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Aufgabenstellung

Die Fortschritte im Bereich Sensorik und Mikrotechnik ermöglichen heutzutage den kostengün-

stigen Bau kleiner unbemannter Luftfahrzeuge (UAV, unmanned aerial vehicle, Drohne) wie Qua-

drokopter. Die Forschung und Entwicklung dieser Systeme wurde in den letzten Jahren aufgrund

der vielfältigen Anwendungsmöglichkeiten stark vorangetrieben. Wenngleich im Bereich UAV

viel geforscht wurde, ist das Thema Autonomes Flugobjekt längst noch nicht vollständig behan-

delt. Insbesondere der Indoor-Betrieb ist aufgrund fehlender absoluter Positionsstützung durch

GPS problematisch. Der Aufbau eines eigenen autonomen Systems wird daher am Lehrstuhl Ae-

rospace Information Technology der Uni Würzburg erforscht und erprobt. Im Rahmen dieses

Forschungsvorhabens ist ein System zu entwickeln, dass in der Lage ist die Position des Quadro-

kopters an Hand von Wandabstandsinformationen (Abstandssensoren) und unter zu Hilfenahme

einer Karte zu bestimmen.

Hauptaugenmerk dieser Arbeit ist die Entwicklung eines Algorithmus zur Lokalisation für die

Verwendung mit Abstandssensoren. Der Algorithmus ist entsprechend der zu verwendenden Sen-

sorik, namentlich Infrarot bzw. Ultraschall, auszulegen. Als weitere Stütze zur Lokalisation ste-

hen ein optischer Flusssensor sowie eine Karte einer bereits implementierten Mapping-Software

zur Verfügung.

Im Rahmen der Arbeit ist zunächst der Stand der Technik im Bereich autonome Lokalisation

aufzuarbeiten und zu beschreiben. Die implementierte Lösung ist in das bestehende System zu

integrieren und an diesem ausgiebig zu evaluieren. Die Arbeit ist umfangreich zu dokumentieren.

Aufgabenstellung (Stichpunktartig):

• Aufarbeitung Stand der Technik: Lokalisationsverfahren und SLAM

• Implementierung Datenfusion: OF + Abstandssensorik zur Lokalisation

• Einbettung Mapping und QT, Integration in Quadcopter

• Evaluierung am Quadcopter

• Dokumentation



Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Verfahren zur kartengestützten Lokalisation eines autonomen

Quadrokopters entwickelt. Dieses benötigt außer einer Karte Abstands- sowie Bewegungsinfor-

mationen, welche der Quadrokopter ohne externe Systeme messen kann. Dadurch ist kein Ver-

fahren wie GPS nötig, was dieses System für den Indoorbetrieb prädestiniert. Desweiteren wurde

darauf geachtet, dass der Algorithmus auch mit eher unzuverlässigen bzw. ungenauen Sensoren

(wie z.B. Ultraschall-Abstandsmessern) noch brauchbare Ergebnisse erzielt. Die Anfangspositi-

on des Quadrokopters sollte bekannt sein, der Algorithmus ist aber auch in der Lage ohne diese

Information eine Lokalisation durchzuführen.

Es konnte gezeigt werden, dass ein Lokalisationsalgorithmus für die Verwendung mit Abstands-

sensoren so implementiert werden kann, dass dieser bereits nach ca. 10-20 Iterationen eine Positi-

onsschätzung liefert. Außerdem zeigte sich, dass das Verfahren auch mit eher ungenauer Sensorik

noch funktionsfähig ist. Obwohl die Zuverlässigkeit des Lokalisationsverfahrens noch einer Stei-

gerung bedarf, konnte mit dieser Arbeit eine Grundlage für einen Ausbau der Autonomie des

Quadrokopters geschaffen werden.
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Einleitung 1

1. Einleitung

Technische Systeme erfuhren in den letzten Jahrzehnten große Fortschritte. Roboter wurden im-

mer schneller, stärker und effizienter und erschlossen damit immer neue Anwendungsgebiete.

Gleichzeitig entwickelte sich auch die Computerindustrie rasanter als von manchem erwartet,

was Ingenieuren und Wissenschaftlern immer mehr Freiheiten bei der Entwicklung von Drohnen

und Robotern ließ. Damit wurde es möglich, diesen mehr und mehr „Intelligenz“ und somit auch

Autonomie zu verleihen. Roboter können schon längst nicht mehr nur Autos zusammenbauen,

heutzutage mähen sie den Rasen, helfen Ärzten bei komplizierten Eingriffen, werden vom Mili-

tär eingesetzt oder messen sich in Fußballmeisterschaften.

Bei Drohnen handelt es sich um sog. UAVs (Unmanned Aerial Vehicles, dt. Unbemannte Luft-

fahrzeuge). Ein Spezialfall von Drohnen sind Quadrokopter, welche über vier nach unten wirken-

de Rotoren verfügen. Dadurch wird dem Quadrokopter sowohl ein „Stehen“ in der Luft wie bei

Hubschraubern als auch ein Manövrieren im dreidimensionalen Raum ermöglicht.

An der Julius-Maximilians-Universität Würzburg wird im Rahmen des AQopterI8-Projekts ein

Quadrokopter mit folgendem Ziel entwickelt: „Das fertige System soll in die Lage versetzt wer-

den, autonome Aufgaben aus den Bereichen Search & Rescue (z.B: Feuerwehreinsatz) sowie

Überwachung und Kontrolle (Industrie- & Chemieanlage) durchzuführen.“ (Gageik [2013])

Dabei ist der Begriff der Autonomie besonders hervorzuheben. Je autonomer sich ein Quadroko-

pter (und auch ein Roboter) verhält, desto weniger ist Überwachung und Kontrolle durch eine

Person notwendig.

Ein wichtiger Aspekt eines autonomen Quadrokopters ist die Möglichkeit zur Lokalisation. Diese

sollte ohne externe Hilfe und in möglichst vielen Situationen funktionieren. In Gebäuden kann

allerdings nicht davon ausgegangen werden kann, dass „klassische“ Verfahren wie GPS funktio-

nieren, weshalb hier auf andere Methoden zurückgegriffen werden muss. Desweiteren ist zu be-
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achten, dass das AQopterI8-Projekt auch mit der Absicht möglichst niedriger Kosten entwickelt

wird, was zu einer Verwendung von Low-Cost-Sensorik führt. Die Verwendung der unruhigen

Plattform Quadrokopter stellt außerdem hohe Anforderungen an die Fehlertoleranz des Loka-

lisationsalgorithmus. Das Lokalisationsverfahren muss also sowohl robust als auch schnell zu

berechnen sein.

In Kapitel 2 werden zunächst gängige Lokalisationsverfahren vorgestellt und ein Überblick über

sog. SLAM-Verfahren (Simultaneous Localization And Mapping, dt. simultane Lokalisation und

Kartenerstellung, s. Kap. 2.4) gegeben, welche auch eine Lokalisation in vorher vollkommen un-

bekannten Gebieten ermöglichen. Nach einer Gegenüberstellung dieser Verfahren wird dann in

Kapitel 3 das für dieses Projekt geeignetste Verfahren ausgewählt und entwickelt. Kapitel 4 be-

handelt die konkrete Umsetzung des zuvor erarbeiteten Konzepts. Diese wird dann in Kapitel 5

evaluiert. Abschließend werden in Kapitel 6 die erzielten Ergebnisse diskutiert und ein Ausblick

auf mögliche weitere Entwicklungen gegeben.
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2. Grundlagen & Stand der Technik

In diesem Kapitel werden, nach kurzer Erläuterung der wichtigsten mathematischen Grundlagen,

einige Verfahren zur Lokalisation und zur Lösung des sog. SLAM-Problems (s. Kap. 2.4) vorge-

stellt.

Da sich die Thematik dieser Arbeit nicht nur auf bodengebundene Roboter, sondern auch auf

Fluggeräte wie Quadrokopter erstreckt, werden diese Systeme im weiteren Verlauf zusammen-

fassend als Agenten bezeichnet.

2.1. Mathematische Grundlagen

Zunächst werden in möglichst kompakter und verständlicher Form einige mathematische Zusam-

menhänge erläutert, die für das Verständnis dieser Arbeit von Bedeutung sind. Auf weiterführende

Literatur wird an den entsprechenden Stellen verwiesen.

2.1.1. Pose

Im Folgenden wird der Begriff der Pose häufig Verwendung finden. Die Pose beschreibt die X-, Y-

und ggf. Z-Koordinaten der Position eines Agenten (je nach dem, ob man sich in einer Ebene oder

im Raum bewegt) sowie dessen Orientierung θ ggü. einem globalen kartesischen Referenzsystem.

In dieser Arbeit findet nur die zweidimensionale Pose (x, y, θ) Anwendung.

Abb. 2.1 verdeutlicht eine Pose. Desweiteren ist zu sagen, dass Agenten häufig vereinfacht durch

einen Kreis dargestellt werden, wobei eine Linie vom Mittelpunkt zum Kreisrand die Orientierung

darstellt.
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Abbildung 2.1.: Pose eines Roboters. Quelle: Thrun et al. [2005]

2.1.2. Zustandsschätzung

Das Lokalisierungsproblem lässt sich in etwas abstrakter Form als das Problem, den aktuellen

Systemzustand zu schätzen, beschreiben. Dieser Zustand umfasst dabei sowohl alle für das auto-

nome System relevanten Eigenschaften der Umgebung (also die Position von Wänden und Türen,

der Aufenthaltsort von Personen, etc.), als auch den Zustand des Agenten selbst (Pose, Geschwin-

digkeit, Zustand der Sensoren, etc.). Da viele dieser Eigenschaften kaum direkt gemessen werden

können muss sich der Agent auf seine Sensorik sowie bisher erfasste Messungen verlassen, um

aus den Messdaten auf die benötigten Eigenschaften schließen zu können. Genau das ist mit

Zustandsschätzung gemeint: Es soll aus fehlerbehafteten Messungen, die nur einen kleinen Teil

der Umgebung erfassen können, der aktuelle Zustand des Systems berechnet werden. Der Agent

glaubt also, den Systemzustand x zum Zeitpunkt t berechnet zu haben, was sich wie folgt aus-

drücken lässt:

bel(xt) = p(xt | z1:t, u1:t) (2.1)

z1:t sind alle Messungen, u1:t alle Steuerbefehle, die bis zum Zeitpunkt t durchgeführt wurden.

Damit beschreibt p(xt | z1:t, u1:t) - respektive bel(xt) - die Wahrscheinlichkeit, dass xt der aktuelle

Systemzustand ist, wenn zuvor die Messwerte z1:t erfasst und die Steuerbefehle u1:t ausgeführt

wurden.

Desweiteren lässt sich ausdrücken, welcher Systemzustand erwartet wird, bevor Messungen zum

Zeitpunkt t durchgeführt werden:

bel(xt) = p(xt | z1:t−1, u1:t) (2.2)

Der vor der Durchführung der Messungen erwartete Systemzustand muss nach Durchführung

der Messungen korrigiert werden, um die aktuelle Systemzustandsvermutung zu erhalten. Diese
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Aufteilung in Vorhersage- und Berichtigungsschritt ist charakteristisch für viele Lösungen des

Lokalisierungs- und SLAM-Problems (vgl. Thrun et al. [2005], Kap. 2.3).

2.1.3. Bayes Filter-Algorithmus

Eine allgemeine Lösung zur rekursiven Berechnung der aktuellen Systemzustandsvermutung ist

der Bayes Filter-Algorithmus. Er basiert auf dem Bayestheorem, welches die Umkehrung einer

bedingten Wahrscheinlichkeit erlaubt:

p(x | y) =
p(y | x)p(x)

p(y)
(2.3)

Das bedeutet: Sind die Wahrscheinlichkeiten für das Eintreten von x und y bekannt, und ist die

bedingte Wahrscheinlichkeit, dass y eintritt, wenn x eingetreten ist, bekannt, lässt sich die Wahr-

scheinlichkeit berechnen, dass x eintritt, wenn y eingetreten ist.

Wie bereits in Kap. 2.1.2 erwähnt wird die Berechnung in einen Vorhersage- und einen Korrektur-

schritt aufgeteilt. Hierzu werden genaue mathematische Modelle der Sensorik und der Bewegung

des Agenten benötigt, welche in der Praxis meist nur schwierig erstellt werden können.

Da es sich beim Bayes Filter-Algorithmus um eine sehr allgemeine Lösung handelt, die viel

zu komplex zu berechnen wäre, wurden verschiedene Annäherungen und Vereinfachungen ent-

wickelt, die eine konkrete Berechnung durch einen Computer erlauben. Eine Anwendung pro-

babilistischer Verfahren wie des Bayes Filter-Algorithmus auf das Lokalisierungsproblem bei

mobilen Robotern wird auch als Markov-Lokalisation bezeichnet (vgl. Fox [1998]). Einige dieser

Umsetzungen werden in Kap. 2.3 besprochen.

2.1.4. Kalman Filter

1960 entwickelte Rudolf E. Kálmán den nach ihm benannten Kalman-Filter. Basierend auf Bayes’

Filter erlaubt er, sowohl vergangene als auch in der Zukunft liegende Zustände eines linearen, zeit-

diskreten Systems zu schätzen, wobei die Messfehler als normalverteilt angesehen werden (vgl.

