
Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik

Informationstechnik für Luft- und Raumfahrt
Lehrstuhl für Informatik 8 Prof. Dr. Sergio Montenegro

Bachelorarbeit

Entwicklung einer
ad-hoc W-Lan Gui-basierten Steuerung von

multiplen Quadrokoptern

Vorgelegt von
Joshua Smolka

Matr.-Nr.: 1710819

Prüfer: Prof. Dr. Sergio Montenegro
Betreuender wissenschaftlicher Mitarbeiter: Dipl.-Ing. Nils Gageik

Würzburg, 16. 09. 2013

Erklärung

Ich versichere, dass ich die vorliegende Arbeit einschließlich aller beigefügter

Materialien selbstständig und ohne Benutzung anderer als der angegebenen

Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus

veröffentlichten oder unveröffentlichten Werken entnommen sind, sind in

jedem Einzelfall unter Angabe der Quelle deutlich als solche kenntlich gemacht.

Die Arbeit ist in gleicher oder ähnlicher Form noch nicht als Prüfungsarbeit

eingereicht worden.

Mir ist bekannt, dass Zuwiderhandlungen gegen diese Erklärung und bewusste

Täuschungen die Benotung der Arbeit mit der Note 5.0 zur Folge haben kann.

Würzburg, 16. 19. 2013 _____________________

Joshua Smolka

Entwicklung einer ad-hoc W-LAN

GUI-basierten Steuerung von

multiplen Quadrokoptern

Joshua Smolka

Die Fortschritte im Bereich Sensorik und Mikrotechnik ermöglichen heutzutage

den kostengünstigen Bau kleiner unbemannter Luftfahrzeuge (UAV, unmanned

airial vehicle, Drohne) wie Quadrokopter. Die Forschung und Entwicklung dieser

Systeme wurde in den letzten Jahren aufgrund der vielfältigen

Anwendungsmöglichkeiten stark vorangetrieben. Wenngleich im Bereich UAV

viel geforscht wurde, ist das Thema Autonomes Flugobjekt längst noch nicht

vollständig behandelt. Insbesondere der Indoor-Betrieb ist aufgrund fehlender

absoluter Positionsstützung durch GPS problematisch. Der Aufbau eines

eigenen autonomen Systems wird daher am Lehrstuhl Aerospace Information

Technology der Uni Würzburg erforscht und erprobt. Im Rahmen dieses

Forschungsvorhabens ist ein System inklusive GUI zur Steuerung von

Quadrokoptern über ein W-LAN ad-hoc Netzwerk zu entwickeln.

Hauptaugenmerk der Arbeit ist die Realisierung der ad-hoc W-LAN

Kommunikation. Daneben ist die GUI zur Anzeige von Zustandsinformationen

und Steuerung des Quadrokopters über W-LAN zu erweitern. Es soll eine W-LAN

ad-hoc Kommunikation mehrere Quadrokopter möglich gemacht werden. Die

Kommunikation soll vollduplexfähig sein und es soll eine gleichzeitige

Kommunikation aller Teilnehmer untereinander möglich sein. Später soll ein

Schwarm von Quadrokopters Kommandos und Zustandsinformationen auf

diesem Weg austauschen können, um Aufgaben zu verteilen und sich bei der

Ausführung zu synchronisieren.

Der Programmcode der GUI soll so strukturiert sein, dass er eine einfache

Erweiterung der Software zu mehr Funktionalität ermöglicht. Des Weiteren sind

Funktionen zur Steuerung des Quadrokopters hinzuzufügen, wie das

Importieren und Exportieren von Wegpunkt- und Kommandolisten. Die erstellte

GUI-Software und die Quadrokopter-Firmware sind zu evaluieren. Zur Aufgabe

gehört eine ausführliche Dokumentation der Software.

Aufgabenstellung (Stichpunktartig):

• GUI Erweiterung: Wegpunktliste (Import/Export, Alignement), Update

alter Funktionen

• Konzept Kommunikation

• Implementierung W-LAN ad-hoc Netzwerk für mehrere Quadrokopter:

Vollduplex, gleichzeitig mehrere Verbindungen, Server/Client einstellbar,

volle Flexibilität

• Integration in bestehendes System

• Evaluierung

• Dokumentation

Zusammenfassung

Am Lehrstuhl VII (Aerospace Information Technology) wird ein System aus

mehreren Quadrokoptern aufgebaut. In dieser Arbeit wird eine Grundlage für

die Kommunikation per Wireless Local Area Network (WLAN) gelegt.

Dabei wird ein Client/Server-System entworfen, das über das Tranmission

Control Protocol (TCP) eine verbindungsbasierte Datenübertragung ermöglicht.

Jeder Teilnehmer des Netzwerks besitzt einen Client, mit dem er

vollduplexfähige Verbindungen zu anderen Teilnehmern aufbauen kann, sowie

einen Server, der eingehende Verbindungen annimmt. An einen Server können

sich dabei mehrere Clients verbinden.

Nach der Implementierung des Entwurfs wird der Programmcode in die bereits

bestehende Software zur Quadrokoptersteuerung integriert. Das beinhaltet

auch die Erweiterung der Benutzeroberfläche, zu der ein neues Modul

hinzugefügt wird, das auf eine bedienungsfreundliche Kommunikation mit vier

Teilnehmern ausgelegt.

Dann findet eine Evaluation der Software, getestet mit vier Teilnehmern, statt.

Abschließend wird ein Ausblick auf weitere Entwicklungs- und

Nutzungsmöglichkeiten gegeben.

Inhaltsverzeichnis I

Inhaltsverzeichnis

1 Einleitung 1

2 Stand der Wissenschaft 3

2.1 OSI-Modell 3

2.2 Wireless Local Area Network 6

2.2.1 verschiedene Betriebsarten 6

2.2.2 Frequenzstandards 9

2.3 Transportschicht 9

2.3.1 Transmission Control Protocol 9

2.3.2 User Datagram Protocol 11

2.4 Internet Protocol (IP) 11

2.5 Bluetooth 12

3 Konzept 13

4 Implementierung 17

4.1 Überblick 17

4.2 Client 18

4.3 CommServer 21

4.4 MainWindow 24

4.5 Beschreibung der Benutzeroberfläche 27

4.6 Verwendete Hardware 29

5 Evaluierung 30

Inhaltsverzeichnis II

6 Diskussion und Ausblick 32

7 Literaturverzeichnis 34

8 Anhang

8.1 Erstellen eines Adhoc-Netzwerks

8.2 Hinzufügen von Befehlen

Einleitung 1

1 Einleitung

Es existiert bereits ein funktionierendes System von Quadrokoptern, die ihre

Lage selbstständig halten und zu gewünschten Orten fliegen können. Die

bisher anfallende Kommunikation, wie etwa die Übertragung von Borddaten,

wurde mit der Bodenstation über eine Bluetoothverbindung realisiert.

Diese Lösung weist jedoch einige Probleme bzw. Einschränkungen auf. Die

Datenübertragungsrate sowie die Reichweite der Verbindung genügen den

Ansprüchen nicht. Außerdem handelt es sich bei der Bluetoothverbindung um

eine Peer-to-Peer-Verbindung, also einer Verbindung zwischen nur zwei

Teilnehmern. Es soll nun ein Netzwerk eingerichtet werden, in dem mehrere

Quadrokopter oder Bodenstationen teilnehmen können.

Diese Arbeit hat zum Ziel, die Vorteile des Einsatzes eines Wireless Local Area

Networks (WLAN) zu evaluieren und anschließend ein Server/Client-System zu

implementieren, welches Datenübertragungen via WLAN ermöglicht. Dieses

Netzwerk soll im Adhoc-Modus betrieben werden, also ohne feste Infrastruktur

im Bedarfsfall flexibel aufgebaut oder beendet werden.

