

Zusitzlich zur Pose werden jedem Partikel p; zwei wichtige KenngroBen zugeordnet: Vertrauen
|p;| und Alter a;. Jedes Partikel beginnt mit einem Alter von 0, welches sich bei jedem Erreichen
der niachsten Generation um 1 erhoht, und einem Vertrauen von 0.5. Das Alter erlaubt es, Partikel
anhand einer festen Grenze in ,,jung* und ,,alt* zu teilen, wodurch Berechnungen vom Alter eines
Partikels abhingig gemacht werden konnen (s. Abb. [3.3).

Deutlich wichtiger als das Alter eines Partikels ist sein Vertrauen (hdufig auch als ,,Gewicht(ung)*
bezeichnet). In dieser Arbeit ist das Vertrauen als ein Wert in [0, 1] definiert, wobei 1 das best-
mogliche Vertrauen ist (Partikel mit einem Vertrauen deutlich iiber 0.5 werden als ,,gute* Partikel
bezeichnet). Anschaulich gesagt beschreibt das Vertrauen, fiir wie wahrscheinlich es der Par-
ticleController hilt, dass ein Partikel der wahren Pose des Quadrokopters entspricht. Sollte das
Vertrauen sehr niedrig sein, wird das Partikel geloscht und durch ein neues ersetzt, da der Partic-

leController davon ausgeht, dass das Partikel definitiv nicht richtig ist.
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Die Aktualisierung des Vertrauens bei der Weiterentwicklung eines Partikels ist in Kap. dar-
gestellt.

Das urspriingliche Vertrauen (welches sich im Intervall [0, 1] befindet) wird durch drei Werte mo-

Urspriingliches Vertrauen
00-1,0

functionAge <«—— Age

factorAge

functionCell <«—— Cell

factorcCell

functionReading «—— Reading

factorReading

Lo

Limitieren auf [0,1]

Neues Vertrauen

Abbildung 3.2.: Diagramm zur Vertrauensentwicklung jedes Partikels

difiziert (von oben nach unten): Dem Alter des Partikels, der Wahrscheinlichkeit, dass die Zelle
der Karte, in der sich das Partikel befindet, belegt ist, sowie dem Verhiltnis von simulierten und
echten Abstandsmessungen. Diese Werte stammen aus speziellen Funktionen (s. ndchste Kapi-
tel), welche durch FACTORAGE, FACTORCELL und FACTORREADING gewichtet werden. Dies
ermoglicht es, den Einfluss der einzelnen Funktionen auf das Vertrauen zu steuern.

Das modifizierte Vertrauen wird schlieBlich auf das giiltige Intervall [0, 1] begrenzt. womit das
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neue Vertrauen berechnet wurde.

Alle Funktionen haben gemeinsam, dass sie nur aus linearen Verldufen zusammengesetzt sind.
Dies beschleunigt ihre Berechnung gegeniiber z.B. logistischen Funktionsverldufen, liefert aber
dennoch qualitativ akzeptable Werte.

Die drei verwendeten Funktionen sind folgendermallen aufgebaut:

3.2.2.1. functionAge

Diese Funktion erzeugt einen Bonus abhingig vom Alter des Partikels. Die Uberlegung dahinter
ist, dass iltere Partikel bereits mehreren Uberpriifungen standgehalten haben, sie also grundsiitz-
lich eine etwas hohere Wahrscheinlichkeit haben, richtig zu sein. Der Bonus, den sie durch diese
Funktion erhalten, trigt dazu bei, sie gegeniiber kleineren Unstimmigkeiten etwas widerstandsfa-
higer zu machen; mit &dlteren Partikeln wird also etwas toleranter umgegangen, um zu verhindern,
dass gute Positionsschitzungen aufgrund kurzzeitiger Unstimmigkeiten verworfen werden.

Die Funktion ist nach oben begrenzt (s. Abb. , damit ein hohes Alter nicht dazu fiihrt, dass

Partikel ,,unsterblich* werden. Sie wird durch folgende Formel beschrieben:

functionAge(x) = min(x, FUNCTIONAGETHRESHOLD) (3.1)

FUNCTIONAGETHRESHOLD > ( (3.2)

Dabei beschreibt FUNCTIONAGETHRESHOLD die Altersgrenze, durch die Partikel in jung und

alt (alt, falls a; > FUNCTIONAGETHRESHOLD) geteilt werden.

3.2.2.2. functionCell

Da ein Quadrokopter - oder allgemeiner jeder Agent - nicht durch Winde gehen oder fliegen
kann, wird fiir jedes Partikel beriicksichtigt, ob es sich laut Karte an einem Ort befindet, der nicht
durch eine Wand o.4. blockiert ist. Sollte dies dennoch der Fall sein, wird das Vertrauen fiir das
betroffene Partikel deutlich gesenkt. Befindet sich das Partikel an einer freien Stelle wird dies
nicht als Bonus gewertet, da das der Normalfall sein sollte. Problematisch ist dieses Vorgehen,
wenn in der Karte eine Wand eingezeichnet ist, die in der Realitit nicht existiert. Dies wird jedoch

in Kauf genommen, da es im Zweifelsfall sicherer ist, eine gute Positionsschitzung zu verwerfen,
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als sich an einer nicht zuginglichen Stelle zu lokalisieren.

Zu beachten ist, dass die Funktion (s. Abb. [3.4)) positive Werte zuriickliefert, diese jedoch negativ
in das Vertrauen einflieen (vgl. Abb.[3.2). Hiermit soll noch deutlicher gemacht werden, dass es
sich bei functionCell ausschlielich um einen Malus handelt.

cell Free (kurz cgye.) und cellOccupied (kurz c,..) sind Grenzwerte, mit denen bestimmt werden
kann, ob eine Zelle der Karte frei oder belegt ist. Da jede Zelle eine Wahrscheinlichkeit besitzt,
mit der sie belegt ist (vgl. [Schmitt [2012]), muss dieser Wert etwas diskretisiert werden. Dazu
wird festgelegt, dass eine beliebige Zelle ¢; mit einer Wahrscheinlichkeit p(c;) dann als frei inter-
pretiert wird, wenn p(c;) < ¢y, und sie dann als belegt interpretiert wird, wenn p(c;) > Coce-
Zwischen cell F'ree und cellOccupied kann ein Bereich liegen, in dem keine sinnvolle Annahme
iber die Zellenbelegung getroffen werden kann. Aus diesem Grund wird im betroffenen Bereich
des Graphen ein Anstieg von cellF'ree zu cellOccupied verwendet, sodass sich auch Zellen mit
unbekannter Belegung negativ auf das Vertrauen eines Partikels auswirken, gleichzeitig aber ein
kontinuierlicher Ubergang zwischen beiden Grenzwerten vorliegt.

Folgende Formel liegt der Funktion zugrunde:

0 fur = < Cfree
functionCell(x) = % Jur  Cpree < T < Coce (3.3)
1 fUT T 2 Cocc

3.2.2.3. functionReading

Der wichtigste Aspekt der Lokalisation sind Abstandsmessungen. Wie bereits in Kap. [3.2.2] dar-
gestellt ist es notig, die realen Sensormessungen mit den erwarteten zu vergleichen und das Ver-
hiltnis mit einer Zahl zu bewerten, die dann in das Vertrauen des Partikels einflieft. Dazu wird

folgendes Verfahren benutzt:

* Gegeben sind n reale Abstandsmessungen s;..5,,

sowie n erwartete Abstinde a4..a,

* Berechne n absolute Abweichungen: A; = |s; —a;|, i=1..n
Es werden absolute Abweichungen benutzt, da relative Abweichungen (per Quotient) dazu
fiihren wiirden, dass auf weite Entfernungen groBBe Abweichungen vom erwarteten Wert

genauso bewertet wiirden wie kleine Abweichungen auf kurze Entfernungen. Damit wiir-
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functionAge(x)
A
. |
IIJungII I Ilaltll
1
|
|
|
|
|
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T >
functionAgeThreshold Age x
Abbildung 3.3.: functionAge
fuxztionCeII(x)
| |
| I
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| |
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| |
~— —
cellFree cellBlocked CellOccupation x

Abbildung 3.4.: functionCell
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den allerdings Abstandsinformationen teilweise geringere Beachtung finden, da es durch-
aus von Bedeutung sein kann, ob sich in groerer Entfernung wie erwartet ein Hindernis

befindet oder nicht.

