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Abstract Subgroup discovery is a key data mining method that aims at iden-
tifying descriptions of subsets of the data that show an interesting distribution
with respect to a pre-defined target concept. For practical applications the inte-
gration of numerical data is crucial. Therefore, a wide variety of interestingness
measures has been proposed in literature that use a numerical attribute as the
target concept. However, efficient mining in this setting is still an open issue.
In this paper, we present novel techniques for fast exhaustive subgroup discov-
ery with a numerical target concept. We initially survey previously proposed
measures in this setting. Then, we explore options for pruning the search space
using optimistic estimate bounds. Specifically, we introduce novel bounds in
closed form and ordering-based bounds as a new technique to derive estimates
for several types of interestingness measures with no previously known bounds.
In addition, we investigate efficient data structures, namely adapted FP-trees
and bitset-based data representations, and discuss their interdependencies to
interestingness measures and pruning schemes. The presented techniques are
incorporated into two novel algorithms. Finally, the benefits of the proposed
pruning bounds and algorithms are assessed and compared in an extensive ex-
perimental evaluation on 24 publicly available datasets. The novel algorithms
reduce runtimes consistently by more than one order of magnitude.
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1 Introduction

Subgroup discovery aims at identifying descriptions of subsets of the data
that deviate from the overall dataset with respect to a certain property of
interest, often also called target concept. As an established method of data
mining, it has been well-examined concerning binary target concepts with a
finite number of possible values, see for example (Klösgen 1996; Wrobel 1997;
Lavrač et al. 2004). However, practical applications often involve numerical
data, i.e., attributes with a continuous domain. In this context, this paper
focuses specifically on the setting in which the target concept is given by a
numerical attribute. Transforming this problem setting to the standard binary
one by using discretization techniques (Fayyad and Irani 1993; Kotsiantis and
Kanellopoulos 2006) in a pre-processing step can lead to a (possibly crucial)
loss of information, cf. (Moreland and Truemper 2009; Freidlin and Gastwirth
2000). Therefore, a broad variety of interestingness measures which directly
consider the distribution of a numerical target attribute has been proposed for
pattern evaluation in the literature. Efficient subgroup discovery using these
measures is an open issue since the transfer of techniques developed for the
binary target setting is challenging. In this paper, we discuss in particular
methods for exhaustive mining with guaranteed optimal results.

Beside the search strategy, discovery algorithms are characterized by the
used data structures and the applied pruning schemes that allow for skipping
parts of the search space in the discovery algorithm. An essential pruning tech-
nique that guarantees the optimality of results is optimistic estimate pruning.
It substantially reduces the number of required subgroup evaluations based
on the following principle: if it can be proven, that no specialization of the
currently investigated subgroup is interesting enough (according to the chosen
interestingness measure) to be included in the result set of subgroups, then we
can skip the evaluation of all these specializations.

In this paper, we first survey previously proposed interestingness measures
for numerical properties of interest from literature, including mean-based,
variance-based, median-based, and rank-based interestingness measures as well
as a measure based on the Kolmogorov-Smirnov statistical test. For these in-
terestingness measures, we present a large set of optimistic estimate bounds
that can be used for pruning the search space. In that direction, we propose
the formalism of interestingness measures that are estimable by ordering of the
target values as a means to derive optimistic estimates for a variety of interest-
ingness measures with no previously known bounds. For faster computation,
we additionally introduce approximations that can be computed knowing only

This paper summarizes and extends contents of the dissertation of the first author (Lem-
merich 2014). A small part of this work, i.e., the SD-Map* algorithm for mean-based inter-
estingness measures only, was previously described in (Atzmueller and Lemmerich 2009).
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a subset of the subgroup instances. Since ordering-based bounds cannot be
determined with all data structures, we also discuss bounds in closed form
that require only few subgroup statistics. Besides optimistic estimate pruning,
we show how popular data structures for subgroup discovery, i.e., FP-trees
and bitset-based vertical data structures, can be transfered from binary to
numerical target concepts. The proposed techniques are incorporated into two
practical algorithms. An extensive experimental evaluation of the discussed
bounds and algorithms on 24 publicly available datasets show substantial run-
time improvements.

