
cbe

(Hrsg.): ,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Experience-based Quality Assessment of Distributed
Knowledge Graphs

Joachim Baumeister1

Abstract: This paper introduces an experience-based approach for the evaluation of distributed
knowledge graphs. The quality assessment becomes more important in recent days, since distributed
knowledge emerges rapidly in different application areas. The paper reports the domain of industrial
configuration and production, where distributed knowledge bases have been maintained manually
over decades. We describe the configuration ontology COOM and show how standard technologies
can be used to query experience-based anomalies. A selection of anomalies is discussed.

Keywords: Knowledge Evaluation; Design Anomaly; Ontology; Inspection

1 Introduction

The ongoing automation in the industrial domain enabled the creation of new consumer goods
and processes. The increased automation of processes for recommendation, configuration,
and production forced a number of periphery procedures to be automated as well. In current
state-of-the-art settings, large knowledge bases are executed to run the underlying processes.
These knowledge is located in different industrial systems, ranging from sales systems to
standard PLM (product life-cycle system) and ERP (enterprise resource planning) systems.

The safe execution of the knowledge need appropriate quality assessment methods. Quality
assessment research proposed well-known methods for knowledge validation and verifica-
tion, e.g. [Pr94, SK94, WL02, Ba11, PS94, VC99, BC99]. Also, quality assessment was
investigated in the context of ontologies [Ko14, Vr10, La17]. Besides these well-known as-
sessment areas, we see design anomalies as a class that especially focuses on the sustainable
development of knowledge bases: In knowledge bases, design anomalies [BS10] identify
areas of the knowledge base that do not only cause dysfunction of the knowledge, but also
may yield weak maintainability and analysis capabilities.

In the domain of industrial information systems, the quality assessment of distributed
knowledge bases becomes even more important: Here, knowledge about the same objects
can be found almost always in different systems. For example, for a bike manufacturer
knowledge about a brake or a gear-box can be found in a sales system, the PLM, and the
1 Universität Würzburg, Germany joba@uni-wuerzburg.de

https://creativecommons.org/licenses/by-nc/3.0/
joba@uni-wuerzburg.de

2 Joachim Baumeister

ERP system. The consistent analysis and assessment of this distributed knowledge base is a
difficult and yet unsolved industrial problem.

In this paper, we first introduce a general ontology for representing industrial artifacts. We
then sketch methods for the distributed quality assessment focusing on design anomalies
of industrial knowledge. Typically, these methods are based on human experience. For
this reason, we describe an approach for the declarative definition of new anomalies.
The approach is demonstrated by an exemplary application. We also report a reference
implementation of the COOM ontology and the described anomalies. The paper concludes
with a summary and a discussion of related work.

2 The COOM Ontology and Linking Distributed Knowledge

In this section, we introduce the COOM ontology. The Configuration Objects Ontology
Model (COOM) defines a general description of industrial products, features, and combin-
ing/constraining knowledge. It was originally designed to be used for the formulation of
configuration knowledge, but can be also used in sales and production processes. Since
the introduction of the entire ontology model would exceed the size of this paper, we will
focus on the most important concepts. We exemplify the introduced concepts by the running
example dBike, which is a virtual bike manufacturer. Here, customers can configure their
desired bicycles from a range of configuration items.

As depicted in Figure 1 the ontology defines typical artifacts of a producing company:

• products and their structure

• features and feature items of products

• relational knowledge for customization and configuration

hasProduct Pr Feature

Iconstrainsconstrains

knowledge

Fig. 1: The COOM triangle of products, features, and knowledge.

For the definition of the ontology we extend the SKOS ontology [W309], which already
defines a number of basic concepts for general knowledge organization systems. The central
class LinkedConcept is derived from skos:Concept and describes the linked characteristics
of concepts between a number of information systems. Instances of LinkedConcept own
properties linkedSystem pointing to the original information system and linkedId storing

Experience-Based Quality Assessment 3

the original identifier of the concepts. Both relations are necessary to obtain a standardized
link to the originating information system.