* Entfernen der FUNCTIONREADINGBADSENSORS grofiten Werte aus A fiihrt zu A’ sowie
n’ =n — FUNCTIONREADINGBADSENSORS
Dieser Schritt dient dazu, eine gewisse Anzahl von Fehlmessungen zu verwerfen, wie sie
z.B. durch Sonneneinstrahlung, vorbeigehende Personen oder schlicht defekte Sensorik

verursacht werden konnen.

¢ Berechnen des durchschnittliches Fehlers: x = ZH,A’

Der durchschnittliche Fehler x wird nun durch functionReading in einen Wert umgewandelt
(s. Abb. [3.5), der anschliefend in das Gesamtvertrauen des Partikels einfliet. Solange z <
FUNCTIONREADINGOFFSET ist, wird die reale Messung als zur erwarteten Messung passend
interpretiert, was das Partikelvertrauen positiv beeinflusst. Durch ein geeignetes FUNCTIONREA-
DINGOFFSET kann auch die Messungenauigkeit der verwendeten Abstandssensorik beriicksich-
tigt werden, da sowohl x als auch FUNCTIONREADINGOFFSET Lingen sind, die direkt im Bezug
auf die realen Umstéinde interpretiert werden konnen: = 37cm bedeutet bspw., dass die Ab-
standsmessungen im Schnitt 37cm von den erwarteten Werten abweichen (vgl. dazu auch Anh.
[A).

Es ist zu beachten, dass dieses Verfahren insofern etwas problematisch ist, als dass die Funktion

functionReading(x)

Fehler x

functionReadingOffset

Abbildung 3.5.: functionReading
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die Messwerte nicht auf Plausibilitét iiberpriift. Sollte also der Fall eintreten, dass zuféllig alle
Abstandsmessungen gleichzeitig fehlerhaft sind, iibertrdgt sich dieser Fehler durch die Funktion
weiter auf die Partikel, was im schlimmsten Fall zum Aussterben aller Partikel fiihren kann. Die-
ser Fall wird im Rahmen dieser Arbeit als sehr unwahrscheinlich betrachtet, da der verwendete

Quadrokopter insgesamt 28 Sensoren zur Abstandsmessung benutzt (s. Kap. 4.1).

3.2.3. Weiterentwicklung der Partikel

Sobald sich der Quadrokopter von Punkt A nach Punkt B bewegt hat, wird in B eine Abstandsmes-
sung durchgefiihrt. Diese wird zusammen mit der gemessenen Bewegung von A nach B an den
ParticleController tibergeben, welcher mit diesen Informationen alle Partikel weiterentwickelt.
Abb. [3.6] verdeutlicht das Konzept der Weiterentwicklung. Zu Beginn wartet der ParticleCon-
troller auf die bendtigten Bewegungs- und Abstandsinformationen. Dann wird fiir jedes Partikel
zunichst gepriift, ob dessen Vertrauen noch akzeptabel ist (|p;| > MINCONFIDENCE). Sollte dies
nicht der Fall sein wird das Partikel geloscht, da davon ausgegangen werden kann, dass es die
wahre Pose des Quadrokopters nicht annédhert. Ansonsten wird das Vertrauen des Partikels aktua-
lisiert. Dies beinhaltet alle in Kap. [3.2.2] vorgestellten Aspekte, also z.B. den Vergleich zwischen
realen Abstandsmessungen und den fiir dieses Partikel vermuteten Abstandsmessungen.
Nachdem alle vorhandenen Partikel weiterentwickelt wurden, werden solange neue Partikel er-
zeugt, bis die gewiinschte (als ideal vermutete) Anzahl erreicht wurde. Dabei werden GROUP-
PROBABILITY (s. Anh. [A) der neuen Partikel in der Nihe guter Partikel platziert, die restlichen
werden zufillig verteilt. Zufillig platzierte Partikel werden mit [p;| := 0.5 erzeugt, wihrend in der
Néhe guter Partikel platzierte Partikel mit einem hoheren Vertrauen erzeugt werden. Dies bewirkt,
dass sich der Algorithmus auf die vielversprechendsten Vermutungen konzentriert. Gleichzeitig
sorgen die zufillig platzierten Partikel dafiir, dass stets auch beriicksichtigt wird, dass evtl. alle
momentanen Vermutungen falsch sind.

Nachdem die gewiinschte Anzahl an Partikeln erreicht wurde wird das durschnittliche Vertrauen
C' aller Partikel berechnet. Dies ist eine wichtige Kenngrof3e, da ein gro3es C' bedeutet, dass der
ParticleController sich sehr sicher ist, eine korrekte Lokalisation durchgefiihrt zu haben. Dieses
Vertrauen konnte als einfaches arithmetisches Mittel berechnet werden. Da jedoch neu platzierte
Partikel in den ersten Generationen noch grofle Schwankungen des Vertrauens aufweisen konnen

(durch schlechte oder besonders gute Platzierung), wird stattdessen ein gewichtetes arithmeti-
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Abstandsmessungen und
Bewegungsinformation NE|
vorhanden?

Weitere Partikel
vorhanden?

EIN

N&chstes Partikel wéhlen

Partikel I6schen

Vertrauen
groR genug? NEIN
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Vertrauen
aktualisieren

-

Partikel hinzufligen
bis gewlinschte Anzahl
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:

Durschnittsvertrauen
berechnen

v

|deale Anzahl
Partikel berechnen

v

Letzte Abstandsmessungen
und Bewegungsinformation
|6schen

Abbildung 3.6.: Schema der Weiterentwicklung aller Partikel
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sches Mittel verwendet, welches alte Partikel stdrker als junge Partikel gewichtet.

AbschlieBend wird die ideale Anzahl an Partikeln berechnet. Sobald der ParticleController eine
Lokalisation durchfiihren konnte, konzentriert sich der Grofteil der Partikel auf einige wenige
Poses. Da es jedoch nicht nétig ist, eine Pose mit mehreren hundert Partikeln anzunédhern, wird
die ideale Partikelzahl bei hohem Durschnittsvertrauen C' gesenkt. Dies senkt gleichzeitig die be-
notigte Rechenzeit. Es ist zu beachten, dass die berechnete ideale Anzahl niemals zu klein (z.B.
weniger als 10 Partikel) wird, da sonst auch eine gefundene Pose nicht gut verfolgt werden kann.
Gleichzeitig darf MAXPARTICLES nicht iiberschritten werden, was die maximal erlaubte Anzahl

an Partikeln angibt (und damit auch die bendtigte Rechenzeit begrenzt).

3.2.3.1. Bewegungsmodell

Zur Modellierung der Bewegung wird das sog. Odometry Motion Model genutzt, wie es u.a. in
Thrun et al. [2005]] vorgestellt wird. Dabei wird auf eine Pose zunichst eine Rotation 4,1 ange-
wendet. Dann wird eine Translation um &, in Blickrichtung durchgefiihrt, gefolgt von einer

zweiten Rotation 0, am erreichten Punkt (vgl. Abb.[3.7). Der Vorteil dieser Bewegungsrepri-

51‘01;2

étrans

Abbildung 3.7.: Das Odometry Motion Model. Quelle: Thrun et al.|[2005]]

sentation ist ihre Einfachheit und Flexibilitit. Zusétzlich konnen kiinstliche Fehler in jedem Be-
wegungsschritt hinzugefiigt werden, welche eine charakteristische Streuung der Partikel ergeben.