Beim Entwurf des WLANs steht nicht nur die Verbindung eines Quadrokopters

zur Bodenstation im Fokus, sondern auch Verbindungen der Quadrokopter

untereinander. Dies bietet den Vorteil, dass die Quadrokopter miteinander

kommunizieren können, was potentiell von Kollisionsvermeidung bis hin zu

Schwarmverhalten in vielen Anwendungsgebieten zum Einsatz kommen

könnte.

Im Rahmen dieser Arbeit wird zunächst ein theoretisches Modell zur

Einleitung 2

Kommunikation entwickelt. Anschließend wird das Konzept implementiert und

in die bestehende Steuerungssoftware der Quadrokopter integriert. Dabei wird

auf die Entwicklungsumgebung Qt Creator zurückgegriffen, die bereits zur

Entwicklung der Steuerungssoftware genutzt wurde.

Stand der Wissenschaft 3

2 Stand der Wissenschaft

2.1 OSI-Modell

Bei dem „Open System Interconnection Model“ (OSI-Modell) handelt es sich um

ein Architekturmodell, das eine Netzwerkarchitektur in sieben verschiedene

Schichten zerlegt und dabei jeder einzelnen feste Aufgaben zuteilt. Weiterhin

werden die Schnittstellen zu darauf aufbauenden Schichten klar definiert,

sodass sich auf der selben Schicht befindliche Netzwerkprotokolle problemlos

untereinander austauschen lassen und beliebig kombinierbar sind.

Entwickelt wurde das OSI-Modell von der „International Standardization

Organisation“ (ISO).

Im Folgenden werden die einzelnen Schichten des OSI-Modells kurz

beschrieben.

Abbildung 1: OSI-Modell[1]

Stand der Wissenschaft 4

Schicht 1 – Physical Layer (Bitübertragungsschicht)

Diese Schicht ist dafür zuständig, physikalische Verbindungen zu aktivieren und

deaktivieren. Digitale Daten werden hier zu elektromagnetischen Wellen oder

Lichtwellen umgewandelt und verschickt, ankommende Signale wieder

digitalisiert.

Schicht 2 – Data Link Layer (Sicherungsschicht)

Der Data Link Layer sorgt für eine möglichst fehlerfreie Übertragung der Daten.

Er paketiert zudem den Datenstrom oder fügt ankommende Daten wieder zu

einem Datenstrom zusammen. Kanalcodierung, Fehlererkennung sowie

Fehlerkorrektur sind weitere Aufgaben des Data Link Layer.

Hardwarekomponenten, die auf dieser Schicht arbeiten sind Bridge oder

Switch.

Schicht 3 – Network Layer (Vermittlungsschicht)

Bei leitungsorientierten Diensten werden durch den Network Layer

Verbindungen geschaltet, bei paketorientierten Diensten werden Datenpakete

weitergereicht. Zusätzlich ist der Network Layer für das Routing zuständig, was

Aufgaben wie Aufbau und Aktualisierung von Routing-Tabellen beinhaltet.

Das bekannteste Protokoll dieser Schicht ist das Internet Protocol (IP).

Schicht 4 – Transport Layer (Transportschicht)

Hierbei handelt es sich um die unterste Schicht, die eine vollständige

Kommunikation zwischen zwei Teilnehmern bereitstellt. Alle folgenden,

anwendungsorientierten Schichten brauchen durch einheitlichen Zugriff auf

diese Schicht die spezifischen Eigenschaften des Kommunikationsnetzes nicht

zu berücksichtigen.

Aufgaben des Transport Layer sind Adressierung, Anpassung von Paktelängen,

Stand der Wissenschaft 5

Multiplexierung, Überlastungssteuerung, Überprüfung von Dienstqualität.

Beispiele für Protokolle der Transportschicht sind Transmission Control Protocol

(TCP) und User Datagram Protocol (UDP).

Schicht 5 – Session Layer (Sitzungsschicht)

Hier werden Sprachmittel zur Eröffnung, Durchführung und Schließung einer

Session bereitgestellt. Über diese Schicht werden Sitzungsparameter zwischen

den Teilnehmern vereinbart, zudem wird der Dialog hier gesteuert und

synchronisiert. Die Teilnahmeberechtigung der Nutzer an der Session wird hier

ebenfalls kontrolliert. Auch Checkpoints werden gespeichert, um nach Ausfall

einer Sitzung bei Wiederaufnahme nicht erneut von vorne starten zu müssen.

Schicht 6 – Presentation Layer (Darstellungsschicht)

Diese Schicht stellt eine Art Übersetzer zwischen den Teilnehmern dar. Die von

der Anwendungsschicht des Systems erhaltenen Daten werden in

systemunabhängige Darstellungen umgewandelt. Dadurch können

bespielsweise die ASCII-codierten Daten eines Teilnehmers nach der

Übertragung bei einem anderen Teilnehmer UNICODE-codiert dargestellt

werden.

Andere Aufgaben des Presentation Layer sind Verschlüsselung von Nachrichten

sowie Datenkompression.

Schicht 7 – Application Layer (Anwendungsschicht)

Bei der Anwendungsschicht handelt es sich um die Verbindung zwischen der

eigentlichen Anwendung sowie den unteren, bereits beschriebenen Schichten.

Hier lassen sich Übermittlungsparameter festlegen, die Verschlüsselung von

Nachrichten steuern oder Verfügbarkeit und Identität von

Kommunikationspartnern prüfen.

Stand der Wissenschaft 6

Beispiele für Application Layer sind WWW, E-Mail oder Domain Name System

(DNS).[2][3][4]

2.2 Wireless Local Area Network

Ein Local Area Network (LAN) bezeichnet ein Rechennetz mit einer Ausdehnung

bis zu 500 Metern. Es wird oft als Heimnetz oder in Unternehmen eingesetzt.

Dabei existieren verschiedene Techniken zur Datenübertragung. Am häufigsten

wird eine Datenübertragung per Kabel eingesetzt, meist mit der Ethernet-

Technologie. Eine weitere Möglichkeit ist die Datenübertragung per Funk, das

sogenannte Wireless Local Area Network (WLAN).

Wireless Local Area Network (WLAN) bezeichnet also ein lokales Funknetz,

meist mit dem Standard der IEEE 802.11-Familie. Es stellt eine Anpassung an

die ersten beiden Schichten des OSI-Modells, dem Physical Layer und dem Data

Link Layer, dar.

Im Vergleich zu anderen drahtlosen Übertragungsmöglichkeiten wie etwa

Bluetooth bieten WLANs gute Reichweiten bei gleichzeitig hoher

Datenübertragungsrate.

2.2.1 Betriebarten

Für Wireless Local Area Networks gibts es zwei verschiedene mögliche

Betriebsarten, den Infrastruktur-Modus und den Adhoc-Modus. Diese lassen

sich wiederum in untergeordneten Modi klassifizieren.

Infrastruktur-Modus

Beim Infrastruktur-Modus handelt es sich um ein WLAN mit einem zentralen

Wireless Access Point oder einem drahtlosen Router. Dieser ist für die

Stand der Wissenschaft 7

Kommunikation zwischen den Teilnehmern zuständig.

Zum Verbindungsaufbau sendet der Access Point sogenannte „Leuchtfeuer“,

die verschiedene Parameter beinhalten. Es werden der Netzwerkname (SSID),

eine Liste der unterstützten Übertragungsraten sowie die Art der

Verschlüsselung übertragen. Außerdem kann durch diese „Leuchtfeuer“ ständig

die Verbindung zum Netzwerk überprüft werden, auch wenn sonst keine

Datenübertragung stattfindet. Neue Teilnehmer melden sich mit ihrer MAC-

Adresse am Wireless Access Point an und bekommen von diesem eine IP-

Adresse zugeteilt.