2.1 Product Portfolio

All produced artifacts are organized in a hierarchical product portfolio as seen in Figure 2.
The SKOS concept scheme is applied to define the product portfolio: A hierarchy is formed

skos:ConceptScheme

ProductPortfolio

Product

topConceptOf

superProduct

ProductLine ProductFamily

LinkedConcept

skos:Concept
ProductVersion

hasProductVersion

follows

xs:date

validStart /
validEnd

Fig. 2: Classes and properties of a generic product portfolio.

by instances of Product connected by superProduct relations, which are derivations of
skos:broader. The hierarchy of the portfolio follows the composite pattern. Special types
of products are represented by model families (ProductFamily) and subsequent model lines
(ProductLine). For example, the product portfolio of the dBike company partitions their
products into the product families ”Mountain Bike”, ”City Bike”, and ”Racing Bike”. Due
to the small product portfolio of the company, there exist no further specialization into
product lines. Thus, the product ”dB Racing” is connected by the ”superProduct” relation
to the product family ”Racing Bike”.

Different model years of a product are represented in product versions. Instances of
ProductVersion are connected with a concrete product and a valid start and end date, that
defines the respective life cycle of the product. Here, the particular calendar years are the
valid dates for the product versions. For example, we introduce a product version ”dBR 2019”
for the product ”dB Racing” with valid start date ”2019-01-01” and end date ”2019-12-31”.

2.2 Features, Assignments and Configurations

The ontology was originally defined for the implementation of configuration tasks. Therefore,
the COOM ontology defines Feature instances for products to represent its specific

4 Joachim Baumeister

characteristics. Since features can change over different product versions, a feature is not
connected to a concrete product, but to a product versions. Thus, a concrete product version
defines a collection of features, that are available in this version. The structure of features

Feature

ChoiceFeature

superFeature

ProductVersion

possibleValue

hasVersionFeature

NumericalFeature

FeatureValue
xs:string

valueUnit

xs:double

initValue

Assignment
hfv

hf

Configurationxs:string
id

cais

Fig. 3: Classes and properties defining the features, an assignment to feature values, and a configuration.

is shown in Figure 3. The particular features are organized hierarchically and concrete
feature instances are connected by the superFeature property, a derivation of skos:broader.
Different types of features are characterized by the value type it can be assigned to. We
define NumericalFeature storing float values (e.g., length of a product) and ChoiceFeature

having a predefined list of possible choice values (e.g., color of a product). Consequently,
we introduce properties for assigned choice values to Features (possibleValue) and initial
values (initValue, sometimes used as defaults). For choice values it is possible to state an
order between the different values by the property valueOrder, e.g., for a feature ”gear” the
ordered choices ”7G”, ”11G”, and ”27G”.

For example, the product version ”dBR 2019” defines the choice feature ”brake” for the
racing bike of the year 2019: The feature ”brake” has the possible values ”race brake”,
”standard brake”, and ”heavy duty brake”.

Experience-Based Quality Assessment 5

An assignment between a value and a feature is captured by the corresponding class
assignment, that provides the property hf (has feature) to reference the feature instance and
the property hfv (has feature value) to reference the value. Please note, that the value class
need to correspond to the assigned feature class. In our example, a possible assignment is
”brake = race brake”.

A Configuration instance collects all feature–value items (assignments) of a specific
product. It is worth noticing, that one assignment needs to reference assignment pairs that
corresponds to the same product version. Also, a Configuration instance usually refers to
an identifier that distinguishes it from other configurations. Often, this identifier is called
serial number or machine number.

For example, the order of a customer is stored in a configuration instance. This instance
collects the assignments ”frame = racing frame”, ”brake = racing brake”, ”gear = 27G”,
”light = superlight”, and ”color = red”.

2.3 Relational Knowledge

As described in the introduction, knowledge constraints products and features. Figure 4
depicts different types of relational knowledge. Constraints on features are represented by
condition instances, that define the requirements for the execution of this particular knowl-
edge element. The concrete condition vary between the sub-classes of RelationKnowledge:
For example, forbidden combinations of feature values in a specific product are defined by
an InvalidValue constraint. Following our example, an invalid value constraint could be
defined between the assignments ”frame = racing frame” and ”gear = 7G”, i.e., a 7-gearbox
must not be combined with a racing frame.

Feature RelationalKnowledge Assignmentinvolved condition

Deduction Constraint

SymbolicDeduction NumericDeduction InvalidValues

ValidValues

SATConstraint

Fig. 4: Classes and properties defining the relational knowledge, mostly between feature values.