Welch und Bishop [2001]). Dieser Filter kann sehr recheneffizient implementiert werden und lie-

fert für Systeme, die den Anforderungen (linear, normalverteiltes Rauschen) entsprechen, sehr

gute Ergebnisse. Durch Modifizierungen ist es auch möglich, ihn bis zu einem gewissen Grad auf

nichtlineare Systeme anzuwenden. Dazu kann z.B. mittels einer Taylorentwicklung das System
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lokal linearisiert werden, was Extended Kalman Filter (EKF) genannt wird. Diese Linearisierung

kann auch durch statistische Techniken wie die Unscented Transformation, welche im Unscented

Kalman Filter (UKF) zum Einsatz kommt, berechnet werden, wodurch teilweise bessere Ergeb-

nisse erzielt werden können. Das geht allerdings auf Kosten der Recheneffizienz (s. Thrun et al.

[2005]).

2.2. Kartendarstellung

Eine wichtige Rolle spielt die Karte der Umgebung, da sie die Grundlage der Lokalisierung dar-

stellt. Um ein möglichst gutes Verhältnis zwischen Detailgrad und Speicherbedarf zu erhalten

ist es notwendig, gewisse Ungenauigkeiten in Kauf zu nehmen und für den Agenten unwichti-

ge Details zu vernachlässigen. Hier haben sich einige Ansätze durchgesetzt, von denen zwei der

verbreitetsten hier kurz vorgestellt werden.

2.2.1. Feature-basiert

Die Idee dieser Karte ist es, komplett aus sog. Features (manchmal auch „Landmarks“, dt. Land-

marken, genannt) aufgebaut zu sein. Ein Feature ist ein vom Agenten leicht zu identifizierendes

Merkmal der Umgebung, z.B. Bäume, Türen oder künstliche Markierungen wie bunt angestri-

chene Pfähle. Der große Vorteil dieser Repräsentation der Umgebung ist, dass ein Feature in

der Regel nur mit einem 2- oder 3-Tupel, welches die Koordinaten in der Ebene oder im Raum

darstellt, gespeichert werden kann. Dies macht diese Darstellung besonders effizient hinsichtlich

des Speicherbedarfs. Allerdings birgt dieses Verfahren auch Risiken, wobei insb. zwei zu nennen

sind: Zum einen müssen die Features aus den Messungen extrahiert werden. Dies kann, je nach

Art der Features, komplexe Prozesse wie die Analyse von Kamerabildern erforderlich machen.

Zum andern muss gewährleistet werden, dass die erkannten Features intern auch den richtigen

Features der Karte zugeordnet werden (häufig als „Data Association Problem“, dt. Datenassozia-

tionsproblem, bezeichnet).
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2.2.2. Occupancy Grid Map

Ein Gegenstück zu feature-basierten Karten sind Occupancy Grid Maps. Statt sich auf besondere

Eigenschaften der Umgebung zu konzentrieren, wird über den gesamten relevanten Bereich ein

(meist zweidimensionales) Gitter gelegt. Den dadurch entstandenen Zellen wird nun jeweils ein

Wert zugeordnet, der die Wahrscheinlichkeit, dass die Zelle belegt ist, repräsentiert (s. Hähnel

[2005]). Dies kostet in der Regel viel Speicher, da das Gitter nicht zu grob sein darf, um die

Umgebung genau genug abzubilden. Dafür bietet diese Kartendarstellung aber den Vorteil, dass

zur Erstellung einfache Entfernungsmessungen reichen, die auch relativ einfach in die Karte in-

tegriert werden können (s. Schmitt [2012]). Es ist also im Gegensatz zu feature-basierten Karten

nicht nötig, aus den Messwerten zunächst die Features zu extrahieren.

Ein praktischer Nebeneffekt ist außerdem, dass die Daten auch von Menschen sehr gut als Karte

interpretiert werden können (s. Abb. 2.2).

Abbildung 2.2.: Occupancy Grid Map einer großen Ausstellungsfläche. Je dunkler ein Pixel, desto
wahrscheinlicher ist die zugehörige Zelle belegt. Quelle: Thrun et al. [2005]
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2.3. Lokalisationsverfahren

Ein Agent muss, um autonom agieren zu können, stets Kenntnis über seine eigene Position im

Raum haben. Während dies im Freien heutzutage dank GPS recht einfach zu bewerkstelligen ist,

muss in Gebäuden auf andere Verfahren zurückgegriffen werden, da das schwache GPS-Signal

dort nur noch schwierig zu empfangen ist (was zusätzlich durch Effekte wie Reflektionen in Häu-

serschluchten erschwert wird). Die gängigsten dieser Verfahren werden in den folgenden Teilka-

piteln vorgestellt.

Grundsätzlich lassen sich Lokalisationsverfahren anhand mehrerer Aspekte unterscheiden (vgl.

Thrun et al. [2005], Kap. 7.1). Eine der einfachsten Aufgaben besteht in der lokalen Lokalisation,

da hier die Anfangsposition im Raum bekannt ist. Der Agent besitzt somit einen Referenzpunkt,

auf den er seine Berechnungen aufbauen kann. Ist die Anfangsposition jedoch unbekannt spricht

man von globaler Lokalisation. Hier muss der Agent, bevor er seine Position verfolgen kann,

diese zunächst bestimmen. Dies wird z.B. durch symmetrische und repetitive Umgebungen wei-

ter erschwert, da meist mehrere Vermutungen existieren, an welcher Position man sich befinden

könnte. Allerdings ist ein globales Lokalisationsverfahren, sobald es implementiert wurde, deut-

lich robuster als ein lokales Verfahren, da es in der Lage ist, den kompletten Verlust der Positions-

vermutung auszugleichen. Sollte jedoch ein lokales Verfahren seine Position verlieren (z.B. durch

zu große Messfehler oder eine falsche Anfangsposition) ist der Agent in sehr vielen Situationen

unfähig, sich jemals wieder zu lokalisieren.

Ein weiterer Aspekt ist das sog. Kidnapped Robot Problem. Es beschreibt die Situation, in der

der Agent plötzlich an eine andere Position „teleportiert“ wird, ohne dass er dies bemerkt. Ein

verlässlicher Algorithmus sollte in der Lage sein, nach kurzer Zeit zu merken, dass seine Po-

sitionsvermutung auf einmal vollkommen falsch ist und deshalb die aktuelle Vermutung nicht

weiter verfolgen. Eine „Teleportation“ ist selbstverständlich unwahrscheinlich, allerdings besteht

immer die Möglichkeit, dass sich ein Algorithmus irrt und deshalb eine falsche Position verfolgt.

In diesem Fall ist es wichtig, dass sich der Algorithmus von diesem Fehler erholt und seine Posi-

tionsvermutung berichtigt.

Ein weiterer Aspekt sind dynamische Umgebungen, also Umgebungen, in denen sich immer
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wieder etwas ändert. Dies kann bspw. durch umherlaufende Personen oder sich öffnende und

schließende Türen verursacht sein. Unveränderliche Umgebungen werden als statisch bezeichnet.

Von großer Bedeutung ist die Art der Verteilung, die die Positionsvermutung(en) repräsentiert.

Eine unimodale Verteilung kann nur eine Vermutung gleichzeitig modellieren, was zwar meist

recheneffizient, dafür aber nicht sehr robust ist. Sie setzt voraus, dass der Lokalisierungsalgorith-

mus so genau arbeitet, dass nie die Möglichkeit mehrerer gleichberechtigter Vermutungen besteht.

Noch schwieriger ist es, mit einer unimodalen Verteilung eine globale Lokalisierung durchzufüh-

ren. Dies ist in Umgebungen mit mehreren sehr ähnlichen Räumen fast immer zum Scheitern

verurteilt, da sich der Algorithmus von Anfang an für einen dieser Räume entscheiden muss.

Genau hier können multimodale Verteilungen Abhilfe schaffen (wie u.a. von Cox und Leonard

[1994] vorgeschlagen), da sie die Möglichkeit mehrerer Positionsvermutungen erlauben. Aller-

dings sind diese Verteilungen tendenziell schwieriger zu implementieren, da hier das gegenteilige

Problem der Fall ist: Es muss dafür gesorgt werden, dass sich der Algorithmus möglichst schnell

für eine der Vermutungen entscheidet - eine Information wie „Der Agent könnte hier oder hier

oder aber hier sein“ ist z.B. für Navigationsaufgaben zu ungenau.

2.3.1. Koppelnavigation

Eines der einfachsten und intuitivsten Lokalisationsverfahren ist die Koppelnavigation (im

Englischen Dead Reckoning). Hierbei wird zunächst die aktuelle Position als Ursprung defi-

niert oder dem Agenten mitgeteilt, an welcher (globalen) Position er beginnt. Sobald sich der

Agent bewegt, misst er seine Bewegung mittels dafür geeigneter Sensorik. Bei bodengebun-

denen Robotern mit Rädern werden häufig Inkrementalgeber genutzt, welche die Radumdre-

hungen mit mehreren Rechtecksignalen wiedergeben (sog. Gray Codes), woraus sich Drehrich-

tung und -geschwindigkeit berechnen lassen. Besteht hingegen kein Bodenkontakt können bspw.

Beschleunigungs- und Drehratensensoren eingesetzt werden.

Nach einer gewissen Zeit (einige Millisekunden bis mehrere Sekunden) berechnet der Agent aus

den Messdaten seine zuletzt ausgeführte Bewegung und addiert diese zur zuletzt bestimmten Po-

sition, wodurch er seine aktuelle Position erhält. Daraufhin wird wieder die Bewegung gemessen,

diese auf die zuletzt bestimmte Position addiert usw. usf.

Der Vorteil dieses Verfahrens liegt eindeutig in seiner Einfachheit, da es nicht nur verständlich,
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sondern auch effizient zu berechnen ist. Allerdings sind alle Messungen mit Fehlern behaftet,

was sich insb. bei Low-Cost-Sensorik bemerkbar macht. Da bei der fortlaufenden Addition der

Bewegung zur letzten Position nicht nur die Bewegung selbst, sondern auch der Messfehler auf-

summiert wird, ist die berechnete Position mit einem umso größeren Fehler behaftet, je länger

das Verfahren läuft. Dieser Fehler kann nur von außen, durch eine absolute Positionsreferenz,

behoben werden, bspw. durch das Anfahren einer Dockingstation mit exakt bekannter Position.

2.3.2. EKF-Lokalisation

Eine deutliche Verbesserung der einfachen Koppelnavigation kann erreicht werden, wenn Mes-

sungen der Umgebung laufenden Einfluss auf die Positionsbestimmung haben, also eine Korrek-

tur der Odometrie erfolgt. Die EKF-Lokalisation benötigt dazu eine feature-basierte Karte und

einen entsprechenden Sensor, mit dessen Hilfe Features in der Umgebung des Agenten eindeutig

und sicher identifiziert werden können. Desweiteren müssen die Anfangsposition des Agenten

sowie ein Modell der Bewegung und der Messungen bekannt sein.

Der Algorithmus baut, wie der Name schon sagt, auf den Extended Kalman Filter auf. Er besteht

im Wesentlichen aus drei Schritten:

Vorhersage Berechnung der nächsten Position und der erwarteten Messungen, basierend auf

der vorherigen Position und dem Bewegungsmodell des Agenten. Die vermutete Position

ist mit einer größeren Unsicherheit behaftet, da in diesem Schritt auch Messungenauigkei-

ten berücksichtigt werden.

Fehler der erwarteten Messung Nach Durchführung der Messungen werden diese damit

verglichen, welche Messungen erwartet wurden. Aus der Abweichung lässt sich (aufgrund

eindeutiger Zuordnung der Landmarken) berechnen, wo der Agent gestanden haben müs-

ste, um die gemessenen Werte zu erhalten.

Korrektur der Positionsschätzung Der berechnete Messfehler wird auf die Positionsschät-

zung angewendet, wodurch der Agent seine Position nun besser und mit geringerer Unsi-

cherheit kennt.

Abb. 2.3 verdeutlicht diesen Algorithmus. Kreise mit einer Zahl sind Landmarken, durchgezo-

gene Linien zeigen den tatsächlichen Weg des Agenten. Im oberen Bild repräsentiert die gestri-
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Abbildung 2.3.: Schematische Darstellung der EKF-Lokalisation. Quelle: Thrun et al. [2005]
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chelte Linie den von der Odometrie des Agenten gemessenen Weg. Dünne Linien zeigen, welche

Landmarken an der jeweiligen Position observiert wurden. Im unteren Bild ist die Positionsunsi-

cherheit vor (hellgrau) und nach (dunkelgrau) der Korrektur durch den EKF-Algorithmus einge-

zeichnet. Die gestrichelte Linie repräsentiert den gemessenen und korrigierten Weg.

Die Verwendung der EKF-Lokalisation erlaubt das Verfolgen einer Positionsvermutung, wobei

diese durch eine Normalverteilung repräsentiert wird. Es handelt sich um ein lokales Lokalisa-

tionsverfahren, da die Anfangsposition bekannt sein muss. Um eine zuverlässige Funktion zu

gewährleisten, muss die Sensorik ausreichend genau arbeiten, was je nach Einsatzgebiet ein Pro-

blem sein kann. Es existieren zahlreiche Erweiterungen dieses Algorithmus, die sich verschiede-

ner nachteiliger Aspekte annehmen und sich bspw. um das Problem der Datenassoziation küm-

mern oder das Verfolgen mehrerer Positionsvermutungen erlauben. Es ist zudem über Umwege

möglich, die EKF-Lokalisation zu einem globalen Lokalisationsverfahren auszubauen (s. Thrun

et al. [2005]).

