
Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik

Informationstechnik für Luft- und Raumfahrt
Lehrstuhl für Informatik 8 Prof. Dr. Sergio Montenegro

Bachelorarbeit

Kooperative Steuerung multipler Quadrokopter

mittels optischem Tracking

Vorgelegt von

Arthur Scharf

Matr.-Nr.: 1837155

Prüfer: Prof. Dr. Sergio Montenegro

Betreuende wissenschaftliche Mitarbeiter: Dipl.-Ing. Nils Gageik

Qasim Ali

Würzburg, 11. Mai 2015

Erklärung

Ich versichere, dass ich die vorliegende Arbeit einschließlich aller beigefügter Materialien selbst-

ständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Werken

entnommen sind, sind in jedem Einzelfall unter Angabe der Quelle deutlich als solche kenntlich

gemacht. Die Arbeit ist in gleicher oder ähnlicher Form noch nicht als Prüfungsarbeit eingereicht

worden.

Mir ist bekannt, dass Zuwiderhandlungen gegen diese Erklärung und bewusste Täuschungen die

Benotung der Arbeit mit der Note 5.0 zur Folge haben kann.

Würzburg, 11. Mai 2015

Arthur Scharf

Aufgabenstellung
Die Fortschritte im Bereich Sensorik, Aktuatorik und Mikrotechnik ermöglichen heutzutage

den kostengünstigen Bau kleiner, unbemannter Luftfahrzeuge (UAV, unmanned aerial vehicle,

Drohne) wie Quadrokopter. Zur Positionsbestimmung im Labor wird oftmals optisches Tracking

(OTS) eingesetzt, ein externes Kamerasystem, mit dem Marker und somit die Position von Qua-

drokoptern Millimeter genau bestimmt werden können.

Der Lehrstuhl Informationstechnik für Luft- und Raumfahrt der Universität Würzburg forscht

ebenfalls an Quadrokoptern und hat dazu das System AQopterI8 mit dem Forschungsschwerpunkt

Autonomie entwickelt. Im Rahmen des von der IHK ausgezeichneten Projekts Rettungshelfer mit

Propellern wird ein Quadrokopter mit Manipulator entwickelt, der im Feuerwehreinsatz die Ein-

satzkräfte unterstützen kann. Ein Ziel dabei ist es, dass multiple Quadrokopter gemeinsam eine

Aufgabe erfüllen, wozu einzelne Quadrokopter nicht in der Lage sind.

Das aktuelle System kann mit Hilfe multipler Sensoren autonom operieren. OTS wird dazu bisher

nicht verwendet. Zu Testzwecken und zum Einstellen der Steuerung und Regelung des komple-

xen Systems samt Manipulator, ist es von Vorteil, bei der Entwicklung und Forschung auf ein

hochgenaues System wie das OTS zurückgreifen zu können.

Hauptaugenmerk dieser Arbeit ist die simultane Steuerung multipler Quadrokopter (zumindest

zweier Quadrokopter) mittels OTS zur kooperativen Lösung eines Problems. Dazu gehört das

Einstellen bzw. Modifizieren der bisherigen Regelung zur Benutzung von OTS, sowie die Kom-

munikation der Quadrokopter untereinander. Dabei kann und soll auf bisherige Arbeiten aufge-

baut werden. Am Ende soll das Gesamtsystem ein Problem, wie zum Beispiel das Absuchen eines

Suchgebietes nach einem Zielobjekt, kooperativ mit Hilfe multipler Quadrokopter lösen können.

Zur Arbeit gehört eine ausführliche Dokumentation.

Aufgabenstellung (stichpunktartig):

• Einarbeitung & Konzeptionierung (Wahl Problem und Lösungsmethode)

• Positionierung mittels OTS (Integration in bestehendes System)

• Implementierung: Kommunikationslösung zwischen den Quadrokoptern

• Implementierung: Algorithmus zur Kooperativen Lösung des gewählten Problems (Durch-

führung darf (teilweise) simuliert sein)

Zusammenfassung

Das Thema dieser Arbeit ist die Entwicklung und Durchführung bzw. Simulation eines Kon-

zepts zur kooperativen Suche mit Hilfe zweier Quadrokopter. Dazu wird das vorhandene opti-

sche Tracking in das das bestehende System so integriert, dass eine Positionsregelung mittels

optischem Tracking möglich ist. Zusätzlich wird, da für die Kooperation der Quadrokopter eine

Kommunikationslösung notwendig ist, eine Kommunikationsarchitektur bestehend aus Ground-

station, Master und Slave implementiert. Für die kooperative Suche werden dabei zwei Ansät-

ze gewählt: das kooperative Absuchen von Wegpunkten, sowie das kooperative Absuchen einer

Fläche. Durch die Kooperation müssen diese beiden Suchen auf die beiden Quadrokopter ver-

teilt werden, was für das Absuchen von Wegpunkten mittels eines eigenen Algorithmus, und für

das Absuchen der Fläche durch die Nutzung und Modifikation bereits bestehender Suchalgorith-

men realisiert wird. Die Suchalgorithmen sowie die Positionsregelung mittels optischem Tracking

werden evaluiert.

Inhaltsverzeichnis i

Inhaltsverzeichnis

1. Einleitung 1

2. Stand der Technik 3

2.1. Einführung in das optische Tracking . 3

2.2. Kommunikationsnetzwerke . 5

2.2.1. ISO/OSI Schichtarchitektur . 6

2.2.2. Kommunikationsprotokolle . 7

2.2.3. Kommunikationsmedien und Vernetzungstechnologien 11

2.3. Multiple UAV’s . 13

2.3.1. Klassifizierung von Multi-UAV Architekturen 13

2.3.2. Hardware und Sensorik . 15

2.3.2.1. Kollisionsvermeidung und Hinderniserkennung 16

2.3.2.2. Lage- und Positionsbestimmung 17

2.3.3. Kommunikation zwischen UAVs . 17

2.3.3.1. Bluetooth . 18

2.3.3.2. Wireless LAN . 18

2.3.3.3. Mobilfunknetze . 18

2.4. Kooperative Missionplanung . 19

2.4.1. Flugbahnplanung . 20

2.4.1.1. Methoden für die Routensuche 21

2.4.1.2. Suchalgorithmen für die Routenwahl 23

2.4.2. Kooperative Suche . 24

3. Konzept 29

3.1. Überblick . 29

3.2. Positionserkennung via Optischem Tracking System 30

3.3. Kommunikationslösung . 30

Inhaltsverzeichnis ii

3.4. Kooperative Suche . 32

3.4.1. Wegpunktsuche . 32

3.4.2. Flächensuche . 36

4. Implementierung 39

4.1. Überblick . 39

4.2. Optisches Tracking System . 40

4.3. Kommunikation zwischen Quadrokoptern . 41

4.4. Suchalgorithmen . 44

4.4.1. Implementierung Wegpunktsuche . 44

4.4.2. Implementierung Flächensuche . 45

4.5. Graphische Benutzeroberfläche . 46

5. Evaluierung 51

5.1. Evaluierung der Suchansätze . 51

5.1.1. Tiefen- und Breitensuche . 51

5.1.2. Algorithmus zur Aufteilung von Wegpunkten 52

5.2. Nutzung des Optisches Tracking Systems . 54

5.2.1. Empfang der Positionsdaten . 54

5.2.2. Statisches Regelverhalten . 55

6. Diskussion und Ausblick 58

7. Literaturverzeichnis 60

A. Anhang 65

Abbildungsverzeichnis iii

Abbildungsverzeichnis

2.1. Kapselung verschiedener Protokolle . 8

2.2. Paket-Format des IP Protokolls . 9

2.3. Klassifizierung von MUAV-Architekturen nach Kopplungsgrad 13

2.4. Hierarchie einer Missionsplanung . 20

2.5. genäherte und exakte Cell Decomposition Methode 21

2.6. Methode der Area Decomposition . 25

2.7. Arten eines Polygons . 26

2.8. Darstellung der Durchmesserfunktion zum minimieren der Richtungswechsel ei-

nes Agenten . 27

2.9. Flächensuche nach Boustrophedon-Methode . 27

3.1. Aufteilung des Problems in drei Teilprobleme 29

3.2. Nutzung der optischen Trackingdaten anstelle des optischen Flusssensors 30

3.3. Kontroll- und Kommunikationsarchitektur . 31

3.4. Vollständiger Graph . 33

3.5. Aufteilung der Fläche eines Rechtecks . 36

3.6. Boustrophedon Richtungsänderungen . 37

4.1. Datenfluss der optischen Trackingdaten . 40

4.2. Kommunikationsfluss zwischen Groundstation, Master und Slave. 42

4.3. Überblick der graphischen Benutzeroberläche 47

4.4. Simulation des Abfluges einer Flächensuche . 50

5.1. Vergleich Breiten- und Tiefensuche für kooperatives Suchen 51

5.2. Generierte Pfade mittels Wegpunktalgorithmus 52

5.3. Algorithmus vs. Brute Force . 53

5.4. Wegpunktsalgorithmus berechnet unterschiedlich lange Pfade 53

Abbildungsverzeichnis iv

5.5. Testen der optischen Tracking Verbindung . 55

5.6. Ein erster Versuch zum statischen Regelverhalten 56

5.7. Statisches Regelverhalten mit besseren PID Werten 56

5.8. Statisches Regelverhalten - Positionsdaten . 57

Einleitung 1

1. Einleitung

Betrachtet man die Entwicklung autonomer Vehikel in den letzten Jahren, lässt sich ein immer

schneller werdender Anstieg in der alltäglichen Verwendung solcher autonomen Roboter beob-

achten, sei es nun ein Lager-Roboter bei einem Versandunternehmen, ein vollkommen selbst fah-

rendes Auto inmitten von San Francisco oder auch eine Drohne, die ein Paket bis vor die Haustüre

liefert.

Zum einen wird dies durch Vorstöße großer Firmen beschleunigt, die die Technik dieser au-

tonomen Roboter erschwinglich machen, zum anderen ist die Forschung und Entwicklung solch

autonomer Roboter ein stetig wachsendes Feld.

Auch der Lehrstuhl für Informationstechnik für Luft- und Raumfahrt der Universität Würz-

burg forscht bereits seit einigen Jahren im Bereich der Autonomie, speziell im Zusammenhang

mit Quadrokoptern, sogenannte Unmanned Aerial Vehicles - oder kurz UAVs. Der Vorteil sol-

cher Quadrokopter gegenüber herkömmlichen UAVs in Flugzeugform, wie man sie vom Militär

kennt, besteht vor allem in ihrer extrem hohen Mobilität und Agilität, da ein Quadrokopter Ziele

punktgenau anfliegen, und dort seine Position auch halten kann. Dadurch können Quadrokopter

in Bereichen eingesetzt werden, die für Menschen im Allgemeinen unzugänglich oder gefährlich

sind, um beispielsweise, wie bei einem in der Aufgabenstellung beschriebenen Feuerwehrein-

satz, den Einsatzkräften einen schnellen Überblick über die Situation zu verschaffen, oder um

bei einem sogenannten Search-and-Rescue-Einsatz bei der Suche zu helfen. Bei solchen Einsät-

zen spielt jedoch meistens die Zeit eine große Rolle, weil man im Allgemeinen einen möglichst

schnellen Überblick haben will, bzw. ein großes Gebiet möglichst schnell absuchen will. Da ein

Quadrokopter alleine normalerweise jedoch nur sehr begrenzte Ressourcen was Akkulaufzeit und

Rechenleistung angeht, zur Verfügung hat, muss, um beispielsweise eine große effizient Fläche

abzusuchen, eine größere Anzahl solcher Quadrokopter eingesetzt werden, was einige Heraus-

forderungen an die Aufteilung der Flächesowie an das kollisionsfreie Absuchen des Suchgebiets

stellt. Dieses Problem der kooperativen Suche soll in der vorliegenden Arbeit angegangen werden,

Einleitung 2

wobei für die Positionserfassung ein externes optisches Tracking System, kurz OTS, verwendet

wird, um möglichst genaue Positionsdaten für die spätere Suche zur Verfügung zu haben.

Die Arbeit gibt dabei zunächst eine Einführung in aktuelle Techniken und Methoden, die zur

Lösung eines solchen Problems notwendig sind. Danach wird eine konzeptuelle Lösung des Pro-

blems beschrieben, wobei zwischen einem kooperativem, kollisionsfreiem Abfliegen von Weg-

punkten und dem kooperativen, kollisionsfreien Absuchen einer Fläche unterschieden wird. Das

Kapitel zur Implementierung schildert dann die entwickelte Lösung des Problems und die dabei

verwendeten Techniken und Methoden. Abschließend wird dieser Lösungsansatz evaluiert und

diskutiert.

Stand der Technik 3

2. Stand der Technik

Dieses Kapitel gibt einen Überblick über aktuell verwendete Technologien und Verfahren in den

Bereichen optisches Tracking, Kommunikationsnetzwerke und Architektur von Multi-UAV Sys-

temen geben. Abschliessend werden einige algorithmische Ansätze zur Flugbahnplanung, sowie

zur Aufteilung eines Suchgebiets vorgestellt.

2.1. Einführung in das optische Tracking

Das optische Tracking ist eine von vielen Trackingtechnologien, beispielsweise GPS-Tracking

oder Inertialtracking, mit dessen Hilfe die Positions- und Lagedaten eines Objektes im dreidimen-

sionalen Raum erkannt und mit entsprechender Software verfolgt werden können. Nach Tönnis

[2010] unterscheidet man dabei zwischen zwei unterschiedlichen Funktionsprinzipien:

• Inside-Out-Tracking

• Outside-In Tracking

Das Inside-Out-Tracking beschreibt dabei ein System, bei dem das zu verfolgende Objekt sel-

ber Sensoren bzw. Empfänger mitführt und mithilfe externer Ressourcen die eigenen Positions-

und Lagedaten ermitteln kann [Menache, 2011]. GPS-Tracking- oder optische Trackingsysteme

mit bewegter Kamera sind ein Beispiel für dieses Funktionsprinzip; beim GPS-Tracking erhält der

GPS-Empfänger, der auf dem Objekt platziert ist, GPS-Daten und kann anhand dieser seine Po-

sition, und unter gewissen Voraussetzungen auch seine Lage errechnen. Bei optischen Trackings-

ystemen, bei denen eine oder mehrere Kameras auf dem sich bewegenden Objekt platziert sind,

werden im Raum verteilte Marker verwendet, mit derer die eigene Lage und (relative) Position

ermittelt wird [Tönnis, 2010].

Das Outside-In-Tracking dreht das eben genannte Verhältnis von Sender und Empfänger um:

Hier wird die Positions- und Lagebestimmung mittels externer Sensoren bestimmt, wobei das

zu verfolgende Objekt eine, je nach System unterschiedliche Art von Marker trägt. Ein Beispiel

Stand der Technik 4

hierfür ist wiederum das optische Trackingsystem, bei dem diesmal jedoch die Kameras im Raum

verteilt sind, und die Marker auf dem Objekt platziert sind [Menache, 2011; Tönnis, 2010].

Da für die vorliegende Arbeit ein Tracking-System essentiell ist, wird im Folgenden das zuletzt

erwähnte Outside-In-System näher erläutert.

Ein optisches Trackingsystem arbeitet, wie der Name bereits aussagt, im optischen Bereich.

Damit werden für die externen Sensoren meist herkömmliche CCD-Kameras verwendet, die al-

le an einem zentralen Rechner angeschlossen werden, der die Daten der Kameras interpretiert

[Menache, 2011]. Die Kameras arbeiten dabei meistens im infraroten Bereich des Lichtspek-

trums (780nm bis 1400nm), was gegenüber Systemen, die mit sichtbarem Licht arbeiten, den

Vorteil hat, dass der Sichtbereich der Kameras zusätzlich ausgeleuchtet werden kann, ohne dass

der Nutzer gestört oder geblendet wird [Tönnis, 2010].

Die CCD-Kameras können dabei eine Auflösung von 128x128 Pixel bis hin zu 16 Megapi-

xel haben. Die Auflösung der Kamera ist aber nicht die einzige Anforderung an das optische

Trackingsystem, vielmehr spielt die Framerate, also die Anzahl der Bilder die die Kamera pro

Sekunde machen kann, eine größere Rolle, vor allem wenn man sehr schnelle Bewegungen ver-

folgen möchte. Die Kameras müssen für den Einsatzzweck in einem Trackingsystem zudem syn-

chronisiert werden, d.h. die Kameras müssen alle zur gleichen Zeit ein Bild machen können,

um eine möglichst fehlerlose Kalkulation der Positionsdaten zu ermöglichen. Dazu werden die

Kameras meist über ein externes, zusätzliches Kabel miteinander verbunden [Menache, 2011].

Eine weiterer wichtiger Aspekt ist die Positionierung der Kameras im Raum, da diese so aufge-

stellt werden sollten, dass sich immer mindestens die Bildbereiche zweier Kameras überschnei-

den. Um das Tracking jedoch nutzen zu können, muss das System zu Anfang kalibriert werden,

das heißt, dass das System die genauen Position der Kameras im Raum auf irgendeine Art und

Weise erfassen muss. Dies wird durch das sogenannte „Wanding“ erreicht, bei dem ein Objekt,

meist ein Stab, ausgestattet mit einigen Markern im Sichtbereich der Kameras umhergeschwenkt

wird. Dadurch kann die Tracking Software durch Kombination der Kamerabilder die exakte 3D-

Positionen der Kameras berechnen, sofern die Abmessungen des „Wanding“-Stabes bekannt sind.

Die Marker haben dabei, je nach System, unterschiedliche Eigenschaften wie spezielle Muster

oder bestimmte Oberflächenmaterialien [Tönnis, 2010]. Meistens werden jedoch Marker verwen-

det, die eine sehr gut reflektierende Oberfläche haben, damit sie von den Kameras möglichst gut

erkannt werden. Dazu werden in den meisten Fällen auch externe Lichtquellen verwendet, die oft

Stand der Technik 5

durch außen an den Kameras angebrachte LEDs realisiert sind, und die Umgebung zusätzlich mit

infrarotem, oder im Falle des sichtbaren Lichts, rotem Licht ausleuchten [Menache, 2011].

Hat man nun ein so kalibriertes System, kann dieses Objekte, die mit Markern ausgestattet sind,

erkennen und je nach Rechenleistung des Zentralrechners fast in Echtzeit verfolgen. Zu beachten

ist dabei jedoch, dass jeder Marker von mindestens zwei Kameras gesehen werden muss, um eine

Positionierung des Markers im 3D-Raum zu ermöglichen.