Besides Boolean constraints on feature values, there also exists knowledge for deriving
specific feature values for a given condition. The derivation of feature values can be defined

6 Joachim Baumeister

for choice features (SymbolicDeduction) and for numerical features (Calculation). For
instance, there may exist a symbolic deduction rule, that derives the assignment ”light =
superlight” for a given assignement ”frame = racing frame”.

A SATConstraint defines a (often complex) condition, that need to be either positively
or negatively satisfied. The simplified analysis and exchange of relational knowledge is
implemented by the relation involved, that connects all participating Features for an instance
of RelationalKnowledge. We also define the sub-properties conditionedFeature and
derivedFeature for, depending of the specific type of the relational knowledge, the features
used in the condition but also in the conclusion are linked by these properties.

The detailed representation of condition and deduction can be implemented by the standard
the rule language SWRL [Ho04]. Albeit the syntax of SWRL is not easy to comprehend for
untrained users, it provides a common standard for representing equations and conditions.
In the context of our work, however, we focus on the shallow representation of conditioned
features and derived features, since this knowledge is easy to interchange between systems
and is sufficient to answer a number of analysis and evaluation questions.

2.4 Linking Distributed Knowledge

In the previous sections we introduced the general scheme of the COOM ontology. The
knowledge included in the particular systems of the company can be mapped to a instance
of the COOM scheme.

Analysis Evaluation

Dad Smells Verifikation Validation
concept unfpreflebels
conceptswleg.peLabds Ig
concepts notusedinknaledge noteovend
concepts walnidderlabels

unlinked

T

t
1

Yoo HE
Wo 4

X

6 o oo
Abb
Hof

PDM

Integration Ontology

SIS

CRM / CPQ

ERP

sync

sync

sync

sync

Fig. 5: Linking knowledge of existing information systems with an integration knowledge base.

Figure 5 shows the different knowledge bases contained in system instances of ERP, PDM,
CRM and SIS applications. In this section, we propose an approach, where these local
knowledge bases are connected by an integration ontology. In consequence, the integration
ontology can be used for all analysis and evaluation tasks.

Experience-Based Quality Assessment 7

In an exemplary situation, a company runs a product data management system (PDM) in the
engineering department, a customer relations and pricing system in the sales department
(CRM/CPQ), and a service information system (SIS) in the after sales department. Also an
enterprise resource planing system (ERP) is connected for managing the master data of the
company. The knowledge included in these systems considers the same products, features,
and interrelations.

In a canonical mapping scheme we link all elements to the integration ontology together
with their local namespaces of each originating system. For example, a specific product ”dB
Racing” and its instance dBR, respectively, is referenced in all information systems. We also
introduce the corresponding instances erp:dBR, pdm:dBR, cpq:dBR, and sis:dBR of Product.
The identity semantics between all dBR instances is represented by the sub-properties of
coom:match that is a sub-property of skos:mappingRelation [W309]. In consequence, we
arrive at one integration ontology and one ontology for each connected information system.

The sketched approach produces redundant instances for each concept, but allows for an
independent development and use of the different knowledge systems. Also, we can simply
combine different versions of each knowledge base and information system, respectively.

For the quality assessment of the distributed knowledge base, it is not necessary to include
and map the complete depth of the knowledge base. It is rather necessary to map levels of
knowledge that are used in the evaluation task. We show examples of quality assessment
methods in the following section.

3 Experience-based Quality Assessment of COOM Knowledge Graphs

As we motivated in the previous sections, there will not exist a single knowledge model in a
typical industrial setting. Rather, each installed information system (ERP, PLM, CRM, etc.)
will contain knowledge that can be mapped to a separate knowledge model. In Figure 5 we
sketch a common structure of such a distributed knowledge model.

In this paper, we focus on quality assessment methods that consider the maintainable design
of distributed knowledge models, i.e., design anomalies. A very simple measure of such a
design anomaly is the compliance with defined naming conventions for resource names.
More sophisticated measures try to identify unused or misused elements in the knowledge
graph. The idea of design anomalies is closely related to ontology anti-patterns [CRVB09].