Ein Wireless Access Point (AP) bietet für Endgeräte eine kabellose

Schnittstelle zur Kommunikation. Die Teilnehmer stellen mit einem Wireless

Adapter eine drahtlose Verbindung zum AP her, der seinerseits per Kabel mit

einem weiteren Kommunikationsnetz verbunden sein kann.

Der Wireless Access Point ist in der Schicht 2 (Data Link Layer) des OSI-Modells

angesiedelt. Er hat die Aufgabe, Datenkollisionen zu vermeiden und gleichzeitig

eventuelle Unterschiede der Übertragungsmedien zu überbrücken.

Für den Wireless Access Point gibt es darüber hinaus verschiedene

Betriebsmodi.

Basis Service Set

Beim „Basic Service Set“ gibt es einen einzelnen Access Point. Über diesen

können sich beliebig viele Teilnehmer zum Netzwerk hinzufügen und

untereinander Daten austauschen.

Ethernet Bridge

Im Modus „Ethernet Bridge“ ist zusätzlich zur Funkschnittstelle ein

Netzwerkinterface als Schnittstelle zum Ethernet vorhanden. Es ist also ein

Stand der Wissenschaft 8

Bridging zwischen WLAN und dem kabelgebundenen Ethernet möglich, wobei

der Wireless Access Point die Daten vermittelt.

Extended Service Set

„Extended Service Set“ nennt sich das Verfahren, bei dem für dasselbe

Funknetzwerk mehrere Wireless Access Points eingerichtet werden. Diese sind

zusätzlich miteinander über Ethernet verbunden. Dies hat zur Folge, dass die

Reichweite des WLANs bei verschiedenen Standorten der Access Points deutlich

erhöht wird, da die Teilnehmer sich, je nach Standort, mit verschiedenen

Access Points verbinden können. Bei Standortwechsel der Teilnehmer werden

diese automatisch von einem AP zum Nächsten übergeben (Roaming).

Wireless Distribution System

Im Modus „Wireless Distibution System“ werden erneut mehrere Access Points

miteinander verbunden. Hierbei wird jedoch kein Ethernet verwendet, sondern

WLAN. Dabei gibt es zwei verschiedene Methoden, der Point-to-Point-Modus

und der Point-to-Multipoint-Modus. Zu beachten ist hier, dass Wireless Access

Points desselben Herstellers verwendet werden sollten.

Adhoc-Modus

Ein Adhoc-Netzwerk zeichnet sich dadurch aus, dass es spontan und ohne

großen Aufwand aufgebaut werden kann. Anders als im Infrastruktur-Modus

gibt es keine feste Infrastruktur, wie etwa einen Wireless Access Point. Alle

Teilnehmer des Netzwerks sind gleichberechtigte Endbenutzer.

Man unterscheidet zwei Arten von Adhoc-Netzen, dem „Independent Basic

Service Set“ (IBSS) und einem „Mesh Network“.

IBSS

Beim IBSS kommunizieren die Teilnehmer direkt untereinander, das heißt, die

Stand der Wissenschaft 9

Datenübertragungen laufen über keine Zwischenstation. Dafür müssen sich

jedoch stets alle Teilnehmer in gegenseitiger Funkreichweite befinden, was die

Reichweite des Netzes einschränkt.

Mesh Network

Beim Mesh Network stellt jeder Teilnehmer gleichzeitig Endbenutzer und

Netzknoten dar. Dies bringt den Vorteil, dass Datenübertragungen zwischen

zwei Teilnehmern, die sich nicht in gegenseitiger Funkreichweite befinden, über

Dritte realisiert werden kann. [5][6][7][8]

2.2.2 Frequenzstandards

In Tabelle 1 sind die verschiedenen IEEE-Standards im Vergleich aufgelistet.

Protokoll Frequenz Brutto-
durchsatz

Netto-
durchsatz

Reichweite
(im Haus)

Reichweite
(im Freien)

802.11b 2,4 GHz 11 Mbit/s 4-5 Mbit/s 38 m 140 m
802.11g 2,4 GHz 54 Mbit/s 19 Mbits/s 38 m 140 m
802.11n 2,4 / 5 Ghz 600 Mbit/s 240 Mbit/s 70 m 250 m
Tabelle 1: Vergleich verschiedener IEEE-Standards[9]

2.3 Transportschicht

2.3.1 Transmission Control Protocol

Das Transmission Control Protocol (TCP) ist ein verbindungsbasiertes Protokoll,

das auf dem Transport Layer angesiedelt ist. Es bietet eine verlässliche

Datenübertragung zwischen zwei Prozessen, wobei einer der beiden als Server,

der andere als Client fungiert. Die Verbindung ist dabei vollduplexfähig, es

können also beide Teilnehmer gleichzeitig Daten senden. Zusätzlich bietet das

Stand der Wissenschaft 10

TCP automatische Fehlererkennung und -behebung. Es gibt außerdem spezielle

Algorithmen zur Vermeidung von Überlastungen und Kontrolle des

Datenflusses.

Bevor eine Datenübertragung stattfinden kann, wird zunächst eine Verbindung

zwischen einem Socket des Senders (Client) und des Empfängers (Server)

aufgebaut. Sockets sind vom Betriebssystem bereitgestellte,

plattformunabhängige Schnittstellen zwischen der

Netzwerkprotokollimplementierung des Betriebssystems und der

Anwendungssoftware. Sie sind durch eine IP-Adresse und eine Portnummer

eindeutig identifizierbar. Möchte ein Programm mit einem anderen Teilnehmer

Daten transferieren, so muss es dafür ein Socket vom Betriebssystem

anfordern, welches alle Sockets verwaltet.

Die Verbindung wird beim TCP durch den sogenannten „Three-way Handshake“

durchgeführt. Dabei sendet der Client zunächst eine „Synchronisations-Paket“

an den Server, der an der Zieladresse wartet. Erreicht dieses den Server, so

schickt dieser ein „Acknoledgement-Paket“ zurück. Nun wechselt der Client in

den Zustand „Connection Established“ und schickt seinerseits ein

„Acknoledgement-Paket“. Sobald dieses den Server erreicht, wechselt auch er

in den Zustand „Connection Established“.

Steht die Verbindung, so werden die zu übertragenden Datenpakete gesendet.

Dabei wird mit sogenannten Acknoledgement-Paketen der Erhalt der Daten

bestätigt beziehungsweise durch Ausbleiben der Bestätigung ein erneutes

Senden angefordert. Somit wird sichergestellt, dass jedes Datenpaket am Ziel

ankommt.

Das Beenden der Verbindung beginnt mit dem Versenden des „FIN-Pakets“ vom

Stand der Wissenschaft 11

Client an den Server. Dieser bestätigt den Erhalt mit dem „Acknoledgement-

Paket“ und wechselt in den Zustand „CLOSE_WAIT“. Anschließend sendet er ein

„FIN-Paket“ zurück und wartet auf ein letztes „Acknoledgement-Paket“ vom

Client. Ist dieses gesendet, so schließt er die Verbindung endgültig, während

der Client typischerweise noch 30 Sekunden wartet, bis er seinen Socket

schließt.[10][11]

2.3.2 User Datagram Protocol

Das User Datagram Protocol (UDP) ist im Gegensatz zum TCP ein

verbindungsloses Netzwerkprotokoll, das heißt, anstatt eine Verbindung

zwischen Sender und Empfänger aufzubauen wird das Datenpaket direkt an

den Zielport des Empfängers gesendet. Zusätzliche Funktionalitäten wie das

Erkennen und Beheben von Datenverlusten sind nicht implementiert.