Dies ist in Anh.[C|dargestellt.
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3.2.3.2. Sensormodell

Ein geeignetes Sensormodell wurde bereits in [Schmitt [2012] vorgestellt. Dabei wird jeder Sen-
sor durch einen Kegel mit definierter maximaler Reichweite reprisentiert. In der Karte werden
alle Zellen bestimmt, die im Sensorkegel liegen, und die Entfernung vom Sensor zur nahesten
belegten Zelle berechnet. Wie in Abb. [3.8] dargestellt fiihrt dies dazu, dass am Rand des Kegels
liegende Hindernisse so gemessen werden, als ob sie sich in der Mitte des Sensorkegels befin-
den. Damit kommt man dem realen Verhalten von Ultraschall- oder Infrarotsensoren sehr nahe.

Weder den realen noch den simulierten Abstandsmessungen wird ein kiinstlicher Fehler hinzu-

Sensormitte

Tatsidchliches Verschobenes

Hindernis Hindernis

Sensorkegel

Abbildung 3.8.: Verschiebung von Hindernissen in die Kegelmitte. Quelle: |Schmitt{[2012]]

gefiigt, da die realen Messungen bereits fehlerbehaftet sind und die fiir den Vergleich von realen
und kiinstlichen Messungen zustindige Funktion (s. Kap. eine Fehlertoleranz besitzt. Ein
kiinstlicher Fehler wiirde diese Toleranz evtl. schon alleine komplett auslasten, wodurch reale

Fehler nichtmehr ausgeglichen werden konnten.
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4. Implementierung

In diesem Kapitel wird die Umsetzung des zuvor vorgestellten Konzepts erldutert. Dazu wird
zunéchst das bestehende System erldutert, auf das diese Arbeit aufbaut. Darauf folgt eine Vor-
stellung der Softwarestruktur sowie einzelner Details. Die Software wird dann in das bestehende

System eingebunden. Abschlieend wird die erstellte Benutzeroberfldche erklirt.

4.1. Bestehendes System

Das Software-System des AQopterl8-Projekts besteht aus zwei Teilen: Zum einen der Software,
die auf dem Quadrokopter ldauft, zum anderen der Software der ,,Bodenstation*, die alle Daten
des Quadrokopters empfingt und verarbeitet. AuBerdem erlaubt sie das Senden von Befehlen an
den Quadrokopter. Die Bodenstation besteht aus einem gewohnlichen Windows-Rechner, der per
Bluetooth mit dem Quadrokopter kommuniziert.

Wie bereits in Kap. erldutert, miissen fiir den Lokalisationsalgorithmus Abstands- und Be-
wegungsmessungen bereitgestellt werden. Dazu wird einerseits das in Benz| [2013]] entwickelte
System zur Abstandsmessung verwendet. Es fusioniert in acht Richtungen insgesamt 16 Infrarot-
sowie 12 Ultraschall-Sensoren. Damit wird eine Reichweite von bis zu 5m erreicht, die erziel-
te Genauigkeit hingt dabei u.a. von der Oberflachenbeschaffenheit des detektierten Objekts und
dem Einfallwinkel der Signale ab.

Zur Bewegungsmessung wird ein sog. Optical Flow-Sensor (dt. optischer Fluss, kurz OF) ein-
gesetzt, dessen Integration in das AQopterl8-Projekt in [Strohmeier| [2012]] beschrieben ist. Ein
OF-Sensor ist eine auf den Boden gerichtete Kamera, deren Signal so analysiert wird, dass damit
Bewegungen des Bildausschnittes berechnet werden konnen.

Die verwendete Sensorik sendet ihre Messwerte auf Anfrage an die Bodenstation, wodurch diese

Arbeit vollstandig in das Bodenstations-System integriert werden kann. Das dortige Programm
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wurde mit C++ und Qt, einer Bibliothek u.a. zur Entwicklung von Benutzeroberflichen, ent-

wickelt (s. Abb[.T).

Abbildung 4.1.: Qt-Entwicklungsumgebung

4.2. Strukturierung der Software

Bei der Programmierung des Lokalisationsalgorithmus und der zugehorigen Benutzeroberflache
wurde versucht, eine logische Aufteilung und Kapselung der implementierten Funktionalitit zu

erreichen. Dazu wurden folgende Klassen angelegt:

Pose Reprisentiert eine Pose. Enthilt bereits einige Methoden, um eine Pose durch Bewegun-

gen zu beeinflussen.
Movement Entspricht einer Bewegung der in Kap. [3.2.3.1] vorgestellten Form.

Particle Eine Instanz dieser Klasse reprisentiert ein Partikel. Es verfiigt iiber alle relevanten

Eigenschaften wie Alter und Vertrauen und kann bewegt werden.

ParticleController Diese (als Singleton zu verwendende) Klasse beinhaltet den eigentlichen
Lokalisationsalgorithmus und verwaltet alle existierenden Partikel (vgl. Kap. [3.2). Dem

ParticleController miissen die zur Weiterentwicklung der Partikel benotigten Messwerte
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tibergeben werden. Aullerdem konnen hier alle Parameter des Lokalisationsverfahrens ein-

gestellt werden.

LocalizationGUIController Diese Klasse ist das Bindeglied zwischen dem ParticleController
und der Benutzeroberflache. Einerseits werden alle relevanten Daten des ParticleControl-
lers an die Benutzeroberfliche weitergereicht (und dort entsprechend dargestellt), ande-
rerseits werden alle Benutzereingaben ausgewertet, validiert und an den ParticleController

weitergegeben.

LocalizationDataReceiver Diese Klasse baut auf einer Klasse namens ,,DataReceiver® auf
und empfingt und verarbeitet die vom Quadrokopter empfangenen Daten. Diese werden

dann an den ParticleController weitergereicht.

Der ParticleController wurde so konzipiert, dass er von der Benutzeroberfliche vollstin-
dig getrennt funktionsfihig ist. Er kann seine benétigten Daten auBerdem aus einer belie-
bigen Quelle erhalten. Momentan sind dies die Nutzeroberfliche (simulierte Daten) und der
LocalizationDataReceiver (tatsdchliche Quadrokopterdaten).

Abb. gibt nochmals einen Uberblick iiber den Zusammenhang der implementierten Klassen.

LocalizationGUIController LocalizationDataReceiver
Nutzereingaben Messwerte
vom Quadrokopter

I

ParticleController

Ergebnisse

& Statistik
Verwaltet

. Besitzt
Particle p——Jpp Pose

Wird ange-
wendet auf

Movement

Abbildung 4.2.: Zusammenhang der implementierten Klassen
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4.2.1. Sensormodell

Wihrend der Entwicklung der Software wurde deutlich, dass die bestehende Moglichkeit zur
Simulation von Abstandsmessungen zu langsam arbeitete. Auf einem Atom N270-Prozessor be-
deutete dies, dass bereits bei ca. 20 Partikeln (was 160 Abstandsmessungen entspricht, da acht
Richtungen) eine Laufzeit von mehr als einer halben Sekunde bendtigt wurde. Deshalb wurde
entschieden, die Abstandssensorik stattdessen durch mehrere Linien anzunihern. Dazu wurde ein
Algorithmus entwickelt, der mit einer Linie die nichste belegte Zelle ermitteln kann (s. Kap.
[B). Ein Sensorkegel wurde dann jeweils mit fiinf dieser Linien reprisentiert: Eine in der Mitte,
jeweils eine am duBersten Rand des Kegels, die verbleibenden beiden genau zwischen den bis-
herigen drei Linien (s. Abb.d.3). Die kiirzeste gemessene Entfernung wurde dann als simulierter

Messwert verwendet. Dadurch wurde der Algorithmus ungefihr um zwei Gréenordnungen, also

Abbildung 4.3.: Annédherung eines Sensorkegels durch Strahlen

deutlich, beschleunigt. Die verlorene Genauigkeit kann vernachlissigt werden, da nur die Ent-
fernung zum nahesten Objekt von Interesse ist. Selbst wenn ein oder zwei Linien durch einen
,opalt* in der Karte eine viel zu hohe Entfernung messen, sollte dies durch die verbleibenden

Linien aufgefangen werden.
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4.3. Einbindung in bestehendes System

Auf das bestehende System musste kaum Einfluss genommen werden. In der Kontrollsoftware
wurde ein neuer Reiter ,,Localization* angelegt, der alle relevanten Elemente zur Bedienung des
Lokalisationsverfahrens enthilt. Ferner musste dafiir gesorgt werden, dass der ParticleController
alle bendtigten Datenpakete vom Quadrokopter erhilt. Alle Erweiterungen der Kontrollsoftware
konnten durchgefiihrt werden, ohne Anderungen am bestehenden Code vornehmen zu miissen.