2.3.3. Lokalisation per Histogramm

Ein gänzlich anderer Ansatz zur Lokalisation ist die Verwendung eines Histogramms (wie u.a. in

Thrun et al. [2005] vorgestellt). Jeder Zelle der Karte wird eine Wahrscheinlichkeit zugeordnet,

je nach dem, wie wahrscheinlich es ist, dass sich der Agent dort befindet. Bei jeder Bewegung

werden diese Wahrscheinlichkeiten mitbewegt und den entsprechenden Zellen neu zugeordnet.

Eine erneute Messung kann die Wahrscheinlichkeiten der Zellen wieder aktualisieren. Einfach

gesagt können im Verlauf des Algorithmus immer mehr Zellen ausgeschlossen werden, wodurch

sich im Endeffekt die aktuelle Position des Roboters herauskristallisiert. Abb. 2.4 verdeutlicht

diesen Prozess nochmal an einem eindimensionalen Beispiel. Der Roboter ist in der Lage, Türen

zu erkennen. bel(x) stellt das Histogramm dar, an dem die aktuelle Positionsvermutung abgelesen

werden kann, p(z | x) gibt an, wie wahrscheinlich die aktuelle Messung an welchen Stellen der

Karte ist.

Dieses Verfahren bietet einige wichtige Vorteile gegenüber auf Bayes’ Filter basierenden Al-

gortihmen. Da man nicht an eine Normalverteilung gebunden ist, können auch komplexe Vertei-

lungen repräsentiert werden - ohne deren mathematische Beschreibung kennen zu müssen. Dies

macht auch die praktische Implementierung relativ einfach. Außerdem entfällt, wie bei Occupan-

cy Grid Maps üblich, die Notwendigkeit, Features aus der Umgebung extrahieren zu müssen, es
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Abbildung 2.4.: Eindimensionale Lokalisation per Histogramm. Quelle: Thrun et al. [2005]
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kann also direkt mit den rohen Messwerten gearbeitet werden. Desweiteren handelt es sich um

ein globales Lokalisationsverfahren, wodurch der Agent in der Lage ist, sich auch ohne bekannte

Anfangsposition zu lokalisieren.

Ein Nachteil ist die große zu verwaltende Datenmenge. Für eine genauere Lokalisierung sind

kleinere Zellen nötig, welche mehr Speicherplatz und Rechenzeit benötigen. Dies lässt die Hard-

wareanforderungen, insb. für dreidimensionale Karten, schnell in exorbitante Höhen schießen.

Abhilfe kann hier eine topologische, statt einer metrischen, Aufteilung der Karte schaffen. De-

tailarme Regionen können so effektiver beschrieben werden, während komplexen Umgebungen

viel Speicher zugestanden wird. Hier können statt einer Occupancy Grid Map auch Landmarken

Verwendung finden. All das erhöht jedoch wieder den Anspruch der Implementierung.

2.3.4. Monte Carlo Localization

Dieses Verfahren ist heutzutage aufgrund seiner Einfachheit und seines Potentials einer der po-

pulärsten Algorithmen zur Roboterlokalisation. Er wurde 1999 von Fox et al. [1999] vorgestellt.

Auf der Karte werden sog. Partikel verteilt, wobei jedes Partikel eine Posevermutung darstellt.

Bewegungen des Roboters werden auf alle Partikel übertragen. Nach jeder Messung werden sie

nach Wichtigkeit gewichtet, wobei zur Messung passende Partikel höher gewichtet werden. In

einem Resampling-Prozess werden von Zeit zu Zeit alle Partikel mit zu niedriger Wichtigkeit

aussortiert, gleichzeitig werden in der Umgebung wichtiger Partikel neue Partikel erzeugt.

Monte Carlo Localization erlaubt eine globale Lokalisation und kann auf das Kidnapped Robot-

Problem erweitert werden, indem immer einige Partikel zufällig hinzugefügt werden. Deswei-

teren ist es möglich, die Partikelzahl dynamisch zu verändern, was eine Anpassung an die mo-

mentan zur Verfügung stehenden Rechenkapazitäten ermöglicht. Wie bei der Lokalisation per

Histogramm ist man nicht auf Normalverteilungen eingeschränkt und kann mehrere Vermutun-

gen gleichzeitig verfolgen. Außerdem ist dieses Verfahren sowohl für Feature-basierte Karten wie

auch für Occupancy Grid Maps geeignet.

2.4. Das SLAM-Problem

Die Abkürzung SLAM (Simultaneous Localization And Mapping) beschreibt die Problematik,

gleichzeitig eine Lokalisation durchzuführen und eine Karte der Umgebung zu erstellen. Falls
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bereits eine Karte vorhanden ist (wie im vorherigen Kapitel beschrieben) ist eine Lokalisation

vergleichsweise einfach durchzuführen. Ebenso ist das Aufzeichnen einer Karte bei bekannter

Position relativ einfach. Beginnt der Agent jedoch ohne eine Karte und kann seine Position nur

unzureichend genau verfolgen steht man vor dem SLAM-Problem. Dieses lässt sich auch als

Henne-Ei-Problem betrachten: Ohne Karte keine Lokalisation, ohne Lokalisation keine Karte.

Die meisten SLAM-Verfahren lassen sich anhand folgender Aspekte einteilen:

Full vs. Online SLAM Während beim Online SLAM neben der Karte die aktuelle Pose des

Roboters von Interesse ist, wird bei Full SLAM-Algorithmen der gesamte bisher zurück-

gelegte Weg gespeichert und im weiteren Verlauf berücksichtigt. Dies erhöht zwar die Ge-

nauigkeit des Algorithmus, wird aber schnell rechen- und speicherintensiv.

Volumetric vs. Feature-based SLAM Dies bezieht sich auf die Art der genutzten Karten-

darstellung. Während bei Volumetric SLAM eine metrische Karte wie z.B. eine Occupancy

Grid Map zum Einsatz kommt, wird die Karte bei Feature-based SLAM aus Landmarken

aufgebaut. Vgl. auch Kap. 2.2.

Active vs. passive SLAM Bisher wurde immer angenommen, dass der Agent seine Steuer-

befehle von außerhalb, z.B. durch einen Menschen erhält. Im Fall von SLAM spricht man

dann von passive SLAM. Bei active SLAM steuert sich der Agent hingegen selbst, um aktiv

zur Bildung der Karte und zur eigenen Lokalisierung beizutragen.

Die folgenden Kapitel geben eine kurzen Überblick über einige der gängigen Lösungen des

SLAM-Problems.

2.4.1. SLAM mittels Kalman Filter

Hier sei besonders EKF SLAM erwähnt, welches mit zu den frühesten SLAM-Implementierungen

gehört (vgl. Thrun et al. [2005], Kap. 10.2.1). Voraussetzung sind eindeutig identifizierbare Land-

marken und ein dementsprechend guter Erkennungsalgorithmus. Vereinfacht gesagt handelt es

sich um eine EKF-Lokalisation, bei der nicht nur die Roboterpose, sondern auch die Position

aller erkannten Landmarken geschätzt wird. Der Algorithmus eignet sich nicht für große Karten,

da die Berechnungen sonst zu rechenintensiv werden.

Es existieren diverse weitere Implementierungen mit Kalman Filter (vgl. Thrun et al. [2005]),
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u.a. UKF SLAM, EIF (Extended Information Filter, überführt den EKF in die kanonische Form)

SLAM und SEIF (Sparse EIF, führt eine zusätzliche sparsification der Daten durch, wodurch nur

noch benachbarte Features korreliert werden; deutlich effizienter als EKF SLAM, allerdings et-

was ungenauer) SLAM. Allen ist gemeinsam, dass sie nur für kleinere bis mittelgroße Karten

geeignet sind.

2.4.2. GraphSLAM

Der GraphSLAM-Algorithmus ermöglicht eine Lösung des Full SLAM-Problems. GraphSLAM

korreliert Features und Poses und baut daraus einen Graphen auf. Dieser Graph wird immer wie-

der überarbeitet, indem versucht wird, Features mit in der Realität identischen Koordinaten zu

finden, was also ein Feature ist, das fälschlicherweise mehrmals in den Graphen eingetragen wur-

de. Dadurch wird der Graph immer wieder korrigiert, wodurch mit diesem Algorithmus gute

Ergebnisse zu erzielen sind.

Die Grundlagen für diesen Algorithmus wurden 1997 durch eine Veröffentlichung von Lu und

Milios [1997] gelegt.

2.4.3. FastSLAM

FastSLAM wurde 2002 von Michael Montemerlo entwickelt (Montemerlo et al. [2002]) und zählt

heutzutage mit zu den effektivsten SLAM-Verfahren überhaupt. Aufbauend auf einem Partikel-

filter löst dieser Algorithmus sowohl das Online als auch das Full SLAM-Problem und ist für

Feature Based wie für Occupancy Grid Maps geeignet. Jedes Partikel enthält eine eigene Pfad-

schätzung sowie Schätzungen für alle Features der Karte, welche jeweils durch EKFs repräsentiert

werden. FastSLAM existiert auch als Version 2.0, welche nochmals verbessert wurde (Montemer-

lo et al. [2003]).

Aufbauend auf FastSLAM 1.0 wurde der sog. Distributed Particle (DP) SLAM entwickelt, wel-

cher den effizienten Umgang mit mehreren Kartenversionen gleichzeitig erlaubt (Eliazar und Parr

[2003]). Dieser wurde ebenfalls zu Version 2.0 ausgebaut, mit nochmals gesteigerter Effizienz

(Eliazar und Parr [2004]).
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2.5. Zusammenfassung

Die bisher vorgestellten Techniken ermöglichen heutzutage nicht nur eine zuverlässige Lokalisa-

tion, sondern auch eine Lösung des SLAM-Problems. Dennoch ist die dazu benötigte Hardware

(insb. mit einem hochwertigen Quadrokopter als Plattform) nach wie vor zu teuer, um Systeme

zur möglicherweise einmaligen Verwendung zu entwerfen.

Um diesen Problem zu begegnen wird im Rahmen des AQopterI8-Projekts ein Quadrokopter von

Grund auf neu entworfen, sodass dieser sowohl hinsichtlich Funktionalität als auch niedriger Ko-

sten optimiert werden kann. Wie bereits in Kap. 1 erwähnt ist es von großer Bedeutung, diesen

Quadrokopter mit einem hohen Grad an Autonomie auszustatten, damit er die Aufgaben erfül-

len kann, die für Menschen evtl. zu gefährlich sind. Um einen wichtigen Beitrag zur Autonomie

des Quadrokopters zu leisten wird im weiteren Verlauf dieser Arbeit ein Lokalisationsverfahren

entwickelt, dass sowohl robust arbeitet als auch schnell zu berechnen ist.
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3. Konzept

3.1. Überblick

In diesem Kapitel wird das dieser Arbeit zugrunde liegende Konzept vorgestellt. Dazu werden

zunächst die an das Lokalisationsverfahren zu stellenden Anforderungen beschrieben, welche in

den daran anschließenden Vergleich der bisher vorgestellten Lokalisationsverfahren (s. Kap. 2.3)

einfließen. Das daraus gewählte Verfahren wird schließlich weiter ausgearbeitet.

3.1.1. Anforderungen

Wie bereits in Kap. 1 erwähnt, wird das zu erarbeitende Lokalisationsverfahren im Rahmen des

AQopterI8-Projekts entwickelt. Daraus ergibt sich aus mehreren Gründen eine hohe Robustheit

als Anforderung an das Lokalisationsverfahren:

Plattform Quadrokopter Während bei einem bodengebundenen Roboter davon ausgegangen

werden kann, dass er seine Position nur ändert, wenn er seinen Antrieb einsetzt, muss bei

Quadrokoptern stets mit Ungenauigkeiten und Drift gerechnet werden. Ein Quadrokopter

ist äußeren Einflüssen, insb. Wind bzw. Luftzirkulationen, deutlich stärker ausgesetzt als

ein auf dem Boden stehender Agent. Selbst bei Windstille muss die Positionsregelung ei-

nes Quadrokopters immer wieder einen kleinen Drift ausgleichen, was zu minimalen Be-

wegungen führt.

Desweiteren bedeutet jede Bewegung eines Quadrokopters auch eine Neigung der Platt-

form, was Sensormessungen mit festen Richtungen (z.B. senkrecht zum Boden oder in der

Rotorebene) verfälscht. Diese Messungen könnten bspw. per Sensorfusion mit einem Nei-

gungssensor verbessert werden.
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Aspekt LowCost Neben einer Verfälschung von Sensorwerten durch z.B. unberücksichtigte

Neigungen der Plattform sind v.a. die Eigenschaften der Sensoren selbst für deren Zuver-

lässigkeit ausschlaggebend. Das Lokalisationsverfahren muss auch mit Sensorik funktio-

nieren, die nicht immer hochgenau und ohne jeden Drift arbeitet. Der Einsatz deutlich bes-

serer Sensorik ist in diesem Fall keine Lösung, da der erhebliche finanzielle Mehraufwand

den Zielen des AQopterI8-Projekts widerspricht. Außerdem ist ein Lokalisationsverfahren,

dass ausschließlich mit hochgenauen Messwerten funktionsfähig ist, per se nicht robust.

Aus diesem und dem vorherigen Punkt dieser Liste geht hervor, dass das zu wählende Lo-

kalisationsverfahren auch mit eher ungenauen und unzuverlässigen Messungen umgehen

können muss.

Geplantes Einsatzgebiet In der Einleitung dieser Arbeit wurde bereits zitiert, dass das AQo-

pterI8-Projekt entwickelt wird, um z.B. Rettungskräften eine weitere Möglichkeit zur Su-

che nach Menschen in brennenden Gebäuden oder eingestürzten Minenschächten zur Ver-

fügung zu stellen (vgl. Kap. 1). Aus diesem Grund werden hohe Ansprüche an die Auto-

nomie des Quadrokopters gestellt, welche insb. durch eine zuverlässige Lokalisation (vgl.