This paper does not consider the overall subgroup discovery process, but
concentrates only on exact solutions of the central algorithmic step, ignoring
heuristic approaches for this task. Additionally, we assume that the set of
describing selectors for the search has already been determined beforehand.
However, we acknowledge that this can be a challenging task that also pos-
sibly involves loss of information especially considering numerical attributes.
Furthermore, we focus exclusively on classic interestingness measures that are
based only on the statistics of the evaluated subgroups and do not take the
subgroup description into account.

The rest of the paper is structured as follows: Section 2 discusses related
work. Next, Section 3 describes the basics of subgroup discovery with an em-
phasis on numerical target concepts and introduces the used notations. Then,
Section 4 provides an overview on interestingness measures in this setting. Af-
terwards, Section 5 presents novel approaches for efficient subgroup discovery
with numerical target concepts, that is, data structures, optimistic estimate
bounds, and their integration in algorithms. The benefits of the suggested
techniques are evaluated in-depth in Section 6. Finally, Section 7 concludes
the paper with a summary and an outlook for future research.

2 Related Work

Mining supervised local patterns, e.g., discriminative patterns (Cheng et al.
2008), contrast sets (Bay and Pazzani 2001), emerging patterns (Dong and
Li 1999) or subgroup discovery (Klösgen 1996; Wrobel 1997; Klösgen 2002;
Atzmueller 2015), has been established as a versatile and effective method in
data mining. While this paper focuses on subgroup discovery, recent research
shows that many of these tasks differ mostly in terminology and many tech-
niques can be transfered between tasks with little effort, cf. (Kralj Novak et al.
2009). Efficient mining algorithms can be classified in three dimensions, i.e.,
search strategy, data structure, and pruning mechanisms. The search strat-
egy can directly be transfered from the binary to the numerical target case.
The algorithms described here apply depth-first-search, but the proposed im-
provements regarding data structures and especially pruning bounds can easily
be transfered to other search strategies such as Apriori (Morishita and Sese
2000; Kavšek and Lavrač 2006) or exhaustive best-first-search (Webb 1995;
Zimmermann and De Raedt 2009).
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Generally, numerical data can be discretized (cf. for example (Fayyad and
Irani 1993; Garćıa et al. 2013)) in order to apply standard subgroup discov-
ery for binary target concepts. One method that was specifically designed
for numerical targets in subgroup discovery, is TargetCluster (Moreland and
Truemper 2009). It uses a scoring of clustering solutions to find appropriate
intervals for the target concept. Nonetheless, discretizing the target concept
still leads to a loss of information. Subgroup discovery with numerical tar-
get concepts without discretization was applied in the pioneering data mining
system Explora (Klösgen 1996). It applied a variety of enumeration strategies
for subgroup discovery. Regarding numerical attributes, it was able to iden-
tify “mean patterns”, that is, subgroups with a significantly deviating mean
value in the numerical target attribute in comparison to the total population.
An exemplary case study for this system using mean patterns is provided
in (Klösgen 1994). That work, however, does not describe optimistic estimates
or data structures that are specific for the mining of subgroups with numerical
target concepts.

Measuring the interestingness of patterns is a challenging and active re-
search topic in data mining. For most interestingness measures only binary
target concepts are considered, see (Geng and Hamilton 2006) for an overview.
But also for numerical target concepts a variety of different measures has been
proposed. We will provide a summary on these measures in Section 3.1, also
providing references to the original papers there. This includes and signifi-
cantly extends the measures collected by Klösgen (2002) and Pieters et al.
(2010), see also (Pieters 2010).