Die Quadrokopter-Firmware wurde weder veriandert noch erweitert, da bereits alle benotigten

Datenpakete (Abstands- und Bewegungsmessungen) geschickt werden konnen.

4.4. Beschreibung der Benutzeroberflache

Die implementierte Benutzeroberfliche ist in Abb. 4.4 dargestellt. Die einzelnen Bedienelemente
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Abbildung 4.4.: Screenshot der implementierten Benutzeroberfldche

sind durch rote Nummern nachtriaglich gekennzeichnet worden. Die folgende Liste erldutert die

nummerierten Elemente:
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1: Aktiviert die Bedienelemente des Lokalisationsverfahrens. Mit dieser Checkbox konnen die

Einstellungen vor unbeabsichtigten Anderungen geschiitzt werden.

: Der Reset-Button setzt den ParticleController sowie die entsprechende Darstellung auf den
Anfangszustand zuriick. Dadurch werden alle Partikel geloscht und die aktuelle Generation

wieder auf 0 gesetzt.

: In diesem Bereich werden die Karte der Umgebung sowie die Partikel und Positionsschiit-
zungen abgebildet. Mit dem Mausrad kann der Bildausschnitt vergréert oder verkleinert

werden, mit einem Mausklick ldsst sich der Bildausschnitt verschieben.

: Der Reiter ,,Parameter* enthilt alle Parameter des Lokalisationsverfahrens. Diese konnen dort

sowohl betrachtet als auch veriandert werden.

: Sobald diese Option aktiviert ist, empfingt der ParticleController automatisch aktuelle Mes-
sungen vom Quadrokopter und fiihrt die Lokalisation selbststindig durch. Zuvor muss unter
,»Connect“ eine Verbindung hergestellt worden sein und unter ,,Debug* miissen die Pakete

IR US Fused* und ,,Visual Odometry* ausgewihlt worden sein.

: Dieser Button veranlasst das Programm dazu, die Karte neu zu zeichnen, was z.B. nach dem

Laden einer neuen Karte sinnvoll ist.

: Uber die Radioboxen lisst sich die Darstellung im rechten Abschnitt des Fensters beeinflus-
sen. ,,Alle Partikel* stellt nicht nur Positionsschitzungen, sondern auch jedes einzelne Par-

tikel dar, was je nach Grafikkarte und Partikelzahl das Programm ausbremsen kann.

: Diese Liste enthilt - zusitzlich zur grafischen Darstellung im rechten Teil des Fensters - eine
Auflistung aller momentanen Positionsschitzungen, also aller Poses, von denen das Loka-
lisationsverfahren meint, dass sie sehr wahrscheinlich der wahren Pose des Quadrokopters

entsprechen. Die Werte stehen fiir x-Koordinate, y-Koordinate und Orientierung.

: Gibt an, in der wievielten Generation sich der ParticleController befindet. Dies ist identisch

zur Zahl der bisher durchgefiihrten Iterationen.

10: Gibt eine gemittelte Rechenzeit in Millisekunden an. Es wird nur das eigentliche Lokalisati-

onsverfahren beriicksichtigt, die Benutzeroberfliche wird in die Messung nicht einbezogen.
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11:

12:

13:

14:

15:

16:

17:

18:

Dieser Balken stellt dar, wie viele Partikel (der maximal erlaubten) momentan benutzt wer-
den (vgl. Kap.[3.2.3). Ein voller Balken bedeutet, dass so viele Partikel wie erlaubt genutzt

werden, bei einem halben Balken werden nur halb so viele Partikel wie erlaubt genutzt.

Hier wird das durchschnittliche Vertrauen aller momentan existierenden Partikel dargestellt.
Ein voller Balken entspricht einem Vertrauen von 1, ein leerer Balken einem durchschnitt-
lichen Partikel-Vertrauen von 0. Je voller der Balken ist, desto mehr glaubt das Lokalisati-

onsverfahren also, die wahre Pose des Quadrokopters angenihert zu haben.

Mit dieser Checkbox werden die Benutzeroberflichenelemente aktiviert (s. Punkt 14-16 die-
ser Aufzihlung), mit denen dem ParticleController manuell Werte iibergeben werden kon-
nen. Gleichzeitig wird dafiir gesorgt, dass ein evtl. bisher stattfindender Datenempfang de-

aktiviert wird.

Mit einem Klick auf diesen Button werden die eingegebenen Werte an den ParticleController

geschickt.
Hier wird die zuletzt durchgefiihrte Bewegung festgelegt.

Hier werden die einzelnen Abstandsmessungen festgelegt. Sensor 0 zeigt in Blickrichtung,

dann wird im Uhrzeigersinn durchnummeriert.

In diesem Abschnitt kann dem Lokalisationsverfahren die wahre Position des Quadrokopters

mitgeteilt werden. Dies ist zu jedem Zeitpunkt moglich.

Evtl. ist es sinnvoll, die Orientierung des Quadrokopters kiinstlich einzuschrinken (da er z.B.
mit gleichbleibender Orientierung fliegt). Je stirker die Einschrinkung, desto effektivier
arbeitet das Lokalisationsverfahren. Allerdings kann dann kein Rotationsdrift des Quadro-
kopters beriicksichtigt werden. Sollte der Quadrokopter also dazu neigen, im Laufe der Zeit

seine Orientierung zu dndern, ist eine Einschrankung nicht sinnvoll.

A: Hier ist eine Ansammlung von Partikeln sichtbar. Jedes Partikel wird durch einen Pfeil dar-

gestellt, die Richtung des Pfeils gibt dabei die Orientierung des Partikels (oder genauer
seiner Pose) an. Griine Partikel besitzen ein sehr gutes, gelbe ein mittelméBiges und rote

ein schlechtes Vertrauen. Sobald der ParticleController der Ansicht ist, eine erfolgreiche
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Lokalisation durchgefiihrt zu haben, wird die ermittelte Positionsschédtzung ebenfalls ein-

gezeichnet. Sie wird als etwas grofleres, blaues Partikel dargestellt.

Zu beachten ist, dass eine Orientierung von 0° einer Ausrichtung nach rechts entspricht.
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5. Evaluierung

In diesem Kapitel wird das implementierte Lokalisationsverfahren evaluiert. Dazu werden zu-
nichst manuell Werte per Benutzeroberfliche eingegeben und das Verhalten des Lokalisations-
verfahrens simuliert und analysiert. AnschlieBend wird der Vorgang mit realen Sensorwerten wie-
derholt.

In den folgenden Kapiteln werden nicht alle Generationen abgebildet, da in manchen Genera-
tionen nichts bedeutendes passiert. Auf der dieser Arbeit beigelegten CD sind alle Messreihen

vollstindig enthalten.