Wie sich in den letzten Absätzen herauskristallisiert hat, ist einer der Haupt-Nachteile des

optischen Trackings der, dass eine stark kontrollierte Umgebung vorhanden sein muss und das

Tracking nur innerhalb der Grenzen dieser Umgebung, d.h. der Bildausschnitte der Kameras,

funktioniert. Zusätzlich müssen die Marker immer von mindestens zwei Kameras gesehen wer-

den, was nicht in jedem Fall möglich ist. Auch ist die Rechenleistung, die für die Extraktion der

Positionsdaten aus den gelieferten Bilddaten der Kameras benötigt wird, relativ hoch, und steigt

auch mit jeder zusätzlichen Kamera, was einen Trade-Off zwischen Anzahl der Kameras und

Sichtbarkeit der Marker nötig macht [Menache, 2011].

Nichtsdestotrotz bietet die Bewegungsverfolgung via optischem Tracking Vorteile, die von an-

deren Systemen so nicht realisierbar sind. Dazu gehört zum einen die sehr hohe Genauigkeit

der Positionsdaten, beim Produkt OptiTrack Motive der Firma NaturalPoint liegt die Genauigkeit

beispielsweise im Millimeter-Bereich [OptiTrack]. Ein weiterer Vorteil ist, dass sehr viele Mar-

ker getrackt werden können, und die Marker auch sehr leicht angebracht werden können. Dazu

kommt, dass die Bildfrequenz bei optischem Tracking je nach verwendeter Kamera bei bis zu

120fps liegt, was zu einer hohen Anzahl von Positionsberechnungen pro Sekunde führt und das

Tracken von sich schnell bewegenden Objekten ermöglicht [Menache, 2011].

Somit stellt das optische Tracking unter gewissen Voraussetzungen ein sehr genaues Positions-

und Lageerfassungssystem dar.

2.2. Kommunikationsnetzwerke

In der vorliegenden Arbeit zur Kooperativen Steuerung mehrerer Quadrokopter stellt die Kom-

munikation zwischen den einzelnen Quadrokoptern ein zentrales Element dar, da ohne eine Kom-

munikationsstruktur ein kooperatives Verhalten nur schwer möglich ist.

Stand der Technik 6

Dieses Kapitel stellt daher die Grundlagen und das Referenzmodell der Netzwerkkommunika-

tion, sowie einige wichtige, oft genutzte Kommunikationsprotokolle vor. Abschließend wird auf

einige Übertragungsmedien und ein paar Technologien zur Vernetzung eines Netzwerks einge-

gangen.

2.2.1. ISO/OSI Schichtarchitektur

Das ISO/OSI-Schichtenmodell (Open System Interconnection - zu deutsch „Offenes System für

Kommunikationsverbindungen“) ist ein von der International Standardization Organisation, kurz

ISO, im Jahr 1979 eingeführtes Referenzmodell für die Entwicklung von offenen Kommunikati-

onsstandards bzw. -protokollen. [Alani, 2014]. Es schreibt dabei nicht vor, wie ein Netzwerk zu

funktionieren hat, sondern unterteilt das Netzwerk in 7 sogenannte „Schichten“, die jeweils eine

eigene Aufgabe oder Funktion erfüllen sollen. Es ist jedoch nicht verpflichtend, diese Schichten

genau so einzuhalten, es können einzelne Schichten beispielsweise auch zusammengefasst oder

weggelassen werden.Die Idee hinter einem solchen Schichtmodell ist, dass das Verständnis des

Netzwerks und somit auch die Implementierung eines Netzwerkprotokolls vereinfacht wird, da

die einzelnen Schichten ineinander konsistent und ihre jeweilige Funktion klar von den anderen

Schichten abgesetzt ist. Dies erleichtert auch die Suche nach eventuellen Fehlern oder Störun-

gen, da das Problem schneller eingegrenzt werden kann [Alani, 2014]. Dieser Flexibilität hat es

das OSI Modell zu verdanken, dass es über 30 Jahre später immer noch angewandt wird. Nach

Gessler und Krause [2009] Alani [2014] sind die 7 Schichten des OSI-Modells wie folgt definiert:

• Schicht 1 - Physical Layer (Bitübertragungsschicht)

In dieser Schicht werden die Übertragung der einzelnen Bits über ein Übertragungsmedium

spezifiziert und die physikalische Verbindung aktiviert bzw. deaktiviert. Das Medium an

sich wird hier jedoch nicht definiert.

• Schicht 2 - Data Link Layer (Sicherungsschicht)

Diese Schicht ist für die fehlerfreie Übertragung der Daten und für die Zugriffssteuerung

auf den Übertragungskanal zuständig. Hier wird auch der Datenstrom paketiert bzw. depa-

ketiert.

• Schicht 3 - Network Layer (Vermittlungsschicht)

Die Vermittlungsschicht ist hauptsächlich für das Routing, also die Kontrolle des Datenflus-

Stand der Technik 7

ses zuständig. Es wird dabei zwischen verbindungsorierten und verbindungslosen Diensten

unterschieden.

• Schicht 4 - Transport Layer (Transportschicht)

In der Transportschicht wird eine logische Ende-zu-Ende-Verbindung hergestellt. Hier wird

auch auf Fehlererkennung und -korrektur geachtet .

• Schicht 5 - Session Layer (Kommunikationssteuerungsschicht)

Die Hauptaufgabe der Kommunikationssteuerungsschicht ist die Bereitstellung, Initiierung

und Terminierung sogenannter „Sessions“, in denen die beteiligten Kommunikationspro-

zesse Daten senden empfangen können. Diese Schicht verwaltet dabei die „Sessions“ und

kontrolliert so, welche Prozesse wann kommunizieren können.

• Schicht 6 - Presentation Layer (Darstellungsschicht)

Hier werden die empfangenen bzw. zu sendenden Daten verschlüsselt, komprimiert

und/oder übersetzt, so können die Daten beispielsweise in verschiedene Formate oder Co-

decs umgewandelt werden.

• Schicht 7 - Application Layer (Anwendungsschicht)

Diese Schicht definiert die Verbindung zur Nutzeranwendung, wobei verschiedene anwen-

dungsspezifische Anforderungen festgelegt werden, beispielsweise die Verschlüsselung der

Nachrichten.

Die meisten Kommunikationsprotokolle orientieren sich an diesem Referenzmodell, da durch die

Definition der Schichten eine Kombination verschiedener Protokolle möglich ist, die somit auch

aufeinander aufbauen können. Abb. 2.1 zeigt eine solche Schichtung, bzw. Kapselung verschie-

dener Protokolle am Beispiel des IP-Protokolls. Einige der wichtigen Protokolle werden nun im

folgenden Kapitel genauer erläutert.

2.2.2. Kommunikationsprotokolle

Baun [2012] beschreibt ein Protokoll als ein Regelwerk, auf dem der Austausch von Informatio-

nen zwischen zwei oder mehr Teilnehmern in einem Netzwerk basiert. Dieses Regelwerk definiert

dabei die Syntax, d.h. den Aufbau einer Nachricht, die Semantik, d.h. die Bedeutung einzelner

Stand der Technik 8

Abbildung 2.1.: Kapselung verschiedener Protokolle in der Internet Protocol Suite (Abb. angelehnt an eine Darstel-
lung der Firma WildPackets)

Abschnitte der Nachricht, und die Synchronisation, die zeitliche Abfolge und das Aufeinander-

Abstimmen der Nachrichten.

Betrachtet man nun ein Computernetzwerk, lässt sich schnell feststellen, dass es eine große

Anzahl Kommunikations- bzw. Netzwerkprotokolle gibt, da sie im Allgemeinen unterschiedliche

Zwecke erfüllen. So definiert beispielsweise das Protokoll 1000-BASE-T die Übertragung von

Ethernet-Frames über ein Kupferkabel, und das Protokoll NTP die Synchronisation von Uhren in

Computern über ein Kommunikationsnetzwerk.

Es gibt jedoch auch Protokolle, die essentiell für die meisten Arten von Netzwerkkommuni-

kation sind, da sehr viele Anwendungen darauf aufbauen. Nach Scherff [2010] und Alani [2014]

handelt es sich dabei um TCP, UDP und IP, drei Protokolle, die die Basis der sogenannten Internet

Protocol Suite, ein Überbegriff für Protokolle, die auf IP aufbauen, bilden und auch als die drei

"Basisprotokolle"bezeichnet werden.

Stand der Technik 9

Abbildung 2.2.: Aufbau eines IP-Headers (IPv4 und IPv6) [Scherff [2010], Abb. 9.1]

• IP - Internet Protocol

Das IP-Protokoll ist in der 3. OSI-Schicht, der Vermittlungsschicht angesiedelt. Die Haupt-

aufgabe des Protokolls ist dabei, Pakete von einem Netzwerkteilnehmer, im Folgenden Host

genannt, zu einem anderen Host zu vermitteln. Dies geschieht durch Hinzufügen eines so-

genannten Headers zu den eigentlichen Daten, der Adressierungs- und Kontrollinformation

enthält. Abb. 2.2 zeigt den allgemeinen Aufbau eines solchen IP-Headers, wobei Source

Address und Destination Address die jeweilige eindeutige logische Adressierung, die IP-

Adresse des Senders bzw. Empfängers, bezeichnen [Alani, 2014]. Sollte ein Datenpaket

die maximale Länge, die ein Netzwerk zulässt, überschreiten, kann ein Datenpaket mithilfe

der Identification und Fragment - Flags , auf mehrere IP-Pakete aufgeteilt, fragmentiert und

später wieder zusammengesetzt werden. Allerdings ist hier zu beachten, dass IP ein verbin-

dungsloses Protokoll ist, das heißt, es wird nicht garantiert, dass die Pakete auch wirklich ihr

Ziel erreichen. Es wird jedes IP-Paket unabhängig von anderen Paketen an die Ziel-Adresse

vermittelt, was dazu führen kann, dass Pakete gar nicht, in falscher Reihenfolge oder sogar

doppelt ankommen, da vor allem große Netzwerke (beispielsweise dem Internet) nicht sta-

tisch sind und die Übertragung der Datenpakete durch Faktoren wie Auslastung und/oder

Verbindungsabbrüche beeinflusst wird.

Stand der Technik 10

• TCP - Transmission Control Protocol

Um den genannten Problemen des IP-Protokolls zu begegnen, sind verbindungsorientierte

Transportprotokolle notwendig, die sicherstellen, dass alle übertragenen Pakete angekom-

men sind, und die dazu fähig sind, die Pakete in der richtigen Reihenfolge wieder zusam-

menzusetzen. Das Transmission Control Protocol ist ein solches Protokoll, das im Gegen-

satz zu IP verbindungsorientiert arbeitet. Verbindungsorientiert bedeutet dabei, dass vor der

eigentlichen Datenübertragung ein sogenannter Threeway-Handshake durchgeführt. Dieser

bezeichnet ein mehrstufiges Authentifizierungsverfahren zwischen zwei Hosts, um sicher-

zustellen dass die nachfolgenden Pakete ihr Ziel erreichen. Dabei quittiert der Empfänger

immer die vom Sender empfangenen Pakete, sodass ein eventuell unterwegs verlorengegan-

genes Paket erneut gesendet werden kann, da der Sender durch das Ausbleiben der Quittie-

rung den Paketverlust bemerkt. Auf den genauen Ablauf einer TCP-Kommunikation wird

im Folgenden jedoch nicht weiter eingegangen.

• UDP - User Datagram Protocol

Es gibt jedoch auch Fälle bei denen die gesicherte Übertragung nicht erforderlich ist, bzw.

die ständige Quittierung und Aufrechterhaltung der gesicherten Verbindung zu langsam für

eine bestimmte Anwendung ist, beispielsweise bei einem Video-Stream. Hier kommt das

UDP Protokoll ins Spiel.

UDP ist wie das IP-Protokoll verbindungslos und garantiert nicht eine erfolgreiche Daten-

übertragung. Im Grunde ist UDP eine einfachere Version des TCP-Protokolls, da bei UDP

die Sequenzierung, Quittierung und die Flags wegfallen (siehe Abbildung), aber die über-

tragenen Daten dennoch mit einer Prüfsumme auf Korrektheit geprüft werden [Scherff,

2010]. Eine solche verbindungslose Datenübertragung wird, wie bereits erwähnt, oft bei

z.B. Video-Streams genutzt, da hier ein fehlendes Daten-Paket keine großen Auswirkungen

hat und eine Neu-Anforderung des Pakets wertlos wäre, da das Video mit den restlichen,

erfolgreich übertragenen Paketen bereits weiterläuft. Das neu angeforderte Paket würde in

diesem Falle zu spät ankommen und hätte keine Verwendung mehr.

Stand der Technik 11

2.2.3. Kommunikationsmedien und Vernetzungstechnologien

Damit die im letzten Kapitel beschriebenen Transport- und Vermittlungsprotokolle jedoch über-

haupt zum Einsatz kommen, braucht man Standards und Spezifikationen auf der Sicherungs- und

Bitübertragungsschicht, den OSI-Schichten 1 und 2, die das Übertragungsmedium und verwende-

te Protokolle genau beschreiben. Übertragungsmedien lassen sich in zwei große Kategorien ein-

teilen, die kabelgebundenen und die kabellosen Medien. Zu den kabelgebundenen Übertragungs-

medien gehören dabei die elektrischen Leiter, sowie die Lichtwellenleiter, umgangssprachlich

auch als Glasfaserkabel bekannt. Basierend auf diesen drei grundlegenden Übertragungsmedien

spezifiziert IEEE-802, ein von der Institute of Electrical and Electronics Engineers Standards

Association im Jahr 1980 ins Leben gerufene Projekt um Netzwerkstandards auf OSI-Schichten

1 und 2 zu definieren, verschiedene technische und elektrische Anforderungen, um durch eine

solche Standardisierung Interoperabilität zwischen Geräten verschiedener Hersteller zu gewähr-

leisten [Alani, 2014]. Der wohl bekannteste, von diesem Projekt entwickelte Standard, ist IEEE

802.3, auch oft als Carrier Sense Multiple-Access with Collision Detection, kurz CSMA/CD, oder

Ethernet bezeichnet. Die ursprüngliche Idee hinter dieser Technologie war, dass mehrere Teilneh-

mer in einem gemeinsamen Leitungsnetz, einem sogenannten Local Area Network, kurz LAN,

über hochfrequente Signale Nachrichten untereinander austauschen können. Die Basis dafür bil-

det der CSMA/CD Algorithmus, mit dessen Hilfe eine störungsfreie Nutzung eines Basisbands,

d.h. einer Leitung, die nur einen Kanal bietet, möglich ist. Mittlerweile haben sich jedoch sehr

viele Varianten des ursprünglichen Ethernets entwickelt, so zum Beispiel 10GBASE-SR, eine

10GBit/s-Verbindung über ein Glasfaserkabel mit Multimode-Fasern [Baun, 2012].

Die verschiedenen Ethernet-Varianten und deren technischen Details der Übertragungsverfah-

ren sind jedoch nur von geringer Relevanz für diese Arbeit und werden im Folgenden nicht näher

behandelt.

Kabellose Kommunikationsstandards hingegen spielen eine größere Rolle. Wie bei kabelge-

bundener Kommunikation müssen auch hier technische und elektrische Aspekte spezifiziert, bzw.

standardisiert werden, um Kommunikation zwischen verschiedensten Geräten zu ermöglichen.

Und auch hier ist das bereits vorgestellte IEEE-802 Projekt von großer Bedeutung, da sich, ana-

log zu Ethernet, verschiedene Arbeitsgruppen wie beispielsweise 802.11 mit der Standardisierung

von kabelloser Kommunikation beschäftigen. Eine Auswahl solcher kabelloser Übertragungs-

Stand der Technik 12

technologien, die für die Kooperation multipler Quadrokopter relevant sind, wird jedoch erst in

Kapitel 2.3.3 gegeben.

Stand der Technik 13

2.3. Multiple UAV’s

Dieses Kapitel gibt zunächst einen Einblick in die verschiedenen Klassifizierungen von Multi-

UAV-Architekturen und Konstellationen. Darauf aufbauend der aktuelle Stand der Technik zur

verwendeten Hardware und Sensorik, auch unter dem Gesichtspunkt der Kollisionsvermeidung,

erläutert werden. Abschließend wird auf aktuelle Techniken zur Kommunikation zwischen den

einzelnen UAVs einer Multi-UAV-Konstellation, im Folgenden als Agent bezeichnet, eingegan-

gen.

2.3.1. Klassifizierung von Multi-UAV Architekturen

Abbildung 2.3.: Graphische Darstellung der möglichen Klassifizierung nach Kopplungsgrad: a) Physische Kopp-
lung - UAVs transportieren ein Objekt, b) Formationsflug c) Schwarm von UAVs, d) Intentionale
Kooperation - UAVs erfüllen eine Zielvorgabe (Abflug der Kreuze) - (Maza et al. [2014], Fig 38.1)

Systeme bestehend aus mehreren UAVs lassen sich, je nach Sichtweise, unterschiedlich klas-

sifizieren. Eine mögliche Art ist, die Kopplung, bzw. den Grad der Kopplung zwischen den ein-

zelnen UAVs eines Systems, zu betrachten. Dadurch lassen sich nach Maza et al. [2014] vier

verschiedene Schemata definieren, die in Abb. 2.3 illustriert sind:

Stand der Technik 14

1. Physische Kopplung

Hier sind die einzelnen Agenten des Systems physisch miteinander verbunden, z.B. im Zu-

ge einer Zusammenarbeit bei der schwere Lasten gemeinsam von mehreren UAV gehoben

oder transportiert werden. Eines der größten Probleme bei dieser Art von Kopplung ist die

Koordination und Kontrolle der Bewegungen der UAVs, da zusätzlich zu der eigenen hoch-

gradig nicht-linearen Flugdynamik eines UAVs, Krafteinwirkungen durch die verbunden

UAVs entstehen, die bei der Betrachtung der Flugdynamik eine Rolle spielen.

2. Formationen

Hierbei sind die Flugkörper nicht physisch miteinander verbunden, aber aufgrund der Be-

dingung ihre Formation zu halten, sind die erlaubten relativen Eigenbewegungen der Agen-

ten zueinander stark eingeschränkt. Dadurch lässt sich die Formation als ein einzelner star-

rer Körper betrachten (vgl. Virtual Structure), was in Abb. 2.3b) sehr gut deutlich wird.

3. Schwärme

Schwärme bestehen meist aus vielen homogenen Agenten, wobei der Kopplungsgrad ähn-

lich dem bei Formationen ist, da sich die Bewegungen eines einzelnen Agenten auf das

gesamte Kollektiv auswirken. Aufgrund der hohen Anzahl an Agenten ist hier eine de-

zentralisierte Kontrollarchitektur gemeinhin unumgänglich. Der Unterschied zur Formati-

on besteht jedoch darin, dass die Agenten keinen „starren“ Körper bilden, die Form des

Schwarms sich also dementsprechend beliebig ändern kann, siehe Abb. 2.3c.