Optimistic estimate pruning has been recognized as a crucial method for
efficient exhaustive pattern mining. This concept has originally been devel-
oped for general search algorithms (Hart et al. 1968; Webb 1995), and has
later been transfered to subgroup discovery, cf. (Wrobel 1997; Grosskreutz
et al. 2008). Regarding numerical target variables, Webb (2001) exploited op-
timistic estimates to efficiently find association rules with a numerical target
variable in the rule head with a specific interestingness measure, i.e., “impact
rules”. By contrast, this paper presents upper bounds for a wide variety of in-
terestingness measures. Another technique to derive optimistic estimates that
is also applicable for numerical target concepts was proposed in (Morishita
and Sese 2000). This approach is discussed in depth in Section 5.2.2. In or-
der to reduce the redundancy between result patterns, generalization-aware
interestingness measures have been proposed, see e.g. (Bayardo et al. 1999;
Batal and Hauskrecht 2010). In previous work, we described difference-based
optimistic estimates for generalization-aware measures. This novel family of
optimistic estimates is also applicable to generalization-aware mean-based in-
terestingness measures in case of numerical target concepts (Lemmerich et al.
2013). By contrast, this paper focuses on the well-established traditional type
of interestingness measures that are only based on the statistics of the evalu-
ated subgroups and assumes that redundancy reduction will be performed in
a post-processing step.
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The proposed two algorithms use different specialized data structures. One
algorithm employs FP-Trees, cf. Han et al. (2000). These have been used be-
fore for subgroup discovery with binary target concepts, i.e., in the algorithms
SD-Map (Atzmueller and Puppe 2006) and DpSubgroup (Grosskreutz 2008).
In previous work, we introduced an extension of FP-trees, called generalized
pattern trees (GP-trees) (Lemmerich et al. 2012), to the exceptional model
mining setting, cf. (Leman et al. 2008; Atzmueller 2015), focusing on more
complex target concepts. The SD-Map* algorithm presented in this paper can
be considered as a specialized version of this algorithm that additionally incor-
porates the computation of optimistic estimate bounds. The other algorithm,
called NumBSD , adapts a vertical data structure based on bitsets (also called
bitmaps or bitvectors), cf. also (Zaki 2000; Lemmerich et al. 2010), to nu-
merical target concepts. A related data structure is used by the CAREN-DR
algorithm (Jorge et al. 2006) to find “distribution rules”. In contrast to the
NumBSD algorithm, the bitsets are unordered and pruning is only applied
with regard to the support of patterns.

Aumann and Lindell (1999, 2003) investigated a related problem setting
in the context of association rules, described as quantitative association rules.
For the discovery of desired rules, they apply a three-stage process: (1) find
all frequent patterns; (2) compute an interestingness value of these patterns
based on the deviation of the mean or the variance of the target; (3) filter
sub-rules that are contained in more general rules. As a result, pruning is only
based on the support of the patterns, in contrast to the pruning techniques
proposed in this work.

Numerical data in subgroup discovery has also been investigated for the
set of attributes defining the search space. In this context, the MergeSD algo-
rithm, proposed in (Grosskreutz and Rüping 2009), is designed for exhaustive
search. It exploits relationships between selectors of a single attribute by apply-
ing additional pruning based on a specialized data structure, the boundTable.
Mampaey et al. (2012) analyzed the refinement step for greedy algorithms such
as beam search with respect to online discretization of numerical search space
attributes. They propose a method that allows for finding the best interval
of a numerical attribute that is added to the current subgroup description in
linear time of the number of potential cutpoints, in contrast to the quadratic
time required by the trivial approach. In the field of association rule mining,
related approaches have been discussed: Fukuda et al. (1996), for example, in-
vestigated numerical attributes in the rule condition of optimized association
rules. This problem setting has been extended in (Rastogi and Shim 2002; Brin
et al. 2003) to include disjunctions of intervals. In contrast to these works, this
paper focuses on subgroup discovery with numerical target attributes.