5.1. Evaluierung mit simulierten Sensorwerten

Zunichst wurde die in Abb. [5.1] dargestellte Karte erzeugt. Diese wurde fiir alle folgenden Eva-
luierungen genutzt, um vergleichbare Ergebnisse zu erzielen. Zu beachten ist, dass die Karte fiir
das Lokalisationsverfahren etwas problematisch ist, da die obere Hilfte des Raumes aus drei
dhnlich groBen Quadraten besteht. Zudem enthilt der Raum durch den einfachen Aufbau keine
komplexen Merkmale wie schrige Winde, Sdulen o.4. Die geflogene Trajektorie wird durch die
rote Linie dargestellt. An jedem Wegpunkt (1-9) wurden die in Tabelle aufgefiihrten Werte in
die Benutzeroberfliche eingegeben (wobei Sensor 0 nach oben zeigt, danach wird im Uhrzeiger-
sinn nummeriert). Dabei wurde jede Iteration mittels Screenshot dokumentiert. Der Quadrokopter
bewegt sich von Wegpunkt zu Wegpunkt, wobei seine Orientierung konstant (in Abb. [5.1] nach
oben) ist. Die folgenden Kapitel dokumentieren das Verhalten des Lokalisationsverfahrens mit

verschiedenen Parametern.
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5.1m

5

4

3

v
Abbildung 5.1.: Die fiir die Evaluierung genutzte Karte
Wegpunkt || Sensor O | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | Sensor 6 | Sensor 7

2 50 60 150 50 50 50 150 60
3 210 100 150 50 50 50 125 130
4 350 70 70 70 150 130 125 130
5 260 70 70 70 245 130 125 130
6 160 170 120 85 220 130 125 130
7 60 65 195 165 220 130 125 65
8 60 65 165 145 135 230 195 65
9 60 65 65 70 135 145 195 65

Tabelle 5.1.: An das Lokalisationsverfahren iibergebene Abstandsmesswerte (in cm)
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5.1.1. Lokalisation mit bekannter Startpose

Zunachst wird das Verhalten bei bekannter Startpose iiberpriift. Dazu wurde dem Lokalisations-
verfahren zu Beginn iiber die entsprechenden Bedienelemente der Benutzeroberfliche mitgeteilt,

dass sich der Quadrokopter an Wegpunkt 1 befindet.

Die Parameter (s. Anh.|A]) wurden folgendermallen festgelegt:

readingBadSensors = 1
maxParticles = 50

ageThreshold = 5
minConfidence = 0.25
groupProbability = 0.95
nextGenFactorAge = 0.01
nextGenFactorCell = 0.9
nextGenFactorReading = 1.0
nextGenOffsetReading = 7
nextGenErrorTranslation = 0.025

nextGenErrorRotation = 0.0025

5.1.1.1. Geringer Bewegungsfehler

Es werden die Parameter aus Kap. genutzt. Aus Abb. [5.2] wird ersichtlich, dass die Trajek-
torie gut verfolgt wird. In diesem Fall konnte es evtl. sinnvoll sein, die Toleranzen (insb. nextGe-

nOffsetReading) zu verringern, sodass die Streuung der Partikel weiter vermindert wird.

5.1.1.2. Mittlerer Bewegungsfehler

Es werden die in Kap. [5.1.1|beschriebenen Parameter genutzt, jedoch sind nextGenErrorTransla-
tion und nextGenErrorRotation jeweils um Faktor 5 groer. Hier macht sich die Partikelstreuung
bereits bemerkbar (s. Abb. [5.3)). Kurzzeitig verliert das Lokalisationsverfahren seine Positions-

schitzung, welche jedoch wieder erlangt werden kann.
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(a) Wegpunkt 1 (b) Wegpunkt 2 (c) Wegpunkt 3

(d) Wegpunkt 4 (e) Wegpunkt 5 (f) Wegpunkt 6
L]
(g) Wegpunkt 7 (h) Wegpunkt 8 (i) Wegpunkt 9

Abbildung 5.2.: Partikelverhalten bei geringem Bewegungsfehler
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(a) Wegpunkt 1 (b) Wegpunkt 2 (c) Wegpunkt 3

¥

(d) Wegpunkt 4 (e) Wegpunkt 5 (f) Wegpunkt 6
AAAA

(g) Wegpunkt 7 (h) Wegpunkt 8 (1) Wegpunkt 9

Abbildung 5.3.: Partikelverhalten bei mittlerem Bewegungsfehler
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5.1.1.3. GroBer Bewegungsfehler

Es werden die Parameter aus Kap. [5.1.1| genutzt, jedoch sind nextGenErrorTranslation und next-
GenErrorRotation jeweils um Faktor 10 groer. Hier macht sich die Partikelstreuung deutlich
stirker bemerkbar (s. Abb. [5.4). Bereits bei Wegpunkt 3 befinden sich deutlich weniger Partikel
an der korrekten Position als noch bei Wegpunkt 2. Bei einem derart groen Bewegungsfehler hat
das Lokalisationsverfahren bereits leichte Schwierigkeiten. Dennoch kann die Trajektorie korrekt
weiter verfolgt werden. In einem solchen Fall ist es sinnvoll, die Anzahl der Partikel zu erhohen,
wodurch trotz der Partikelstreuung eine gute Abdeckung des Bereichs der moglichen Pose erzielt

wird.

5.1.1.4. Fazit

Zusammenfassend kann gesagt werden, dass das Lokalisationsverfahren in der Lage ist, eine
Trajektorie korrekt zu verfolgen. Auch bei betridchtlichen Bewegungsfehlern ist es noch moglich,

kurzzeitige Unsicherheiten aufzufangen.

5.1.2. Lokalisation mit unbekannter Startpose

Im Anschluss an das Verfolgen einer Trajektorie mit bekannter Startpose wurde iiberpriift, ob der
Algorithmus auch in der Lage ist, sich ohne bekannte Startpose korrekt zu lokalisieren. Dafiir
wurde wieder die gleiche Trajektorie wie in Kap. genutzt und der Algorithmus, falls erfor-
derlich, am letzten Wegpunkt so lange fortgefiihrt, bis eine Positionsschitzung bestimmt werden
konnte.

Es werden die in Kap. [5.1.1] aufgefiihrten Parameter genutzt, allerdings wurde maxParticles auf
250 erhoht. Abb. [5.5]zeigt das Verhalten des Lokalisationsverfahrens. Die Lokalisation wird er-
folgreich durchgefiihrt. Zwar konnte die richtige Pose erst nach Abfliegen der Trajektorie ermittelt
werden, allerdings liegt das in der Natur des Lokalisationsverfahrens: Durch die zufillige Plat-
zierung neuer Partikel ist das Verfahren darauf angewiesen, dass Partikel zufillig richtig platziert
werden. Dies ist von der ersten Generation an theoretisch moglich, in diesem Fall wurden Partikel

erst ca. ab der zehnten Generation richtig platziert.
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(a) Wegpunkt 1

(b) Wegpunkt 2

(d) Wegpunkt 4

(c) Wegpunkt 3

(e) Wegpunkt 5

(g) Wegpunkt 7

(f) Wegpunkt 6

(h) Wegpunkt 8

(i) Wegpunkt 9

Abbildung 5.4.: Partikelverhalten bei grolem Bewegungsfehler
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(a) Generation 10 (b) Generation 11 (c) Generation 12

Abbildung 5.5.: Lokalisation mit unbekannter Startpose

5.1.2.1. Lokalisation mit 50 Partikeln

Es wird getestet, ob eine Lokalisation auch mit nur 50 Partikeln moglich ist. Bis auf maxParticles

wurden alle Parameter wie in Kap. [5.1.2]beschrieben gesetzt. Wie in Abb. [5.6|zu sehen ist, konnte

(a) Generation 131 (b) Generation 132 (c) Generation 133

Abbildung 5.6.: Lokalisation mit unbekannter Startpose, 50 Partikel

auch hier eine Lokalisation korrekt durchgefiihrt werden. Durch die geringe Partikelzahl dauerte
dies allerdings bis etwa in die 130. Iteration. Allerdings muss in diesem Zusammenhang beachtet
werden, dass eine geringe Partikelzahl auch eine kurze Rechendauer pro Iteration bedeutet.