Da beim UDP keine Verbindung zwischen den beiden Teilnehmern aufgebaut

wird, ist, im Gegensatz zum TCP, keine wechselseitige Kommunikation möglich.

Das zu übertragende Datenpaket wird übermittelt, ohne dass der Empfänger

ohne weiteres antworten kann. Diese beidseitige Kommunikation ist beim TCP

gegeben, beide Teilnehmer können gleichzeitig Nachrichten übertragen.[12]

2.4 Internet Protocol (IP)

Das am weitesten verbreitete Protokoll der dritten Schicht, dem Network Layer,

ist das Internet Protocol (IP).

Durch Vergabe einer IP-Adresse können Teilnehmer innerhalb eines Netzwerks

eindeutig adressiert werden. Falls Teilnehmer aus zwei verschiedenen

Netzwerken miteinander kommunizieren möchten, kann das Problem auftreten,

Stand der Wissenschaft 12

dass beide in ihrem Netzwerk dieselbe IP-Adresse zugewiesen bekommen

haben. Um dieses Problem zu lösen, wird eine Subnetzmaske hinzugefügt, mit

der sich das Netzwerk identifizieren lässt.

Zum Datentransfer werden Datagramme benutzt, typischerweise mit der Länge

von 1,5 kB. Die Datagramme sind durch einen Header näher spezifiziert. Dieser

enthält standardmäßig 5 Wörter (20B), kann jedoch durch verschiedene

optionale Angaben auf bis zu 15 Wörter erweitert werden. [13][14]

2.5 Bluetooth

Bluetooth ist ein Standard zur Datenübertragung gemäß IEEE 802.15.1 per

Wireless Personal Area Network (WPAN). Es sind sowohl verbindungslose als

auch verbindungsbehaftete Übertragungen möglich.

Im Vergleich zu WLANs fällt die Übertragungsrate mit 2,1 Mbit/s eher gering

aus. Auch können maximal sieben aktive Verbindungen zu anderen

Teilnehmern gleichzeitig gehalten werden. Allerdings lässt sich diese Zahl auf

Kosten der Übertragungsrate erhöhen, etwa durch Zeitmultiplexen.

Die Reichweite von Bluetoothverbindungen liegt, je nach Klasse, bei 10 bis 100

Metern. [15]

Konzept 13

3 Konzept

Es soll nun ein Kommunikationskonzept entwickelt werden, welches die

gestellten Anforderungen erfüllt. Über ein Wireless Local Area Network im

Adhoc-Modus sollen mehrere Teilnehmer mit einem Client/Server-System

verbunden werden können. Für die Verbindungen selbst ist gefordert, dass sie

vollduplexfähig sind. Außerdem werden die Clients und Server dahingehend

implementiert, dass problemlos mehrere Verbindungen gleichzeitig offen

gehalten werden können. Dies beinhaltet auch die Möglichkeit, gleichzeitig an

mehrere Teilnehmern Nachrichten zu verschicken.

In Abbildung 2 ist eine beispielhafte Situation des WLANs mit vier Teilnehmern

dargestellt. Jeder Teilnehmer besitzt einen Server sowie einen Client. Die

Verbindungen zwischen den Teilnehmern sind durch grüne Linien kenntlich

gemacht. Da es sich um ein Adhoc WLAN handelt, gibt es keine feste

Infrastruktur wie beispielsweise einen Wireless Access Point, die Verbindungen

sind direkt zwischen den beiden Teilnehmern aufgebaut. In diesem Beispiel hält

Abbildung 2: Beispielhafte Verbindung der Teilnehmer

Konzept 14

die Bodenstation (Groundstation) eine Verbindung zu jedem der drei

Quadrokopter, außerdem besteht eine Verbindung zwischen Quadrokopter 2

und Quadrokopter 1.

Im Nachfolgenden wird das Konzept zur Netzwerkarchitektur erläutert.

Transportschicht

Als Protokoll der vierten Schicht, dem Transport Layer, kommen das User

Datagram Protocol (UDP) und das Transmission Control Protocol (TCP) infrage.

UDP und TCP sind zwei sehr gegensätzliche Protokolle. Während UDP sehr

minimalistisch gestaltet ist, beispielsweise keine Fehlererkennung und

-behebung besitzt, bietet TCP viele nützliche Funktionalitäten.

Da UDP außerdem paketbasiert ist und somit keine Verbindung zwischen

Sender und Empfänger hergestellt wird, ist das Protokoll nicht vollduplexfähig,

TCP als verbindungsorientiertes Protokoll hingegen schon.

Da für den Flugbetrieb eine verlässliche Kommunikation erforderlich ist, sind

Eigenschaften wie Fehlererkennung und -behebung wichtig, was für das TCP

spricht.

Aufgrund der vielen Vorteile, die TCP gegenüber UDP besitzt, wird in dieser

Arbeit auf das Transmission Control Protocol zurückgegriffen.

Da das Programm selbst auf die TCP-Verbindung zugreift, werden keine

Protokolle für Schichten fünf bis sieben verwendet.

Infrastruktur-Modus oder Adhoc-Modus

In der Aufgabenstellung ist zwar gefordert, dass das WLAN im Adhoc-Modus

betrieben wird. Das Programm ist allerdings sowohl im Infrastruktur-Modus als

auch im Adhoc-Modus funktionsfähig. Für den Infrastruktur-Modus wird ein

Konzept 15

Wireless Access Point benötigt, über den das WLAN erstellt werden kann. Das

WLAN im Adhoc-Modus kann über die Software „Realtek 11n USB WLAN Utility“,

geliefert mit den Funkadaptern, manuell gestartet werden. Eine Anleitung

hierfür findet sich im Anhang (Kapitel 8.1). Dazu bietet sich die Bodenstation

an, es kann aber auch von einem Quadrokopter gestartet werden. Bei dem

WLAN im Adhoc-Modus handelt es sich um ein „Independent Basic Service

Set“ (IBSS). Somit müssen alle Teilnehmer in direktem Funkkontakt stehen,

damit sie miteinander kommunizieren können. Ein Routing über andere

Teilnehmer ist nicht möglich.

Sobald ein Teilnehmer mit dem WLAN verbunden ist und das Programm

ausführt, wird der sogenannte MainServer gestartet, der auf einem

festgelegten Port auf eingehende Verbindungen wartet. Möchte ein anderer

Teilnehmer über seinen Client eine Verbindung aufbauen, so geschieht dies

immer auf dem MainServer. Dann wird dem Anfragenden eine einzigartige

Portnummer zugeteilt und auf diesem Port ein Server aufgemacht, der nur für

die Kommunikation zwischen den beiden Teilnehmern zuständig ist.

Anschließend schließt der Client die Verbindung und verbindet sich auf dem

neu erstellten Server erneut. Über diese Verbindung läuft anschließend die

Kommunikation, bis die Verbindung wieder getrennt wird. Auf dem MainServer

können sich weiterhin andere Teilnehmer verbinden.

Durch dieses Verfahren wird sichergestellt, dass jede Verbindung zwischen zwei

Teilnehmern auf verschiedenen Server/Client-Paaren stattfindet. Zudem ist die

Anzahl der Verbindungen je nach Bedarf dynamisch erweiterbar bzw. nicht

mehr benötigte Server und Clients können gelöscht werden. Es hat also jeder

Teilnehmer soviele Clients wie ausgehende Verbindungen, außerdem soviele

Konzept 16

Server wie eingehende Verbindungen (sowie den MainServer).