Kap. 2.3) gewährleistet werden muss. Es erscheint daher sinnvoll, ein Lokalisationsverfah-

ren zu wählen, dass das Problem der globalen Lokalisation (s. Kap. 2.3) lösen kann. So

ist gewährleistet, dass der Quadrokopter in der Lage ist, sich auch nach einem Verlust sei-

ner Positionsschätzung (was nie komplett ausgeschlossen werden kann, sei es durch eine

sich verändernde Umgebung oder Ungenauigkeiten im Lokalisationsverfahren) erneut zu

lokalisieren.

Ressourcenbedarf Das Lokalisationsverfahren muss möglichst sparsam mit den Ressour-

cen (Speicher und Rechenzeit) des Quadrokopters umgehen, da aufgrund der fliegenden

Plattform Quadrokopter Gewicht und Größe der mitgeführten Hardware begrenzt ist. Ein

schnelles und sparsames Lokalisationsverfahren ermöglicht den Einsatz etwas leistungs-

schwächerer Hardware, welche wiederum weniger Platz, Gewicht, Kühlung und Energie

benötigt, was dem Flugverhalten des Quadrokopters (Schnelligkeit, Manövrierfähigkeit,

Flugdauer, etc.) zugutekommt.
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Neben diesen Aspekten muss darauf geachtet werden, dass sich das gewählte Verfahren gut für

eine Occupancy Grid Map, wie sie im AQopterI8-Projekt genutzt wird (vgl. Schmitt [2012]),

umsetzen lässt.

3.1.2. Auswahl eines geeigneten Lokalisationsverfahrens

Es werden lokale Globalisationsverfahren aus den in Kap. 3.1.1 genannten Anforderungen aus-

geschlossen werden. Dabei soll auch die EKF-Lokalisation ausgeschlossen, da sie zwar auf eine

globale Lokalisation ausgebaut werden kann (s. Kap. 2.3.2), dies aber mit deutlichem Aufwand

verbunden ist. Zudem eignet sich EKF primär für Landmarken-basierte Karten, außerdem kann

eine Repräsentation der Positionsschätzung mittels einer Gaußschen Verteilung z.B. in der Nähe

von Wänden oder Ecken problematisch sein. Hier besteht insb. in komplexen Innenräumen die

Gefahr, dass eine Positionsschätzung durch z.B. Rundungs- oder Messfehler durch eine nahe-

gelegene Wand „springt“ (sich der Quadrokopter also plötzlich auf der anderen Seite der Wand

befindet).

Damit bleiben noch zwei Verfahren: Lokalisation per Histogramm oder Monte-Carlo-

Lokalisation bzw. Lokalisation per Partikelfilter. Grundsätzlich sollten beide Verfahren geeignet

sein, da sie sich für Occupancy Grid Maps sehr gut eignen, eine globale Lokalisation ermöglichen,

sehr viele Verteilungsformen annähern können (was zur Robustheit beiträgt) und (im Vergleich zu

z.B. Kalman Filter-basierten Verfahren) relativ einfach zu implementieren sind. Allerdings bietet

ein Partikelfilter noch einige Vorteile gegenüber einer Histogrammlokalisation:

Effizienz Wie bereits in Kap. 2.3.3 beschrieben stellt ein Histogramm keine sehr effiziente

Möglichkeit dar, Positionsschätzungen anzunähern. Bei einem Partikelfilter kann hingegen

(insb. über die Anzahl der Partikel) die benötigte Rechenleistung auf Kosten der Genauig-

keit - selbst während der Laufzeit - deutlich beeinflusst werden.

Erweiterbarkeit Aufgrund der Speicherauslastung ist es bei einer Lokalisation per Histogramm

mit großem Aufwand verbunden, das Verfahren effizient auf sehr große oder gar dreidimen-

sionale Karten auszuweiten. Ein Partikelfilter kann hingegen deutlich einfacher von der

Karte getrennt implementiert werden, wodurch in der Zukunft evtl. nötige Erweiterungen

etwas einfacher umzusetzen sind.
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Verbreitung Partikelfilter sind aufgrund ihrer Einfachheit und Effizienz weit verbreitet (vgl.

Kap. 2.3.4), wodurch eine große Menge an Informationen (insb. im Internet) diesbezüglich

zur Verfügung steht. Außerdem kann damit gerechnet werden, dass Partikelfilter aufgrund

ihrer Verbreitung stets weiterentwickelt und verbessert werden, was eine evtl. nötige zu-

künftige Verbesserung des in dieser Arbeit entwickelten Systems vereinfacht. Nicht zuletzt

basieren einige sehr effektive SLAM-Verfahren (z.B. FastSLAM, s. Kap. 2.4.3) auf Parti-

kelfiltern, was eine Erweiterung eines Partikel-basierten Lokalisationsverfahrens zu einem

SLAM-Verfahren ebenfalls etwas beschleunigen kann.

Damit fällt die Wahl schlussendlich auf ein Partikel-basiertes Lokalisationsverfahren. Dieses wird

im folgenden Kapitel entworfen.

3.2. Struktur

3.2.1. Übersicht

Die grundlegende Struktur des Lokalisationsverfahrens verdeutlicht Abb. 3.1.

Zentrales Element des Verfahrens ist der sog. ParticleController. Dieser verwaltet, wie der Name

Abbildung 3.1.: Grobe Struktur des Lokalisationsverfahrens

schon andeutet, alle existierenden Partikel. Das bedeutet, dass er neue Partikel erzeugt, bestehen-

de Partikel weiterentwickelt und zu schlechte Partikel wieder löscht. Jedes Partikel steht dabei

für eine mögliche Pose des Quadrokopters. Diese müssen regelmäßig auf Plausibilität überprüft

werden. Dazu nutzt der ParticleController eine Karte der Umgebung, in der er für jedes Partikel

berechnen kann, welche Abstandsmessungen der Sensorik erwartet werden. Durch einen Ver-

gleich der erwarteten Sensormessungen mit den tatsächlichen Messungen kann dann festgestellt

werden, wie weit das betroffene Partikel der wahren Pose des Quadrokopters entsprechen könnte.
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Sollten für ein Partikel mehrere Messungen in Folge nicht stimmen, wird es gelöscht. Ein neues

Partikel wird dann in der Nähe eines bestehenden, plausiblen Partikels platziert. Sollte ein solches

nicht existieren, wird das neue Partikel stattdessen zufällig in der Karte platziert.

Neben Abstandsmessungen benötigt der ParticleController auch Bewegungsinformationen. So-

bald diese erhalten wurden, werden sie auf alle Partikel angewendet, diese bewegen sich also

so, wie durch die gemessene Bewegung vorgegeben. Der Grund hierfür ist, dass nie bekannt ist,

welche Partikel der wahren Pose des Quadrokopters entsprechen, weshalb alle so behandelt wer-

den, als ob sie stimmen würden. Aus diesem Grund bewegen sich alle Partikel so, wie es der

Quadrokopter wahrgenommen hat (im Prinzip handelt es sich hierbei um eine sehr kurzfristige

Koppelnavigation für viele veschiedene Poses). Der Vorgang des Anwendens von Bewegungs-

informationen und Abstandsmessungen auf alle Partikel wird im weiteren Verlauf der Arbeit als

Weiterentwicklung der Partikel in die nächste Generation bezeichnet.

Die folgenden Kapitel vertiefen einzelne Aspekte des Lokalisationsverfahrens weiter. Alle IN

KAPITÄLCHEN gesetzten Begriffe sind Parameter, die vor oder während der Laufzeit des Loka-

lisationsverfahrens definiert werden können. Sie werden im Folgenden als gegeben betrachtet.

Eine genauere Erläuterung dieser Parameter findet sich in Anh. A.

3.2.2. Partikel

Zusätzlich zur Pose werden jedem Partikel pi zwei wichtige Kenngrößen zugeordnet: Vertrauen

|pi| und Alter ai. Jedes Partikel beginnt mit einem Alter von 0, welches sich bei jedem Erreichen

der nächsten Generation um 1 erhöht, und einem Vertrauen von 0.5. Das Alter erlaubt es, Partikel

anhand einer festen Grenze in „jung“ und „alt“ zu teilen, wodurch Berechnungen vom Alter eines

Partikels abhängig gemacht werden können (s. Abb. 3.3).

Deutlich wichtiger als das Alter eines Partikels ist sein Vertrauen (häufig auch als „Gewicht(ung)“

bezeichnet). In dieser Arbeit ist das Vertrauen als ein Wert in [0, 1] definiert, wobei 1 das best-

mögliche Vertrauen ist (Partikel mit einem Vertrauen deutlich über 0.5 werden als „gute“ Partikel

bezeichnet). Anschaulich gesagt beschreibt das Vertrauen, für wie wahrscheinlich es der Par-

ticleController hält, dass ein Partikel der wahren Pose des Quadrokopters entspricht. Sollte das

Vertrauen sehr niedrig sein, wird das Partikel gelöscht und durch ein neues ersetzt, da der Partic-

leController davon ausgeht, dass das Partikel definitiv nicht richtig ist.
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Die Aktualisierung des Vertrauens bei der Weiterentwicklung eines Partikels ist in Kap. 3.2 dar-

gestellt.

Das ursprüngliche Vertrauen (welches sich im Intervall [0, 1] befindet) wird durch drei Werte mo-

Abbildung 3.2.: Diagramm zur Vertrauensentwicklung jedes Partikels

difiziert (von oben nach unten): Dem Alter des Partikels, der Wahrscheinlichkeit, dass die Zelle

der Karte, in der sich das Partikel befindet, belegt ist, sowie dem Verhältnis von simulierten und

echten Abstandsmessungen. Diese Werte stammen aus speziellen Funktionen (s. nächste Kapi-

tel), welche durch FACTORAGE, FACTORCELL und FACTORREADING gewichtet werden. Dies

ermöglicht es, den Einfluss der einzelnen Funktionen auf das Vertrauen zu steuern.

Das modifizierte Vertrauen wird schließlich auf das gültige Intervall [0, 1] begrenzt. womit das
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neue Vertrauen berechnet wurde.

Alle Funktionen haben gemeinsam, dass sie nur aus linearen Verläufen zusammengesetzt sind.

Dies beschleunigt ihre Berechnung gegenüber z.B. logistischen Funktionsverläufen, liefert aber

dennoch qualitativ akzeptable Werte.

Die drei verwendeten Funktionen sind folgendermaßen aufgebaut:

3.2.2.1. functionAge

Diese Funktion erzeugt einen Bonus abhängig vom Alter des Partikels. Die Überlegung dahinter

ist, dass ältere Partikel bereits mehreren Überprüfungen standgehalten haben, sie also grundsätz-

lich eine etwas höhere Wahrscheinlichkeit haben, richtig zu sein. Der Bonus, den sie durch diese

Funktion erhalten, trägt dazu bei, sie gegenüber kleineren Unstimmigkeiten etwas widerstandsfä-

higer zu machen; mit älteren Partikeln wird also etwas toleranter umgegangen, um zu verhindern,

dass gute Positionsschätzungen aufgrund kurzzeitiger Unstimmigkeiten verworfen werden.

Die Funktion ist nach oben begrenzt (s. Abb. 3.3), damit ein hohes Alter nicht dazu führt, dass

Partikel „unsterblich“ werden. Sie wird durch folgende Formel beschrieben:

functionAge(x) = min(x, FUNCTIONAGETHRESHOLD) (3.1)

FUNCTIONAGETHRESHOLD ≥ 0 (3.2)

Dabei beschreibt FUNCTIONAGETHRESHOLD die Altersgrenze, durch die Partikel in jung und

alt (alt, falls ai ≥ FUNCTIONAGETHRESHOLD) geteilt werden.

3.2.2.2. functionCell

Da ein Quadrokopter - oder allgemeiner jeder Agent - nicht durch Wände gehen oder fliegen

kann, wird für jedes Partikel berücksichtigt, ob es sich laut Karte an einem Ort befindet, der nicht

durch eine Wand o.ä. blockiert ist. Sollte dies dennoch der Fall sein, wird das Vertrauen für das

betroffene Partikel deutlich gesenkt. Befindet sich das Partikel an einer freien Stelle wird dies

nicht als Bonus gewertet, da das der Normalfall sein sollte. Problematisch ist dieses Vorgehen,

wenn in der Karte eine Wand eingezeichnet ist, die in der Realität nicht existiert. Dies wird jedoch

in Kauf genommen, da es im Zweifelsfall sicherer ist, eine gute Positionsschätzung zu verwerfen,
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als sich an einer nicht zugänglichen Stelle zu lokalisieren.

Zu beachten ist, dass die Funktion (s. Abb. 3.4) positive Werte zurückliefert, diese jedoch negativ

in das Vertrauen einfließen (vgl. Abb. 3.2). Hiermit soll noch deutlicher gemacht werden, dass es

sich bei functionCell ausschließlich um einen Malus handelt.

cellFree (kurz cfree) und cellOccupied (kurz cocc) sind Grenzwerte, mit denen bestimmt werden

kann, ob eine Zelle der Karte frei oder belegt ist. Da jede Zelle eine Wahrscheinlichkeit besitzt,

mit der sie belegt ist (vgl. Schmitt [2012]), muss dieser Wert etwas diskretisiert werden. Dazu

wird festgelegt, dass eine beliebige Zelle ci mit einer Wahrscheinlichkeit p(ci) dann als frei inter-

pretiert wird, wenn p(ci) ≤ cfree, und sie dann als belegt interpretiert wird, wenn p(ci) ≥ cocc.