4. Intentionale Kooperation

Bei dieser Art von Kopplung steht die Erfüllung einer globalen Mission im Vordergrund.

Die einzelnen Bewegungen eines Agenten wirken sich, im Gegensatz zu Schwärmen oder

Formationen, nicht unmittelbar auf die Bewegungen der anderen Agenten aus, da jeder

Agent eine individuelle Aufgabe und eine eigene Trajektorie besitzt. Bei dieser Art von

Kopplung besteht das Problem darin, dass meist komplexe Aufgaben- und Trajektoriepla-

nungen sowie Möglichkeiten zur Konfliktlösung und -vermeidung notwendig sind.

Eine weitere Möglichkeit Multi-UAV-Systeme zu klassifizieren, ist die Betrachtung der

Konstellations- bzw. Kontrollarchitektur des Systems. Nach Ali et al. [2014] lassen sich die ver-

schiedenen Konstellationen in drei Hauptkategorien einteilen: „Leader-Follower“, „Virtual Struc-

ture“ und der sogenannte „Behavioural Approach“.

Stand der Technik 15

Die „Leader-Follower“-Struktur ist dabei, bei einer überschaubaren Menge von Agenten, nach

Kumar [2015] die am Meisten verwendete Konstellation in der Forschung, da hier eine zentrali-

sierte Kontrolllösung möglich ist, und diese in den allermeisten Fällen einfacher zu implementie-

ren ist als eine dezentralisierte Lösung [Ali et al., 2014]. Das „Leader-Follower“-Prinzip ist leicht

verständlich und auch in der Natur, beispielsweise bei Zugvögeln zu beobachten. Dabei ist einer

oder mehrere Agenten der Leader, der sowohl Richtung als auch Geschwindigkeit der gesamten

Konstellation vorgibt. Die Follower folgen dabei jeder Bewegung des Leaders. Aus technischer

Sicht vereinfacht dies die Systemmodellierung und Kontrolle einer solchen Konstellation, weil

die Zustände des Leaders, in der Literatur auch als Koordinationsvariable bezeichnet, alle Bewe-

gungen der Follower definieren [Beard et al., 2006].

In der Konstellation „Virtual Structure“ wird, ähnlich wie bei der Leader-Follower-Struktur,

ein Leader genutzt, der hier jedoch rein virtuell ist. Dabei werden alle Agenten als eine virtuelle

Einheit, ähnlich einer Formation betrachtet, was ebenfalls die Systemmodellierung vereinfacht,

da der virtuelle Leader auch hier die Zustände der Agenten definiert. Der Vorteil gegenüber des

Leader-Follower-Ansatzes ist hierbei, dass der virtuelle Leader nicht verloren gehen, oder abstür-

zen kann.[Ali et al., 2014; Li und Liu, 2008].

Die dritte Art von Konstellationsarchitektur, der „Behavioral Approach“ basiert auf der ko-

operativen Spieltheorie, wobei die Kontrollfunktion eines jeden Agenten eine gewichtete Funkti-

on der gewünschten Verhaltensweisen darstellt [Ali et al., 2014] . Diese gewünschten Verhaltens-

weisen, nämlich Kollisionsvermeidung, Hindernisvermeidung, Zielsuche und Halten der Formati-

on, bilden dabei die Vektoren der Kontrollfunktion, wobei die Gewichtung der einzelnen Vektoren

abhängig von der Anwendung ist [Anderson und Robbins, 1998].

2.3.2. Hardware und Sensorik

Der Aufbau und die Aufrechterhaltung einer der im vorangegangenen Kapitel beschriebenen

Konstellationen stellt jedoch auch einige Anforderungen an die Hardware-Ausstattung, spezi-

ell an die mitgeführte Sensorik der einzelnen UAVs in der Konstellation. So müssen die ein-

zelnen UAVs fähig sein, ihre Umgebung wahrzunehmen und ihre eigene Position und Lage zu

bestimmen, um anhand dieser Informationen z.B. Kollisionsvermeidung zu betreiben. Im Folgen-

den werden einige der typischerweise verwendeten Sensoren, die für die Kollisionsvermeidung

und Hinderniserkennung, sowie zur Positions- und Lagebestimmung notwendig sind, vorgestellt.

Stand der Technik 16

2.3.2.1. Kollisionsvermeidung und Hinderniserkennung

Für UAVs die in einer Konstellation, wie sie in Kapitel 2.3.1 beschrieben ist, zusammenarbeiten

müssen, ist eine zuverlässige Erkennung von Hindernissen oder anderen UAVs unentbehrlich um

Zusammenstöße und in letzter Konsequenz Abstürze zu vermeiden.

Um dies zu vermeiden, können Sensoren eingesetzt werden, die die 360°-Umgebung eines

UAV in Echzeit beobachten können. Dazu gehören beispielsweise Ultraschallsensoren oder La-

serscanner, wobei Ultraschallsensoren nur bis zu einer Entfernung von 2,5m anwendbar sind

[Gageik et al., 2012].

Aber auch andere elektro-optische Sensoren wie Infrarotsensoren oder herkömmliche Kameras

in Verbindung mit sogenannter machine vision bieten eine gute Grundlage, um Hindernisse zu

erkennen [Ali et al., 2014].

Eine etwas modernere Technologie sind PMD-Kameras, die ähnlich einem Laserscanner ein

räumliches Abbild der Umgebung erstellen können, allerdings den Vorteil haben den Raum nicht

abtasten zu müssen, sondern mit nur einem „Bild“ der Umgebung sofort 3D Informationen zur

Verfügung stellen können. Solch komplexe Technologien wie PMD oder Machine Vision brau-

chen jedoch noch relativ viel Rechenleistung, was die Flugzeit, speziell bei UAVs die nur mithilfe

von Akkus betrieben werden, stark verkürzen kann. Daher sind Infrarot- oder Ultraschallsenso-

ren aufgrund ihrer kleineren Energie- und Leistungsaufnahme aktuell eine gute Wahl [Ali et al.,

2014]. Durch sogenannte Sensor Fusion, also Nutzung mehrerer Sensoren und Verschmelzung

bzw. Verrechnung ihrer gelieferten Informationen lässt sich dabei die Zuverlässigkeit der Infor-

mationen über die Umgebung noch steigern.

Eine weitere Technologie, die zur Erkennung von Hindernissen und zur Vermeidung von Kol-

lisionen bei UAVs genutzt werden können, ist RADAR bzw. LIDAR. Beide basieren dabei auf

dem Prinzip, dass Radio- bzw. Lichtimpulse ausgesandt werden. Wird dieser ausgesandte Im-

puls von einem Hindernis zurückgeworfen, lässt sich anhand des zurückgeworfenen Anteils die

Entfernung errechnen. Doch auch hier ist die Energie- bzw. Leistungsaufnahme noch sehr hoch,

weshalb die beiden Systeme eher bei größeren Drohnen oder Flugzeugen zum Einsatz kommen

[Mejias et al., 2014].

Stand der Technik 17

2.3.2.2. Lage- und Positionsbestimmung

Der am meisten verbreitete Sensor für die Lagebestimmung, ist die sogenannte IMU, eine in-

ertiale Messeinheit, die Beschleunigungssensor und Gyroskop vereint. Mittels des Beschleuni-

gungssensors, der die Beschleunigungen in allen drei Achsen misst, sowie dem Gyroskop, das

die Drehraten um die drei Achsen misst, lässt sich durch Integrieren die Lage errechnen. Aller-

dings ist aufgrund der starken Drift des Beschleunigungsmesser und Gyroskops eine IMU nur

sehr bedingt zur Positionsbestimmung geeignet.

Eine weitere sehr populäre Technik, GPS, wird oft zur Positionsbestimmung eingesetzt. Al-

lerdings ist die Nutzung von GPS meist auf Außenanwendungen beschränkt, da die Signale der

GPS-Satelliten in Gebäuden nur schlecht empfangen werden können. Dadurch wird die Positi-

onsbestimmung mittels GPS innerhalb eines Gebäudes sehr ungenau.

Für Anwendungen im Innenbereich lassen sich auch die im vorangegangenen Kapitel beschrie-

benen Ultraschall- und Infrarotsensoren nutzen, da die beschränkte Reichweite dieser Sensoren

im Innenbereich meist ausreichend für eine relative Positionsbestimmung ist. Durch die bereits

erwähnte Technik der Fusionierung der Sensordaten und die Filterung beispielsweise mit einem

Zustandsschätzer wie dem Kalmann-Filter lässt sich hier auch eine relativ hohe Zuverlässigkeit

der von den genannten Sensoren gelieferten Information erzielen [Ali et al., 2014].

Eine weitere Methode, mit deren Hilfe die relative Positionsänderung bestimmt werden kann,

ist das sogenannte Verfahren des optischen Flusses. Dabei werden mit einer Kamera zwei kurz

aufeinanderfolgende Bilder aufgenommen. Anhand der Veränderung in den Bilddaten kann die

Positionsänderung errechnet werden. Diese Methode benötigt jedoch eine relativ hohe Rechen-

leistung [Gageik et al., 2014].

2.3.3. Kommunikation zwischen UAVs

Die Kommunikation ist, abgesehen von der Hardware und Flugregelung, der wichtigste Punkt

bei der Kooperation von UAVs. Nachfolgend sollen ein paar der meistgenutzten Kommunika-

tionstechnologien vorgestellt und erläutert werden. Dabei wird jedoch die Kommunikation der

Nutzlast des UAV, beispielsweise eine Videoübertragung an eine Groundstation, außer Acht ge-

lassen.

Stand der Technik 18

2.3.3.1. Bluetooth

Bluetooth, spezifiziert durch IEEE 802.15.1, ist ein sehr populäres Funksystem zur Datenüber-

tragung mit maximal 2,1 MBit/s bis zu einer Distanz von, je nach Spezifikation, 10 bis 100m,

das im 2,4GHz-Band arbeitet [Smolka, 2013]. Die Datenrate von Bluetooth ist relativ gering,

trotzdem ist Bluetooth sehr beliebt, da es es im Vergleich zu anderen Technologien relativ we-

nig Strom verbraucht und die Datenrate bei den meisten Anwendungen, z.B. senden/empfangen

von Telemetriedaten komplett ausreicht. Mit dem aktuell neuesten Bluetooth-Standard 4.2 wird

dabei der Stromverbrauch noch einmal gesenkt [Bluetooth-Spec], was Bluetooth zu einer attrak-

tiven Option für Multi-UAV Konstellationen macht, bei denen die einzelnen Agenten relativ nah

beieinander sind.

2.3.3.2. Wireless LAN

Eine Alternative zu Bluetooth, die nicht dessen Schwächen hat, ist ebenfalls eine der bekann-

testen Technologien: das sogenannte Wireless Local Area Network - kurz WLAN, ein - wie der

Name bereits andeutet - lokales Funknetz das bis zu einer Entfernung von 250m arbeitet [Ge-

ssler und Krause, 2009]. Die verschiedenen Versionen und Iterationen von WLAN sind durch

IEEE 802.11 spezifiziert, und unterscheiden sich dabei durch die maximale Datenrate bzw. Pro-

tokollspezfikation und Modulationsverfahren. WLAN arbeitet dabei, je nach Version im 2,4 bzw.

5GHz-Bereich und hat, bei WLAN 802.11n, dem meistgenutzten Standard, eine maximale Da-

tenrate von 600MBit/s. Ein weiterer Vorteil im Vergleich zu Bluetooth, ist die um einiges bessere

kryptographische Verschlüsselung des Funknetztes, z.B. durch WPA oder WPA2, was WLAN bei

sensitiviten Daten zu einer besseren Lösung als Bluetooth macht [Baun, 2012]. Allerdings gehen

die genannten Vorteile zu Lasten des Stromverbrauchs, da WLAN aufgrund der höheren Reich-

weite und Datenrate mit einer höheren Sendeleistung sendet [Gessler und Krause, 2009]. Daher

muss je nach Anwendung entschieden werden, ob man auf WLAN oder Bluetooth zurückgreift,

da beides Vor- und Nachteile bietet.

2.3.3.3. Mobilfunknetze

Eine auf UAVs relativ wenig genutzte Technologie sind die Mobilfunknetzte. Mobilfunknetzte

bieten eine extrem große, fast weltweite Netzabdeckung und sind daher fast überall nutzbar, al-

Stand der Technik 19

lerdings auf Kosten einer höheren Latenzzeit, was sie für Echtzeit-Anwendungen nur bedingt

nutzbar macht. Für weit auseinander liegende Agenten bzw. UAVs wäre solch ein Einsatz je-

doch denkbar. Alexander Mazur von der University of Western Australia hat im Oktober 2014

die Machbarkeit eines autonomen UAV-Flugs im Rahmen eines Master-Projekts demonstriert,

bei dem ein Hexacopter, ausgerüstet mit einem Raspberry Pi und einer Internetverbindung via

3G/4G über eine Weboberfläche gesteuert werden konnte [Mazur, 2014].

2.4. Kooperative Missionplanung

Nachdem im letzten Kapitel auf die technischen Anforderungen von UAVs, die in einer Konstel-

lation fliegen, eingegangen worden ist, gibt dieses Kapitel einen Überblick über aktuell verwen-

dete Methoden und Algorithmen in der Flugbahnplanung und der Kooperation multipler UAVs.

Zunächst jedoch einige Worte zur kooperativen Missionsplanung.

Kooperation zwischen UAVs wird vor allem dann nötig, wenn die zu erfüllende Mission, bei-

spielsweise das Absuchen eines Areals, mit einem einzelnen UAV nicht mehr erfüllbar oder nicht

effektiv ist, da UAVs im Allgemeinen verschiedene Einschränkungen wie eine begrenzte Flug-

dauer und Kommunikationsreichweite haben. Um eine solche Mission dennoch zu erfüllen, bzw.

effizienter zu erfüllen, können mehrere UAVs eingesetzt werden, die die Mission und die einzel-

nen Aufgaben unter sich aufteilen [Sathyaraj et al., 2008]. Allerdings ist eine solche Aufteilung

der Mission meist komplex, da die einzelnen Agenten untereinander kommunizieren und ihre

einzelnen Bewegungen koordiniert werden müssen, speziell unter dem Gesichtspunkt der Kolli-

sionsvermeidung und dem effizienten Einsatz der einzelnen Agenten. Die Komplexität ist dabei

stark mit der Anzahl der verwendeten UAVs verbunden, was schnell deutlich wird, wenn man

zwei UAVs, die sich auf Kollisionskurs befinden, betrachtet. Die beiden UAVs müssen einander

ausweichen um eine Kollision zu vermeiden, doch damit kommen sie unter Umständen auf einen

Kurs, der eine Kollision mit einem anderen UAV verursachen würde, und so weiter [Tsourdos

et al., 2011]. Offensichtlich ist also Kommunikation und Koordination zwischen den einzelnen

Agenten unabdingbar.

Tsourdos et al. [2011] versucht, die eben gezeigte Komplexität der Missionsplanung durch

Aufteilen der Planung in kleinere Pakete zu reduzieren und stellt für die Missionsplanung ein

abstrahiertes 3-Schichten-Modell vor (siehe Abb. 2.4), das aber je nach Einsatzzweck der UAVs

Stand der Technik 20

variieren kann. Auf der ersten Schicht residiert dabei der Missionsplaner, der je nach verwendeter

Abbildung 2.4.: Hierarchie einer Missionsplanung - (Tsourdos et al. [2011], Fig 1.4)

Konstellationsarchitektur zentral oder dezentral realisiert sein kann. Hier wird die globale Missi-

on der Agenten in kleinere Portionen aufgebrochen und entsprechend den Agenten zugewiesen.

Zusätzlich wird darauf geachtet, dass die globale Mission erfüllt wird.

In der zweiten, oder mittleren Schicht wird die Trajektorie oder die Flugbahn für alle Agen-

ten errechnet, um die einzelnen zugewiesenen Teilaufgaben zu erfüllen, wobei hier auch auf

Hindernis- bzw. Kollisionsvermeidung geachtet wird. Die dritte und letzte Schicht ist schließ-

lich die Kontrolle bzw. Führung der individuellen Agenten auf ihrer berechneten Flugbahn.

Für diese Arbeit ist speziell die Schicht 1 und 2 von Interesse, weshalb im folgenden auf die

Flugbahnplanung eingegangen wird.

2.4.1. Flugbahnplanung

Die Planung der Flugbahn lässt sich dabei für Quadrokopter in zwei, für sogenannte fixed-wing-

UAVs in drei, Segmente teilen, da bei fixed-wing UAVs die physikalischen Randbedingungen eine

größere Rolle spielen. Beispielsweise müssen solche UAVs, im Gegensatz zu Quadrokoptern,

eine gewisse Mindestgeschwindigkeit halten, um nicht abzustürzen. Dadurch muss bei solchen

Stand der Technik 21

UAVs, zusätzlich zur Routenplanung, auch eine von den physikalischen Eigenschaften geleitete

Trajektorie, in den meisten Fällen sind das gekrümmte Flugbahnen, geplant werden, was mithilfe

von Algorithmen wie Dubins Path, Pythagorean-hodographs (PH) und 2D Clothoids [Tsourdos

et al., 2011] gelöst werden kann, auf welche in dieser Arbeit jedoch nicht näher eingegangen wird.

Nach Tsourdos et al. [2011] wird für UAVs wie Quadrokopter zunächst eine simplifizierte,

mathematische Beschreibung der Umgebung erstellt, die alle möglichen Routen enthält, die Start-

und Zielpunkt miteinander verbinden, wobei hier auch statische Hindernisse beachtet werden.

Danach wird, mithilfe entsprechender Algorithmen, die in Kap. 2.4.1.2 näher erörtert werden,

und abhängig von der Missions- und Zielvorgabe, eine geeignete Flugbahn gewählt.

Eine solche Flugbahnplanung ist naturgemäß sehr stark von Faktoren wie den physikalischen

Eigenschaften der verwendeten UAVs, der Missionsvorgabe, der Umgebung, beispielsweise ob

Hindernisse bekannt oder unbekannt sind, etc. abhängig. Einige Methoden zum Finden von sol-

chen Flugbahnen sollen nun näher beleuchtet werden.

2.4.1.1. Methoden für die Routensuche

Drei der vorherrschenden Methoden zum Finden der möglichen Flugbahnen sind nach Tsourdos

et al. [2011] die sog. Road Map, die Cell Decomposition und die Potential Field Methode, wobei

diese drei mittlerweile in noch mehr Unterarten und Abwandlungen gegliedert sind [Valavanis,

2010].