3 Background

This section introduces the used definitions and notations. Then, the general
problem setting of subgroup discovery with numerical targets is presented.
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3.1 Subgroup Discovery

Subgroup discovery aims to identify patterns having the most unusual sta-
tistical characteristics with respect to the concept of interest, e. g., given by
a (dependent) target variable, see e.g., (Klösgen 1996; Wrobel 1997; Klösgen
2002; Atzmueller 2015). These patterns are described by explaining (indepen-
dent) variables.

A dataset D = (I,A) is formally defined as an ordered pair of a set of
instances (also called individuals, cases, or data records) I = c1, c2, . . . , cy and
a set of attributes A = A1, A2, . . . , Az. Each attribute Am : I → dom(Am)
is a function that indicates a characteristic of an instance by mapping it to
a value in its domain. Am(c) denotes the value of the attribute Am for the
instance c. An attribute is called nominal, if its values are only differentiated
by their name. On the other hand, an attribute Anum is called numerical, if
its domain contains exclusively real valued numbers, i.e., dom(Anum) ⊆ R.

A selector sel is a boolean function I → {true, false} that describes a set
of instances with a selection expression over one attribute. Σ denotes the set
of all selectors. Typical selectors for nominal attributes are selections on single
attribute values, e.g., selgender=male, but selectors may also contain a set of
attribute values, negated values or (in case of numerical attributes) intervals.
A subgroup description or pattern P = {sel1, . . . ,seld}, seli ∈ Σ, i = 1 . . . d,
is then defined by a set of selectors which is interpreted as a conjunction,
i.e., P =̂ sel1 ∧ . . . ∧ seld. We call a pattern Pgen a generalization of its
specialization Pspec, iff Pgen ⊂ Pspec. For a fixed dataset, a subgroup (the
extension of P ) sg(P ) := {i ∈ I|∀sel ∈ P : sel(i) = true} is now given by the
set of individuals that are covered by the subgroup description P . Trivially,
a generalization covers all instances that are covered by its specializations:
Pgen ⊂ Pspec ⇒ sg(Pgen) ⊇ sg(Pspec). For shorter notation, we write the
number of instances covered by a pattern P as iP = |sg(P )|. Consequently,
i¬P describes the number of instances not covered by P , and i∅ denotes the
number of instances in the total population.

A subgroup discovery task can now be specified by a 5-tuple (D, Σ, T, q, k).
D is the dataset. The set of all selectors Σ defines the search space of 2|Σ| can-
didate subgroup descriptions in the dataset. While the construction of appro-
priate selectors can be a non-trivial task especially for numerical attributes, we
do not focus on this problem in this paper. Instead, we consider the set of basic
selectors as fixed, computed by a preprocessing step, e.g., using discretization.

The target concept T specifies the property of interest for the discovery
task. In classical subgroup discovery, the target concept is commonly given by
a certain pattern and the goal is to identify subgroups in which this target
pattern occurs more/less frequently (relative to the subgroup size) than in the
overall set of individuals. The value of the target concept (“target value”) for
an instance c is denoted by T (c). For binary target concepts, we write the target
share, i.e., the share of instances with a true target concept, in a subgroup (in
the overall dataset) as τP (τ∅). In many applications of subgroup discovery,
the property of interest is given by a numerical attribute, see e.g., (Klösgen
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and May 2002; Grosskreutz 2008; Atzmueller and Puppe 2009; Lemmerich and
Atzmueller 2012; Atzmueller and Lemmerich 2013).

In general, the case of numerical target attributes can be transformed back
to the binary case using discretization techniques (Garćıa et al. 2013). E.g., us-
ing the target variable age with dom(age) = [0, 140] the group “older people”
could be defined using the interval [70, 140]. A significant subgroup could then
be formulated as “while in the general dataset only 6% of the people are older
than 70, in the subgroup described by xy it is 12%”. However, such thresholds
are often difficult to determine, and additional information on the distribution
of the target attribute is lost. For example, a subgroup that contains many
people aged between 60 and 70 will not be regarded as a subgroup containing
“older people” – perhaps in contrast to some user’s expectation. This dis-
cretization hides also the difference between subgroups in which the majority
is around 60 years old, and those in which the majority is around 20 years old.
Therefore, using the complete distribution of the numerical target attribute is
potentially advantageous. The distribution of a numerical target attribute in a
subgroup is more difficult to describe than the distribution of a binary target
pattern: it is given by a multi-set of real values instead of just the numbers of
positive and negative instances. Thus, the target distribution for a subgroup
description P is often compared in terms of one or more distributional prop-
erties, e.g., the mean value μP , the median medP or the variance σ2