Zwischen cellFree und cellOccupied kann ein Bereich liegen, in dem keine sinnvolle Annahme

über die Zellenbelegung getroffen werden kann. Aus diesem Grund wird im betroffenen Bereich

des Graphen ein Anstieg von cellFree zu cellOccupied verwendet, sodass sich auch Zellen mit

unbekannter Belegung negativ auf das Vertrauen eines Partikels auswirken, gleichzeitig aber ein

kontinuierlicher Übergang zwischen beiden Grenzwerten vorliegt.

Folgende Formel liegt der Funktion zugrunde:

functionCell(x) =


0 für x ≤ cfree
x−cfree

cocc−cfree
für cfree < x < cocc

1 für x ≥ cocc

(3.3)

3.2.2.3. functionReading

Der wichtigste Aspekt der Lokalisation sind Abstandsmessungen. Wie bereits in Kap. 3.2.2 dar-

gestellt ist es nötig, die realen Sensormessungen mit den erwarteten zu vergleichen und das Ver-

hältnis mit einer Zahl zu bewerten, die dann in das Vertrauen des Partikels einfließt. Dazu wird

folgendes Verfahren benutzt:

• Gegeben sind n reale Abstandsmessungen s1..sn

sowie n erwartete Abstände a1..an

• Berechne n absolute Abweichungen: ∆i = |si − ai| , i = 1..n

Es werden absolute Abweichungen benutzt, da relative Abweichungen (per Quotient) dazu

führen würden, dass auf weite Entfernungen große Abweichungen vom erwarteten Wert

genauso bewertet würden wie kleine Abweichungen auf kurze Entfernungen. Damit wür-
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Abbildung 3.3.: functionAge

Abbildung 3.4.: functionCell
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den allerdings Abstandsinformationen teilweise geringere Beachtung finden, da es durch-

aus von Bedeutung sein kann, ob sich in größerer Entfernung wie erwartet ein Hindernis

befindet oder nicht.

• Entfernen der FUNCTIONREADINGBADSENSORS größten Werte aus ∆ führt zu ∆′ sowie

n′ = n− FUNCTIONREADINGBADSENSORS

Dieser Schritt dient dazu, eine gewisse Anzahl von Fehlmessungen zu verwerfen, wie sie

z.B. durch Sonneneinstrahlung, vorbeigehende Personen oder schlicht defekte Sensorik

verursacht werden können.

• Berechnen des durchschnittliches Fehlers: x =
∑

∆′

n′

Der durchschnittliche Fehler x wird nun durch functionReading in einen Wert umgewandelt

(s. Abb. 3.5), der anschließend in das Gesamtvertrauen des Partikels einfließt. Solange x <

FUNCTIONREADINGOFFSET ist, wird die reale Messung als zur erwarteten Messung passend

interpretiert, was das Partikelvertrauen positiv beeinflusst. Durch ein geeignetes FUNCTIONREA-

DINGOFFSET kann auch die Messungenauigkeit der verwendeten Abstandssensorik berücksich-

tigt werden, da sowohl x als auch FUNCTIONREADINGOFFSET Längen sind, die direkt im Bezug

auf die realen Umstände interpretiert werden können: x = 37cm bedeutet bspw., dass die Ab-

standsmessungen im Schnitt 37cm von den erwarteten Werten abweichen (vgl. dazu auch Anh.

A).

Es ist zu beachten, dass dieses Verfahren insofern etwas problematisch ist, als dass die Funktion

Abbildung 3.5.: functionReading
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die Messwerte nicht auf Plausibilität überprüft. Sollte also der Fall eintreten, dass zufällig alle

Abstandsmessungen gleichzeitig fehlerhaft sind, überträgt sich dieser Fehler durch die Funktion

weiter auf die Partikel, was im schlimmsten Fall zum Aussterben aller Partikel führen kann. Die-

ser Fall wird im Rahmen dieser Arbeit als sehr unwahrscheinlich betrachtet, da der verwendete

Quadrokopter insgesamt 28 Sensoren zur Abstandsmessung benutzt (s. Kap. 4.1).

3.2.3. Weiterentwicklung der Partikel

Sobald sich der Quadrokopter von Punkt A nach Punkt B bewegt hat, wird in B eine Abstandsmes-

sung durchgeführt. Diese wird zusammen mit der gemessenen Bewegung von A nach B an den

ParticleController übergeben, welcher mit diesen Informationen alle Partikel weiterentwickelt.

Abb. 3.6 verdeutlicht das Konzept der Weiterentwicklung. Zu Beginn wartet der ParticleCon-

troller auf die benötigten Bewegungs- und Abstandsinformationen. Dann wird für jedes Partikel

zunächst geprüft, ob dessen Vertrauen noch akzeptabel ist (|pi| ≥ MINCONFIDENCE). Sollte dies

nicht der Fall sein wird das Partikel gelöscht, da davon ausgegangen werden kann, dass es die

wahre Pose des Quadrokopters nicht annähert. Ansonsten wird das Vertrauen des Partikels aktua-

lisiert. Dies beinhaltet alle in Kap. 3.2.2 vorgestellten Aspekte, also z.B. den Vergleich zwischen

realen Abstandsmessungen und den für dieses Partikel vermuteten Abstandsmessungen.

Nachdem alle vorhandenen Partikel weiterentwickelt wurden, werden solange neue Partikel er-

zeugt, bis die gewünschte (als ideal vermutete) Anzahl erreicht wurde. Dabei werden GROUP-

PROBABILITY (s. Anh. A) der neuen Partikel in der Nähe guter Partikel platziert, die restlichen

werden zufällig verteilt. Zufällig platzierte Partikel werden mit |pi| := 0.5 erzeugt, während in der

Nähe guter Partikel platzierte Partikel mit einem höheren Vertrauen erzeugt werden. Dies bewirkt,

dass sich der Algorithmus auf die vielversprechendsten Vermutungen konzentriert. Gleichzeitig

sorgen die zufällig platzierten Partikel dafür, dass stets auch berücksichtigt wird, dass evtl. alle

momentanen Vermutungen falsch sind.

Nachdem die gewünschte Anzahl an Partikeln erreicht wurde wird das durschnittliche Vertrauen

C aller Partikel berechnet. Dies ist eine wichtige Kenngröße, da ein großes C bedeutet, dass der

ParticleController sich sehr sicher ist, eine korrekte Lokalisation durchgeführt zu haben. Dieses

Vertrauen könnte als einfaches arithmetisches Mittel berechnet werden. Da jedoch neu platzierte

Partikel in den ersten Generationen noch große Schwankungen des Vertrauens aufweisen können

(durch schlechte oder besonders gute Platzierung), wird stattdessen ein gewichtetes arithmeti-
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Abbildung 3.6.: Schema der Weiterentwicklung aller Partikel
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sches Mittel verwendet, welches alte Partikel stärker als junge Partikel gewichtet.

Abschließend wird die ideale Anzahl an Partikeln berechnet. Sobald der ParticleController eine

Lokalisation durchführen konnte, konzentriert sich der Großteil der Partikel auf einige wenige

Poses. Da es jedoch nicht nötig ist, eine Pose mit mehreren hundert Partikeln anzunähern, wird

die ideale Partikelzahl bei hohem Durschnittsvertrauen C gesenkt. Dies senkt gleichzeitig die be-

nötigte Rechenzeit. Es ist zu beachten, dass die berechnete ideale Anzahl niemals zu klein (z.B.

weniger als 10 Partikel) wird, da sonst auch eine gefundene Pose nicht gut verfolgt werden kann.

Gleichzeitig darf MAXPARTICLES nicht überschritten werden, was die maximal erlaubte Anzahl

an Partikeln angibt (und damit auch die benötigte Rechenzeit begrenzt).

3.2.3.1. Bewegungsmodell

Zur Modellierung der Bewegung wird das sog. Odometry Motion Model genutzt, wie es u.a. in

Thrun et al. [2005] vorgestellt wird. Dabei wird auf eine Pose zunächst eine Rotation δrot1 ange-

wendet. Dann wird eine Translation um δtrans in Blickrichtung durchgeführt, gefolgt von einer

zweiten Rotation δrot2 am erreichten Punkt (vgl. Abb. 3.7). Der Vorteil dieser Bewegungsreprä-

Abbildung 3.7.: Das Odometry Motion Model. Quelle: Thrun et al. [2005]

sentation ist ihre Einfachheit und Flexibilität. Zusätzlich können künstliche Fehler in jedem Be-

wegungsschritt hinzugefügt werden, welche eine charakteristische Streuung der Partikel ergeben.

Dies ist in Anh. C dargestellt.
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3.2.3.2. Sensormodell

Ein geeignetes Sensormodell wurde bereits in Schmitt [2012] vorgestellt. Dabei wird jeder Sen-

sor durch einen Kegel mit definierter maximaler Reichweite repräsentiert. In der Karte werden

alle Zellen bestimmt, die im Sensorkegel liegen, und die Entfernung vom Sensor zur nahesten

belegten Zelle berechnet. Wie in Abb. 3.8 dargestellt führt dies dazu, dass am Rand des Kegels

liegende Hindernisse so gemessen werden, als ob sie sich in der Mitte des Sensorkegels befin-

den. Damit kommt man dem realen Verhalten von Ultraschall- oder Infrarotsensoren sehr nahe.

Weder den realen noch den simulierten Abstandsmessungen wird ein künstlicher Fehler hinzu-

Abbildung 3.8.: Verschiebung von Hindernissen in die Kegelmitte. Quelle: Schmitt [2012]

gefügt, da die realen Messungen bereits fehlerbehaftet sind und die für den Vergleich von realen

und künstlichen Messungen zuständige Funktion (s. Kap. 3.2.2.3) eine Fehlertoleranz besitzt. Ein

künstlicher Fehler würde diese Toleranz evtl. schon alleine komplett auslasten, wodurch reale

Fehler nichtmehr ausgeglichen werden könnten.
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4. Implementierung

In diesem Kapitel wird die Umsetzung des zuvor vorgestellten Konzepts erläutert. Dazu wird

zunächst das bestehende System erläutert, auf das diese Arbeit aufbaut. Darauf folgt eine Vor-

stellung der Softwarestruktur sowie einzelner Details. Die Software wird dann in das bestehende

System eingebunden. Abschließend wird die erstellte Benutzeroberfläche erklärt.

4.1. Bestehendes System

Das Software-System des AQopterI8-Projekts besteht aus zwei Teilen: Zum einen der Software,

die auf dem Quadrokopter läuft, zum anderen der Software der „Bodenstation“, die alle Daten

des Quadrokopters empfängt und verarbeitet. Außerdem erlaubt sie das Senden von Befehlen an

den Quadrokopter. Die Bodenstation besteht aus einem gewöhnlichen Windows-Rechner, der per

Bluetooth mit dem Quadrokopter kommuniziert.

Wie bereits in Kap. 3.2 erläutert, müssen für den Lokalisationsalgorithmus Abstands- und Be-

wegungsmessungen bereitgestellt werden. Dazu wird einerseits das in Benz [2013] entwickelte

System zur Abstandsmessung verwendet. Es fusioniert in acht Richtungen insgesamt 16 Infrarot-

sowie 12 Ultraschall-Sensoren. Damit wird eine Reichweite von bis zu 5m erreicht, die erziel-

te Genauigkeit hängt dabei u.a. von der Oberflächenbeschaffenheit des detektierten Objekts und

dem Einfallwinkel der Signale ab.

Zur Bewegungsmessung wird ein sog. Optical Flow-Sensor (dt. optischer Fluss, kurz OF) ein-

gesetzt, dessen Integration in das AQopterI8-Projekt in Strohmeier [2012] beschrieben ist. Ein

OF-Sensor ist eine auf den Boden gerichtete Kamera, deren Signal so analysiert wird, dass damit

Bewegungen des Bildausschnittes berechnet werden können.

Die verwendete Sensorik sendet ihre Messwerte auf Anfrage an die Bodenstation, wodurch diese

Arbeit vollständig in das Bodenstations-System integriert werden kann. Das dortige Programm
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wurde mit C++ und Qt, einer Bibliothek u.a. zur Entwicklung von Benutzeroberflächen, ent-

wickelt (s. Abb 4.1).

Abbildung 4.1.: Qt-Entwicklungsumgebung

4.2. Strukturierung der Software

Bei der Programmierung des Lokalisationsalgorithmus und der zugehörigen Benutzeroberfläche

wurde versucht, eine logische Aufteilung und Kapselung der implementierten Funktionalität zu

erreichen. Dazu wurden folgende Klassen angelegt:

Pose Repräsentiert eine Pose. Enthält bereits einige Methoden, um eine Pose durch Bewegun-

gen zu beeinflussen.

Movement Entspricht einer Bewegung der in Kap. 3.2.3.1 vorgestellten Form.

Particle Eine Instanz dieser Klasse repräsentiert ein Partikel. Es verfügt über alle relevanten

Eigenschaften wie Alter und Vertrauen und kann bewegt werden.

ParticleController Diese (als Singleton zu verwendende) Klasse beinhaltet den eigentlichen

Lokalisationsalgorithmus und verwaltet alle existierenden Partikel (vgl. Kap. 3.2). Dem

ParticleController müssen die zur Weiterentwicklung der Partikel benötigten Messwerte
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übergeben werden. Außerdem können hier alle Parameter des Lokalisationsverfahrens ein-

gestellt werden.