Implementierung 17

4 Implementierung

4.1 Überblick

Im nächsten Schritt wird das Konzept realisiert. Dazu wird zum bereits

bestehenden Programmcode ein weiteres Modul hinzugefügt. Dieses beinhaltet

die Klassen CommServer und Client. Es werden außerdem einige Funktionen in

der Klasse MainWindow implementiert sowie bestehende Funktionen erweitert.

Die Klasse CommServer stellt den Server eines Teilnehmers dar. Hier werden

ankommende Verbindungsanfragen beantwortet und bestehende Verbindungen

verwaltet. Zudem werden ankommende Nachrichten ausgelesen.

Mithilfe der Klasse Client lassen sich Verbindungen zu anderen

Netzwerkteilnehmern herstellen. Die ausgehenden Verbindungen werden

verwaltet und es ist möglich, Nachrichten zu verschicken.

In der Klasse MainWindow werden je ein Objekt der Klasse Client und

CommServer angelegt. Hier wird zudem die Benutzeroberfläche programmiert.

Implementierung 18

Zum besseren Verständnis der Interaktion zwischen den Klassen Client und

CommServer während eines Verbindungsaufbaus ist diese in Abbildung 3

schematisch dargestellt. Die genaue Vorgehensweise wird in den nächsten

Kapiteln erläutert.

Im Folgenden wird ein Überblick über die einzelnen Klassen und deren

wichtigsten Funktionen und Methoden gegeben.

4.2 Client

Mit der Klasse Client lässt sich eine Verbindung zu einem CommServer

aufbauen. Sobald diese Verbindung erstellt ist, kann über die Funktion

sendMsg(QString msg, QStringList targets) eine Nachricht versendet werden. Mit

 Abbildung 3: Verbindungsaufbau

Implementierung 19

receiveMsg() werden ankommende Nachrichten weiterverarbeitet. Andere

implementierte Funktionen schließen die Verbindung oder eine Verbindung auf

einen anderen Port wechseln.

4.2.1 start(QString ip, QString port)

Diese Methode bekommt als Argumente eine IP-Adresse sowie eine

Portnummer übergeben. Zunächst wird geprüft, ob die IP-Adresse nicht leer ist,

dann, ob bereits eine Verbindung zum Teilnehmer besteht. Falls einer der

beiden Fälle eintritt, so wird eine Fehlermeldung ausgegeben und die Methode

beendet.

Andernfalls wird ein QTcpSocket erstellt und versucht, mit diesem über die

vorimplementierte Methode connectToHost() eine Verbindung zur gewünschten

Adresse und dem ausgewählten Port zu etablieren. Ist dieser Versuch

erfolgreich, so wird der QTcpSocket in einer Liste abgespeichert und sein Signal

readyRead() mit dem Slot receiveMsg() verbunden. Sonst wird eine

Fehlermeldung ausgegeben und der QTcpSocket gelöscht.

4.2.2 receiveMsg()

Diese Methode liest ankommende Nachrichten aus. Sie wird auf das Signal

readyRead() hin aktiv, welches ausgesandt wird sobald Daten zum Auslesen

verfügbar sind. Die Liste mit allen aktiven QTcpServern wird nach dem mit

auszulesenen Daten durchsucht. Dann werden die Daten mithilfe der read()-

Funktion in einem char-Array zwischengespeichert. Nach der Konvertierung zu

einem QString wird das Signal msgRec() ausgesandt, das nach außen hin den

Erhalt einer neuen Nachricht signalisiert.

Implementierung 20

Anschließend wird die Nachricht auf mögliche enthaltene Befehle überprüft.

Bisher implementiert sind die Befehle !RECONNECT und !DISCONNECT.

Vorgesehen, aber noch nicht ausgearbeitet sind die Befehle !SUCHEN, !LANDEN

und !POSITION_HALTEN. Falls der Befehl !RECONNECT gesendet wurde wird die

Methode reconnect() aufgerufen, im Falle von !DISCONNECT die Methode disc().

Der Befehl !RECONNECT wird außerdem mit einer angehängten Portnummer

gesendet, auf die sich der Client verbinden soll (beispielsweise !RECONNECT

7778). Wurde einer der anderen Befehle erkannt, so wird das Signal

command(QString) ausgesendet, wobei als Argument der Befehl eingeüfgt wird.

4.2.3 sendMsg(QString msg, QStringList targets)

Der Client kann nicht nur Nachrichten erhalten, sondern auch selbst

verschicken. Da der Client mehrere Verbindungen gleichzeitig halten kann, ist

sendMsg() auf Versenden an mehrere Adressaten ausgelegt. Als Argumente

werden der Methode ein QString msg mit der zu versendenden Nachricht sowie

eine QStringList targets mit allen Adressaten übergeben. Dann wird für jeden

Empfänger nach dem korrespondierenden QTcpSocket gesucht und die

Nachricht mit write() gesendet. Falls kein Socket existiert wird eine

Fehlermeldung ausgegeben.

4.2.4 reconnect(QString port, QString address)

reconnect() bekommt eine Portnummer sowie eine IP-Adresse übergeben. Falls

eine ungültige Portnummer übergeben wurde, wird eine Fehlermeldung

ausgegeben und die Methode beendet. Andernfalls wird der korrespondierende

QTcpSocket aus der Liste herausgesucht und mit diesem zunächst die bereits

Implementierung 21

bestehende Verbindung mittels disconnectFromHost() getrennt. Anschließend

wird über connectToHost() eine Verbindung auf dem neuen Port geöffnet.

Zusätzlich wird das Signal newConnection() ausgesendet.

4.2.5 disc(QString address)

Mithilfe dieser Methode lässt sich eine offene Verbindung schließen. Dazu wird

ein QString übergeben, der eine IP-Adresse beinhaltet. Dann wird der

entsprechende QTcpSocket aus der Liste gesucht. Existiert kein solcher, so wird

die Methode mit einer Fehlermeldung abgebrochen. Sonst wird mittels der

write()-Methode die Nachricht „!SHUTTING_DOWN“ an den Server geschickt.

Nach einer kurzen Wartezeit, die dem Server das Lesen der Nachricht

ermöglicht, schließt der Client die Verbindung und löscht den QTcpSocket. Als

letztes wird eine Meldung über das erfolgreiche Schließen der Verbindung

ausgegeben.

4.2.6 Weitere Funktionen

Außer den oben genannten gibt es die Funktionen getMsg() und

hasConnection(QString address). GetMsg() gibt die letzte erhaltene Nachricht als

QString zurück. hasConnection(QString address) wird eine durch einen QString

repräsentierte IP-Adresse übergeben und eine boolean-Variable zurückgegeben,

der angibt, ob eine Verbindung zu dieser Adresse bereits besteht.

4.3 CommServer

Die Klasse CommServer stellt Schnittstellen für eingehende

Implementierung 22

Kommunikationsversuche eines Clients bereit. Dazu wird der MainServer

eingerichtet, der auf einem vordefinierten Port auf eingehende

Verbindungsanfragen wartet. Für jede Verbindung wird bei eingehender

Anfrage ein eigener Server gestartet, auf dem die Verbindung dauerhaft

eingerichtet wird.

Außerdem besitzt diese Klasse Funktionen zum Empfangen und Senden von

Nachrichten. Dabei ist zu beachten, dass die Funktion answer(QString msg,

QString address) nur für automatisierte Nachrichten zu benutzen ist. Manuelle

Befehle werden über Client versendet.

4.3.1 Konstruktor

Im Konstruktor wird ein sogenannter MainServer, ein Objekt der Klasse

QTcpServer, angelegt. Dieser wartet unter allen verfügbaren IP-Adressen auf

einem festgelegten Port (standardmäßig 7777) und steht zum Etablieren von

Verbindungen zur Verfügung. Außerdem wird hier der Port für die erste

dauerhafte Verbindung festgelegt (standardmäßig 7778).