Abbildung 2.5.: a) genäherte Cell Decomposition - eine Aufteilung des gesamten Gebiets in gleich große Teile
(Hindernisse sind dunkelgrau eingefärbt) b) Exakte Cell Decomposition - Hindernisse sind exakt
eingegrenzt - (Valente et al. [2011], Fig 14)

• Road Map Methode

Bekannten Methoden, wie Voronoi Diagramme, der Visibility Graph und teils auch die Pro-

babilistic Random Roadmap (PRR) basieren alle auf einem ähnlichem Prinzip, der soge-

nannten Road Map Methode, wobei die abzusuchende Fläche hierbei bekannt sein muss, es

Stand der Technik 22

sich also um eine sog. informierte Suche handelt. Dabei wird versucht, die Umgebung, bzw.

den zur Verfügung stehenden Raum, unter Beachtung eventueller Hindernisse als Graph

darzustellen. Die einzelnen Kanten des Graphen repräsentieren in diesem Fall potentielle

Pfade. Dadurch kann das Problem der optimalen Flugbahn unter Verwendung von Suchal-

gorithmen (näher erläutert in Kap. 2.4.1.2) gelöst, und ein entsprechender Pfad vom Start-

zum Zielpunkt gefunden werden [Valavanis, 2010].

• Cell Decomposition Methode

Analog zur Road-Map Methode gibt es auch hier verschiedene Ableger und Modifikatio-

nen der Methode, wobei die Grundlage immer das Aufteilen der Umgebung in disjunkte,

also sich nicht überschneidende Zellen, bildet, auch hier jedoch ist die Voraussetzung, dass

das Suchgebiet von vornherein bekannt ist. Adjazente Zellen, die frei sind, also solche,

die sich nicht mit Hindernissen überschneiden, werden dann durch Kanten miteinander

verbunden, was einen Graphen ergibt [Lingelbach, 2004]. Dieser kann wiederum mithilfe

von Suchalgorithmen (siehe Kap. 2.4.1.2) nach dem optimalen Flugpfad abgesucht wer-

den. Zwei Varianten der Cell Decomposition Methode sind die exakte und die genäher-

te Cell Decomposition (siehe Abb. 2.5), wobei die genäherte Methode speichereffizienter,

aber auch ungenauer ist [Tsourdos et al., 2011].

• Potential Field Methode

Die Potentialfeldmethode ist im Gegensatz zu den anderen zwei vorgestellten Methoden

nicht diskret, sondern kontinuierlich [Tsourdos et al., 2011]. Hier wird die Umgebung als

ein künstliches Potentialfeld dargestellt, wobei der Zielpunkt ein globales Minimum re-

präsentiert. Der Zielpunkt ist damit ein anziehendes Feld, und Hindernisse, die in diesem

künstlichen Feld ein höheres Potential haben, sind abstoßende Felder. Damit wird versucht,

den Agenten zum Zielpunkt zu lotsen [Lingelbach, 2004]. Die ursprüngliche Methode birgt

jedoch einige Schwierigkeiten, da der Agent beispielsweise in lokalen Minima gefangen

werden kann. Mithilfe von Verbesserungen und Erweiterungen der Methode, beispielswei-

se dem randomized path planner (RPP), können diese Schwierigkeiten jedoch überwunden

werden [Tsourdos et al., 2011; Lingelbach, 2004].

Stand der Technik 23

2.4.1.2. Suchalgorithmen für die Routenwahl

Nachdem nun mögliche Routen vom Start- zum Zielpunkt mit einer der im vorigen Kapitel be-

schriebenen Methode erfasst wurden, muss ein optimaler Pfad gefunden werden, der den Ziel-

mit dem Startpunkt verbindet. In dieser Arbeit wird davon ausgegangen, dass der kürzeste Pfad

der optimale Pfad ist. Je nach Missions- und Aufgabenstellung kann dies jedoch variieren. Die

möglichen Routen werden dabei als Graph G = {V,E}, mit V als Knoten und E als Kanten,

bezeichnet.

Um den optimalen Pfad zu finden, gibt es mehrere algorithmische Ansätze, von denen im

Folgenden einige erläutert werden.

• Bellman Ford Algorithmus

Der Bellman-Ford-Algorithmus, oft auch als Distanzvektoralgorithmus referenziert, der

beispielsweise auch für das Erstellen von Routing-Tabellen in Netzwerken genutzt wird,

ist ein iterativer Prozess zur Suche nach dem kürzesten Weg ausgehend von einem Start-

knoten. Die Kanten E des Graphen sind dabei gewichtet, und der Algorithmus führt seine

Suche nach dem Weg des geringsten Gewichts solange fort, bis er die Distanz zu jedem

Knoten berechnet hat, wobei die Gewichtung der Kanten auch negativ sein kann, d.h. kos-

tengünstig ist. [Sathyaraj et al., 2008]

• Dijkstra’s Algorithmus

Der Dijkstra-Algorithmus gehört zu den sog. greedy (engl. greedy - gierig) Algorithmen,

das heißt der Algorithmus wählt immer die Möglichkeit bei der er seinen Gewinn zum

Zeitpunkt der Wahl maximieren, bzw. in diesem Fall die Kosten minimieren kann. Dabei

arbeitet Dijkstra, wie der Bellman-Ford Algorithmus, ebenfalls mit gewichteten Kanten

in einem Graphen. Im Unterschied zu Bellman-Ford wählt Dijkstra jedoch nur dann den

optimalen Weg, solange die Gewichtung nicht negativ ist [Weicker, 2013; Sathyaraj et al.,

2008].

• Floyd-Warshall Algorithmus

Floyd-Warshall, der ebenfalls ein Suchalgorithmus aus der Graphentheorie ist, berechnet

die kürzesten Pfade zwischen allen Paaren der Knoten V eines Graphen. Der Algorithmus

basiert dabei auf dem Prinzip der dynamischen Programmierung, d.h. der Algorithmus be-

trachtet Teilprobleme des Gesamtproblems, und speichert die Lösungen der Teilprobleme,

Stand der Technik 24

anhand derer er andere Teillösungen kombinieren kann [Weicker, 2013]. Dadurch verbes-

sert sich die Gesamtlaufzeit, es wird jedoch mehr Speicher benötigt [Sathyaraj et al., 2008].

• A* Algorithmus

A* (gesprochen „A-Stern“) ist ein mit dem Dijkstra verwandter Algorithmus, nutzt jedoch

für die Wahl des nächsten Knotens, von dem die Berechnung weiterläuft, eine Heuristik,

also eine Schätzfunktion, um die Laufzeit zu verringern. Der A*-Algorithmus ist dabei

optimal, dass heißt es wird immer eine optimale Lösung gefunden, sofern sie existiert.

Nach Sathyaraj et al. [2008] besitzt der A*-Algorithmus die kürzeste Laufzeit von den hier

vorgestellten Algorithmen. Es gibt jedoch auch viele Weiterentwicklungen von A*, bei-

spielsweise den D* (dynamischer A*)-Algorithmus, der in der Lage ist, Änderungen in der

Umgebung zu berücksichtigen, und diese Änderungen effektiv in die weitere Pfadplanung

mit einfließen lässt, indem er nur einen Teil des Pfades neu berechnet [Stentz, 1997].

2.4.2. Kooperative Suche

Ein Einsatzgebiet, bei dem eine wie in den einleitenden Worten des Kapitels beschriebene Ko-

operation mehrerer UAVs sehr oft angewandt wird, ist das Absuchen oder die Überwachung eines

Gebiets, wie etwa bei Waldbränden, um Einsatzkräfte mithilfe genauer Lageinformation zu unter-

stützen [Casbeer et al., 2005]. Aber auch bei sog. Search-and-Rescue-Missionen, bei denen eine

raum-zeitlich effiziente Suche erforderlich ist, bietet sich die Nutzung mehrerer kooperierender

UAVs an, da das abzusuchende Gebiet meist sehr groß ist und die Sensorik der UAVs oft einge-

schränkt ist, bei optischen Kameras beispielsweise durch die Auflösung und den Öffnungswinkel.

Um nun eine parallelisierte Suche mit mehreren UAVs durchführen zu können, muss die Flug-

bahn der einzelnen Agenten entsprechend geplant und angepasst werden, weshalb die gesamte

abzusuchende Fläche unter den Agenten aufgeteilt wird. Bewährt hat sich für so eine Aufteilung

eine Methode wie die Cell Decomposition (vgl. 2.4.1) [Valente et al., 2011].

Bei der bereits erwähnten genäherten Cell Decomposition wird dabei die gesamte abzusuchen-

de Fläche in vieleckige Zellen, sogenannte Polygone, unterteilt. Traditionell sind diese Polygone

Vierecke (vgl. Abb. 2.5), wobei aktuelle Forschungsergebnisse bei einer hexagonalen Form der

Polygone eine bessere Koordination der UAVs in Aussicht stellen [Gao und Zhao, 2014]. Diese

Unterteilung des gesamten Suchraums in gleichartige Zellen hat den Vorteil, dass ein anfangs

Stand der Technik 25

Abbildung 2.6.: Aufteilung eines Gebiets in drei Teilgebiete für die einzelnen UAVs. Die grau gefüllten Pfeile geben
dabei die Richtung an, in die die Suche erfolgen soll. - (Maza und Ollero [2007], Fig 5)

komplexes Gebiet in handhabbare Teilstücke unterteilt wird, die dann als Graph oder Spannbaum

repräsentiert werden können und aus diesen dann mithilfe von den in Kapitel 2.4.1.2 vorgestellten

Algorithmen abzufliegende optimale Pfade erstellt werden [Jones, 2009].

Jedoch kann diese Methode bei Flächen, die keine trivialen Polygone darstellen (siehe Abb.

2.7b), nur bedingt angewandt werden, falls man ein komplettes Absuchen benötigt, ohne die

Begrenzungslinien zu überschreiten. Dafür eignet sich die sogenannte Area Decomposition, die

ähnlich der beschriebenen exakten Cell Decomposition das gesamte Gebiet auf die UAVs verteilt.

Der Unterschied besteht jedoch darin, dass bei der Area Decomposition keine Zellen erstellt wer-

den, die noch auf die verschiedenen Agenten mithilfe von Routenplanung verteilt werden müssen,

sondern das gesamte Gebiet flächenmäßig auf die Agenten verteilt wird (siehe Abb. 2.6). Diese

Flächen werden dann von den einzelnen Agenten nach Möglichkeit optimal, das heißt komplett

und mit einem minimalen Zeit-/Wegaufwand abgesucht [Maza und Ollero, 2007]. Der Vorteil bei

dieser Methode besteht darin, dass das Gesamtproblem von miteinander kooperierenden UAVs

nach dem Teile-und-Herrsche-Prinzip als jeweils ein kleineres Teilproblem mit einem einzelnen

UAV betrachtet werden kann. Damit lassen sich auch heterogene Teams von Agenten, beispiels-

weise unterschiedlich große UAVs mit verschiedenen Sensoren, sehr einfach einsetzen, da die

Aufteilung der gesamten Fläche an die jeweiligen Fähigkeiten der UAVs, beispielsweise höhe-

re Geschwindigkeit und damit ein schnelleres Absuchen, angepasst werden kann [Valente et al.,

Stand der Technik 26

2011]. Allerdings hat diese Methode den Nachteil, dass das Suchgebiet eine konvexe Form ha-

Abbildung 2.7.: Verschiedene Arten eines Polygons a) konvexes Polygon, b) kokaves Polygon c) komplexes Poly-
gon

ben muss, das heißt keine Einbuchtungen hat, und dass bei Formen eine effektive Aufteilung der

Suchfläche meist nicht mehr trivial ist [Maza und Ollero, 2007]. Dieses Problem der Aufteilung

eines nicht-konvexen Polygons in Subpolygone ist ein Teilbereich der Informatik und wird als

Algorithmische Geometrie bezeichnet, an welcher bereits seit Jahrzenten geforscht wird [Sack

und Urrutia, 2000]. Deshalb existieren viele Techniken zur sogenannten Polygon Decomposition,

der Aufspaltung einer vieleckigen Fläche in einfache Formen, zum Beispiel der Keil-Snoeyink-,

Hertel-Mehlhorn- oder Seidel’s Algorithmus [Keil und Snoeyink, 2002; Stancheva, 2003], die al-

le eine möglichst optimale Aufteilung der gegebenen Suchfläche realisieren. Diese Algorithmen

werden jedoch im Rahmen dieser Arbeit nicht näher beleuchtet.

Um nun eine solche zugewiesene Fläche abzusuchen, existieren verschiedene Methoden, die

jedoch stark an die Randbedingungen der Missionsanforderungen gekoppelt sind, beispielsweise

ob das abzusuchende Gebiet und eventuelle Hindernisse bekannt oder unbekannt sind. Eine sehr

weit verbreitete Methode zum Absuchen ist dabei nach Moon und Shim [2009] die sogenannte

Boustrophedon-Methode, bei der der Agent so lange Vor- und Zurück Bewegungen durchführt,

bis die gesamte Fläche abgesucht ist, wobei bei jedem turn - also bei jeder Richtungsänderung

des Agenten - das nächste Flugsegment etwas nach rechts oder links versetzt wird, sodass sich

das abgesuchte Gebiet nicht überlappt [Choset und Pignon, 1997].

Nach Maza und Ollero [2007] ist bei einer Suche nach der Boustrophedon-Methode, die Anzahl

der turns, die der Agent zu absolvieren hat, der größte Faktor für die Gesamtzeit, die ein Agent

braucht um ein Gebiet abzusuchen. Die Gesamtzeit der Suche ergibt sich dabei aus der Zeit für die

einzelnen Vor- bzw. Zurückbewegungen und der Zeit, die ein Agent braucht um die Richtung zu

Stand der Technik 27

Abbildung 2.8.: Darstellung der Durchmesserfunktion für ein einfaches Polygon zur Bestimmung der Suchrichtung,
bei der möglichst wenige Richtungswechsel nötig sind - (Maza und Ollero [2007], Fig 4)

ändern. Nach Huang [2001] ist dabei eine Vor- und Zurückbewegung senkrecht zur Suchrichtung

des Agenten am effektivsten.

Um die gesamte Suchzeit möglichst klein zu halten, muss also Anzahl der turns minimiert

werden, was dadurch erreicht wird, dass man die Richtung in die die Suche erfolgen soll an die

kleinstmögliche, größte Ausdehnung des zugewiesenen Suchfeldes anpasst. Diese kleinstmög-

liche, größte Ausdehnung lässt sich mithilfe der Durchmesserfunktion berechnen. Anschaulich

erklärt wird dabei das Polygon auf einer ebenen Fläche um 360° gedreht und die Höhe, das heißt

die Ausdehnung des Polygons senkrecht zur ebenen Fläche während des Drehens betrachtet, wo-

bei sich für die Höhe ein lokales Minimum zwischen zwei Maxima, also einer größtmöglichen

Ausdehnung des Polygons, ausbildet. Abb. 2.8 verdeutlicht dieses Vorgehen. Dieses lokale Mi-

Abbildung 2.9.: Absuchen einer Fläche nach der Boustrophedon-Methode, wobei die Richtung der Suche mittels
der Durchmesserfunktion bestimmt wurde. - (Maza und Ollero [2007], Fig. 6)

nimum entspricht der kleinstmöglichen, größten Ausdehnung des Polygons und bestimmt damit

die Suchrichtung des Agenten, wobei die Anzahl der turns minimiert ist. Wendet man dies auf

Abb. 2.6 an, ergibt sich für die Suche der einzelnen UAVs Abb. 2.9.

Stand der Technik 28

Dieser Ansatz des Absuchens durch die Boustrophedon-Methode lässt sich nach Huang [2001]

auch für Gebiete mit Hindernissen anwenden, wobei hier die Fläche so aufgeteilt werden muss,

dass sie aus konvexen Teilflächen besteht, was in den meisten Fällen relativ kompliziert ist. Im

Allgemeinen kann dieser Ansatz des Absuchens jedoch bei fast allen Anwendungen, die eine

komplette Erfassung eines Gebiets erfordern, angewandt werden.

Konzept 29

3. Konzept

Das letzte Kapitel hat einen Überblick über aktuelle Techniken und Lösungen vorgestellt, die zur

Kooperation mehrerer UAVs verwendet werden können. In diesem Kapitel geht es nun darum,

die in der Einleitung erläuterte Problemstellung der kooperativen Suche mithilfe der genannten

Techniken und Methoden zu erfassen und konzeptuell zu lösen, wobei das Problem zunächst

auf zwei kooperierende Quadrokopter reduziert wird, die im ersten Teil der Lösung vorgegebene

Wegpunkte und im zweiten Teil der Lösung eine vorgegebene, rechteckige Fläche absuchen.

3.1. Überblick

Abbildung 3.1.: Aufteilung des Problems in drei Teilbereiche

Um das spezifizierte Problem anzugehen, wird dieses zunächst in drei kleinere Teilprobleme

unterteilt, in die Positionserkennung via optischem Tracking System, die Kommunikationslösung

und schlussendlich die kooperative Suche, respektive die Aufteilung der Suche auf die einzelnen

Quadrokopter.

Für die Positionserkennung wird dabei im Rahmen der Arbeit das bereits vorhandene optische

Trackingsystem genutzt und in das bestehende System zur Positionserkennung integriert. Die

Kommunikation und Kooperation der Quadrokopter, die für die spätere Suche erforderlich ist,

basiert dabei auf einem Kommunikationsframework, das ebenfalls auf das bereits vorhandene

System aufsetzt und dieses um notwendige Eigenschaften und Befehle erweitert. (siehe Kap. 3.3).

Zuletzt verteilen Algorithmen die abzusuchenden Wegpunkte oder das abzusuchende Gebiet so

Konzept 30

auf die Quadrokopter, dass die gesamte Fläche bzw. alle Wegpunkte effektiv abgesucht werden,

und dabei keine Kollisionen entstehen.

3.2. Positionserkennung via Optischem Tracking

System

Abbildung 3.2.: Nutzung der optischen Trackingdaten anstelle des optischen Flusssensors - grau hinterlegtes ist
dabei bereits vorhanden, blau symbolisiert zu Entwickelndes

Das aktuell genutzte System besitzt bereits eine Möglichkeit zur relativen Positionserfassung

des Quadrokopters, basierend auf einem optischen Flusssensor, wobei das optische Tracking als

Referenz verwendet wurde, um die Genauigkeit der Steuerung mittels des optischen Flusses zu

verifizieren und zu überprüfen. Nun sollen die Positionsdaten, die das optische Tracking-System

liefert, anstelle der Daten des optischen Flusssensors genutzt werden, es müssen also die Daten

des OTS entsprechend empfangen und an den Quadrokopter weitergesendet werden, wie Abb.

3.2 verdeutlicht.