Auf der dieser Arbeit beigefiigten CD sind alle Screenshots der Evaluierungen auch unbearbeitet
enthalten, wodurch die Benutzeroberfliche sichtbar ist. Dadurch lisst sich die durchschnittliche
Dauer von Iterationen abschitzen. In diesem Fall bendétigte eine Iteration ca. 10ms, was bedeutet,

dass die hier benotigten 130 Iterationen in etwas iiber einer Sekunde bereits berechnet waren.
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5.1.2.2. Lokalisation mit 1000 Partikeln

Als Gegenstiick zu Kap. wird evaluiert, ob eine hohe Partikelzahl eine genauere oder
schnellere Lokalisation bewirkt. Abgesehen von maxParticles sind die Parameter identisch zu

Kap.[5.1.2] Abb.[5.7|zeigt, dass eine hohe Partikelzahl auch das Risiko von Falschlokalisationen

P e A Eae)
8™ =
PR

(b) Generation 7 (c) Generation 8

(d) Generation 9 (e) Generation 10 (f) Generation 11

Abbildung 5.7.: Lokalisation mit unbekannter Startpose, 1000 Partikel

erhoht. Allerdings muss beachtet werden, dass auch die gefundene Pose gut zu den Abstands-
messungen von Wegpunkt 9 passt, insofern ist die Falschlokalisation hier grofteils durch die
Karte bedingt. Dennoch wire es besser, wenn das Lokalisationsverfahren in diesem Fall neben
der gefundenen Pose auch die richtige bei Wegpunkt 9 findet und beide Poses gleichberechtigt
weiterverfolgt werden. Ein komplexeres Lokalisationsverfahren konnte moglicherweise auch die
bisherigen Bewegungen beriicksichtigen, sodass eine der beiden Poses ausgeschlossen werden

kann.
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5.1.2.3. groupProbability = 0.6

Mit den Parametern aus Kap. und einer gednderten groupProbability soll ermittelt werden,

welchen Einfluss dieser Parameter auf die Konvergenz des Lokalisationsverfahrens hat. Es wird

(a) Generation 18 (b) Generation 19 (c) Generation 20

Abbildung 5.8.: Lokalisation mit unbekannter Startpose, groupProbability = 0.6

deutlich, dass das Lokalisationsverfahren nun kaum noch konvergiert und auch gefundene Posi-
tionsschitzungen schnell wieder verwirft (s. Abb. [5.8)). Mit diesem Parameter kénnte also dem
in Kap. beschriebenen Problem, dass sich das Verfahren zu schnell auf eine Pose konzen-
triert, begegnet werden. Allerdings ist der Wert hier offensichtlich zu klein gewihlt, weshalb in
Kap. [5.1.2.4 und Kap. nochmal die Auswirkung einer Steigerung von groupProbability

evaluiert wird.

5.1.2.4. groupProbability = 0.7

Wie in Kap. erwihnt folgt eine Evaluierung fiir eine hohere groupProbability. Es fillt
auf, dass sich das Lokalisationsverfahren zunichst falsch lokalisiert (s. Abb. [5.9). Die Positions-
schitzung wird jedoch wieder verworfen. Schlussendlich erfolgt dann in der 143. Generation die

richtige Lokalisierung, wobei die spite Lokalisierung nicht auf groupProbability, sondern viel-

mehr auf die Anzahl der Partikel zuriickzufiihren ist (vgl. Kap.[5.1.2.2).

5.1.2.5. groupProbability = 0.8

Der Parameter groupProbability wird im Vergleich zu Kap. [5.1.2.4/ nochmal gesteigert. Das Lo-

kalisationsverfahren lokalisiert sich zunéchst falsch und verwirft diese Positionsschidtzung auch
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(a) Generation 20 (b) Generation 21 (c) Generation 22

(d) Generation 23 (e) Generation 24 (f) Generation 143

Abbildung 5.9.: Lokalisation mit unbekannter Startpose, groupProbability = 0.7

kurzzeitig wieder (s. Abb. [5.10). Wenige Generationen spiter wird diese falsche Positionsschiit-
zung jedoch wieder aufgenommen. Zu beachten ist, dass sich dennoch ein Partikel an der eigent-

lich richtigen Position befindet. Hier besteht Optimierungsbedarf (vgl. Kap.[5.1.2.2).

5.1.2.6. Einschrankung der Orientierung

Abschlieend wird die mogliche Partikelorientierung auf einen Bereich von 85°-95° einge-
schrinkt, da der Quadrokopter die Trajektorie mit gleichbleibender Orientierung abfliegt. Abb.
zeigt, dass eine Einschrinkung der Orientierung das Lokalisationsverfahren deutlich be-
schleunigen kann. Die korrekte Pose wurde bereits vor Erreichen des letzten Wegpunktes gefun-

den. AuBerdem werden viele fehlerhafte Positionsschidtzungen dadurch ausgeschlossen.
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(c) Generation 17

(d) Generation 34 (e) Generation 42 (f) Generation 53

Abbildung 5.10.: Lokalisation mit unbekannter Startpose, groupProbability = 0.8

5.1.2.7. Fazit

Es konnte gezeigt werden, dass der Lokalisationsalgorithmus auch dann eine Lokalisation durch-
fiihren kann, wenn er keinerlei Informationen iiber die Startpose des Quadrokopters besitzt. Da-
mit handelt es sich bei dem implementierten Verfahren, wie beabsichtigt (vgl. Kap.[3.1.1)), um ein
globales Lokalisationsverfahren (s. Kap. [2.3)).

Aufgrund der durchgefiihrten Evaluierung scheinen insb. zwei Aspekte des Algorithmus iiberar-
beitungswiirdig zu sein: Zum einen konvergiert das Verfahren noch zu schnell (vgl. Kap.[5.1.2.2),
ohne andere mogliche Poses zu beriicksichtigen. Grundsitzlich ist schnelles Konvergieren wiin-
schenswert, allerdings sollte sich das Verfahren bei mehreren Moglichkeiten nicht derart schnell
festlegen, da sonst dauerhafte Falschlokalisationen auftreten. Zum andern muss ein Verfahren
entwickelt werden, um gefundene Positionsschidtzungen mit der Zeit zu verbessern. Wie z.B. in

Kap. [5.1.2] gezeigt kénnten auch gute Positionsschitzungen noch verbessert werden. Moglicher-



Evaluierung 52

(b) Generation 2 (c) Generation 3

(d) Generation 4 (e) Generation 5 (f) Generation 6

(g) Generation 7 (h) Generation 8 (i) Generation 9

Abbildung 5.11.: Lokalisation mit unbekannter Startpose, eingeschriankte Orientierung
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weise wire eine Losung, neue Partikel nicht exakt auf guten Partikeln, sondern mit einer ge-
wissen Streuung zu positionieren, sodass sie auch den Bereich um ein gutes Partikel betrachten.
AuBerdem konnte eine dynamische Parametrisierung (also eine automatisierte Parametrisierung
zur Laufzeit) eine deutliche Verbesserung bringen, indem das Verfahren bei gefundenen Positi-
onsschitzungen immer geringere Toleranzen zulédsst, wodurch nach und nach auch ,,nur gute
Partikel geloscht und durch noch bessere ersetzt werden. Hier muss allerdings darauf geachtet
werden, dass dies nicht wiederum zu verstédrkten Falschlokalisationen fiihrt.