4.3.2 acceptConnection()

Diese Methode wird aufgerufen, sobald sich ein Client zum MainServer

verbunden hat. Der Socket wird über die bereitgestellte Methode

nextPendingConnection() der Klasse QTcpServer aufgerufen und in einer

temporären Variable abgespeichert. Danach wird auf einem anderen Port ein

neuer QTcpServer erstellt, auf dem sich der Client wiederverbinden soll. Sein

Signal newConnection() wird mit der Methode acceptReconnect() verbunden und er

wird in einer Liste gespeichert.

Implementierung 23

Sobald der QTcpServer eingerichtet ist, wird über die noch bestehende

Verbindung des MainServer zum Client der Befehl „!RECONNECT“ mit

angefügter Portnummer geschrieben. Daraufhin beendet der Client die

Verbindung zum MainServer und verbindet sich neu auf der angegebenen

Portnummer. Dies ist die Verbindung, die für den Rest der Session beibehalten

wird.

4.3.3 acceptReconnect()

Sobald sich der Client mit dem neu angelegten Server verbindet wird die

Methode acceptReconnect() aufgerufen. Nun steht die endgültige Verbindung

zwischen Client und CommServer.

Um Nachrichten entgegennehmen zu können, wird das Signal readyRead() des

QTcpSockets mit dem Slot startRead() verbunden. Anschließend wird eine

Meldung zum erfolgreichen Verbinden ausgegeben.

4.3.4 startRead()

Mit startRead() können eingehende Nachrichten entgegengenommen werden.

Diese Methode funktioniert ähnlich wie die bereits vorgestellte Methode

readMsg() der Klasse Client: Zunächst wird der Socket mit auszulesenen Daten

aus der Liste gesucht, dann mittels read() die Bytes in ein char-Array

ausgelesen. Falls die Nachricht „!SHUTTING_DOWN“ ist, bedeutet dies, dass der

Client im Begriff ist die Verbindung zu schließen. In diesem Fall wird der

betreffende Socket aus der Liste mit den aktiven Verbindungen entfernt und die

Methode beendet.

Auch die Befehle „Suchen“, „Landen“ und „Position halten“ werden erkannt und

Implementierung 24

bei Erhalt ein entsprechendes Signal ausgesendet.

4.3.5 answer(QString msg, QString address)

Ein CommServer kann nicht nur Empfänger, sonder auch Sender von

Nachrichten sein. Dazu wird dieser Methode die zu übertragende Nachricht und

die IP-Adresse des Adressaten übergeben. Nachdem der entsprechende Socket

gefunden ist, wird mittels write() die Nachricht übertragen.

4.4 MainWindow

In Abbildung 4 ist die Benutzeroberfläche zu sehen. Der rot eingerahmte

Bereich ist für die Kommunikation per WLAN hinzugefügt worden.

Sämtliche Funktionalitäten der Benutzeroberfläche sind im der Klasse

Abbildung 4: Benutzeroberfläche

Implementierung 25

MainWindow implementiert. Auf die für diese Arbeit relevanten und neu

hinzugefügten Funktionen wird in diesem Kapitel näher eingegangen. Im

Nächsten wird die Benutzeroberfläche an sich vorgestellt.

4.4.1 Initialisierungen

Im Konstruktor des MainWindows werden verschiedene initialisierende Schritte

durchgeführt, damit die TCP-Kommunikation möglich ist.

Mittels aufruf der Methode initIPs() werden die IP-Adressen standardmäßig

konfiguriert. Dafür existieren vier verschiedene defines, INIT_IP_GS, INIT_IP_Q1,

INIT_IP_Q2 und INIT_IP_Q3. Dort sind die standardmäßigen IP-Adressen der vier

Teilnehmer gespeichert. In initIPs() werden diese Werte nun in die Variablen

überschrieben. Anschließend wird jede IP-Adresse mit der eigenen IP-Adresse

verglichen. Sollte es eine Übereinstimmung geben, so wird der zugehörige

Button disabled, also nicht anwählbar gemacht.

4.4.2 on_pushButton_sendCommando_clicked()

Dieser Slot wird ausgeführt, wenn der Button mit der Beschriftung „Send

Commando“ geklickt wurde. Zunächst werden alle Teilnehmer, zu denen eine

Verbindung besteht, einer Liste angefügt. Dann wird der aktuell ausgewählte

Eintrag der ComboBox „comboBox_commando“ ausgelesen und in den

entsprechenden Befehl umgewandelt. Ist der Eintrag beispielsweise „Suchen“,

lautet der Befehl „!SUCHEN“. Dieser wird dann zusammen mit der Liste der

Adressaten an den Client im Funktionsaufruf sendMsg(QString msg, QStringList

targets) übergeben. Zuletzt wird eine Meldung über das Verschicken in der

Benutzeroberfläche ausgegeben.

Implementierung 26

4.4.3 on_checkBox_changeIP_clicked()

Sobald die CheckBox „Change IP“ angewählt wurde, werden alle Teilnehmer-

Buttons enabled. Würde dies nicht durchgeführt werden, entstünde das

Problem, dass Buttons mit der eigenen IP nicht geändert werden können, da

diese nicht angeklickt werden können.

Wird die Checkbox erneut angeklickt, so werden die Buttons überprüft, ob ihre

neue IP-Adresse mit der des eigenen Computer übereinstimmt. Ist dies der Fall,

dann wird der Button disabled.

4.4.4 on_pushButton_connectGroundstation_clicked()

Stellvertretend für die vier verschiedenen Teilnehmer-Buttons wird hier die

aufgerufene Methode beim Anklicken des „pushButton_connectGroundstation“

vorgestellt. Die anderen Methoden funktionieren analog.

Zunächst wird überprüft, ob die Checkbox „Change IP“ angewählt ist. Ist dies

der Fall, so wird ein QInputDialog erstellt. Dieser besitzt ein Textfeld, in dem die

aktuelle IP-Adresse geändert werden kann. Im Falle des Bestätigens der

Änderung wird die neue IP-Adresse abgespeichert. Mittels updateIPs() wird

außerdem die Beschriftung der Buttons aktualisiert.

Falls die Checkbox nicht angewählt wurde, so wird versucht, eine neue

Verbindung zur zugehörigen IP-Adresse aufzubauen. Existiert eine solche

bereits, wird die Verbindung geschlossen.

4.4.5 Weitere Funktionen

Bei Erhalt eines Befehls wird von der Klasse CommServer ein Signal ausgesandt.

Dieses wird vom MainWindow abgefangen und die Funktion

Implementierung 27

on_command_received(QString command) aufgerufen. Dort werden die bei Erhalt

des Befehls durchzuführenden Schritte implementiert.

4.5 Beschreibung der Benutzeroberfläche

Zur bereits bestehenden Benutzeroberfläche wurde eine Einheit namens

Commanding Interface hinzugefügt. Sie ist in Abbildung 5 zu sehen.

Es sind fünf QPushButtons, zwei QCheckBoxen

sowie eine QComboBox und ein QTextArea im

Commanding Interface enthalten. Diese sind in

Abbildung 5 am rechten Rand nummeriert, worauf

sich im Folgenden bezogen wird.

Vier der Buttons (Nummer 3 bis 6) repräsentieren je

einen Teilnehmer des Netzwerks. Sie sind durch

einen Namen sowie eine IP-Adresse, die als

Beschriftung des Buttons eingetragen sind,

spezifiziert. GS steht hierbei für Groundstation, Q1

für Quadrokopter 1, usw. Sollte einer der Buttons

den eigenen Computer repräsentieren, so wird der

entsprechende Button disabled. Er ist nun grau

unterlegt und nicht mehr anzuwählen. Damit wird

sichergestellt, dass keine Verbindung zu sich selbst

aufgebaut wird.