LocalizationGUIController Diese Klasse ist das Bindeglied zwischen dem ParticleController

und der Benutzeroberfläche. Einerseits werden alle relevanten Daten des ParticleControl-

lers an die Benutzeroberfläche weitergereicht (und dort entsprechend dargestellt), ande-

rerseits werden alle Benutzereingaben ausgewertet, validiert und an den ParticleController

weitergegeben.

LocalizationDataReceiver Diese Klasse baut auf einer Klasse namens „DataReceiver“ auf

und empfängt und verarbeitet die vom Quadrokopter empfangenen Daten. Diese werden

dann an den ParticleController weitergereicht.

Der ParticleController wurde so konzipiert, dass er von der Benutzeroberfläche vollstän-

dig getrennt funktionsfähig ist. Er kann seine benötigten Daten außerdem aus einer belie-

bigen Quelle erhalten. Momentan sind dies die Nutzeroberfläche (simulierte Daten) und der

LocalizationDataReceiver (tatsächliche Quadrokopterdaten).

Abb. 4.2 gibt nochmals einen Überblick über den Zusammenhang der implementierten Klassen.

Abbildung 4.2.: Zusammenhang der implementierten Klassen
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4.2.1. Sensormodell

Während der Entwicklung der Software wurde deutlich, dass die bestehende Möglichkeit zur

Simulation von Abstandsmessungen zu langsam arbeitete. Auf einem Atom N270-Prozessor be-

deutete dies, dass bereits bei ca. 20 Partikeln (was 160 Abstandsmessungen entspricht, da acht

Richtungen) eine Laufzeit von mehr als einer halben Sekunde benötigt wurde. Deshalb wurde

entschieden, die Abstandssensorik stattdessen durch mehrere Linien anzunähern. Dazu wurde ein

Algorithmus entwickelt, der mit einer Linie die nächste belegte Zelle ermitteln kann (s. Kap.

B). Ein Sensorkegel wurde dann jeweils mit fünf dieser Linien repräsentiert: Eine in der Mitte,

jeweils eine am äußersten Rand des Kegels, die verbleibenden beiden genau zwischen den bis-

herigen drei Linien (s. Abb. 4.3). Die kürzeste gemessene Entfernung wurde dann als simulierter

Messwert verwendet. Dadurch wurde der Algorithmus ungefähr um zwei Größenordnungen, also

Abbildung 4.3.: Annäherung eines Sensorkegels durch Strahlen

deutlich, beschleunigt. Die verlorene Genauigkeit kann vernachlässigt werden, da nur die Ent-

fernung zum nahesten Objekt von Interesse ist. Selbst wenn ein oder zwei Linien durch einen

„Spalt“ in der Karte eine viel zu hohe Entfernung messen, sollte dies durch die verbleibenden

Linien aufgefangen werden.
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4.3. Einbindung in bestehendes System

Auf das bestehende System musste kaum Einfluss genommen werden. In der Kontrollsoftware

wurde ein neuer Reiter „Localization“ angelegt, der alle relevanten Elemente zur Bedienung des

Lokalisationsverfahrens enthält. Ferner musste dafür gesorgt werden, dass der ParticleController

alle benötigten Datenpakete vom Quadrokopter erhält. Alle Erweiterungen der Kontrollsoftware

konnten durchgeführt werden, ohne Änderungen am bestehenden Code vornehmen zu müssen.

Die Quadrokopter-Firmware wurde weder verändert noch erweitert, da bereits alle benötigten

Datenpakete (Abstands- und Bewegungsmessungen) geschickt werden können.

4.4. Beschreibung der Benutzeroberfläche

Die implementierte Benutzeroberfläche ist in Abb. 4.4 dargestellt. Die einzelnen Bedienelemente

Abbildung 4.4.: Screenshot der implementierten Benutzeroberfläche

sind durch rote Nummern nachträglich gekennzeichnet worden. Die folgende Liste erläutert die

nummerierten Elemente:
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1: Aktiviert die Bedienelemente des Lokalisationsverfahrens. Mit dieser Checkbox können die

Einstellungen vor unbeabsichtigten Änderungen geschützt werden.

2: Der Reset-Button setzt den ParticleController sowie die entsprechende Darstellung auf den

Anfangszustand zurück. Dadurch werden alle Partikel gelöscht und die aktuelle Generation

wieder auf 0 gesetzt.

3: In diesem Bereich werden die Karte der Umgebung sowie die Partikel und Positionsschät-

zungen abgebildet. Mit dem Mausrad kann der Bildausschnitt vergrößert oder verkleinert

werden, mit einem Mausklick lässt sich der Bildausschnitt verschieben.

4: Der Reiter „Parameter“ enthält alle Parameter des Lokalisationsverfahrens. Diese können dort

sowohl betrachtet als auch verändert werden.

5: Sobald diese Option aktiviert ist, empfängt der ParticleController automatisch aktuelle Mes-

sungen vom Quadrokopter und führt die Lokalisation selbstständig durch. Zuvor muss unter

„Connect“ eine Verbindung hergestellt worden sein und unter „Debug“ müssen die Pakete

„IR US Fused“ und „Visual Odometry“ ausgewählt worden sein.

6: Dieser Button veranlasst das Programm dazu, die Karte neu zu zeichnen, was z.B. nach dem

Laden einer neuen Karte sinnvoll ist.

7: Über die Radioboxen lässt sich die Darstellung im rechten Abschnitt des Fensters beeinflus-

sen. „Alle Partikel“ stellt nicht nur Positionsschätzungen, sondern auch jedes einzelne Par-

tikel dar, was je nach Grafikkarte und Partikelzahl das Programm ausbremsen kann.

8: Diese Liste enthält - zusätzlich zur grafischen Darstellung im rechten Teil des Fensters - eine

Auflistung aller momentanen Positionsschätzungen, also aller Poses, von denen das Loka-

lisationsverfahren meint, dass sie sehr wahrscheinlich der wahren Pose des Quadrokopters

entsprechen. Die Werte stehen für x-Koordinate, y-Koordinate und Orientierung.

9: Gibt an, in der wievielten Generation sich der ParticleController befindet. Dies ist identisch

zur Zahl der bisher durchgeführten Iterationen.

10: Gibt eine gemittelte Rechenzeit in Millisekunden an. Es wird nur das eigentliche Lokalisati-

onsverfahren berücksichtigt, die Benutzeroberfläche wird in die Messung nicht einbezogen.
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11: Dieser Balken stellt dar, wie viele Partikel (der maximal erlaubten) momentan benutzt wer-

den (vgl. Kap. 3.2.3). Ein voller Balken bedeutet, dass so viele Partikel wie erlaubt genutzt

werden, bei einem halben Balken werden nur halb so viele Partikel wie erlaubt genutzt.

12: Hier wird das durchschnittliche Vertrauen aller momentan existierenden Partikel dargestellt.

Ein voller Balken entspricht einem Vertrauen von 1, ein leerer Balken einem durchschnitt-

lichen Partikel-Vertrauen von 0. Je voller der Balken ist, desto mehr glaubt das Lokalisati-

onsverfahren also, die wahre Pose des Quadrokopters angenähert zu haben.

13: Mit dieser Checkbox werden die Benutzeroberflächenelemente aktiviert (s. Punkt 14-16 die-

ser Aufzählung), mit denen dem ParticleController manuell Werte übergeben werden kön-

nen. Gleichzeitig wird dafür gesorgt, dass ein evtl. bisher stattfindender Datenempfang de-

aktiviert wird.

14: Mit einem Klick auf diesen Button werden die eingegebenen Werte an den ParticleController

geschickt.

15: Hier wird die zuletzt durchgeführte Bewegung festgelegt.

16: Hier werden die einzelnen Abstandsmessungen festgelegt. Sensor 0 zeigt in Blickrichtung,

dann wird im Uhrzeigersinn durchnummeriert.

17: In diesem Abschnitt kann dem Lokalisationsverfahren die wahre Position des Quadrokopters

mitgeteilt werden. Dies ist zu jedem Zeitpunkt möglich.

18: Evtl. ist es sinnvoll, die Orientierung des Quadrokopters künstlich einzuschränken (da er z.B.

mit gleichbleibender Orientierung fliegt). Je stärker die Einschränkung, desto effektivier

arbeitet das Lokalisationsverfahren. Allerdings kann dann kein Rotationsdrift des Quadro-

kopters berücksichtigt werden. Sollte der Quadrokopter also dazu neigen, im Laufe der Zeit

seine Orientierung zu ändern, ist eine Einschränkung nicht sinnvoll.

A: Hier ist eine Ansammlung von Partikeln sichtbar. Jedes Partikel wird durch einen Pfeil dar-

gestellt, die Richtung des Pfeils gibt dabei die Orientierung des Partikels (oder genauer

seiner Pose) an. Grüne Partikel besitzen ein sehr gutes, gelbe ein mittelmäßiges und rote

ein schlechtes Vertrauen. Sobald der ParticleController der Ansicht ist, eine erfolgreiche
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Lokalisation durchgeführt zu haben, wird die ermittelte Positionsschätzung ebenfalls ein-

gezeichnet. Sie wird als etwas größeres, blaues Partikel dargestellt.

Zu beachten ist, dass eine Orientierung von 0° einer Ausrichtung nach rechts entspricht.
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5. Evaluierung

In diesem Kapitel wird das implementierte Lokalisationsverfahren evaluiert. Dazu werden zu-

nächst manuell Werte per Benutzeroberfläche eingegeben und das Verhalten des Lokalisations-

verfahrens simuliert und analysiert. Anschließend wird der Vorgang mit realen Sensorwerten wie-

derholt.

In den folgenden Kapiteln werden nicht alle Generationen abgebildet, da in manchen Genera-

tionen nichts bedeutendes passiert. Auf der dieser Arbeit beigelegten CD sind alle Messreihen

vollständig enthalten.

5.1. Evaluierung mit simulierten Sensorwerten

Zunächst wurde die in Abb. 5.1 dargestellte Karte erzeugt. Diese wurde für alle folgenden Eva-

luierungen genutzt, um vergleichbare Ergebnisse zu erzielen. Zu beachten ist, dass die Karte für

das Lokalisationsverfahren etwas problematisch ist, da die obere Hälfte des Raumes aus drei

ähnlich großen Quadraten besteht. Zudem enthält der Raum durch den einfachen Aufbau keine

komplexen Merkmale wie schräge Wände, Säulen o.ä. Die geflogene Trajektorie wird durch die

rote Linie dargestellt. An jedem Wegpunkt (1-9) wurden die in Tabelle 5.1 aufgeführten Werte in

die Benutzeroberfläche eingegeben (wobei Sensor 0 nach oben zeigt, danach wird im Uhrzeiger-

sinn nummeriert). Dabei wurde jede Iteration mittels Screenshot dokumentiert. Der Quadrokopter

bewegt sich von Wegpunkt zu Wegpunkt, wobei seine Orientierung konstant (in Abb. 5.1 nach

oben) ist. Die folgenden Kapitel dokumentieren das Verhalten des Lokalisationsverfahrens mit

verschiedenen Parametern.
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Abbildung 5.1.: Die für die Evaluierung genutzte Karte

Wegpunkt Sensor 0 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7
2 50 60 150 50 50 50 150 60
3 210 100 150 50 50 50 125 130
4 350 70 70 70 150 130 125 130
5 260 70 70 70 245 130 125 130
6 160 170 120 85 220 130 125 130
7 60 65 195 165 220 130 125 65
8 60 65 165 145 135 230 195 65
9 60 65 65 70 135 145 195 65

Tabelle 5.1.: An das Lokalisationsverfahren übergebene Abstandsmesswerte (in cm)
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5.1.1. Lokalisation mit bekannter Startpose

Zunächst wird das Verhalten bei bekannter Startpose überprüft. Dazu wurde dem Lokalisations-

verfahren zu Beginn über die entsprechenden Bedienelemente der Benutzeroberfläche mitgeteilt,

dass sich der Quadrokopter an Wegpunkt 1 befindet.

Die Parameter (s. Anh. A) wurden folgendermaßen festgelegt:

readingBadSensors = 1

maxParticles = 50

ageThreshold = 5

minConfidence = 0.25

groupProbability = 0.95

nextGenFactorAge = 0.01

nextGenFactorCell = 0.9

nextGenFactorReading = 1.0

nextGenOffsetReading = 7

nextGenErrorTranslation = 0.025

nextGenErrorRotation = 0.0025

5.1.1.1. Geringer Bewegungsfehler

Es werden die Parameter aus Kap. 5.1.1 genutzt. Aus Abb. 5.2 wird ersichtlich, dass die Trajek-

torie gut verfolgt wird. In diesem Fall könnte es evtl. sinnvoll sein, die Toleranzen (insb. nextGe-

nOffsetReading) zu verringern, sodass die Streuung der Partikel weiter vermindert wird.