Eine weitere Verbesserung ist bei der Platzierung zufélliger Partikel notig, da noch zu viele Par-

tikel auf belegten Zellen erzeugt werden.

5.2. Evaluierung mit realen Sensorwerten

Zu Beginn dieses Kapitels soll direkt erwdhnt werden, dass aufgrund der verwendeten Sensorik
eine reale, sinnvolle Evaluierung nicht durchgefiihrt werden konnte. Stattdessen konnte allerdings
qualitativ gezeigt werden, dass das Lokalisationsverfahren zumindest ansatzweise auch mit rea-
len Sensoren funktioniert.

Es wurde der in Abb. [5.12] dargestellte Versuchsaufbau genutzt. Mit Matten wurde der gleiche
Raum wie in Kap. aufgebaut. Der Quadrokopter wurde auf einen rollbaren Wagen gesetzt,
wobei der OF-Sensor freie Sicht auf den Boden hatte (s. Abb. [5.13). Es war dann beabsichtigt,
wie in Kap. [5.1] den Quadrokopter entlang einer vorgegebenen Trajektorie zu bewegen und an
jedem Wegpunkt die realen Sensorwerte zu empfangen. Leider musste festgestellt werden, dass
der Boden durch die aufgestellten Winde - trotz eingeschalteter Hallenbeleuchtung und zusiitz-
licher Scheinwerfer - fiir den OF-Sensor teilweise zu dunkel war, was einen erheblichen Drift
verursachte. Dadurch erschien eine umfassende Evaluierung des Lokalisationsverfahrens durch
das Abfahren einer Trajektorie mit realen Sensormessungen nicht sinnvoll, da der Drift des OF-
Sensors an dunklen Stellen das Ergebnis deutlich verfélschte. Hier konnten auch die Abstands-
messungen keine Abhilfe schaffen, da sie bereits eine Ungenauigkeit aufwiesen, die ebenfalls
durch das Lokalisationsverfahren ausgeglichen werden musste. Deshalb wurde der Quadrokopter
schlussendlich an ein Stelle gestellt, die eine ausreichende Helligkeit aufwies, und eine globale

Lokalisation durchgefiihrt.
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Abbildung 5.12.: Der mit Matten aufgebaute Raum

Abbildung 5.13.: Quadrokopter auf Rollwagen
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Die Parameter (s. Anh.[A)) wurden folgendermafen gewihlt:

readingBadSensors = 1
maxParticles = 50

ageThreshold = 5
minConfidence = 0.15
groupProbability = 0.85
nextGenFactorAge = 0.01
nextGenFactorCell = 0.9
nextGenFactorReading = 0.5
nextGenOffsetReading = 10
nextGenErrorTranslation = 0.025

nextGenErrorRotation = 0.0025

5.2.1. Erster Versuch

Fiir den ersten Versuch wurde die mogliche Rotation auf 85°-95° eingeschrinkt. Der Quadroko-
pter wurde wihrend des Versuchs nicht bewegt, aulerdem hat er keinerlei Kenntnis iiber seine
wahre Pose. Die wahre Pose des Quadrokopters entspricht dem blauen Pfeil in Abb. [5.14(f)] Wie
in Abb.[5.14]zu sehen, fiihrt die Einschrinkung der mdglichen Rotation schnell zu einer Ansamm-
lung vertrauenswiirdiger (griiner) Partikel. Der gefundenen Pose wird dann nach und nach mehr
Vertrauen geschenkt. Allerdings ist auch ersichtlich, dass einige Partikel unterhalb der wahren
Pose verbleiben. Dies spricht dafiir, dass nextGenOffsetReading einige Centimeter niedriger hitte

gewihlt werden sollen.

5.2.2. Zweiter Versuch

Als Vergleich zu Kap. [5.2.T wurde der Versuch ohne Rotationseinschrinkung wiederholt. Wie in
Abb. zu sehen lokalisiert sich das Lokalisationsverfahren etwas unterhalb der wahren Pose.
Dies ist wiederum mit einem zu hohen nextGenOffsetReading begriindet, zusitzlich macht sich
hier besonders readingBadSensors bemerkbar: Dadurch, dass die gefundene Pose etwas unterhalb
einer Kante liegt, sollte fiir den nach rechts gerichteten Sensor ein groer Wert erwartet werden.

Da der gemessene Wert jedoch deutlich niedriger ist, wird diese Messung aufgrund der hohen
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(a) Generation 13 (b) Generation 14 (c) Generation 15

(d) Generation 40 (e) Generation 41 (f) Generation 42

Abbildung 5.14.: Globale Lokalisation mit unbekannter Startpose, eingeschriankte Orientierung

Diskrepanz verworfen (vgl. Kap. [3.2.2.3). Alle anderen Sensorwerte sind von (durch nextGe-
nOffsetReading) tolerierbaren Abweichungen betroffen, sodass das Lokalisationsverfahren kei-
nen Anlass sieht, die Pose weiter zu verbessern. Statt jedoch readingBadSensors auf 0 zu verrin-
gern wire hier, wie auch in Kap. eine Verringerung von nextGenOffsetReading sinnvoller,
da readingBadSensors insb. fiir starke kurzfristige Storungen (z.B. durch Messwertausreifler oder

vorbeigehende Personen, s. Anh. [A]) zustidndig ist.

(a) Generation 15 (b) Generation 25 (c) Generation 26

Abbildung 5.15.: Globale Lokalisation mit unbekannter Startpose
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6. Fazit

In diesem Kapitel werden die Ergebnisse der Arbeit diskutiert und ein Ausblick auf die mogliche

weitere Entwicklung gegeben.

6.1. Ergebnisse

Wie in Kap. [5 beschrieben gestaltete sich eine reale Evaluierung etwas schwierig, da die beno-
tigte Sensorik nur unzuverldssig funktionierte. Dennoch lésst sich zusammenfassend sagen, dass
das implementierte Verfahren grundsétzlich funktioniert und sich auch fiir ungenauere Sensorik
eignet. Es wurde somit eine Basis fiir eine Indoorlokalisation geschaffen, auf deren Grundlage
ein zuverldssiges und genaues Lokalisationsverfahren méglich ist.

Die Evaluierung des Verfahrens mit simulierten Sensorwerten (s. Kap. [5.1) hat gezeigt, dass das
Lokalisationsverfahren in der Lage ist, sich in verschiedenen Situationen korrekt zu lokalisie-
ren. Auch die durchgefiihrte Evaluierung mit realen Sensorwerten konnte dies bestétigen (s. Kap.
[5.2). Allerdings zeigten die Versuche auch, dass hinsichtlich der Parametrisierung noch Verbes-
serungspotential besteht.

Deutlich wichtiger scheint jedoch eine Verbesserung der bisher verwendeten Strukturen und Al-
gorithmen. Das verwendete Bewegungsmodell funktioniert zwar, allerdings wiére es hier sinnvoll,
einen kiinstlichen Drift der x- und y-Koordinaten zu implementieren, um so dem realen Verhalten
des Quadrokopters ndher zu kommen. Dies wiirde aulerdem bewirken, dass Partikel auch dann
streuen, wenn sie nicht bewegt oder neu erzeugt werden, statt wie bisher statisch an der gleichen
Position zu verbleiben. Desweiteren sollte dafiir gesorgt werden, dass sich verschiedene Parame-
ter dynamisch wihrend der Laufzeit an den momentanen Zustand des Lokalisationsverfahrens
anpassen, sodass Positionsschédtzungen schnelller gefunden und gefundene Schétzungen kontinu-

ierlich verbessert werden. AuBBerdem ist es notig, das Verfolgen mehrerer Positionsschidtzungen
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zu verbessern, was sich aber auch bereits durch eine dynamische Anpassung der Parameter erge-
ben kann.