3.3. Kommunikationslösung

Wie bereits in vorangegangenen Kapiteln erwähnt, ist Kommunikation zwischen den einzelnen

Quadrokoptern entscheidend für die spätere Kooperation. Deshalb muss zunächst eine geeig-

nete Konstellationsarchitektur und dann geeignete Protokolle und Übertragungsmedien gewählt

Konzept 31

werden, die zum einen eine sichere Übertragung gewährleisten, zum anderen aber auch eine ent-

sprechende Reichweite haben. Das kooperative Absuchen entspricht dabei der in Kapitel 2.3.1

Abbildung 3.3.: Kontroll- und Kommunikationsarchitektur des entwickelten Systems. Die Pfeile symbolisieren da-
bei die Kommunikation, die ausschließlich über WLAN stattfindet.

beschriebenen Intentionalen Kopplung der Quadrokopter, da die Quadrokopter ein gemeinsames

Ziel verfolgen, jedoch nicht miteinander physisch in Verbindung stehen, oder eine Formation auf-

rechterhalten müssen. Da das Problem zunächst auch auf zwei Quadrokopter reduziert ist, wird

eine zentralisierte Kontrollarchitektur der dezentralisierten vorgezogen, da dies die Aufgaben-

verteilung auf die einzelnen Quadrokopter und die Sicherstellung, dass das Ziel erreicht wird,

vereinfacht. Dazu wird eine modifizierte Leader-Follower-Architektur verwendet. Im Gegensatz

zur Definition in Kapitel 2.3.1 folgt der Follower jedoch nicht jeder Bewegung des Leaders, son-

dern wird vom Leader kommandiert. Um diesbezüglich Verwechslungen zu vermeiden, wird im

Folgenden der Quadrokopter, der Befehle aussendet als MASTER bezeichnet, und der Quadroko-

pter, der die Befehle des MASTERs empfängt und ausführt, als SLAVE.

Um die Befehle zu versenden, bzw. zu empfangen, ist eine Kommunikationslösung notwen-

dig. Hierbei wird auf herkömmliche kommerzielle Lösungen zurückgegriffen, die bereits erprobt

Konzept 32

sind, um Kosten und Aufwand niedrig zu halten. Zur Verfügung stehen dabei die in Kap. 2.3.3

beschriebenen Möglichkeiten Bluetooth und WLAN.

Der Vorteil, den Bluetooth bietet, ist die aus Sicht der Implementierung sehr einfache Kom-

munikation. Allerdings sind die in Kap. 2.3.3.1 genannten Spezifikationen (maximal 7 Geräte -

Aufteilung der Bandbreite), vor allem für eventuelle spätere Einsatzzwecke, bei denen mehr Qua-

drokopter eingesetzt werden sollen, nicht gut geeignet. Auch spielt in einem solchen Szenario die

Reichweite der Funkübertragung, die bei Bluetooth viel stärker begrenzt ist als bei WLAN (siehe

Kap. 2.3.3.2), eine Rolle, da die Kommunikation, wie bereits erwähnt, essentiell für eine erfolg-

reiche Kooperation ist. Um also auch für größer ausgelegte Missionen tauglich zu sein, sollte die

verwendete Kommunikationsstruktur die gerade genannten Nachteile vermeiden. Eine Kommu-

nikationslösung mit WLAN überwindet die Limitierungen von Bluetooth, jedoch auf Kosten des

benötigten Stroms. Sie ist aber für den gewollten Einsatzzweck besser geeignet, da zum einen

eine höhere Reichweite möglich ist und zum anderen mehr Geräte miteinander vernetzt werden

können.

Darauf aufbauend werden eigene Befehle und Kommunikationsframes definiert, mit deren Hil-

fe die Quadrokopter untereinander kommunizieren und Telemetrie an eine Groundstation senden

können. Abb. 3.3 veranschaulicht dabei das Konzept der Kommunikationsstruktur, wobei die

Groundstation nur als Kommandointerface zum Senden der abzusuchenden Punkte, bzw. der Flä-

che und Telemetrieanzeige dient.

3.4. Kooperative Suche

In den folgenden zwei Unterkapiteln werden die zwei in der Einleitung angesprochenen Proble-

me, das kooperative Absuchen von Wegpunkten und das Absuchen einer Fläche, näher betrachtet.

3.4.1. Wegpunktsuche

Nach der in 2.4.1.2 gegebenen Defintion eines optimalen Pfads - optimal bedeutet möglich kurz

- muss also, um das Problem der kooperativen Wegpunktsuche zu lösen, für jeden Quadroko-

pter ein optimaler Pfad gefunden werden, wobei dieser sich nur bedingt überschneiden darf, da

Kollisionen vermieden werden müssen.

Konzept 33

Abbildung 3.4.: Vollständiger Graph, a) 5 Knoten, 10 Kanten b) 7 Knoten, 21 Kanten

Ein Ansatz ist, diese Wegpunkte in einem vollständigen kantengewichteten Graphen G als

Knotenmenge V darzustellen. Das Gewicht einer Kante w1 ,2 zwischen zwei Knoten V1 und V2

entspricht dabei der Länge des Pfades zwischen Wegpunkt 1 und Wegpunkt 2. Um nun für jeden

Quadrokopter den optimalen Pfad zu finden, müssten alle möglichen Pfade beider Quadrokopter

berechnet, miteinander verglichen, auf Kollisionsvermeidung geachtet und sichergestellt werden,

dass kein Wegpunkt doppelt angeflogen wird. Auch muss darauf geachtet werden, dass unter

Umständen ein Pfad der beispielsweise nur 2 Wegpunkte enthält genauso lang sein kann wie ein

Pfad der die restlichen Wegpunkte enthält. Dadurch müssen alle möglichen Permutationen der

Wegpunkte beachtet werden, da die Pfadlänge durch die Wahl der Anordnung der Wegpunkte

variiert werden kann.

Bei zwei Quadrokoptern müssen also zwei Subgraphen P1 (K1 ,L1),P2 (K2 ,L2) von G(V ,E)

mit L1 = {l1,1 . . . l1,n} und L1 = {l2,1 . . . l2,m} gefunden werden, sodass

K1 ∪K2 = V ∧ K1 ∩K2 = ∅ (3.1)

wobei K1 und K2 so gewählt werden sollen, dass

wges = w1 + w2 =
n−1∑
i=0

wi,i+1 +
m−1∑
j=0

wj,j+1 (3.2)

minimal wird, mit

w1 = w2 + ε mit |ε| ≥ 0 (3.3)

der Gesamtpfad also möglichst kurz, und beide Pfade der Quadrokopter möglichst gleich lang

sind. Betrachtet man Abb. 3.4 stellt man jedoch schnell fest, dass die Berechnung aller mögliche

Konzept 34

Pfade sehr lange dauern kann, weil die Anzahl der verfügbaren Kanten viel stärker als die An-

zahl verwendeter Knoten ansteigt. Dabei beträgt die Anzahl der möglichen Permutationen von n

Wegpunkten für einen Quadrokopter

Pn =
n∑

k=0

n!

(n− k)!

Dieses Problem der Suche nach dem kürzesten Pfad ist dabei ähnlich dem in der Literatur

als Travelling-Salesman bezeichnetem Problem, dem Problem des Handlungsreisenden, bei dem

dieser verschiedene Städte genau einmal besuchen muss, und dafür die optimale, das heißt die

kürzeste Gesamtroute nehmen soll.

In Kapitel 2.4.1.2 wurden für das Finden eines kürzesten Pfades bereits einige Suchalgorithmen

vorgestellt. In unserem Fall ist das Problem jedoch noch etwas komplizierter als das Travelling-

Salesman Problem, da man zwei Quadrokopter hat und für beide den jeweils kürzesten Pfad

finden muss, wobei kein Wegpunkt mehr als einmal angeflogen werden darf.

Die Berechnung eines optimalen Pfades durch eine reine Brute-Force-Methode, also durch das

einfache Berechnen und Vergleichen aller möglichen Pfade, scheidet damit für die gewünsch-

te Anwendung aus, da die Aufteilung der Wegpunkte erst auf dem Quadrokopter vorgenommen

werden soll, dessen Leistung jedoch begrenzt ist. Bereits beim einfachen Travelling Salesman-

Problem beträgt die Laufzeit einer solchen Berechnung aller möglicher Pfadlängen O(n!). Muss

man nun zwei solche kürzeste Pfade finden, ist die Laufzeit noch um einiges höher. Dadurch wäre

das gewollte möglichst schnelle Absuchen von Wegpunkten nicht gewährleistet, da der Quadroko-

pter bei vielen Wegpunkten eine sehr lange Zeit für die Pfadberechnung brauchen würde.Deshalb

wird zur Problemlösung ein eigener Algorithmus konzipiert, der auf einem Dijkstra-ähnlichen

Greedy-Algorithmus beruht und mittels eines Sortierverfahrens kürzeste Pfade ermittelt.

Zunächst werden dabei die Anzahl der Wegpunkte s auf die Anzahl der verfügbaren Quadroko-

pter q aufgeteilt, so dass jeder Quadrokopter etwa gleich viele Wegpunkte zugewiesen bekommt.

Konzept 35

Es müssen also q einfach-gerichtete Graphen P1(K1, L1) . . . Pq(Kq, Lq) gefunden werden, wobei

für die Anzahl n der Knoten in der Knotenmenge K gilt

n1 =

⌈
s

q

⌉
+ ε1, . . . , nq =

⌊
s

q

⌋
+ εq mit 0 ≤ ε1 . . . εq ≤ 1

sodass
q∑

i=1

ni = s und εq < ε1 falls ε1 > 0

(3.4)

Nun werden die möglichen Permutationen ak1,1 . . . akq ,q der Knotenmengen K1 . . . Kq berechnet

und gespeichert, wobei

k1 =n1 Ps, . . . , kq =nq Ps mit nPs =
n!

(n− s)!
(3.5)

die jeweilige Anzahl der entsprechenden Permutationen der Knoten in der Knotenmenge K dar-

stellt. Dadurch ergibt sich folgende Darstellung:

Ak,q =


a1,1 a1,2 · · · a1,q

a2,1 a2,2 · · · a2,q
...

...

ak,1 ak,2 · · · ak,q

 mit k =n1 Ps und (ai,j)
j=1,...,q
i=1,...,k (3.6)

Falls nun k > kj wird das Element ak,j mit 0 aufgfüllt. werden mit 0 aufgefüllt.

Die Knotenmenge jeder möglichen Permutation ai,j wird nun so sortiert, dass die Summe der

Kantengewichte wges (Definition siehe 3.2) der Permutation möglichst klein ist. Dies wird mit

einem Dijkstra-ähnlichem Verfahren bestimmt. Dabei wird, ausgehend vom Startknoten, in un-

serem Fall dem Startpunkt des Quadrokopters, der beste nächste Wegpunkt gewählt, wobei der

beste nächste Wegpunkt derjenige ist, zu dem die Entfernung am geringsten ist.

Eine Permutation ai,j mit Knotenmenge M = {m1 . . .mnj
} wird also so sortiert, dass

w1,2 ≤ w2,3 ≤ . . . ≤ wnj−1 , nj
(3.7)

Hat man so nun das möglichst kleinste Gesamtgewicht der Kanten einer Permutation ai,j be-

stimmt, werden die Spalten der Matrix Ak,q nach diesem Gesamtgewicht aufsteigend sortiert,

wobei Matrixelemente die ai,j = 0 entsprechen, nicht sortiert werden, sondern an ihrem Platz

Konzept 36

verbleiben. Das heißt es werden in der j-ten Spalte nur die ersten kj-Elemente aufsteigend sor-

tiert. Dabei entsteht eine neue Matrix

Bk,q =


b1,1 b1,2 · · · b1,q

b2,1 b2,2 · · · b2,q
...

...

bk,1 bk,2 · · · bk,q

 (3.8)

Mithilfe dieser Matrix lässt sich relativ einfach eine flugtaugliche Pfadkombination finden, in-

dem man iterativ die einzelnen Spalten j der Zeilen i, beginnend bei b1,1 solange durchgeht, bis

eine Pfadkombination {bi,1, bi,2, . . . , bi,q} gefunden ist, die der Definition in 3.1 genügt, so dass

alle Wegpunkte genau einmal in der Pfadkombination vorkommen. Dabei ist diese Pfadkombi-

nation auch möglichst kurz, da die Elemente der Matrix Bk,q nach der Pfadlänge sortiert sind.

Allerdings wird dabei nicht unbedingt der optimalste Pfad gefunden, da nicht alle Pfade mitein-

ander verglichen werden.

3.4.2. Flächensuche

Abbildung 3.5.: Aufteilung der Fläche eines Rechtecks in a) zwei gleiche Flächen und b) drei gleiche Flächen; die
farbigen Punkte stellen dabei die Quadrokopter dar

Nachdem nun ein Konzept für das Finden eines kürzesten Pfades zum Absuchen von Weg-

punkten vorgestellt wurde, geht es in diesem Kapitel um das kooperative Absuchen einer Fläche.

Konzept 37

Um das Suchgebiet, wie in der Problemstellung gefordert, effizient mit mehreren Quadroko-

ptern abzusuchen, müssen mehrere Aspekte betrachtet werden. Zunächst muss entschieden wer-

den, wie das Suchgebiet aufgeteilt wird. In Kap. 2.4.2 wurden dazu zwei bewährte Methoden,

die Cell- sowie die Area Decomposition, vorgestellt, wobei bei ersterer die gesamten Fläche in

gleichmäßige Polygone unterteilt wird und bei zweiterer das Gesamtgebiet flächenmäßig aufge-

teilt wird. Beide Techniken sind für das gegebene Problem zunächst denkbar, jedoch sind die in

Kap. 2.4.2 genannten algorithmischen Ansätze, wie beispielsweise die Polygonzerlegung nach

Hertel-Mehlhorn oder Keil-Snoeyink, relativ komplex, was die Frage aufwirft, ob ein solcher

Aufwand für die Zerlegung überhaupt notwendig ist, da nach Problemstellung zunächst nur ein

rechteckiges Suchgebiet betrachtet wird.

Bei einem Rechteck lässt sich die Komplexität der Zerlegung nämlich auf einen eindimensio-

nalen Fall reduzieren, indem man die Seite des Rechtecks, bei der die zwei Quadrokopter starten,

betrachtet. Teilt man die Länge dieser Linie durch zwei, und zieht von diesem Punkt aus eine

Linie orthogonal durch das Rechteck, dann ist die Fläche des Rechtecks durch zwei geteilt, siehe

auch Abb. 3.5a. Eine solche Aufteilung der Fläche lässt sich auch mit mehr als zwei Quadro-

koptern realisieren, da nur die Länge der Linie durch die Anzahl der verfügbaren Quadrokopter

geteilt werden muss, um die gesamte Fläche aufzuteilen, siehe Abb.3.5b.

Der zweite Aspekt, der bei der Flächensuche wichtig ist, ist das Absuchen der Fläche selber. Ei-

ne entsprechende Technik, die Boustrophedon-Methode, bei der die Quadrokopter durch Vor- und

Zurück-Bewegungen orthogonal zur Suchrichtung und durch das Versetzen des Quadrokopters

nach rechts bzw. links bei jeder Richtungsänderung das gesamte Suchgebiet absuchen, wurde

ebenfalls bereits in Kapitel 2.4.2 vorgestellt. Dabei wird die Suchrichtung mittels einer Durch-

messerfunktion (vgl. 2.8) bestimmt, um die Anzahl der Richtungsänderungen des Quadrokopters

zu minimieren, um so zeiteffektiv zu arbeiten. Im Falle der vorliegenden rechteckigen Fläche

Abbildung 3.6.: Boustrophedon Methode bei Suchrichtung orthogonal zur längeren bzw. zur kürzeren Seite - (Maza
und Ollero [2007], Fig.3)

lässt sich allerdings auch hier eine sehr viel einfachere Methode verwenden: Man finde die län-

Konzept 38

gere Seite des Rechtecks. Legt man die Suchrichtung orthogonal zu dieser längeren Seite fest,

wird dabei die Anzahl der Richtungsänderungen minimiert wird, was nach Kapitel 2.4.2 effizient

ist, da Richtungsänderungen durch das Abbremsen und wieder beschleunigen des Quadrokopters

Zeit kosten. Abb. 2.9 veranschaulicht dies sehr gut.

Eine Alternative zu dieser Boustrophedon-Methode wäre die Nutzung einer sogenannten

Breiten- bzw. Tiefensuche, beides Suchansätze, die aus der Graphentheorie stammen, mit eini-

gen Modifikationen allerdings auch zum Erkunden einer Fläche genutzt werden können [Barth,

2013]. Bei der Breitensuche wird dabei zunächst die Seite der Suchfläche betrachtet, es wird also

Ebene für Ebene abgesucht, während die Tiefensuche den Suchbereich als erstes “in die Tiefe„,

das heißt die lange Seite zuerst absucht. Wenn die Tiefensuche nun an eine Wand kommt, oder

an einen Suchbereich der bereits besucht wurde, wird nach rechts abgebogen. Dies wird solange

wiederholt, bis die gesamnte Fläche abgesucht ist.

Diese beiden Methoden sind bereits für einen einzelnen Quadrokopter implementiert, das heißt,

es lassen sich bereits Wegpunkte so für ein vorgegebenes Rechteck generieren, dass eine Fläche

abgedeckt wird. Mit ein paar Erweiterungen lassen sich diese beiden implementierten Suchme-

thoden auch sehr gut für das vorliegende Problem der Suche mit mehreren Quadrokoptern nutzen.

Implementierung 39

4. Implementierung

Dieses Kapitel beschreibt die Implementierung und Integration des in Kapitel 3 vorgestellten

Konzepts auf dem bereits bestehenden Quadrokopter-System, das im Rahmen des AQopterI8-

Projekts entwickelt wurde.

Es wird dabei zum einen ein kurzer Überblick über das Quadrokopter-System gegeben, zum

anderen wird die Implementierung der Nutzung des optischen Tracking Systems, der Kommuni-

kationslösung, sowie der Algorithmen zur Aufteilung der Wegpunkte, bzw. der Fläche gegeben.

Schlussendlich wird die GUI, die graphische Benutzeroberfläche für die Steuerung der Quadro-

kopter näher beschrieben.

4.1. Überblick

Das aktuelle Quadrokopter-System besteht, abgesehen von der Hardware, die für den Flug not-

wendig ist, aus zwei separaten Software-Teilen. Zunächst gibt es die Quadrokopter-Flugsoftware,

die auf einem Mikrocontroller ausgeführt wird und die dabei für die Regelung des Quadrokopters

zuständig ist. Der zweite Software-Teil, der auf einem separaten, kleinen eingebetteten Windows-

Rechner läuft, ist dabei hauptsächlich für komplexere Aufgaben zuständig, die unter Anderem

eine höhere Rechenleistung benötigen, als sie der Mikrocontroller bereitstellen kann, so wie bei-

spielsweise beim 3D-Mapping. Dieser Teil basiert auf Qt/C++ und ist aktuell über eine GUI

bedienbar, wobei eine Remotedesktopverbindung zum Quadrokopter aufgebaut werden muss.