Mit einem Klick auf einen dieser Buttons wird versucht, eine Verbindung zu

diesem Teilnehmer aufzubauen. Ein erneuter Klick auf diesen Button schließt

die Verbindung wieder. Die Buttons der Teilnehmer, zu denen von diesem

 Abbildung 5: Commanding
Interface

Implementierung 28

Computer aus eine Verbindung aufgebaut wurde, sind grün gefärbt. Wenn die

Verbindung beendet wird, wird der Button wieder entfärbt. Falls eine

Verbindung besteht, die jedoch vom anderen Teilnehmer initiiert wurde, so wird

diese nicht optisch hervorgehoben.

Unter den Buttons befindet sich eine CheckBox mit der Beschriftung „Change

IP“ (Nummer 7). Ist diese angewählt, so lassen sich die IP-Adressen der Buttons

mittels eines Klicks auf selbigen ändern. Daraufhin wird ein QInputDialog

aufgerufen, in der sich ein Eingabefeld mit der bisherigen IP befindet. Ist diese

geändert worden, so lässt sich die Eingabe mit dem OK-Button bestätigen. Mit

Klick auf diesen Button wird das Fenster geschlossen und die IP-Adresse des

Teilnehmers aktualisiert. Falls doch keine Änderung gewünscht wird, steht der

Cancel-Button zur Verfügung.

Um anschließend wieder per Buttonklick eine Verbindung aufzubauen zu

können, muss der Haken der CheckBox „Change IP“ entfernt werden.

Oberhalb der gerade beschriebenen Buttons befindet sich eine Combobox mit

den Auswahlmöglichkeiten „Suchen“, „Landen“ und „Position halten“ (Nummer

1). Diese repräsentieren verschiedene Befehle, die an andere Teilnehmer

gesendet werden können. Darunter liegt ein weiterer Button mit der Aufschrift

„Send Commando“ (Nummer 2). Drückt man diesen, so wird der aktuell in der

ComboBox ausgewählte Befehl an alle Teilnehmer, deren Buttons grün

eingefärbten sind, gesendet.

Abschließend gibt es eine Checkbox mit der Beschriftung „Debug Comm“

(Nummer 8) sowie ein Textfeld (Nummer 9). In dem Textfeld werden

standardmäßig die Meldungen des Clients sowie des Servers ausgegeben. Falls

jedoch ausführliche Meldungen über Verbindungen gewünscht sind, lassen sich

Implementierung 29

mit dem Aktivieren der Checkbox detaillierte Meldungen in der Console (siehe

Abb. 4, blau beschriftet) ausgegeben. Zudem wird in diesem Modus kenntlich

gemacht, ob es sich um eine Meldung des Clients oder des Servers handelt.

4.6 verwendete Hardware

Das Konzept wurde in Qt realisiert. Qt ist eine plattformübergreifende C++-

Bibliothek, die vorrangig zur Programmierung graphischer Oberfächen

entwickelt wurde. Als Entwicklungsumgebung wurde der Qt Creator benutzt.

Die Hardware ist der WLAN USB 2.0 Nano Adapter WL0084A des Herstellers

LogiLink. Dieser beherrscht die gängigen WLAN-Standards IEEE 802.11b, IEEE

802.11g und IEEE 802.11n. Zur Verschlüsselung stehen die Standards WEP,

WPA sowie WPA2 zur Verfügung. Die Datenübertragungsrate liegt bei bis zu

150 Mbps. Unterstützte Betriebssysteme sind Windows XP/Vista/7, Linux 2.6.x

und MAC OS [16]. Der Adapter wird über einen USB 2.0 Anschluss mit dem

Quadrokopter verbunden. Mit der mitgelieferten Software REALTEK 11n USB

Wireless LAN Utility lässt sich zudem auf einfache Weise ein Ad-hoc-Netzwerk

aufbauen (siehe Anhang, Kapitel 8.1).

Evaluierung 30

5 Evaluierung

Zu Evaluationszwecken wurde ein Test der Software mit vier Teilnehmern

durchgeführt. Nachfolgend wird zunächst der Versuchsaufbau beschrieben und

anschließend die Ergebnisse dargestellt.

Als Teilnehmer werden vier Computer verwendet. Da drei von ihnen keine

Hardwarekomponenten für WLAN-Kommunikation besitzen, werden externe

WLAN-Adapter über USB angeschlossen.

Mittels der Software „Realtek 11n USB WLAN Utility“ wird ein Adhoc WLAN im

IBSS-Modus erstellt. Eine Anleitung dazu findet sich im Anhang (Kapitel 8.1).

Steht das WLAN, so werden die Computer manuell mit dem Netzwerk

verbunden. Nun wird die Software gestartet. Falls eine Firewall vewendet wird,

so sollte darauf geachtet werden, dem Programm Kommunikationsrechte durch

die Firewall zu erlauben. Andernfalls wird das Programm blockiert und ist nicht

funktionsfähig.

Mit den vier Computern werden nun verschiedene Funktionalitäten getestet.

Die Checkbox „Debug Comm“ wird aktiviert, damit auf der Console ausführliche

Meldungen ausgegeben werden. Der Verbindungsaufbau funktioniert wie im

Konzept beschrieben. Nach Klicken auf einen der vier Teilnehmerbuttons wird in

der Console die Meldung „C: Command RECONNECT received from xxx.

Reconnecting at Port yyy.“ ausgegeben. Ist die Verbindung dann endgültig

etabliert, erscheint eine entsprechende Meldung sowohl in der Console als auch

in der Console des Teilnehmers, zu dem die Verbindung aufgebaut wurde.

Auch das Versenden von Kommandos funktioniert problemlos. Mit Klick auf den

Evaluierung 31

Button „Send Commando“ wird der ausgewählte Befehl an jeden Computer, zu

dem der Client eine Verbindung hält, gesendet. Dies wird auf den jeweiligen

Computern mit einer Ausgabe in der Console bestätigt.

Ein Problem tritt jedoch beim Senden von Kommandos auf: Wenn ein Befehl

zwei mal zu schnell hintereinander gesendet wird, kann die erste Nachricht

nicht vom Server ausgelesen werden, bevor die zweite Nachricht ankommt.

Somit kommen beim Server anstatt zwei Befehlen nur eine Nachricht an,

beispielsweise „!SUCHEN!SUCHEN“ anstatt zwei mal dem Befehl „!SUCHEN“.

Außerdem kann diese Nachricht nicht mehr als Befehl erkannt werden.

Verbindungen zu mehreren anderen Computern beeinträchtigen die

Funktionalität des Programmes dagegen nicht. Auch doppelte Verbindungen

zwischen zwei Computern, die entstehen sobald sich bei mit ihrem Client auf

den Server des Anderen verbinden, führen zu keinerlei Problemen.

Durch Aktivieren der Checkbox „Debug Comm“ kann zudem zwischen normalen

Meldungen und ausführlichen Meldungen gewechselt werden.

Diskussion und Ausblick 32

6 Diskussion und Ausblick

Mit Abschluss dieser Arbeit ist eine Gruppe aus mehreren Computern

beziehungsweise Quadrokoptern in der Lage, miteinander zu kommunizieren.

Dabei sind die Teilnehmer in der Lage, die Befehle „Suchen“, „Position halten“,

„Landen“, „Disconnect“ und „Reconnect“ zu erkennen, wobei nur für die letzten

beiden Befehle die gewünschten Funktionalitäten implementiert wurden.