Neben diesen unmittelbaren Verbesserungen ist aulerdem denkbar, das Lokalisationsverfahren
auf einer hoheren Ebene intelligenter zu gestalten. Ein Beispiel hierfiir wire, fiir jedes Partikel
auch eine Historie der bisherigen Poses zu verwalten, sodass Partikel schneller als unpassend
identifiziert werden konnen (da die Historie bspw. zeigt, dass ein Partikel durch eine Wand geflo-
gen sein miisste). Bei solchen Verbesserungen muss allerdings abgeschitzt werden, ob die erzielte

Verbesserung des Lokalisationsverfahrens die zusitzlich benotigte Laufzeit rechtfertigt.

6.2. Ausblick

Ein funktionierendes Lokalisationsverfahren stellt den ersten Schritt zu einer umfassenden Au-
tonomie eines Quadrokopters dar. Als néchster Schritt wire z.B eine Vereinigung von Mapping
und Lokalisationsverfahren sinnvoll, wodurch ein SLAM-Verfahren entstehen wiirde. Hier bote
sich bspw. DP-SLAM (s. Kap. an, welches auf einem Partikelfilter aufbaut und sich gut fiir
Occupancy Grid Maps (s. Kap. [2.2.2)) umsetzen ldsst.

Ebenso wire denkbar, das Lokalisationsverfahren aktiver zu gestalten, indem ein Teil der Steue-
rung dem Quadrokopter iiberlassen wird. Dadurch konnte dieser selbststindig Umgebungen an-
fliegen, die sich durch viele Details und komplexe Formen deutlich von anderen abheben, um so
eine zuverlissige Lokalisation zu ermoglichen. Desweiteren konnte der Quadrokopter so fliegen,

dass er offene Flichen meidet, um seine Position nicht zu verlieren.
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A. Parameter

Eine kurze Erlduterung aller Parameter, mit denen das Verhalten des Lokalisationsalgorithmus

beeinflusst werden kann:

maxParticles Maximal erlaubte Anzahl an Partikeln. Die tatsdchliche Anzahl kann aufgrund

von dynamischen Optimierungen niedriger sein.
minConfidence Sobald das Vertrauen eines Partikels unter diesen Wert sinkt wird es geldscht.

groupProbability Gibt an, wie grof3 der Anteil neuer Partikel ist, die in der Nihe bereits beste-

hender, guter Partikel platziert werden.

nextGenFactorAge Gewichtet den Einfluss des Alters eines Partikels auf die Entwicklung
seines Vertrauens (s. Kap. [3.2.2.1).

nextGenFactorCell Gewichtet den Einfluss der Zellbelegung eines Partikels auf die Entwick-
lung seines Vertrauens (s. Kap.[3.2.2.2).

nextGenFactorReading Gewichtet den Einfluss der Giite von Abstandsmessungen eines Par-

tikels auf die Entwicklung seines Vertrauens (s. Kap.|3.2.2.3)).

nextGenOffsetReading Noch tolerierte durchschnittliche Abweichung der erwarteten Ab-

standsmessungen von den tatsdchlichen Messungen, um die Messung als ,,passend* zu

interpretieren (s. Kap.[3.2.2.3).

nextGenErrorTranslation Kiinstlicher Translationsfehler einer Bewegung (s. Kap.[3.2.3.1) in
Prozent. Beispiel: Eine Translation von 2m kann bei nextGenErrorTranslation = 0.1 um

+20cm abweichen.
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nextGenErrorRotation Kiinstlicher Rotationsfehler einer Bewegung (s. Kap. [3.2.3.1). Ska-
liert einen moglichen Fehler von -180° bis +180°, bspw. bedeutet nextGenErrorRotation =
0.1, dass jede Rotation mit einem Fehler in einem Bereich von -18° bis +18° behaftet sein

kann.
ageThreshold Gibt an, ab der wievielten Generation ein Partikel als ,,alt” interpretiert wird.

readingBadSensors Anzahl Abstandssensoren, deren Messungen vernachlissigt werden sol-

len (s. Kap.[3.2.2.3).

Teilweise wird in dieser Arbeit das Prifix ,,nextGen* aus Griinden der Lesbarkeit weggelassen.
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B. Sichtlinien-Algorithmus

Wie in Kap. [.2.1] beschrieben, wurde ein Sichtlinienalgorithmus zur Simulation von Ab-
standsmessungen entwickelt. Im Gegensatz zum Bresenham-Line-Following-Algorithmus (wie
in|Schmitt [2012] vorgestellt) ldsst dieser Algorithmus keine Zellen aus und ist auBerdem schnell
zu berechnen. Sein einfaches Funktionsrinzip ldsst vermuten, dass dieser Algorithmus bereits in

der einschlédgigen Literatur zu finden ist.

Zur Berechnung der getroffenen Zellen wird vom Startpunkt ausgehend der néchste Zellenrand,
der von der Sichtlinie geschnitten wird, betrachtet. Der Schnittpunkt wird dann als neuer Start-
punkt des Algorithmus betrachtet und das Verfahren beginnt von vorne (s. Abb. B.I). In der
rechten unteren Ecke ist eine der Zellen im Detail dargestellt. Das rote Kreuz bezeichnet den
Startpunkt der Sichtlinie, der schwarze Pfeil die Richtung, in der gepriift werden soll. Die blauen
und griinen Linien sind fiir die Berechnung relevante Abstinde des Startpunktes von den Zel-
lenwinden. Der Algorithmus kann an mehrere Abbruchbedingungen gekniipft sein. Es kann eine
maximale Sichtlinienlinge vorgegeben werden, die nicht iiberschritten werden darf, ebenso ist
es moglich, auf ein Verlassen der Karte zu priifen. Im Zusammenhang der Lokalisation werden
zudem belegte Zellen als Abbruchbedingung gewertet.

Zur effizienten Berechnung ist es notig, moglichst viele Variablen bereits vorab zu berechnen.
Am bedeutendsten ist dabei die Orientierung der Sichtlinie, da sich dadurch bereits eine Ein-
schrinkung der zu priifenden Zellenwénde ergibt. Soll der Algorithmus bspw. vom Startpunkt
aus in Richtung Nordosten priifen, so kann - wenn man vom Inneren einer Zelle ausgeht - nur die
nordliche und 6stliche Zellenwand getroffen werden.

Die Berechnung des Schnittpunktes von Sichtlinie und Zellenwand wurde in dieser Arbeit iiber
Geradengleichungen bestimmt. Dazu wird zunéchst die Orientierung der Sichtlinie in eine Gera-

densteigung umgerechnet. Da damit aber nur knapp 180° abgedeckt werden konnen wird in einer
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Abbildung B.1.: Vereinfachte Darstellung des Algorithmus
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zusitzlichen Variablen gespeichert, ob die Sichtlinie in die westliche oder in die Ostliche Hilfte
weist. Nun ist es moglich, die getroffene Zellenwand zu berechnen, ohne dafiir trigonometrische
Funktionen zu benotigen.

Am deutlichsten wird der Algorithmus durch den Code selbst, weshalb an dieser Stelle statt
weiterer Ausfithrungen auf den sich auf der CD befindlichen Code verwiesen wird. Der Algo-
rithmus befindet sich in code/QT Quaternionendisplay/qusart/localization/
particlecontroller.cpp und heiit float testMeasurement (int startX,

int startyY, float dir, float maxLength).
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C. Parametrisierung des

Bewegungsmodells

Die folgenden Grafiken zeigen den Einfluss von Translations- und Rotationsfehler auf die Streu-
ung der Partikel. Es wurden vom Start (jeweils links) aus immer fiinf gleich weite, geradlinige

Bewegungen nach rechts durchgefiihrt und alle Schritte in einem Bild kombiniert.

Abbildung C.1.: Insgesamt geringer Bewegungsfehler
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Abbildung C.4.: GroBer Translations- und Rotationsfehler
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