It should be clear, that there will be no exhaustive list of methods but that with the
particularities of each domain and the experience of the knowledge engineers, there will
always emerge new measures to be implemented in the quality assessment framework. For
example, with new system capabilities new quality demands will rise. Therefore, we propose
an experience-based approach to formulate assessment methods. In the best case, new
measures can be implemented in a declarative manner. In the past, semantic languages were
defined for implementing quality measure, such as SPARQL, ShEx and SHAQL, see for

8 Joachim Baumeister

instance [La17, FH10]. In the following, we introduce a series of methods that are helpful
for the distributed development of knowledge models, and we use these languages whenever
possible.

3.1 Lonely Feature

A feature should be affiliated with at least one knowledge model (sales model, engineering
model, etc.). The following query looks for lonely features that are not connected to any
model.

Anomaly 1 (Lonely Feature) A feature f is called a lonely feature, when there exists no
known knowledge model, that includes this feature.

The following SPARQL query reports all lonely features in the environment of the SPARQL
query.

Lonely Feature

SELECT ?feature_uri

WHERE {

?feature_uri a coom:Feature .

MINUS { ?feature_uri coom:inModel ?model }

}

3.2 Childless Feature

A childless feature is detected for a choice feature, that does not define at least one feature
value. In more restrictive tests, every choice feature need to define more than one feature
value.

Anomaly 2 (Childless Feature) We introduce a choice feature f with type(f) = discrete
and dom(f) yields the domain of feature f , i.e., the possible values of the feature. The
feature f is a childless feature, if f ∈ M ∧ dom(f) = ∅ .

A childless feature signals an orphan resource in the knowledge model, when a knowledge
engineer stopped working on a topic and forgot to remove unnecessary resources from
the model. Another explanation is the unfinished type change of resource, e.g. moving a
numeric feature to a choice feature or counter-wise.

The following SPARQL query reports all childless features.

Experience-Based Quality Assessment 9

Childless Feature

SELECT ?f ?value

WHERE { ?f a coom:ChoiceFeature ;

FILTER NOT EXISTS {

?f coom:possibleValue ?value }

}

3.3 Uneven Twins

The measure uneven twins tries to find two matching features from different knowledge
models, for which at least one feature value has no matching counterpart for the values
of the other feature. In practice, the knowledge engineers may forgot to define a match
relation between feature values. Another reason for an uneven twin can be the change of the
semantics of values without propagating this to the other information systems.

Anomaly 3 (Uneven Twins) We introduce two matching features f1 and f2 that are included
in two different knowledge models M1 and M2:

f1 ∈ M1, f2 ∈ M2 : match(f1, f2) .

Both features fi have discrete values vi, j defined in the domain dom(fi):

dom(f1) = {v1,1, v1,2, . . . , v1,n} and dom(f2) = {v2,1, v2,2, . . . , v2,m} .

The features f1, f2 are uneven twins, if there exists a feature value v ∈ dom(f1) but no
corresponding value v′ ∈ dom(f2) with the matching relation match(v, v’).

The following SPARQL statement shows a possible query for identifying uneven twins f1
and f2.

Uneven Twins

SELECT ?f1 ?f1_value ?model

WHERE { ?f1 a coom:Feature ;

coom:possibleValue ?f1_value ;

coom:inModel ?model .

MINUS { ?f2 a coom:Feature ;

coom:possibleValue ?f2_value .

?f1 coom:match ?f2 .

?f1_value coom:match ?f2_value .

FILTER (?f1 != ?f2) }

}

10 Joachim Baumeister

3.4 Knowledge Twins

Distributed knowledge models often yield similar or even equal knowledge elements in
different knowledge systems. For instance, the sales model may introduce the same constraint
as the engineering model did before. The anomaly knowledge twin tries to identify such
doublettes. After a detection, a human knowledge engineer needs to decide about how to
handle identified twins.