5.1.1.2. Mittlerer Bewegungsfehler

Es werden die in Kap. 5.1.1 beschriebenen Parameter genutzt, jedoch sind nextGenErrorTransla-

tion und nextGenErrorRotation jeweils um Faktor 5 größer. Hier macht sich die Partikelstreuung

bereits bemerkbar (s. Abb. 5.3). Kurzzeitig verliert das Lokalisationsverfahren seine Positions-

schätzung, welche jedoch wieder erlangt werden kann.
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(a) Wegpunkt 1 (b) Wegpunkt 2 (c) Wegpunkt 3

(d) Wegpunkt 4 (e) Wegpunkt 5 (f) Wegpunkt 6

(g) Wegpunkt 7 (h) Wegpunkt 8 (i) Wegpunkt 9

Abbildung 5.2.: Partikelverhalten bei geringem Bewegungsfehler
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(a) Wegpunkt 1 (b) Wegpunkt 2 (c) Wegpunkt 3

(d) Wegpunkt 4 (e) Wegpunkt 5 (f) Wegpunkt 6

(g) Wegpunkt 7 (h) Wegpunkt 8 (i) Wegpunkt 9

Abbildung 5.3.: Partikelverhalten bei mittlerem Bewegungsfehler
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5.1.1.3. Großer Bewegungsfehler

Es werden die Parameter aus Kap. 5.1.1 genutzt, jedoch sind nextGenErrorTranslation und next-

GenErrorRotation jeweils um Faktor 10 größer. Hier macht sich die Partikelstreuung deutlich

stärker bemerkbar (s. Abb. 5.4). Bereits bei Wegpunkt 3 befinden sich deutlich weniger Partikel

an der korrekten Position als noch bei Wegpunkt 2. Bei einem derart großen Bewegungsfehler hat

das Lokalisationsverfahren bereits leichte Schwierigkeiten. Dennoch kann die Trajektorie korrekt

weiter verfolgt werden. In einem solchen Fall ist es sinnvoll, die Anzahl der Partikel zu erhöhen,

wodurch trotz der Partikelstreuung eine gute Abdeckung des Bereichs der möglichen Pose erzielt

wird.

5.1.1.4. Fazit

Zusammenfassend kann gesagt werden, dass das Lokalisationsverfahren in der Lage ist, eine

Trajektorie korrekt zu verfolgen. Auch bei beträchtlichen Bewegungsfehlern ist es noch möglich,

kurzzeitige Unsicherheiten aufzufangen.

5.1.2. Lokalisation mit unbekannter Startpose

Im Anschluss an das Verfolgen einer Trajektorie mit bekannter Startpose wurde überprüft, ob der

Algorithmus auch in der Lage ist, sich ohne bekannte Startpose korrekt zu lokalisieren. Dafür

wurde wieder die gleiche Trajektorie wie in Kap. 5.1.1 genutzt und der Algorithmus, falls erfor-

derlich, am letzten Wegpunkt so lange fortgeführt, bis eine Positionsschätzung bestimmt werden

konnte.

Es werden die in Kap. 5.1.1 aufgeführten Parameter genutzt, allerdings wurde maxParticles auf

250 erhöht. Abb. 5.5 zeigt das Verhalten des Lokalisationsverfahrens. Die Lokalisation wird er-

folgreich durchgeführt. Zwar konnte die richtige Pose erst nach Abfliegen der Trajektorie ermittelt

werden, allerdings liegt das in der Natur des Lokalisationsverfahrens: Durch die zufällige Plat-

zierung neuer Partikel ist das Verfahren darauf angewiesen, dass Partikel zufällig richtig platziert

werden. Dies ist von der ersten Generation an theoretisch möglich, in diesem Fall wurden Partikel

erst ca. ab der zehnten Generation richtig platziert.
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(a) Wegpunkt 1 (b) Wegpunkt 2 (c) Wegpunkt 3

(d) Wegpunkt 4 (e) Wegpunkt 5 (f) Wegpunkt 6

(g) Wegpunkt 7 (h) Wegpunkt 8 (i) Wegpunkt 9

Abbildung 5.4.: Partikelverhalten bei großem Bewegungsfehler
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(a) Generation 10 (b) Generation 11 (c) Generation 12

Abbildung 5.5.: Lokalisation mit unbekannter Startpose

5.1.2.1. Lokalisation mit 50 Partikeln

Es wird getestet, ob eine Lokalisation auch mit nur 50 Partikeln möglich ist. Bis auf maxParticles

wurden alle Parameter wie in Kap. 5.1.2 beschrieben gesetzt. Wie in Abb. 5.6 zu sehen ist, konnte

(a) Generation 131 (b) Generation 132 (c) Generation 133

Abbildung 5.6.: Lokalisation mit unbekannter Startpose, 50 Partikel

auch hier eine Lokalisation korrekt durchgeführt werden. Durch die geringe Partikelzahl dauerte

dies allerdings bis etwa in die 130. Iteration. Allerdings muss in diesem Zusammenhang beachtet

werden, dass eine geringe Partikelzahl auch eine kurze Rechendauer pro Iteration bedeutet.

Auf der dieser Arbeit beigefügten CD sind alle Screenshots der Evaluierungen auch unbearbeitet

enthalten, wodurch die Benutzeroberfläche sichtbar ist. Dadurch lässt sich die durchschnittliche

Dauer von Iterationen abschätzen. In diesem Fall benötigte eine Iteration ca. 10ms, was bedeutet,

dass die hier benötigten 130 Iterationen in etwas über einer Sekunde bereits berechnet waren.
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5.1.2.2. Lokalisation mit 1000 Partikeln

Als Gegenstück zu Kap. 5.1.2.1 wird evaluiert, ob eine hohe Partikelzahl eine genauere oder

schnellere Lokalisation bewirkt. Abgesehen von maxParticles sind die Parameter identisch zu

Kap. 5.1.2. Abb. 5.7 zeigt, dass eine hohe Partikelzahl auch das Risiko von Falschlokalisationen

(a) Generation 6 (b) Generation 7 (c) Generation 8

(d) Generation 9 (e) Generation 10 (f) Generation 11

Abbildung 5.7.: Lokalisation mit unbekannter Startpose, 1000 Partikel

erhöht. Allerdings muss beachtet werden, dass auch die gefundene Pose gut zu den Abstands-

messungen von Wegpunkt 9 passt, insofern ist die Falschlokalisation hier großteils durch die

Karte bedingt. Dennoch wäre es besser, wenn das Lokalisationsverfahren in diesem Fall neben

der gefundenen Pose auch die richtige bei Wegpunkt 9 findet und beide Poses gleichberechtigt

weiterverfolgt werden. Ein komplexeres Lokalisationsverfahren könnte möglicherweise auch die

bisherigen Bewegungen berücksichtigen, sodass eine der beiden Poses ausgeschlossen werden

kann.
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5.1.2.3. groupProbability = 0.6

Mit den Parametern aus Kap. 5.1.2 und einer geänderten groupProbability soll ermittelt werden,

welchen Einfluss dieser Parameter auf die Konvergenz des Lokalisationsverfahrens hat. Es wird

(a) Generation 18 (b) Generation 19 (c) Generation 20

Abbildung 5.8.: Lokalisation mit unbekannter Startpose, groupProbability = 0.6

deutlich, dass das Lokalisationsverfahren nun kaum noch konvergiert und auch gefundene Posi-

tionsschätzungen schnell wieder verwirft (s. Abb. 5.8). Mit diesem Parameter könnte also dem

in Kap. 5.1.2.7 beschriebenen Problem, dass sich das Verfahren zu schnell auf eine Pose konzen-

triert, begegnet werden. Allerdings ist der Wert hier offensichtlich zu klein gewählt, weshalb in

Kap. 5.1.2.4 und Kap. 5.1.2.5 nochmal die Auswirkung einer Steigerung von groupProbability

evaluiert wird.

5.1.2.4. groupProbability = 0.7

Wie in Kap. 5.1.2.3 erwähnt folgt eine Evaluierung für eine höhere groupProbability. Es fällt

auf, dass sich das Lokalisationsverfahren zunächst falsch lokalisiert (s. Abb. 5.9). Die Positions-

schätzung wird jedoch wieder verworfen. Schlussendlich erfolgt dann in der 143. Generation die

richtige Lokalisierung, wobei die späte Lokalisierung nicht auf groupProbability, sondern viel-

mehr auf die Anzahl der Partikel zurückzuführen ist (vgl. Kap. 5.1.2.2).

5.1.2.5. groupProbability = 0.8

Der Parameter groupProbability wird im Vergleich zu Kap. 5.1.2.4 nochmal gesteigert. Das Lo-

kalisationsverfahren lokalisiert sich zunächst falsch und verwirft diese Positionsschätzung auch
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(a) Generation 20 (b) Generation 21 (c) Generation 22

(d) Generation 23 (e) Generation 24 (f) Generation 143

Abbildung 5.9.: Lokalisation mit unbekannter Startpose, groupProbability = 0.7

kurzzeitig wieder (s. Abb. 5.10). Wenige Generationen später wird diese falsche Positionsschät-

zung jedoch wieder aufgenommen. Zu beachten ist, dass sich dennoch ein Partikel an der eigent-

lich richtigen Position befindet. Hier besteht Optimierungsbedarf (vgl. Kap. 5.1.2.2).

5.1.2.6. Einschränkung der Orientierung

Abschließend wird die mögliche Partikelorientierung auf einen Bereich von 85°-95° einge-

schränkt, da der Quadrokopter die Trajektorie mit gleichbleibender Orientierung abfliegt. Abb.

5.11 zeigt, dass eine Einschränkung der Orientierung das Lokalisationsverfahren deutlich be-

schleunigen kann. Die korrekte Pose wurde bereits vor Erreichen des letzten Wegpunktes gefun-

den. Außerdem werden viele fehlerhafte Positionsschätzungen dadurch ausgeschlossen.
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(a) Generation 15 (b) Generation 16 (c) Generation 17

(d) Generation 34 (e) Generation 42 (f) Generation 53

Abbildung 5.10.: Lokalisation mit unbekannter Startpose, groupProbability = 0.8

5.1.2.7. Fazit

Es konnte gezeigt werden, dass der Lokalisationsalgorithmus auch dann eine Lokalisation durch-

führen kann, wenn er keinerlei Informationen über die Startpose des Quadrokopters besitzt. Da-

mit handelt es sich bei dem implementierten Verfahren, wie beabsichtigt (vgl. Kap. 3.1.1), um ein

globales Lokalisationsverfahren (s. Kap. 2.3).

Aufgrund der durchgeführten Evaluierung scheinen insb. zwei Aspekte des Algorithmus überar-

beitungswürdig zu sein: Zum einen konvergiert das Verfahren noch zu schnell (vgl. Kap. 5.1.2.2),

ohne andere mögliche Poses zu berücksichtigen. Grundsätzlich ist schnelles Konvergieren wün-

schenswert, allerdings sollte sich das Verfahren bei mehreren Möglichkeiten nicht derart schnell

festlegen, da sonst dauerhafte Falschlokalisationen auftreten. Zum andern muss ein Verfahren

entwickelt werden, um gefundene Positionsschätzungen mit der Zeit zu verbessern. Wie z.B. in

Kap. 5.1.2 gezeigt könnten auch gute Positionsschätzungen noch verbessert werden. Möglicher-



Evaluierung 52

(a) Generation 1 (b) Generation 2 (c) Generation 3

(d) Generation 4 (e) Generation 5 (f) Generation 6

(g) Generation 7 (h) Generation 8 (i) Generation 9

Abbildung 5.11.: Lokalisation mit unbekannter Startpose, eingeschränkte Orientierung
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weise wäre eine Lösung, neue Partikel nicht exakt auf guten Partikeln, sondern mit einer ge-

wissen Streuung zu positionieren, sodass sie auch den Bereich um ein gutes Partikel betrachten.

Außerdem könnte eine dynamische Parametrisierung (also eine automatisierte Parametrisierung

zur Laufzeit) eine deutliche Verbesserung bringen, indem das Verfahren bei gefundenen Positi-

onsschätzungen immer geringere Toleranzen zulässt, wodurch nach und nach auch „nur“ gute

Partikel gelöscht und durch noch bessere ersetzt werden. Hier muss allerdings darauf geachtet

werden, dass dies nicht wiederum zu verstärkten Falschlokalisationen führt.

Eine weitere Verbesserung ist bei der Platzierung zufälliger Partikel nötig, da noch zu viele Par-

tikel auf belegten Zellen erzeugt werden.

5.2. Evaluierung mit realen Sensorwerten

Zu Beginn dieses Kapitels soll direkt erwähnt werden, dass aufgrund der verwendeten Sensorik

eine reale, sinnvolle Evaluierung nicht durchgeführt werden konnte. Stattdessen konnte allerdings

qualitativ gezeigt werden, dass das Lokalisationsverfahren zumindest ansatzweise auch mit rea-

len Sensoren funktioniert.