Damit ist die bisher verwendete Lösung für Datenübertragungen, eine

Bluetoothverbindung zwischen Quadrokopter und Bodenstation, deutlich

verbessert worden. Das WLAN bietet eine verlässliche

Kommunikationsalternative, die darüber hinaus eine höhere Reichweite besitzt.

Zudem ist die Datenübertragungsrate erhöht worden, außerdem sind nun

Möglichkeiten zur Kommunikation zwischen den Quadrokoptern gegeben.

Allerdings wurden nicht alle angedachten Aufgaben umgesetzt. Eine praktische

Funktionalität wäre beispielsweise ein automatisches Verbinden der Teilnehmer

zum bereits bestehenden WLAN beim Starten der Software. Weiterhin sollten

neue Funktionen zur Benutzeroberfläche hinzugefügt werden, etwa das

Speichern und Laden von Wegpunktlisten. Dies wurde aufgrund von

Zeitmangels nicht mehr implementiert.

Somit sind weitere Arbeiten erforderlich, damit die WLAN-Kommunikation

sinnvoll zum Einsatz kommen kann. Neben den bereits erwähnten Aufgaben

sind auch andere Anwendungsgebiete denkbar.

Zunächst kann die Übertragung der Telemetriedaten von Bluetooth auf WLAN

umgestellt werden.

Diskussion und Ausblick 33

Weiterhin bieten sich zusätzliche Positionierungsbefehle an. So könnten

beispielsweise Wegpunktlisten verschickt werden, die der Quadrokopter

anschließend selbstständig abfliegt. Das bietet gegenüber einzelnen

Positionsbefehlen den Vorteil, dass der Quadrokopter auch dann noch neue

Punkte anfliegt, wenn die Verbindung unterbrochen oder beendet wurde.

Die Vernetzung der Quadrokopter untereinander bietet noch einmal viele neue

Möglichkeiten. So wäre ein Austausch der Positionsdaten denkbar, auf dessen

Basis ein Mindestabstand zwischen zwei benachbarten Quadrokoptern

eingehalten wird. Zudem könnten die Quadrokopter selbstständig

Formationsflüge absolvieren.

Bei Aufgaben wie dem Mapping von unbekannten Gebäuden ist die

Kommunikation zwischen mehreren Quadrokoptern besonders interessant: Hier

können die Quadrokopter untereinander Aufgaben aufteilen. Befinden sich

beispielsweise zwei Quadrokopter an einer Abzweigung, so können beide Wege

zwischen den Quadrokoptern aufgeteilt und unbekannte Gebäude so deutlich

effizienter erforscht werden.

Somit ist diese Arbeit mit einem positiven Ergebnis abgeschlossen worden.

Auch wenn nicht alle Ziele erfüllt wurden, so ist mit dieser Arbeit ein

Grundstein gelegt worden, auf den nachfolgende Projekte mit

unterschiedlichen Inhalten aufbauen können.

Literaturverzeichnis 34

7 Literaturverzeichnis

[1]: Prof. P. Tran-Gia: Vorlesungsskript „Rechnernetze und

Kommunikationssysteme“, Kapitel 5.2, Seite 4, Würzburg, 2011.

[2]: http://de.wikipedia.org/wiki/OSI-Modell, 07.09.2013.

[3]: Matthias Kleine: http://www.selflinux.de/selflinux/html/osi.html, 07.09.2013.

[4]: Prof. P. Tran-Gia: Vorlesungsskript „Rechnernetze und

Kommunikationssysteme“, Kapitel 5.2, Würzburg, 2011.

[5]: http://de.wikipedia.org/wiki/Wireless_Local_Area_Network, 07.09.2013

[6]: http://de.wikipedia.org/wiki/Wireless_Access_Point, 07.09.2013

[7]: http://de.wikipedia.org/wiki/Ad-hoc-Netz, 07.09.2013

[8]: Prof. P. Tran-Gia: Vorlesungsskript „Rechnernetze und

Kommunikationssysteme“, Kapitel 2.3, Würzburg, 2011.

[9]: http://de.wikipedia.org/wiki/IEEE_802.11n#Vergleich_der_IEEE-Standards,

07.09.2013

[10]: http://de.wikipedia.org/wiki/Transmission_Control_Protocol, 07.09.2013

[11]: Prof. P. Tran-Gia: Vorlesungsskript „Rechnernetze und

Kommunikationssysteme“, Kapitel 6.3, Würzburg, 2011.

[12]: http://de.wikipedia.org/wiki/User_Datagram_Protocol, 07.09.2013

[13]: http://de.wikipedia.org/wiki/Internet_Protocol, 07.09.2013

[14]: Prof. P. Tran-Gia: Vorlesungsskript „Rechnernetze und

Kommunikationssysteme“, Kapitel 6.2, Würzburg, 2011.

[15]: http://de.wikipedia.org/wiki/Bluetooth, 07.09.2013

[16]: LogiLink: Datenblatt für Wireless 15N0Mbps USB Adapter

http://de.wikipedia.org/wiki/OSI-Modell
http://de.wikipedia.org/wiki/Bluetooth
http://de.wikipedia.org/wiki/Internet_Protocol
http://de.wikipedia.org/wiki/User_Datagram_Protocol
http://de.wikipedia.org/wiki/Transmission_Control_Protocol
http://de.wikipedia.org/wiki/IEEE_802.11n#Vergleich_der_IEEE-Standards
http://de.wikipedia.org/wiki/Ad-hoc-Netz
http://de.wikipedia.org/wiki/Wireless_Access_Point
http://de.wikipedia.org/wiki/Wireless_Local_Area_Network
http://www.selflinux.de/selflinux/html/osi.html

Anhang 35

8 Anhang

8.1 Einrichten eines WLANs im Adhoc-Modus

Zum Erstellen eines Wireless Local Area Networks im Adhoc-Modus wird auf die

Software „Realtek 11n USB WLAN Utility“ zurückgegriffen. Damit kann auf

einfache Weise ein Adhoc WLAN im IBSS-Modus eingerichtet werden.

Falls bereits ein Profil für das WLAN besteht, so ist dieses im Reiter „Profile“

aufgelistet. Mit einem Doppelklick wird es aktiviert und das WLAN aufgebaut.

Sofern noch kein Profil vorhanden ist, so muss ein solches erstellt werden. Dazu

wird im Reiter „Profile“ auf den Button „Hinzufügen“ geklickt. Anschließend

erscheint ein Fenster, in dem man verschiedene Eigenschaften auswählen

kann. Durch Anwählen der obersten Checkbox wird das WLAN im Adhoc-Modus

ausgeführt, in den Editfeldern darunter wird der Name des Profils sowie die

SSID des WLANs eingetragen. In weiteren Auswahlfeldern können der Kanal,

Sicherheitstyp sowie Verschlüsselungstyp des WLAN eingestellt werden.

Abschließend muss ein Sicherheitsschlüssel eingegeben werden. Dieser muss

von Teilnehmern, die dem Netzwerk beitreten möchten, eingegeben werden.

8.2 Hinzufügen eines neuen Befehls

Die Liste der Befehle ist beliebig erweiterbar. Dazu muss der entsprechende

Eintrag in der ComboBox der Benutzeroberfläche hinzugefügt werden. In der

Methode on_pushButton_SendCommando_clicked() des MainWindows wird dann

der Befehl definiert, der an den Quadrokopter gesendet wird. Standardmäßig

Anhang 36

beginnt er mit einem Ausrufezeichen und wird in Großbuchstaben geschrieben

(Bsp: „!SUCHEN“). Nun muss in der Methode startRead() ein entsprechendes

Signal geworfen werden, sobald der Befehl ankommt. Dieses wird anschließend

im MainWindow mit einem Slot verbunden, der den eigentlich auszuführenden

Programmcode enthält.