Anomaly 4 (Knowledge Twins) We define knowledge twins as two different knowledge
elements k1 and k2 (k1 , k2), that derive feature values v for the same features f with same
or intersecting feature sets in the condition, i.e.,

k1 : {c1, . . . , cn}︸ ︷︷ ︸
C

→ {a1, . . . , am}︸ ︷︷ ︸
A

∧ k2 : {c′1, . . . , c
′
p}︸ ︷︷ ︸

C’

→ {a′1, . . . , a
′
q}︸ ︷︷ ︸

A’

,

where ci, c′i, ai, a
′
i are assignments f = v of values v ∈ dom(f) to features f . Two sets of

assignments C,C ′ are intersecting, when there exists at least one assignment in each set,
that have matching features and feature values, i.e.,

c ∈ C, a ∈ A, c′ ∈ C ′, a′ ∈ A′ : match(c, c′) ∧ match(a, a′) .

Please notice, that in the implementation the property coom:match is reflexive and thus a
feature also has an exact match to itself.

The following SPARQL statement shows a simplified query for detecting knowledge twins
k1 and k2 in different knowledge models.

Knowledge Twins

SELECT ?k1 ?k2

WHERE { ?k1 a coom:RelationalKnowledge ;

coom:conditionedFeature ?f1con ;

coom:derivingFeature ?f1der ;

coom:inModel ?model1 .

?k2 a coom:RelationalKnowledge ;

coom:conditionedFeature ?f2con ;

coom:derivingFeature ?f2der ;

coom:inModel ?model2 .

FILTER (?k1 != ?k2)

FILTER (?model1 != ?model2)

FILTER EXISTS {

?f1con coom:match ?f2con .

?f1der coom:match ?f2der . }

}

Experience-Based Quality Assessment 11

3.5 Incompatible Concept Matching

An incompatible concept matching is found for two features, that are defined to match
but have different information types. Incompatible concept matching often occurs in the
progress of restructurings of larger distributed knowledge systems: The type of a feature
was modified in one model due to a design decision but the change was not propagated to
the other knowledge models.

Anomaly 5 (Incompatible Concept Matching) We define two knowledge models M1,M2
having features f1 ∈ M1 and f2 ∈ M2. There exists an incompatible concept matching,
if both features are matching, i.e., match(f1, f2) but have different information types, i.e.,
type(f1) , type(f2) .

The following SPARQL queries for a feature f1 that has an exact match to a feature f2 with
class f2Type that is different from all type classes of f1.

Incompatible Concept Matching

SELECT ?f1

WHERE { ?f1 a coom:Feature ;

coom:match/rdf:type ?f2Type ;

MINUS { ?f1 a ?f2Type . }

}

3.6 Similar Surface

During the distributed development the definition of matching relations may be incomplete.
We introduce a very shallow and simple anomaly, that (nevertheless) is very helpful to
exploit many missing matching relations. A similar surface for two features exists, when
both features have similar/same names but a matching relation is missing. It is obvious, that
a possible matching relation needs to be inserted manually by a knowledge engineer after
an inspection of the anomaly.

Anomaly 6 (Similar Surface) We define two knowledge models M1,M2 having features
f1 ∈ M1 and f2 ∈ M2. There exists a similar surface for f1 and f2, if

¬match(f1, f2) ∧ similar(f1, f2) .

The implementation of the function similar can vary from a very simple string comparison of
the resources labels to a sophisticated resource matching algorithm. The ontology matching

12 Joachim Baumeister

research offers a diverse range of methods that should be considered for the implementation
of this anomaly measure [ES12].

The following SPARQL statement implements a simple version, where we query for features
f1 and f2 that have an identical label literal.

Similar Surface

SELECT ?f1 ?f2

WHERE { ?f1 a coom:Feature ;

coom:label ?label .

?f2 a coom:Feature ;

coom:label ?label .

FILTER (?f1 != ?f2)

FILTER NOT EXISTS { ?f1 coom:match ?f2 }

}

4 Implementation

We implemented the described COOM ontology using the knowledge engineering tool
KnowWE [BRP11]. The application KnowWE is a semantic wiki, that supports the
distributed elicitation and maintenance of RDF(S)/OWL ontologies. It provides mechanisms
to import existing ontologies and offers markups to create new ontologies by using Turtle
syntax. Graphs can be queried with SPARQL statements. Ontology statements in Turtle
markup are directly compiled into an ontology and can be accessed by inserted SPARQL
queries, also via a web-service endpoint.