Es wurde der in Abb. 5.12 dargestellte Versuchsaufbau genutzt. Mit Matten wurde der gleiche

Raum wie in Kap. 5.1 aufgebaut. Der Quadrokopter wurde auf einen rollbaren Wagen gesetzt,

wobei der OF-Sensor freie Sicht auf den Boden hatte (s. Abb. 5.13). Es war dann beabsichtigt,

wie in Kap. 5.1 den Quadrokopter entlang einer vorgegebenen Trajektorie zu bewegen und an

jedem Wegpunkt die realen Sensorwerte zu empfangen. Leider musste festgestellt werden, dass

der Boden durch die aufgestellten Wände - trotz eingeschalteter Hallenbeleuchtung und zusätz-

licher Scheinwerfer - für den OF-Sensor teilweise zu dunkel war, was einen erheblichen Drift

verursachte. Dadurch erschien eine umfassende Evaluierung des Lokalisationsverfahrens durch

das Abfahren einer Trajektorie mit realen Sensormessungen nicht sinnvoll, da der Drift des OF-

Sensors an dunklen Stellen das Ergebnis deutlich verfälschte. Hier konnten auch die Abstands-

messungen keine Abhilfe schaffen, da sie bereits eine Ungenauigkeit aufwiesen, die ebenfalls

durch das Lokalisationsverfahren ausgeglichen werden musste. Deshalb wurde der Quadrokopter

schlussendlich an ein Stelle gestellt, die eine ausreichende Helligkeit aufwies, und eine globale

Lokalisation durchgeführt.
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Abbildung 5.12.: Der mit Matten aufgebaute Raum

Abbildung 5.13.: Quadrokopter auf Rollwagen
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Die Parameter (s. Anh. A) wurden folgendermaßen gewählt:

readingBadSensors = 1

maxParticles = 50

ageThreshold = 5

minConfidence = 0.15

groupProbability = 0.85

nextGenFactorAge = 0.01

nextGenFactorCell = 0.9

nextGenFactorReading = 0.5

nextGenOffsetReading = 10

nextGenErrorTranslation = 0.025

nextGenErrorRotation = 0.0025

5.2.1. Erster Versuch

Für den ersten Versuch wurde die mögliche Rotation auf 85°-95° eingeschränkt. Der Quadroko-

pter wurde während des Versuchs nicht bewegt, außerdem hat er keinerlei Kenntnis über seine

wahre Pose. Die wahre Pose des Quadrokopters entspricht dem blauen Pfeil in Abb. 5.14(f). Wie

in Abb. 5.14 zu sehen, führt die Einschränkung der möglichen Rotation schnell zu einer Ansamm-

lung vertrauenswürdiger (grüner) Partikel. Der gefundenen Pose wird dann nach und nach mehr

Vertrauen geschenkt. Allerdings ist auch ersichtlich, dass einige Partikel unterhalb der wahren

Pose verbleiben. Dies spricht dafür, dass nextGenOffsetReading einige Centimeter niedriger hätte

gewählt werden sollen.

5.2.2. Zweiter Versuch

Als Vergleich zu Kap. 5.2.1 wurde der Versuch ohne Rotationseinschränkung wiederholt. Wie in

Abb. 5.15 zu sehen lokalisiert sich das Lokalisationsverfahren etwas unterhalb der wahren Pose.

Dies ist wiederum mit einem zu hohen nextGenOffsetReading begründet, zusätzlich macht sich

hier besonders readingBadSensors bemerkbar: Dadurch, dass die gefundene Pose etwas unterhalb

einer Kante liegt, sollte für den nach rechts gerichteten Sensor ein großer Wert erwartet werden.

Da der gemessene Wert jedoch deutlich niedriger ist, wird diese Messung aufgrund der hohen
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(a) Generation 13 (b) Generation 14 (c) Generation 15

(d) Generation 40 (e) Generation 41 (f) Generation 42

Abbildung 5.14.: Globale Lokalisation mit unbekannter Startpose, eingeschränkte Orientierung

Diskrepanz verworfen (vgl. Kap. 3.2.2.3). Alle anderen Sensorwerte sind von (durch nextGe-

nOffsetReading) tolerierbaren Abweichungen betroffen, sodass das Lokalisationsverfahren kei-

nen Anlass sieht, die Pose weiter zu verbessern. Statt jedoch readingBadSensors auf 0 zu verrin-

gern wäre hier, wie auch in Kap. 5.2.1, eine Verringerung von nextGenOffsetReading sinnvoller,

da readingBadSensors insb. für starke kurzfristige Störungen (z.B. durch Messwertausreißer oder

vorbeigehende Personen, s. Anh. A) zuständig ist.

(a) Generation 15 (b) Generation 25 (c) Generation 26

Abbildung 5.15.: Globale Lokalisation mit unbekannter Startpose
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6. Fazit

In diesem Kapitel werden die Ergebnisse der Arbeit diskutiert und ein Ausblick auf die mögliche

weitere Entwicklung gegeben.

6.1. Ergebnisse

Wie in Kap. 5 beschrieben gestaltete sich eine reale Evaluierung etwas schwierig, da die benö-

tigte Sensorik nur unzuverlässig funktionierte. Dennoch lässt sich zusammenfassend sagen, dass

das implementierte Verfahren grundsätzlich funktioniert und sich auch für ungenauere Sensorik

eignet. Es wurde somit eine Basis für eine Indoorlokalisation geschaffen, auf deren Grundlage

ein zuverlässiges und genaues Lokalisationsverfahren möglich ist.

Die Evaluierung des Verfahrens mit simulierten Sensorwerten (s. Kap. 5.1) hat gezeigt, dass das

Lokalisationsverfahren in der Lage ist, sich in verschiedenen Situationen korrekt zu lokalisie-

ren. Auch die durchgeführte Evaluierung mit realen Sensorwerten konnte dies bestätigen (s. Kap.

5.2). Allerdings zeigten die Versuche auch, dass hinsichtlich der Parametrisierung noch Verbes-

serungspotential besteht.

Deutlich wichtiger scheint jedoch eine Verbesserung der bisher verwendeten Strukturen und Al-

gorithmen. Das verwendete Bewegungsmodell funktioniert zwar, allerdings wäre es hier sinnvoll,

einen künstlichen Drift der x- und y-Koordinaten zu implementieren, um so dem realen Verhalten

des Quadrokopters näher zu kommen. Dies würde außerdem bewirken, dass Partikel auch dann

streuen, wenn sie nicht bewegt oder neu erzeugt werden, statt wie bisher statisch an der gleichen

Position zu verbleiben. Desweiteren sollte dafür gesorgt werden, dass sich verschiedene Parame-

ter dynamisch während der Laufzeit an den momentanen Zustand des Lokalisationsverfahrens

anpassen, sodass Positionsschätzungen schnelller gefunden und gefundene Schätzungen kontinu-

ierlich verbessert werden. Außerdem ist es nötig, das Verfolgen mehrerer Positionsschätzungen
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zu verbessern, was sich aber auch bereits durch eine dynamische Anpassung der Parameter erge-

ben kann.

Neben diesen unmittelbaren Verbesserungen ist außerdem denkbar, das Lokalisationsverfahren

auf einer höheren Ebene intelligenter zu gestalten. Ein Beispiel hierfür wäre, für jedes Partikel

auch eine Historie der bisherigen Poses zu verwalten, sodass Partikel schneller als unpassend

identifiziert werden können (da die Historie bspw. zeigt, dass ein Partikel durch eine Wand geflo-

gen sein müsste). Bei solchen Verbesserungen muss allerdings abgeschätzt werden, ob die erzielte

Verbesserung des Lokalisationsverfahrens die zusätzlich benötigte Laufzeit rechtfertigt.

6.2. Ausblick

Ein funktionierendes Lokalisationsverfahren stellt den ersten Schritt zu einer umfassenden Au-

tonomie eines Quadrokopters dar. Als nächster Schritt wäre z.B eine Vereinigung von Mapping

und Lokalisationsverfahren sinnvoll, wodurch ein SLAM-Verfahren entstehen würde. Hier böte

sich bspw. DP-SLAM (s. Kap. 2.4.3) an, welches auf einem Partikelfilter aufbaut und sich gut für

Occupancy Grid Maps (s. Kap. 2.2.2) umsetzen lässt.

Ebenso wäre denkbar, das Lokalisationsverfahren aktiver zu gestalten, indem ein Teil der Steue-

rung dem Quadrokopter überlassen wird. Dadurch könnte dieser selbstständig Umgebungen an-

fliegen, die sich durch viele Details und komplexe Formen deutlich von anderen abheben, um so

eine zuverlässige Lokalisation zu ermöglichen. Desweiteren könnte der Quadrokopter so fliegen,

dass er offene Flächen meidet, um seine Position nicht zu verlieren.
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A. Parameter

Eine kurze Erläuterung aller Parameter, mit denen das Verhalten des Lokalisationsalgorithmus

beeinflusst werden kann:

maxParticles Maximal erlaubte Anzahl an Partikeln. Die tatsächliche Anzahl kann aufgrund

von dynamischen Optimierungen niedriger sein.

minConfidence Sobald das Vertrauen eines Partikels unter diesen Wert sinkt wird es gelöscht.

groupProbability Gibt an, wie groß der Anteil neuer Partikel ist, die in der Nähe bereits beste-

hender, guter Partikel platziert werden.

nextGenFactorAge Gewichtet den Einfluss des Alters eines Partikels auf die Entwicklung

seines Vertrauens (s. Kap. 3.2.2.1).

nextGenFactorCell Gewichtet den Einfluss der Zellbelegung eines Partikels auf die Entwick-

lung seines Vertrauens (s. Kap. 3.2.2.2).

nextGenFactorReading Gewichtet den Einfluss der Güte von Abstandsmessungen eines Par-

tikels auf die Entwicklung seines Vertrauens (s. Kap. 3.2.2.3).

nextGenOffsetReading Noch tolerierte durchschnittliche Abweichung der erwarteten Ab-

standsmessungen von den tatsächlichen Messungen, um die Messung als „passend“ zu

interpretieren (s. Kap. 3.2.2.3).

nextGenErrorTranslation Künstlicher Translationsfehler einer Bewegung (s. Kap. 3.2.3.1) in

Prozent. Beispiel: Eine Translation von 2m kann bei nextGenErrorTranslation = 0.1 um

±20cm abweichen.
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nextGenErrorRotation Künstlicher Rotationsfehler einer Bewegung (s. Kap. 3.2.3.1). Ska-

liert einen möglichen Fehler von -180° bis +180°, bspw. bedeutet nextGenErrorRotation =

0.1, dass jede Rotation mit einem Fehler in einem Bereich von -18° bis +18° behaftet sein

kann.

ageThreshold Gibt an, ab der wievielten Generation ein Partikel als „alt“ interpretiert wird.

readingBadSensors Anzahl Abstandssensoren, deren Messungen vernachlässigt werden sol-

len (s. Kap. 3.2.2.3).

Teilweise wird in dieser Arbeit das Präfix „nextGen“ aus Gründen der Lesbarkeit weggelassen.
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B. Sichtlinien-Algorithmus

Wie in Kap. 4.2.1 beschrieben, wurde ein Sichtlinienalgorithmus zur Simulation von Ab-

standsmessungen entwickelt. Im Gegensatz zum Bresenham-Line-Following-Algorithmus (wie

in Schmitt [2012] vorgestellt) lässt dieser Algorithmus keine Zellen aus und ist außerdem schnell

zu berechnen. Sein einfaches Funktionsrinzip lässt vermuten, dass dieser Algorithmus bereits in

der einschlägigen Literatur zu finden ist.

Zur Berechnung der getroffenen Zellen wird vom Startpunkt ausgehend der nächste Zellenrand,

der von der Sichtlinie geschnitten wird, betrachtet. Der Schnittpunkt wird dann als neuer Start-

punkt des Algorithmus betrachtet und das Verfahren beginnt von vorne (s. Abb. B.1). In der

rechten unteren Ecke ist eine der Zellen im Detail dargestellt. Das rote Kreuz bezeichnet den

Startpunkt der Sichtlinie, der schwarze Pfeil die Richtung, in der geprüft werden soll. Die blauen

und grünen Linien sind für die Berechnung relevante Abstände des Startpunktes von den Zel-

lenwänden. Der Algorithmus kann an mehrere Abbruchbedingungen geknüpft sein. Es kann eine

maximale Sichtlinienlänge vorgegeben werden, die nicht überschritten werden darf, ebenso ist

es möglich, auf ein Verlassen der Karte zu prüfen. Im Zusammenhang der Lokalisation werden

zudem belegte Zellen als Abbruchbedingung gewertet.

Zur effizienten Berechnung ist es nötig, möglichst viele Variablen bereits vorab zu berechnen.

Am bedeutendsten ist dabei die Orientierung der Sichtlinie, da sich dadurch bereits eine Ein-

schränkung der zu prüfenden Zellenwände ergibt. Soll der Algorithmus bspw. vom Startpunkt

aus in Richtung Nordosten prüfen, so kann - wenn man vom Inneren einer Zelle ausgeht - nur die

nördliche und östliche Zellenwand getroffen werden.

Die Berechnung des Schnittpunktes von Sichtlinie und Zellenwand wurde in dieser Arbeit über

Geradengleichungen bestimmt. Dazu wird zunächst die Orientierung der Sichtlinie in eine Gera-

densteigung umgerechnet. Da damit aber nur knapp 180° abgedeckt werden können wird in einer
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Abbildung B.1.: Vereinfachte Darstellung des Algorithmus
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zusätzlichen Variablen gespeichert, ob die Sichtlinie in die westliche oder in die östliche Hälfte

weist. Nun ist es möglich, die getroffene Zellenwand zu berechnen, ohne dafür trigonometrische

Funktionen zu benötigen.

Am deutlichsten wird der Algorithmus durch den Code selbst, weshalb an dieser Stelle statt

weiterer Ausführungen auf den sich auf der CD befindlichen Code verwiesen wird. Der Algo-

rithmus befindet sich in code/QT Quaternionendisplay/qusart/localization/

particlecontroller.cpp und heißt float testMeasurement(int startX,

int startY, float dir, float maxLength).
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C. Parametrisierung des

Bewegungsmodells

Die folgenden Grafiken zeigen den Einfluss von Translations- und Rotationsfehler auf die Streu-

ung der Partikel. Es wurden vom Start (jeweils links) aus immer fünf gleich weite, geradlinige

Bewegungen nach rechts durchgeführt und alle Schritte in einem Bild kombiniert.

Abbildung C.1.: Insgesamt geringer Bewegungsfehler
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Abbildung C.2.: Großer Translationsfehler

Abbildung C.3.: Großer Rotationsfehler

Abbildung C.4.: Großer Translations- und Rotationsfehler
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