Für die Implementierung des Konzepts werden möglichst keine Modifikationen an der Flug-

software auf dem Mikrocontroller und der Hardware vorgenommen, da der Fokus auf dem

Software-Teil liegt, der auf dem Windows-Rechner läuft.

Im Rahmen dieser Arbeit wird dabei eine neue Klasse OTS_Control erstellt, die alle nötigen

Funktionen für die Implementierung des Konzeptes enthält.

Implementierung 40

4.2. Optisches Tracking System

Abbildung 4.1.: Datenfluss der optischen Trackingdaten. Die Einspeisung der transformierten Positionsdaten im
messageHandler erfolgt per OF_FOURIER_UPDATE_POSITION-Kommando. Der Qt-PC ist da-
bei der Windows-Rechner des Quadrokopters, und der AVR steht für den Mikrocontroller, der für
die Regelung zuständig ist.

Das optische Tracking-System, das für die Positions- und Lageerkennung der Quadrokopter

verwendet wird, beruht auf den Flex 3-Kameras der Firma OptiTrack. Die Kameras, die im

Infrarot-Spektrum arbeiten, besitzen dabei eine Auflösung von 640x480 Pixeln und nehmen Bil-

der mit einer maximalen Framerate von 100fps auf. Mittels der zugehörigen Software Motive lässt

sich, nachdem die Software mithilfe eines Wanding-Stabes wie in Kap.2.1 beschrieben, kalibriert

wurde, ein Quadrokopter tracken. Dazu werden am Quadrokopter vier Marker angebracht, die das

Infrarotlicht, das die an den Kameras angebrachten Infrarot-LEDs aussenden, reflektieren. Die-

se Marker werden dabei nicht symmetrisch am Quadrokopter angebracht, da sonst zweideutige

Lage- bzw. Positionsdaten entstehen können. Es empfiehlt sich auch die Nutzung von mindestens

vier Markern, da unter Umständen einer der Marker verdeckt und damit von der Software nicht

Implementierung 41

erkannt werden kann, was bei Nutzung von weniger als vier Markern zu unkorrekten oder keinen

Positions- und Lagedaten führt.

Sobald die Marker in den Sichtbereich der Kameras kommen und von der Tracking-Software

erkannt werden, können die Marker zu einem sogenannten Rigid Body, einem festen Körper zu-

sammengefasst werden, für den die 6DoF-Daten, also X,Y,Z - Koordinaten, sowie die Lagedaten

in Form eines Quaternions, ausgegeben werden.

Diese Daten können nun über ein VRPN, ein Virtual Reality Private Network, mittels ei-

ner vom Hersteller zur Verfügung gestellten Bibliothek (DLL) abgefragt werden. Eine solche

Abfrage der Daten ist, wie in Kapitel 3.1 dargelegt, bereits möglich und wird in der Klasse

opticaltracking mit der erwähnten Bibliothek realisiert. Um nun die empfangenen Da-

ten weiter nutzen zu können, wird die genannte Klasse um ein Signal sendOTSData erweitert,

und mit einem Slot trackingData in der OTS_Control-Klasse verbunden.

Die so vom optischen Tracking System erhaltenen Daten liegen allerdings in raumfesten

Koordinaten vor, die Schnittstelle auf dem AVR, die für die Positionsregelung genutzt wer-

den soll, erwartet jedoch körperfeste Koordinaten. Die Schnittstelle wird dabei eigentlich von

der NavigationControl-Klasse verwendet, um die mittels des optischen Flusssensors ge-

wonnen Positionsdaten zur Positionsregelung zu nutzen. Nachdem nun die vom OTS emp-

fangenen Positionsdaten in körperfeste Koordinaten transformiert sind, werden diese mit dem

Kommando OF_FOURIER_UPDATE_POSITION an den AVR gesendet, wo sie wie Daten

des optischen Flusssensors behandelt werden. Das Senden der Daten ist dabei in der Funktion

sendPositionAVR realisiert. Abbildung 4.1 veranschaulicht diesen Ansatz. Zu beachten ist

dabei, dass nur die X- und Y- Komponenten der Position genutzt werden, die Höhenregelung

zunächst also außer Acht gelassen wird.

4.3. Kommunikation zwischen Quadrokoptern

Die Kommunikation zwischen den Quadrokopter und der Groundstation basiert, wie in Kapitel

3 erläutert, auf WLAN, wobei auch hier auf ein bereits implementiertes Modul zurückgegriffen

werden kann, das allerdings etwas erweitert werden muss.

Dabei handelt es sich um die beiden Klassen Client sowie CommServer, mit deren Hilfe

sich ein Client zu einem Server unter Verwendung des TCP-Protokolls (näher erläutert in Kap.

Implementierung 42

Abbildung 4.2.: Kommunikationsfluss zwischen Groundstation, Master und Slave. Rot markiert dabei Aktivitäten
die vom Nutzer gestartet werden müssen

2.3.3.2) verbinden kann. Zu einem Server können sich dabei beliebig viele Clients verbinden, und

vordefinierte Nachrichten senden.

Da diese vordefinierten Nachrichten für die aktuelle Problemstellung nicht zielführend sind,

müssen eigene Nachrichten definiert werden. Dabei wird sich für die Trennzeichen der Nachrich-

ten an der Syntax orientiert, die auch für die Kommunikation zwischen Windows-PC und AVR

mittels sogenannter Frames genutzt wird, um eine größtmögliche Kompatibilität, im Falle einer

zukünftigen Verwendung zu gewährleisten.

Deshalb wird ein eigener MessageType, OTS_COMMANDED, definiert, der verschiedene Be-

fehle tragen kann. Tabelle A.1 gibt einen Überblick über die für die Problemstellung wichtigen

Befehle und deren Parameter, die an OTS_COMMANDED angehängt werden können. Eine voll-

ständige Tabelle, die auch verschiedene Debug-Kommandos und weitere Flugmodi enthält, die

für die Problemstellung zunächst nicht relevant sind, findet sich im Anhang ??. Für das Emp-

fangen der Nachrichten werden die Klassen Client und CommServer noch um einen Parser

erweitert, der die in Tab. A.1 definierten Befehle dechiffrieren kann. Mehrere Befehle können

dabei auch direkt hintereinander gesendet werden.

Implementierung 43

Kommando Argument WP - X WP -Y Beschreibung
OTS_CONNECT_OTS 1=an; 0=aus - - schaltet Empfang der

OTS-Daten ein
OTS_CONNECT_GS IP ; Modus - - verbindet sich zur

Groundstation mit IP und
setzt Master- bzw. Slave
Modus

OTS_CONNECT_SLAVE IP-Adresse - - Master verbindet sich
zum Slave mit IP

OTS_START_COMMANDING 1=an; 0=aus - - Startet das Absuchen
OTS_SEARCHMODE A oder P - - A = Flächensuche, P =

Wegpunktsuche
OTS_WAYPOINT - X Y Koordinaten eines Weg-

punkts

Tabelle 4.1.: wichtige Befehle zur Kommandierung der Quadrokopter. (WP = Wegpunkt)

Die Software ist dabei so gestaltet, dass die gleiche Version der Software sowohl auf dem

Master-Quadrokopter, dem Slave-Quadrokopter und der Groundstation läuft, wobei die Ground-

station per Mausklick aktiviert werden muss. (vergleiche dazu Abb. 4.3 in Kap. 4.5). Hat man

nun die Groundstation aktiviert, können zunächst der Master und dann der Slave durch Anga-

be ihrer jeweiligen IP-Adresse mit der Groundstation verbunden werden. Dies geschieht durch

den Aufbau einer TCP-Verbindung zur angegebenen IP. Ist die Verbindung erfolgreich aufge-

baut wird das Kommando OTS_CONNECT_GS gesendet, wodurch dem jeweiligen Quadrokopter

mitgeteilt wird, in welchen Modus, Master oder Slave, er schalten soll. Zusätzlich wird, beim

Empfang des Kommandos, eine Verbindung von beiden Quadrokoptern zur Groundstation auf-

gebaut, um Telemetriedaten zu übertragen. Die Telemetriedaten bestehen dabei hauptsächlich

aus Quittierungen der empfangenen Nachrichten, es können auf Wunsch aber auch Debug-Daten

übertragen werden, die zum Beispiel den aktuellen Modus, die aktuelle Position, die nächste

Soll-Position etc. enthalten. Danach müssen die beiden Quadrokopter miteinander und mit dem

optischen Tracking verbunden werden, was mithilfe der Kommandos OTS_CONNECT_SLAVE

und OTS_CONNECT_OTS realisiert wird. Der Master stellt dabei eine Verbindung zum Slave

mit der übergebenen IP her. Die Verbindung zum optischen Tracking System wird dabei, wie in

Kapitel 4.2 beschrieben, über ein VRPN verwirklicht.

Um nun eine Wegpunkt- oder Flächensuche zu starten, sendet die Groundstation mit dem

Kommando OTS_SEARCHMODE den entsprechenden Modus, und danach die Wegpunkte, be-

Implementierung 44

ziehungsweise die Fläche, die abgesucht werden soll, an den Master. Das Zusammenstellen der

Wegpunkte und der Fläche wird jedoch erst in Kapitel 4.5 genauer erklärt.

Der Master empfängt nun das Kommando und die Wegpunkte/Fläche und berechnet den Flug-

pfad in Form einer geordneten Wegpunktliste für beide Quadrokopter. Ist die Berechnung ab-

geschlossen, wird dem Slave die entsprechende abzufliegende Wegpunktliste gesendet. Danach

starten der Master und der Slave das selbstständige Abfliegen der berechneten Wegpunktliste.

Abb. 4.2 veranschaulicht diesen Kommunikationsfluss zwischen Groundstation, Master und Sla-

ve.

Das selbstständige Abfliegen der Wegpunktliste wird dabei mit Hilfe der Funktion

OTS_Commanding realisiert. Hier wird ein Wegpunkt aus der abzufliegenden Wegpunktliste

in raumfesten Koordinaten an die Flugsoftware auf dem Mikrocontroller gesendet, die sich um

den Flug zum gegebenen Wegpunkt kümmert, und periodisch überprüft, ob der Quadrokopter den

übertragenen Wegpunkt bereits erreicht hat. Ist der Quadrokopter nach einer gewissen Zeit nicht

am Wegpunkt angekommen, wird der Wegpunkt erneut gesendet, solange bis der Quadrokopter

den Wegpunkt erreicht. Ist dies der Fall, wird der nächste Wegpunkt gesendet. Diese Vorgehens-

weise wird dabei solange wiederholt, bis der Quadrokopter den letzten Wegpunkt erreicht. An

diesem letzten Wegpunkt hält der Quadrokopter seine Position und wartet auf neue Befehle.

4.4. Suchalgorithmen

Im Folgenden werden nun die Implementierungen der Wegpunkt- sowie der Flächensuche be-

schrieben.

4.4.1. Implementierung Wegpunktsuche

Um das Testen des algorithmischen Konzepts 3.4.1 und dessen Evaluierung zu vereinfachen,

wurde dieser Teil der Arbeit in einer eigenen Klasse waypointalgorithm und zunächst un-

abhängig von der Quadrokopter-Software implementiert. Der Fokus der Implementierung liegt

dabei beim Finden der optimalen Pfade für zunächst zwei Quadrokopter.

Die Funktion calculateShortestPath in der Klasse nimmt dabei zwei Argumente, ei-

ne Liste mit Wegpunkten und eine Liste mit Startpunkten entgegen. Aus diesen übergebenen

Punkten wird zunächst eine sogenannte Lookup Table erstellt, die die Pfadlängen zwischen je-

Implementierung 45

weils zwei Punkten enthält, sodass man diese später nicht immer wieder berechnen muss. Nun

werden die Anzahl der Wegpunkte, wie in Def. 3.4 beschrieben, möglichst gleichmäßig auf die

Anzahl der Startpunkte verteilt und für jeden Wegpunkt die Kombinationen mit der zugeteilten

Anzahl an Wegpunkten aus der Gesamtanzahl der Wegpunkten berechnet. Werden zum Beispiel

19 Wegpunkte und 2 Startpunkte übergeben, werden dem ersten Startpunkt 10 und dem zwei-

ten Startpunkt 9 Wegpunkte zugewiesen. Dementsprechend werden für den ersten Startpunkt alle

Kombinationen mit 10 aus 19, und für den zweiten Startpunkt 9 aus 19 Wegpunkten berechnet,

was mit der rekursiven Funktion getCombinations erledigt wird.

Für jede dieser Wegpunktkombinationen wird nun durch simples Berechnen und Vergleichen

eine, wie in Kapitel 3.4.1 beschriebene, kürzeste Anordnung bestimmt, wobei die Länge der Weg-

punktkombination immer mit abgespeichert wird. Nun wird mit der Funktion sortData das

Array, das die Wegpunktkombinationen und ihre Länge enthält, nach der Länge der Wegpunkt-

kombinationen sortiert. sortData ist dabei eine Implementierung des QuickSort-Algorithmus.

Jetzt geht der Wegpunkt-Algorithmus dieses sortierte Array von oben nach unten, das heißt von

der kürzesten bis zur längsten Wegpunktkombination für jeden Startpunkt durch, und überprüft,

ob die Wegpunktkombinationen alle abzufliegenden Wegpunkte enthalten und ob keine Weg-

punkte mehrfach vorkommen.

Ist dies nicht der Fall, wählt der Algorithmus für denjenigen Startpunkt die nächste Wegpunkt-

kombination, bei dem die Änderung der Pfadlänge, sollte die nächste Wegpunktkombination ge-

nommen werden, am geringsten ist. Dann wird erneut überprüft, ob alle anzufliegenden Weg-

punkte enthalten sind, und so weiter. Damit erhält der Algorithmus garantiert eine Wegpunkt-

kombination für alle Startpunkte. Wie in 3.4.1 bereits erwähnt, ist diese Wegpunktkombination

unter Umständen nicht optimal, was in Kapitel 5.1.1 näher betrachtet wird.

4.4.2. Implementierung Flächensuche

Die Implementierung der Flächensuche stützt sich, wie in Kapitel 3.4.2 beschrieben, auf ein be-

reits existierendes Modul zur Flächensuche, der Klasse waypoint_generator. Hier können

für verschiedene Suchmethoden, wie die in 3.4.2 erwähnten Tiefen- und Breitensuche, Wegpunkte

in Abhängigkeit von den Abmessungen der gegebenen Fläche, sowie vom Sichtbereich des Qua-

drokopters generiert werden. Als Randbedingung für die Implementierung soll dabei gelten, dass

die beiden Quadrokopter immer nebeneinander starten, das heißt, dass die beiden Quadrokopter

Implementierung 46

einen ähnlichen Y-Koordinatenwert haben (die Y Achse zeigt dabei nach oben, die X-Achse nach

rechts).

Eine Einschränkung der waypoint_generator-Klasse ist jedoch, dass Wegpunkte für nur

einen Quadrokopter generiert werden können, der zusätzlich seinen Startpunkt immer im Koor-

dinatenursprung hat. Für die kooperative Suche müssen allerdings unterschiedliche Startpunkte

gewählt werden können und mehrere Pfade generiert werden.

Da im vorliegenden Fall das Problem der Flächensuche auf ein Rechteck reduziert ist, die auf

die zwei Quadrokopter aufgeteilte Fläche also wieder einem Rechteck entspricht, wobei die bei-

den Flächen exakt gleich sind, kann das existierende Modul dennoch verwendet werden. Der

Wegpunktgenerator wird dazu einfach mit den Abmessungen der halbierten Fläche aufgerufen,

und die dadurch generierten Wegpunkt im Nachhinein dupliziert. Mit der oben genannten Rand-

bedingung der Implementierung, nach der die Startpunkte der Quadrokopter auf gleichem Y-Wert

liegen, kann auf die duplizierten Wegpunkte einfach ein Offset in X-Richtung addiert werden, um

die Wegpunkte des Pfades für den zweiten Quadrokopter zu erhalten (siehe dazu auch Abb. 4.4).

Dem Problem des festen Startpunkts bei der Wegpunktgenerierung kann ebenfalls durch die

Nutzung eines Offsets begegnet werden. Dabei entspricht der Offset, der auf die generierten Weg-

punkte addiert wird, genau den Koordinaten des Startpunkts des ersten Quadrokopters.

4.5. Graphische Benutzeroberfläche

Um die in den vorangegangenen Kapiteln erläuterten Funktionen nutzen zu können, wurde die

vorhandene graphische Oberfläche um zwei neue Reiter im Control-Bereich erweitert: einem

Reiter OTS Control und einem Reiter OTS Simulation.

OTS Control ist dabei in 4 Bereiche, in Abb. 4.3 rot eingezeichnet, gegliedert: dem Bereich für

das optische Tracking, für die Kontrolle der Quadrokopter, einem Bereich für Eingabe/Ausgabe

und zuletzt eine Karte. Im Folgenden werden die einzelnen Bereiche genauer erklärt.

1. Kontrollbereich für das optisches Tracking

Dieser Bereich ist auf jedem Quadrokopter verfügbar, das heißt, die Einstellungen in die-

sem Bereich können auf jedem Quadrokopter unabhängig voneinander eingestellt werden.

Ändert man jedoch diese Einstellungen auf der Groundstation, werden diese an die verbun-

denen Quadrokopter gesendet.

Implementierung 47

Abbildung 4.3.: Überblick der implementierten GUI für die Kontrolle zweier Quadrokopter

• Der Button Connect OTS verbindet den Master bzw. den Slave mit dem optischen

Trackingsystem. Die Groundstation

• Unterhalb des Buttons lässt sich die Sampletime für das optische Tracking einstel-

len. Mit diesem Zeitintervall wird vom optischen Tracking ein Update der Positions-

daten angefordert.

• Wiederum unterhalb, kann die Sampletime für das Senden der Positionsdaten an den

AVR eingestellt werden. Durch Klicken auf set AVR Sampletime wird diese auf allen

verbundenen Quadrokoptern gesetzt.

• Die beiden Textfelder auf der rechten Seite enthalten den Namen des Rigid Bodys,

der in der Software des optischen Trackings erstellt wurde (sieh dazu Kap. 4.2), sowie

die IP Adresse, auf der die Software des optischen Trackings läuft. Zu beachten ist,

dass das obere Textfeld dem Master entspricht, das untere dem Slave.