Figure 6 shows a part of the implementation, i.e., the KnowWE page of LinkedConcept with
an open editor defining the related property coom:label. Among other features, KnowWE
offers a rich set of tools for evaluating the knowledge bases. That way, various test types
can be defined to inspect engineered ontologies. For a sustainable quality assessment a
continuous integration dashboard is integrated into KnowWE [BR11]. This dashboard runs
a defined suite of tests every time, the knowledge has been changed. Detected errors or
warnings are reported visually to the user. On the top left corner of Figure 6, we can see a
green circle (followed by a link to "Continuous Integration"). In case of problems, this circle
turns red and the user can inspect the dashboard report by just clicking on the corresponding
link. In the context of this paper, we implemented—among others—the described anomalies
as named SPARQL queries. Named SPARQL queries are easily added as a test into the test
suite of the dashboard, for instance by demanding that the query should yield zero results.
By using a semantic wiki and a standard query language for the definition of anomalies, new
experience knowledge with respect to quality assessment can be easily added to the system.

Experience-Based Quality Assessment 13

Fig. 6: The knowledge engineering tool KnowWE depicting the page for LinkedConcept. The turtle
editor is open for property coom:label.

In Figure 7 we see the definition of the anomaly Lonely Feature as a named SPARQL query.
The query is used in the definition of the dashboard in Figure 8 demanding that there should
be zero results for this query.

5 Conclusions

The quality assessment of distributed knowledge bases has many application areas. In this
paper, we introduced configuration and production of industrial goods as an interesting
application domain, where distributed knowledge bases are already developed and maintained
over the past decades.

We introduced the ontology schema COOM (Configuration Objects Ontology Model),
that builds on the standard knowledge organization system SKOS and is itself extensible.
Furthermore, we showed how COOM can be implemented in a distributed knowledge
ecosystem. In the past, general approaches of knowledge-based configuration [Fe14] were
introduced. In comparison, the proposed ontology introduces concepts and constraint types
that are tailored to the use in the manufacturing industry and sketches an approach of
distributed quality assessment.

14 Joachim Baumeister

Fig. 7: Definition of anomaly Lonely Feature.

Experience-based evaluation of such knowledge bases becomes more important these
days. We introduced a number of design anomalies, that can be implemented by standard
technologies, such as SPARQL, ShEx, and SHAQL. By using these standard languages,
the declarative extension of an experience-based anomaly library is a feasible task. This
is similar to previous works. For instance, in [Ro12] the authors use SPARQL queries to
detect anti-patterns.

At the moment, the implementation in KnowWE only considers tests defined by SPARQL
queries. Albeit very powerful, this mechanism is burdensome for creating many (rather
simple) anomalies. Therefore, we are planning to integrate an implementation of ShEx and
SHAQL into KnowWE and its quality dashboard in the future. We expect to simplify the
definition of experience-based evaluation knowledge even further.

Furthermore, we are planning to implement a more comprehensive library of anomalies
based on the possibilities of ShEx, SHAQL, and SPARQL. Having a representative set of
anomalies with a reference implementation we will be able to gain more public interest.

References
[Ba11] Baumeister, Joachim: Advanced Empirical Testing. Knowledge-Based Systems, 24(1):83–

94, 2011.

[BC99] Boswell, Robin; Craw, Susan: Organizing Knowledge Refinement Operators. In: Validation
and Verification of Knowledge Based Systems. Kluwer, Oslo, Norway, pp. 149–161,
1999.

Experience-Based Quality Assessment 15

Fig. 8: The continuous integration dashboard of the semantic wiki KnowWE.

[BR11] Baumeister, Joachim; Reutelshoefer, Jochen: Developing Knowledge Systems with
Continuous Integration. In: i-KNOW 2011: 11th International Conference on Knowledge
Management and Knowledge Technologies, short paper. ACM ICPS, Graz, Austria, 2011.

[BRP11] Baumeister, Joachim; Reutelshoefer, Jochen; Puppe, Frank: KnowWE: A Semantic Wiki
for Knowledge Engineering. Applied Intelligence, 35(3):323–344, 2011.

[BS10] Baumeister, Joachim; Seipel, Dietmar: Anomalies in Ontologies with Rules. Web
Semantics: Science, Services and Agents on the World Wide Web, 8(1):55–68, 2010.