• Mithilfe der checkBox debugOverride lässt sich der Bereich 2 aktivieren, auch wenn

die Software nicht auf der Groundstation, sondern auf einem Quadrokopter läuft. Da-

Implementierung 48

durch kann die Software auch zur Kontrolle eines Quadrokopters verwendet werden,

wenn keine Groundstation genutzt wird.

2. Kontrolle der Quadrokopter

Dieser Bereich ist standardmäßig deaktiviert, kann auf der Groundstation aber durch ankli-

cken der checkBox Groundstation Mode aktiviert werden.

• Die beiden Buttons Connect Master und Connect Slave verbinden die Groundstati-

on mit dem jeweiligen Quadrokopter. Solange kein Master verbunden ist, kann auch

kein Slave verbunden werden. Wenn jedoch ein Slave mit der Groundstation verbun-

den wird, wird dieser automatisch auch mit dem Master verbunden (vgl. dazu den

Kommunikationsfluss in Kap. 4.3)

• Area Search bzw. WP Search setzt den Suchmodus auf die Flächen- bzw. Wegpunkt-

suche.

• Aktiviert man den Follow Master-Modus, folgt der Slave dem Master im Abstand

von einem Wegpunkt.

• Der Immediate-Modus kann nur aktiviert werden, wenn nur der Master verbunden

ist. Dabei wird ein Wegpunkt sofort nachdem er in Bereich 4 angeklickt wurde, an

den Quadrokopter gesendet.

• Ist die Return Home-checkBox und die Area Search aktiviert, kehren die Quadroko-

pter nach erfolgreichem Absuchen der Fläche an ihren Ausgangspunkt zurück.

• send WPs to Master bzw. reset WPs Master sendet die in Bereich 4 angeklickten

Wegpunkte an den Master bzw. setzt die Wegpunkte zurück.

• Start Simulation aktiviert den Reiter OTS Simulation und startet die Simulation einer

Wegpunktsuche (siehe Abb. 4.4).

• Start Control startet die Berechnung der abzusuchenden Fläche bzw. Wegpunkte und

startet die Suche.

3. Bereich für Ein- und Ausgabe

• Mittels fetch WPC List lassen sich die im Reiter Waypoint Commanded erstellten

Wegpunkte übernehmen.

Implementierung 49

• clear WP löscht die in Bereich 4 erstellten Wegpunkte

• Mit den Buttons save und load lässt sich eine Wegpunktliste speichern und laden.

• Ist der verbose Mode aktiv, werden zusätzlich zur normalen Ausgabe erweiterte In-

formationen im nebenstehenden Textfeld angezeigt.

• log debugOut speichert die Ausgabe, die im Textfeld angezeigt wird, sodass sie mit

dem Button Save Log in eine Datei gespeichert werden kann.

• show Path blendet den von den Quadrokoptern zurückgelegten Weg in die Karte ein,

sofern das optische Tracking aktiv ist.

• der Button clear Output löscht die Ausgabe im nebenstehenden Textfeld

4. die Karte

In der Karte können beliebige Wegpunkte gesetzt werden, die dann je nach Suchmodus als

Wegpunkte, oder als Begrenzung der Suchfläche angesehen werden.

Der zweite Reiter, OTS Simulation, simuliert den Abflug einer Flächensuche mit wahlweise einem

oder zwei Quadrokoptern. Der Reiter ist dabei verknüpft mit OTS Control, da die in OTS Control

eingegebenen Wegpunkte für die Simulation genommen werden. Abb. 4.4 illustriert diesen Reiter.

Analog zu OTS Control besitzt auch dieser Reiter auf der linken Seite eine Karte, hier wird anstatt

der Wegpunkte der abzufliegende Pfad eingezeichnet, der aus der in OTS Control ausgewählten

Fläche besteht.

Auf der rechten Seite lässt sich im oberen Bereich die Anzahl der Quadrokopter für die Flä-

chensuche einstellen, sowie deren Startpuntke festlegen. Der mittlere Bereich, der in Abb. 4.4

Nullen anzeigt, stellt, wenn die Simulation gestartet wird, verschiedene Parameter dar, so zum

Beispiel die IST- und SOLL-Position, die Anzahl der abgeflogenen Wegpunkte, sowie die gesam-

te Pfadlänge und die abgesuchte Fläche.

Der untere und letzte Bereich bietet verschiedene Einstellmöglichkeiten zur Simulation an.

Mit Step size wird dabei die Schrittweite festgelegt, mit welcher, bei Klick auf Previous Step

oder Next Step, ein Schritt in der Simulation vor oder zurück gemacht wird. Das Einstellen der

Flughöhe war ursprünglich geplant, ist aber in dieser Software-Version nicht aktiv, da auch in

OTS Control nur die X-Y-Ebene betrachtet wird. Mit dem Safety Radius lässt sich der Radius

um den Quadrokopter einstellen, der nicht von anderen Quadrokoptern gekreuzt werden darf.

Implementierung 50

Abbildung 4.4.: Simulation des Abfluges einer Flächensuche

Die Sight Area beschreibt das Sichtfeld des Quadrokopters auf dem Boden, was natürlich den

abzufliegenden Pfad beeinflusst, da die gesamte gewählte Fläche abgesucht werden muss.

Schlussendlich gibt es noch den Play/Pause-Button, der den Flug der Quadrokopter links in

der Karte mit der eingestellten Schrittweite abspielt. Stop Simulation beendet letztlich die Simu-

lation und wechselt wieder in den OTS Control-Reiter.

Evaluierung 51

5. Evaluierung

In diesem Kapitel wird die Implementierung der Wegpunkt- und Flächensuche, sowie die Nut-

zung des optischen Trackingsystems für die Positionsregelung hinsichtlich des Problems der ko-

operativen Suche evaluiert.

5.1. Evaluierung der Suchansätze

5.1.1. Tiefen- und Breitensuche

In Kapitel 4.4.2 wurden zwei Suchmethoden, die Breiten- und Tiefensuche, implementiert, bzw.

erweitert, sodass diese für eine kooperative Suche angewandt werden können.

Mit Hilfe des implementierten GUI-Reiters OTS Simulation wurden die beiden Methoden für

zwei Quadrokopter im Hinblick auf Effizienz untersucht, wobei in diesem Fall eine Methode als

effizienter angesehen wird, wenn sie kürzere Pfade und weniger turns, also Richtungsänderun-

gen, für die kooperierenden Quadrokopter generiert. Um die Suchmethoden vergleichen zu kön-

nen, werden beide auf einer rechteckigen Fläche mit Kantenlängen 3m x 2m angewandt, wobei

den Quadrokoptern ein Sichtbereich von 0,5m x 0,5m und die Startpunkte (0|0) und (0|1) zuge-

wiesen werden. Bereits auf den ersten Blick lässt sich erkennen, dass die Tiefensuche weniger

Abbildung 5.1.: Vergleich der a) Breitensuche und der b) Tiefensuche für die kooperative Suche zweier Quadroko-
pter

Evaluierung 52

Richtungsänderungen generiert. Auch die Pfadlänge ist bei der Tiefensuche mit einer Gesamtlän-

ge von 12,58m kürzer als die Breitensuche mit 15,14m. Es muss jedoch beachtet werden, dass

die Pfadlänge mit der Wahl der Startpunkte variiert werden kann.

Vergleicht man die Tiefensuche mit der in Kapitel 3.4.2 genannten Boustrophedon-Methode

(siehe Abb.), stellt man fest, dass diese zwar einen anderen Pfad generieren würde, der aber

gleich lang wäre und gleich viele Richtungsänderungen hätte. Die Tiefensuche scheint, für die-

sen vereinfachten Fall der Flächensuche, dementsprechend gut zu funktionieren und sollte beim

Absuchen einer Fläche der Breitensuche bevorzugt werden, falls ein ähnliches Suchgebiet vor-

liegt.

5.1.2. Algorithmus zur Aufteilung von Wegpunkten

Abbildung 5.2.: Möglichst kurze Pfade aus je 18 Wegpunkten (grün) und je 2 Startpunkten (gelb). Die Punkte wur-
den dabei zufällig generiert.

Das Ziel des in 3.4.1 entwickelten Algorithmus war die Aufteilung von einer gegebenen Anzahl

an Wegpunkten auf zwei Quadrokopter, sodass beide Pfade möglichst optimal sind. Das heißt, die

beiden Pfade müssen in etwa gleich lang, dabei aber so kurz wie möglich sein, und die Berech-

nung soll in akzeptabler Zeit ablaufen. In Abb. 5.3 wird die Laufzeit des Algorithmus gegenüber

der Anzahl der Wegpunkte aufgetragen und mit einer reinen Bruteforce-Methode verglichen. Die

Laufzeit entspricht dabei der Durchschnittslaufzeit, die mithilfe von 10 Ausführungen pro Weg-

punktanzahl ermittelt wurde. Die Weg- und Startpunkte werden dabei zufällig generiert.

Getestet wurde der Algorithmus sowie die Brute-Force-Methode auf einem Intel i5 Dual-Core

mit 2,4GHz. Der Algorithmus scheint zunächst eine gute Alternative zur Brute-Force Methode zu

sein, da bis zu 18 Wegpunkte in einer akzeptablen Zeit prozessiert werden können. Auch scheinen

Evaluierung 53

Abbildung 5.3.: Dauer der Pfadberechnung in Millisekunden für bestimmte Anzahl der Wegpunkte.

die erstellten Pfade für die zufällig generierten Wegpunkte relativ gut zu sein, siehe Abbildung

5.2.

Die größte Schwachstelle des Algorithmus ist allerdings die feste Zuteilung der Anzahl an

Wegpunkten. Dadurch spart man sich zwar einige Berechnungen und Vergleiche, bei gewissen

Abbildung 5.4.: Der Wegpunktalgorithmus berechnet unterschiedlich lange Pfade, da der grüne Pfad bereits die ma-
ximale Anzahl an Wegpunkten, die diesem Startpunkt zugeteilt wurden, erreicht hat. Gelbe Punkte
sind Startpunkte, grüne Punkte sind Wegpunkte

Wegpunktkonstellationen entstehen so aber unterschiedlich lange Pfade, betrachte dazu Abb.5.4.

Hier ist der pinke Pfad mehr als doppelt so lang als der grüne Pfad.

Eine Möglichkeit, den Algorithmus zu verbessern, wäre die Einführung eines Schwellenwerts

für die Differenz der Pfadlängen, ab welchem eine Pfadkombination verworfen wird. Dadurch

Evaluierung 54

würde eine Pfadkombination wie in Abb. 5.4 nicht auftreten. Alternativ könnte eine Variaton der

Anzahl der zugewiesenen Wegpunkte erlaubt werden, was jedoch stark auf Kosten der Laufzeit

gehen würde.

5.2. Nutzung des Optisches Tracking Systems

Die Evaluierung der Nutzung des optischen Tracking Systems ist in zwei Teile gegliedert. Zu-

nächst wird die implementierte Software, die die Trackingdaten empfängt und an den Mikrocon-

troller des Quadrokopters sendet, auf Funktionalität überprüft. Im Zuge dieses Funktionalitäts-

tests wird auch die Kommunikation, wie sie in Kapitel 4.3 beschrieben ist, getestet.

Ist dieser „Trockentest“ erfolgreich, wird überprüft, wie genau der Quadrokopter mithilfe der

optischen Trackingdaten eine Position halten kann.

5.2.1. Empfang der Positionsdaten

Um die Funktionalität der implementierten Software für den Empfang der optischen Trackingda-

ten zu testen, wird zunächst ein WLAN-Netzwerk erstellt, zu dem sich sowohl der Rechner auf

dem die optische Tracking Software Motive läuft, als auch ein Quadrokopter und zwei weitere

Rechner verbinden. Einer der Rechner fungiert dabei als Groundstation, der andere Rechner wird

als Ersatz für einen Slave verwendet (vgl. Kap. 4.3). Der Quadrokopter wird bei diesem Test als

Master genutzt. Nachdem nun das optische Trackingsystem entsprechend kalibriert ist, wird der

Groundstation-Rechner mit dem Master und dem Slave verbunden, und das optische Tracking

von der Groundstation aus gestartet. Nun werden die Marker, die in der Software des optischen

Tracking Systems als Rigid Body deklariert wurden, im Sichtbereich der Tracking-Kameras um-

hergeschwenkt, bzw. umhergetragen, siehe dazu Abb. 5.5.

Während dieses Tests ist aufgefallen, dass die Positionserkennung bereits durch schwache,

indirekte Sonneneinstrahlung stark beeinflusst wird, sodass keine korrekten Positionsdaten mehr

gesendet werden können, da die Marker nicht mehr erkannt werden. Ein weiterer Punkt ist, dass

die Positionsdaten leicht, aber merklich der realen Bewegung der Marker hinterherhängen, das

System also nicht in Echtzeit arbeitet.

Evaluierung 55

Abbildung 5.5.: Testen der optischen Tracking Verbindung mittels mehrerer Marker, die als Rigid Body deklariert
sind

5.2.2. Statisches Regelverhalten

Nun soll festgestellt werden, wie gut der Quadrokopter mit den Positionsdaten des optischen

Trackings seine Position halten kann. Dazu wird der Quadrokopter auf den Koordinatenursprung

des optischen Trackings gestellt, und manuell gestartet. Hat der Quadrokopter eine bestimmte

Höhe erreicht, wird die Positionsregelung für ein paar Minuten eingeschaltet, um zu überprüfen,

dass diese funktioniert.

Bei den ersten Versuchen zum statischen Regelverhalten ist schnell aufgefallen, dass das ur-

sprüngliche Konzept, die Schnittstelle für die Positionsdaten, und somit auch die Regelung des

optischen Flusssensors zu nutzen, nicht geeignet ist, um den Quadrokopter mittels der Positions-

daten des optischen Trackings zu regeln. Dies liegt zum einen an den für den Regler verwendeten

PID-Werten, da der Regler unter anderem die Qualität des optischen Flusses mitbeachtet, die bei

Nutzung des optischen Tracking Systems natürlich nicht gegeben ist. Zum anderen scheint die

Samplerate des optischen Trackings nicht stabil zu sein, da die Zeit zwischen den ankommenden

Nachrichten mit Positionsupdates variiert, was Einfluss auf den Positionsregler hat.

Abbildung 5.6 veranschaulicht einen der ersten Versuche zum statischen Regelverhalten, wobei

die P und D Werte in Richtung der X-Achse gegen die Zeit aufgetragen sind. Der Quadrokopter

scheint sich nicht stabilisieren zu können, und der D-Anteil wird immer wieder bei +4 bzw. -4

gesättigt. Nach einer Modifikation der Steuersoftware auf dem Mikrocontroller, wobei ein neues

Kommando OTS_UPDATE_POSITION, sowie eine Überprüfung der ankommenden Positions-

Evaluierung 56

Abbildung 5.6.: Ein erster Versuch zum statischen Regelverhalten

Abbildung 5.7.: Statisches Regelverhalten mit P=20.0 ; I=0.0005 ; D=1200.0. Es sind P und D-Werte in Richtung
der X-Achse gegen die Zeit (in sec) aufgetragen.

daten und ein EWMA-Filter (Exponentially Weighted Moving Average Filter) für die stärkere Ge-

wichtung aktueller Positionsdaten hinzugefügt wurde, konnten geeignetere PID-Werte gefunden

werden. Abbildung 5.7 zeigt einen ca. zweiminütigen Testlauf bei dem sich die P- und D-Werte

in Richtung X-Achse immer näher an die Nulllinie bewegen, und der Quadrokopter seine aktuelle

Position relativ gut hält.

Allerdings gibt es auch immer wieder Ausreißer, wie zum Beispiel bei t = 65. Auch scheint

sich der Quadrokopter nur sehr langsam an die gewünschte Position im Koordinatenursprung zu

bewegen. Die Entfernung zum Ursprung variiert während des Versuch zwischen ca. 40 und 85cm.

Evaluierung 57

Abbildung 5.8.: Positionsdaten während des Versuchs zum statischen Regelverhalten in Abb. 5.7. Die X-Achse
verläuft nach rechts, die Y-Achse nach oben. Werte sind in Zentimetern angegeben

Zum einen entsteht die relativ große Entfernung zum Koordinatenursprung dadurch, dass der

Quadrokopter bereits zu Anfang des Versuchs nicht im Ursprung ist, zum anderen scheinen die

PID-Werte noch nicht gut genug zu sein, da der Quadrokopter sich nur sehr langsam und mit

Ausreißern - sowohl in X- als auch in Y-Richtung - zum Koordinatenursprung bewegt (siehe dazu

Abb. 5.8).

Diskussion und Ausblick 58

6. Diskussion und Ausblick

Eine Hauptaufgabe dieser Arbeit war zunächst die Integration des bereits bestehenden optischen

Tracking Systems in das bestehende Quadrokopter-Projekt. Da

Während der Evaluierung hat sich jedoch herauskristallisiert, dass das Konzept des „Einspei-

sens“ der vom optischen Tracking gelieferten Positionsdaten in die Schnittstelle des optischen

Flusssensors zur Positionsregelung nicht funktioniert. Dies liegt hauptsächlich daran, dass der

Regler für den optischen Flusssensor optimiert ist. Während der Evaluierung konnte zwar mithil-

fe einiger Workarounds ein akzeptables Ergebnis für das statische Regelverhalten erzielt werden,

jedoch ist die Abweichung der Ist- von der Soll-Position noch sehr groß.

Da das optische Tracking an sich sehr genaue Positionsdaten liefert, besteht hier sehr viel

Optimierungspotential hinsichtlich der Positionsregelung. Die wahrscheinlich effektivste Lösung

wäre, eine separate Regelung für das optische Tracking System, bzw. für dessen Positionsdaten, in

der Flugsoftware des Mikrocontrollers zu implementieren. Dadurch könnte man diese Regelung

für das optische Tracking optimieren und gleichzeitig Kompatibilität zur Implementierung der

Regelung des optischen Flusssensors wahren.

Eine weitere Aufgabe dieser Arbeit war das kooperative Lösen eines Problems mithilfe zweier

Quadrokopter. Dafür wurde als Problemstellung ein kooperatives Absuchen von Wegpunkten und

einer Fläche gewählt, wobei dieses Absuchen nur simuliert worden ist. Dafür wurde zum einen

ein eigener, relativ schneller Algorithmus für die Aufteilung der Wegpunkte entworfen, der je-

doch nicht immer gute Ergebnisse liefert. Eine Optimierungsmöglichkeit dafür wurde bereits in

der Evaluierung in Kap. 5.1.2 erläutert. Zum anderen wurde, aufbauend auf dem vorhandenen im-

plementierten Wegpunktgenerator undder Tiefensuche eine Möglichkeit entworfen, ein Absuchen

einer Fläche auf mehrere Quadrokopter aufzuteilen. Dazu wurde eine Kommunikationsstruktur

aus Groundstation, Master und Slave entwickelt mit welcher die Suche gesteuert werden kann,

ohne auf die aktuell verwendete Remotedesktopverbindung zuzugreifen.