[CRVB09] Corcho, Oscar; Roussey, Catherine; Vilches Blazquez, Luis Manuel: Catalogue of Anti-
Patterns for formal Ontology debugging. In: Atelier Construction d ontologies : vers un
guide des bonnes pratiques, AFIA 2009. Hammamet, Tunisia, p. 11, May 2009.

[ES12] Euzenat, Jérôme; Shvaiko, Pavel: Ontology Matching. Springer, Berlin, 2nd edition,
2012.

[Fe14] Felfernig, Alexander; Hotz, Lothar; Bagley, Claire; Tiihonen, Juha: Knowledge-based
Configuration: From Research to Business Cases. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1 edition, 2014.

[FH10] Fürber, Christian; Hepp, Martin: Using SPARQL and SPIN for Data Quality Management
on the Semantic Web. In (Abramowicz, Witold; Tolksdorf, Robert, eds): Business
Information Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 35–46, 2010.

[Ho04] Horrocks, Ian; Patel-Schneider, Peter F.; Boley, Harold; Tabet, Said; Grosof, Benjamin;
Dean, Mike: , SWRL: A Semantic Web Rule Language - Combining OWL and RuleML,
W3C Member Submission . http://www.w3.org/Submission/SWRL/, May 2004.

[Ko14] Kontokostas, Dimitris; Westphal, Patrick; Auer, Sören; Hellmann, Sebastian; Lehmann,
Jens; Cornelissen, Roland; Zaveri, Amrapali: Test-driven Evaluation of Linked Data

http://www.w3.org/Submission/SWRL/

16 Joachim Baumeister

Quality. In: Proceedings of the 23rd International Conference on World Wide Web.
WWW ’14, ACM, New York, NY, USA, pp. 747–758, 2014.

[La17] Labra Gayo, Jose Emilio; Prud'hommeaux, Eric; Boneva, Iovka; Kontokostas, Dimitris:
Validating RDF Data. Synthesis Lectures on the Semantic Web: Theory and Technology.
Morgan & Claypool Publishers LLC, sep 2017.

[Pr94] Preece, Alun D: Validation of Knowledge-Based Systems: The State-of-the-Art in North
America. The Journal for the Integrated Study of Artificial Intelligence, Cognitive Science
and Applied Epistomology, 11, 1994.

[PS94] Preece, Alun; Shinghal, Rajjan: Foundation and Application of Knowledge Base Verifica-
tion. International Journal of Intelligent Systems, 9:683–702, 1994.

[Ro12] Roussey, Catherine; Corcho, Oscar; Šváb Zamazal, Ondřej; Scharffe, François; Bernard,
Stephan: SPARQL-DL Queries for Antipattern Detection. In: Proceedings of the 3rd
International Conference on Ontology Patterns - Volume 929. WOP’12, CEUR-WS.org,
Aachen, Germany, Germany, pp. 85–96, 2012.

[SK94] Smith, Suzanne; Kandel, Abraham: Verification and Validation of Rule-Based Expert
Systems. CRC Press, Inc., Boca Raton, FL, USA, 1994.

[VC99] Vermesan, Anca; Coenen, Frans: Validation and Verification of Knowledge Based Systems.
Theory, Tools and Practice. Kluwer Academic Publisher, 1999.

[Vr10] Vrandecić, Denny: Ontology Evaluation. PhD thesis, AIFB, KIT Karlsruhe, Germany,
2010.

[W309] W3C: , SKOS Simple Knowledge Organization System Reference: http://www.w3.org/
TR/skos-reference, August 2009.

[WL02] Wu, Chih-Hung; Lee, Shie-Jue: KJ3 – a tool assisting formal validation of knowledge-
based systems. International Journal of Human-Computer Studies, 56(5):495–524,
2002.

http://www.w3.org/TR/skos-reference
http://www.w3.org/TR/skos-reference

	Introduction
	The COOM Ontology and Linking Distributed Knowledge
	Product Portfolio
	Features, Assignments and Configurations
	Relational Knowledge
	Linking Distributed Knowledge

	Experience-based Quality Assessment of COOM Knowledge Graphs
	Lonely Feature
	Childless Feature
	Uneven Twins
	Knowledge Twins
	Incompatible Concept Matching
	Similar Surface

	Implementation
	Conclusions