Diskussion und Ausblick 59

Da die genannte Flächensuche auf einem einfachen Rechteck beruht, wäre es denkbar, dass die

kooperative Suche dahingehend erweitert wird, dass ein Raum, der auch Hindernisse enthalten

kann, abgesucht wird.

7. Literaturverzeichnis 60

7. Literaturverzeichnis

[Alani 2014] ALANI, Mohammed M.: Guide to OSI and TCP/IP Models (SpringerBriefs

in Computer Science). Springer, 2014. – URL http://dx.doi.org/10.1007/

978-3-319-05152-9. – ISBN 3319051512

[Ali et al. 2014] ALI, Qasim ; GAGEIK, Nils ; MONTENEGRO, Sergio: A Review on Distri-

buted Control of Cooperating Mini UAVS. In: International Journal of Artificial Intelligence

& Applications (IJAIA) 5 (2014). – URL http://airccse.org/journal/ijaia/

papers/5414ijaia01.pdf

[Anderson und Robbins 1998] ANDERSON, Mark ; ROBBINS, Andrew: Formation flight as a

cooperative game. In: Guidance, Navigation, and Control Conference and Exhibit, American

Institute of Aeronautics and Astronautics (AIAA), aug 1998. – URL http://dx.doi.

org/10.2514/6.1998-4124

[Barth 2013] BARTH, Paul: Bachelorarbeit - Bachelorarbeit Implementierung und Evaluierung

verschiedener Algorithmen zur autonomen Suche eines Quadrokopters. 2013

[Baun 2012] BAUN, Christian: Computernetze kompakt. Berlin : Springer Vieweg, 2012. –

ISBN 978-3642289873

[Beard et al. 2006] BEARD, R.W. ; MCLAIN, T.W. ; NELSON, D.B. ; KINGSTON, D. ; JOHAN-

SON, D.: Decentralized Cooperative Aerial Surveillance Using Fixed-Wing Miniature UAVs.

In: Proc. IEEE 94 (2006), jul, Nr. 7, S. 1306–1324. – URL http://dx.doi.org/10.

1109/JPROC.2006.876930

[Bluetooth-Spec] BLUETOOTH-SPEC: aktuelle offizielle Bluetooth-Spezifikation Core

Version 4.2. – URL https://www.bluetooth.org/en-us/specification/

adopted-specifications. – Zugriffsdatum: 16. April 2015

[Casbeer et al. 2005] CASBEER, D.W. ; LI, Sai-Ming ; BEARD, R.W. ; MEHRA, R.K. ;

MCLAIN, T.W.: Forest fire monitoring with multiple small UAVs. In: Proceedings of the 2005,

http://dx.doi.org/10.1007/978-3-319-05152-9
http://dx.doi.org/10.1007/978-3-319-05152-9
http://airccse.org/journal/ijaia/papers/5414ijaia01.pdf
http://airccse.org/journal/ijaia/papers/5414ijaia01.pdf
http://dx.doi.org/10.2514/6.1998-4124
http://dx.doi.org/10.2514/6.1998-4124
http://dx.doi.org/10.1109/JPROC.2006.876930
http://dx.doi.org/10.1109/JPROC.2006.876930
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications

7. Literaturverzeichnis 61

American Control Conference, 2005., Institute of Electrical & Electronics Engineers (IEEE),

2005. – URL http://dx.doi.org/10.1109/ACC.2005.1470520

[Choset und Pignon 1997] CHOSET, Howie ; PIGNON, Philippe: Coverage Path Planning:

The Boustrophedon Decomposition. In: International Conference on Field and Service Robo-

tics, URL https://www.ri.cmu.edu/pub_files/pub1/choset_howie_1997_

5/choset_howie_1997_5.pdf, 1997

[Gageik et al. 2012] GAGEIK, Nils ; MÜLLER, Thilo ; MONTENEGRO, Sergio: Obstacle

Detection and Collision Avoidance using ultrasonic distance sensors for an autonomous

Quadrocopter. 2012. – URL http://www8.informatik.uni-wuerzburg.

de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_

Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_

AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_

QUADROCOPTER.pdf

[Gageik et al. 2014] GAGEIK, Nils ; REINTHAL, Eric ; BENZ, Paul ; MONTENEGRO, Sergio:

Complementary Vision Based Data Fusion For Robust Positioning And Directed Flight Of An

Autonomous Quadrocopter. In: International Journal of Artificial Intelligence & Applications

5 (2014), sep, Nr. 5, S. 01–19. – URL http://dx.doi.org/10.5121/ijaia.2014.

5501

[Gao und Zhao 2014] GAO, Chun Y. ; ZHAO, Zhen Y.: A New Multiple UAVs Coopera-

tive Search Model Building and Route Planning Method. In: AMM 701-702 (2014), dec,

S. 160–166. – URL http://dx.doi.org/10.4028/www.scientific.net/AMM.

701-702.160

[Gessler und Krause 2009] GESSLER, Ralf ; KRAUSE, Thomas: Wireless-Netzwerke für den

Nahbereich. Springer Science & Business Media, 2009. – URL http://dx.doi.org/

10.1007/978-3-8348-9601-8

[Huang 2001] HUANG, W.H.: Optimal line-sweep-based decompositions for coverage algo-

rithms. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Auto-

mation (Cat. No.01CH37164), Institute of Electrical & Electronics Engineers (IEEE), 2001. –

URL http://dx.doi.org/10.1109/ROBOT.2001.932525

http://dx.doi.org/10.1109/ACC.2005.1470520
https://www.ri.cmu.edu/pub_files/pub1/choset_howie_1997_5/choset_howie_1997_5.pdf
https://www.ri.cmu.edu/pub_files/pub1/choset_howie_1997_5/choset_howie_1997_5.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://dx.doi.org/10.5121/ijaia.2014.5501
http://dx.doi.org/10.5121/ijaia.2014.5501
http://dx.doi.org/10.4028/www.scientific.net/AMM.701-702.160
http://dx.doi.org/10.4028/www.scientific.net/AMM.701-702.160
http://dx.doi.org/10.1007/978-3-8348-9601-8
http://dx.doi.org/10.1007/978-3-8348-9601-8
http://dx.doi.org/10.1109/ROBOT.2001.932525

7. Literaturverzeichnis 62

[Jones 2009] JONES, Phillip J.: Cooperative Area Surveillance Strategies using

multiple Unmanned Systems, Georgia Institute of Technology, Dissertation, 2009.

– URL https://smartech.gatech.edu/bitstream/handle/1853/28134/

jones_phillip_j_200905_phd.pdf

[Keil und Snoeyink 2002] KEIL, Mark ; SNOEYINK, Jack: On the Time bound for Convex

Decomposition of Simple Polygons. In: International Journal of Computational Geometry

& Applications 12 (2002), jun, Nr. 03, S. 181–192. – URL http://dx.doi.org/10.

1142/S0218195902000803

[Kumar 2015] KUMAR, Vijay: Aerial Robot Swarms. Max-Planck-Lecture. 2015. – URL

https://www.is.mpg.de/15769518/Aerial_Robot_Swarms. – Zugriffsdatum:

9. März 2015

[Li und Liu 2008] LI, Norman H. ; LIU, Hugh H.: Formation UAV flight control using vir-

tual structure and motion synchronization. In: Proc of the 2008 American Control Conf. Wa-

shington, URL http://www.nt.ntnu.no/users/skoge/prost/proceedings/

acc08/data/papers/0579.pdf, 2008, S. 1782–1787

[Lingelbach 2004] LINGELBACH, F.: Path planning using probabilistic cell decomposition.

In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04.

2004, Institute of Electrical & Electronics Engineers (IEEE), 2004. – URL http://dx.

doi.org/10.1109/ROBOT.2004.1307193

[Maza und Ollero 2007] MAZA, Ivan ; OLLERO, Anibal: Multiple UAV cooperative searching

operation using polygon area decomposition and efficient coverage algorithms. In: Distributed

Autonomous Robotic Systems 6. Springer Science Business Media, 2007, S. 221–230. – URL

http://dx.doi.org/10.1007/978-4-431-35873-2_22

[Maza et al. 2014] MAZA, Ivan ; OLLERO, Anibal ; CASADO, Enrique ; SCARLATTI, David:

Classification of Multi-UAV Architectures. S. 953–975. In: VALAVANIS, Kimon P. (Hrsg.) ;

VACHTSEVANOS, George J. (Hrsg.): Handbook of Unmanned Aerial Vehicles, Springer Nether-

lands, 2014. – URL http://dx.doi.org/10.1007/978-90-481-9707-1_119. –

ISBN 978-90-481-9706-4

https://smartech.gatech.edu/bitstream/handle/1853/28134/jones_phillip_j_200905_phd.pdf
https://smartech.gatech.edu/bitstream/handle/1853/28134/jones_phillip_j_200905_phd.pdf
http://dx.doi.org/10.1142/S0218195902000803
http://dx.doi.org/10.1142/S0218195902000803
https://www.is.mpg.de/15769518/Aerial_Robot_Swarms
http://www.nt.ntnu.no/users/skoge/prost/proceedings/acc08/data/papers/0579.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/acc08/data/papers/0579.pdf
http://dx.doi.org/10.1109/ROBOT.2004.1307193
http://dx.doi.org/10.1109/ROBOT.2004.1307193
http://dx.doi.org/10.1007/978-4-431-35873-2_22
http://dx.doi.org/10.1007/978-90-481-9707-1_119

7. Literaturverzeichnis 63

[Mazur 2014] MAZUR, Alexander: Autonomous operation and control of a Mul-

tirotor Unmanned Aerial Vehicle through 4G LTE using onboard GPS and image

processing. 2014. – URL http://robotics.ee.uwa.edu.au/theses/

2014-Hexacopter-Interface-Mazur.pdf. – Zugriffsdatum: 20. April 2015

[Mejias et al. 2014] MEJIAS, Luis ; LAI, John ; BRUGGEMANN, Troy: Sensors for Missions. In:

VALAVANIS, Kimon P. (Hrsg.) ; VACHTSEVANOS, George J. (Hrsg.): Handbook of Unmanned

Aerial Vehicles. Springer Netherlands, 2014, S. 385–399. – URL http://dx.doi.org/

10.1007/978-90-481-9707-1_6. – ISBN 978-90-481-9706-4

[Menache 2011] MENACHE, Alberto: Understanding motion capture for computer animation,

2nd Edition. Burlington, MA : Morgan Kaufmann, 2011. – ISBN 978-0-12-381496-8

[Moon und Shim 2009] MOON, Sang-Woo ; SHIM, David Hyun-Chul: Study on path planning

algorithms for unmanned agricultural helicopters in complex environment. In: International

Journal of Aeronautical and Space Sciences 10 (2009), Nr. 2, S. 1–11

[OptiTrack] OPTITRACK: Website zum Produkt OptiTrack der Firma NaturalPoints.

– URL http://www.optitrack.com/support/faq/mocap.html#tracking_

accuracy. – Zugriffsdatum: 25. April 2015

[Sack und Urrutia 2000] SACK, Jörg-Rüdiger ; URRUTIA, Jorge: Handbook of computational

geometry 1st Edition. Amsterdam New York : Elsevier, 2000. – ISBN 9780444825377

[Sathyaraj et al. 2008] SATHYARAJ, B. M. ; JAIN, L. C. ; FINN, A. ; DRAKE, S.: Multiple

UAVs path planning algorithms: a comparative study. In: Fuzzy Optimization and Decisi-

on Making 7 (2008), jun, Nr. 3, S. 257–267. – URL http://dx.doi.org/10.1007/

s10700-008-9035-0

[Scherff 2010] SCHERFF, Jürgen: Grundkurs Computernetzwerke : eine kompakte Einfüh-

rung in Netzwerk- und Internet-Technologien. Wiesbaden : Vieweg + Teubner, 2010. – ISBN

9783834803665

[Smolka 2013] SMOLKA, Joshua: Bachelorarbeit - Entwicklung einer ad-hoc W-Lan Gui-

basierten Steuerung von multiplen Quadrokoptern. 2013

http://robotics.ee.uwa.edu.au/theses/2014-Hexacopter-Interface-Mazur.pdf
http://robotics.ee.uwa.edu.au/theses/2014-Hexacopter-Interface-Mazur.pdf
http://dx.doi.org/10.1007/978-90-481-9707-1_6
http://dx.doi.org/10.1007/978-90-481-9707-1_6
http://www.optitrack.com/support/faq/mocap.html#tracking_accuracy
http://www.optitrack.com/support/faq/mocap.html#tracking_accuracy
http://dx.doi.org/10.1007/s10700-008-9035-0
http://dx.doi.org/10.1007/s10700-008-9035-0

7. Literaturverzeichnis 64

[Stancheva 2003] STANCHEVA, Galina: Interaktive Visualisierung von Algorithmen

für die Polygonzerlegung, Ludwig-Maximilians-Universität München, Dissertation, 2003.

– URL http://www.pms.ifi.lmu.de/publikationen/diplomarbeiten/

Galina.Stancheva/DA.ps.gz

[Stentz 1997] STENTZ, Anthony: Optimal and Efficient Path Planning for Partially Known

Environments. In: Intelligent Unmanned Ground Vehicles. Springer US, 1997, S. 203–220. –

URL http://dx.doi.org/10.1007/978-1-4615-6325-9_11

[Tönnis 2010] TÖNNIS, Marcus: Augmented Reality - Einblicke in die Erweiterte Realität.

Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2010. – URL http://dx.doi.

org/10.1007/978-3-642-14179-9_1. – ISBN 978-3-642-14179-9

[Tsourdos et al. 2011] TSOURDOS, Antonios ; WHITE, Brian ; SHAMMUGAVEL, Madhavan:

Cooperative path planning of unmanned aerial vehicles. Chichester, West Sussex, U.K. Hobo-

ken, N.J : Wiley, 2011. – ISBN 9780470741290

[Valavanis 2010] VALAVANIS, K: Selected papers from the 2nd International Symposium on

UAVs, Reno, U.S.A. June 8-10, 2009. Dordrecht : Springer Science, 2010. – ISBN 978-90-481-

8763-8

[Valente et al. 2011] VALENTE, Joao ; BARRIENTOS, Antonio ; DEL CERRO, Jaime: Coverage

Path Planning to Survey Large Outdoor Areas with Aerial Robots: A Comprehensive Analysis.

In: Introduction to Modern Robotics 11 (2011). – URL https://www.iconceptpress.

com/download/paper/101108074033.pdf

[Weicker 2013] WEICKER, Karsten: Algorithmen und Datenstrukturen. Wiesbaden : Springer

Vieweg, 2013. – ISBN 978-3-8348-2074-7

[WildPackets] WILDPACKETS: Illustration of a TCP/IP Encapsulation chart.

– URL https://web.archive.org/web/20120529200700/http:

//www.wildpackets.com/elements/misc/WP_encapsulation_chart.pdf.

– Zugriffsdatum: 5. April 2015

http://www.pms.ifi.lmu.de/publikationen/diplomarbeiten/Galina.Stancheva/DA.ps.gz
http://www.pms.ifi.lmu.de/publikationen/diplomarbeiten/Galina.Stancheva/DA.ps.gz
http://dx.doi.org/10.1007/978-1-4615-6325-9_11
http://dx.doi.org/10.1007/978-3-642-14179-9_1
http://dx.doi.org/10.1007/978-3-642-14179-9_1
https://www.iconceptpress.com/download/paper/101108074033.pdf
https://www.iconceptpress.com/download/paper/101108074033.pdf
https://web.archive.org/web/20120529200700/http://www.wildpackets.com/elements/misc/WP_encapsulation_chart.pdf
https://web.archive.org/web/20120529200700/http://www.wildpackets.com/elements/misc/WP_encapsulation_chart.pdf

Anhang 65

A. Anhang

Tabelle mit Kommandos, die gesendet bzw. empfangen werden können

Kommando Argument WP - X WP -Y Beschreibung
OTS_CONNECT_OTS 1=an; 0=aus - - schaltet Empfang der

OTS-Daten ein
OTS_CONNECT_GS IP ; Modus - - verbindet sich zur

Groundstation mit IP und
setzt Master- bzw. Slave
Modus

OTS_CONNECT_SLAVE IP-Adresse - - Master verbindet sich
zum Slave mit IP

OTS_START_COMMANDING 1=an; 0=aus - - Startet das Absuchen
OTS_FOLLOW_ME 1=an; 0=aus - - Slave folgt dem Master
OTS_IMMEDIATE 1=an; 0=aus - - nur ein Quadrokopter;

fliegt Wegpunkte sofort
an

OTS_SEARCHMODE A oder P - - A = Flächensuche, P =
Wegpunktsuche

OTS_WAYPOINT - X Y Koordinaten eines Weg-
punkts

OTS_WP_REACHED true X Y bestätigt Erreichen des
Wegpunkts

OTS_AVR_SAMPLETIME int - - Setzt die Rate, mit der die
Positionsdaten an AVR
gesendet werden

OTS_COMM_MESSAGES string - - Enthält dem debug out-
put der Software

Tabelle A.1.: Befehle zur Kommandierung der Quadrokopter. (WP = Wegpunkt)

	Titelseite
	Inhaltsverzeichnis
	Einleitung
	Stand der Technik
	Einführung in das optische Tracking
	Kommunikationsnetzwerke
	ISO/OSI Schichtarchitektur
	Kommunikationsprotokolle
	Kommunikationsmedien und Vernetzungstechnologien

	Multiple UAV's
	Klassifizierung von Multi-UAV Architekturen
	Hardware und Sensorik
	Kollisionsvermeidung und Hinderniserkennung
	Lage- und Positionsbestimmung

	Kommunikation zwischen UAVs
	Bluetooth
	Wireless LAN
	Mobilfunknetze

	Kooperative Missionplanung
	Flugbahnplanung
	Methoden für die Routensuche
	Suchalgorithmen für die Routenwahl

	Kooperative Suche

	Konzept
	Überblick
	Positionserkennung via Optischem Tracking System
	Kommunikationslösung
	Kooperative Suche
	Wegpunktsuche
	Flächensuche

	Implementierung
	Überblick
	Optisches Tracking System
	Kommunikation zwischen Quadrokoptern
	Suchalgorithmen
	Implementierung Wegpunktsuche
	Implementierung Flächensuche

	Graphische Benutzeroberfläche

	Evaluierung
	Evaluierung der Suchansätze
	Tiefen- und Breitensuche
	Algorithmus zur Aufteilung von Wegpunkten

	Nutzung des Optisches Tracking Systems
	Empfang der Positionsdaten
	Statisches Regelverhalten

	Diskussion und Ausblick
	Literaturverzeichnis
	Anhang