P of the
numerical target attribute. For example, an interesting subgroup based on the
mean values can be formulated as: “While in the general dataset the mean age
is 56 years, in the subgroup described by xy it is 62 years”.

Given a database D and a target concept T , the interestingness measure
q : 2Σ → R maps every pattern in the search space to a real number that
reflects the interestingness of a pattern. To keep this paper concise, we focus
on traditional interestingness measures which are purely dependent on the
coverage of the subgroup, so q : 2I → R. The authors are aware that this
significantly restricts the scope of this paper, as more recent variations that
also include the description of the subgroup in the selection process, see (Ba-
yardo 1998; Atzmueller et al. 2009; Batal and Hauskrecht 2010; Lemmerich
and Puppe 2011), are left out. For simpler notations, q(sg(P )) and q(P ) are
used equivalently. A popular family of interestingness measures for binary tar-
gets are the Klösgen measures, which trade off the coverage of a subgroup with
the deviation of its target share: qaKl(P ) = iP

a · (τP − τ∅), a ∈ [0, 1] (Klösgen
1996), see also for example (Wrobel 1997; Lavrač et al. 2004; Grosskreutz and
Rüping 2009; Atzmueller 2015). Interestingness measures for numerical tar-
get concepts will be discussed in detail in Section 4. Interestingness measures
imply an ordering of the subgroups in the search space. Two interestingness
measures q1(P ) and q2(P ) that imply the identical order for any pair of sub-
groups in a dataset are called order equivalent, denoted as q1(P ) ∼ q2(P ).
Obviously, order equivalent interestingness measures lead to identical results
in an exhaustive top-k search.

Finally, the integer k gives the number of returned patterns of this task.
The result of a subgroup discovery task is the set of k subgroup descriptions
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with the highest interestingness values according to the chosen interestingness
measure. Note that even if the score of a subgroup is only determined by the
subset that is covered by a subgroup description the result of the discovery
algorithm is still a pattern with a description that is interpretable by humans.

4 Interestingness Measures for Numerical Target Concepts

This section presents a concise and comprehensive survey on interestingness
measures for numerical target concepts, substantially extending previous dis-
cussions, see for example (Klösgen 1996, 2002; Pieters et al. 2010).

For numerical target concepts, many interestingness measures extract cer-
tain data characteristics, e.g., the mean or the median value, from the re-
spective dataset and compare those values obtained in the subgroup and in
the overall dataset. We categorize the interestingness measures for numerical
target concepts with respect to the used data characteristics:

1. Mean-based interestingness measures: A simple approach to score sub-
groups is to compare the mean value in the subgroup μP with the mean
value in the overall dataset μ∅. A pattern is then considered as interesting, if
the mean of the target values is (significantly) higher within the subgroup.
In that direction, several interestingness measures have been proposed:

(a) Generic mean-based functions: A generic formalization for a variety of
such measures can be constructed by adapting the Klösgen interesting-
ness measures for binary targets: the target shares τP , τ∅ of subgroups
and the general dataset are replaced by the respective mean values of
the target variable in the subgroup μP and in the overall dataset μ∅.
This results in: qamean(P ) = iP

a · (μP − μ∅), a ∈ [0, 1]. Higher values
of a favor larger subgroups, lower values favor larger deviations in the
target share. These measures include the Klösgen measures for binary
targets as a special case, if the binary target concept is interpreted as
an indicator function (T (c) = 1 for true target concepts, T (c) = 0,
otherwise), since the mean values in the formula are then equal to the
respective target shares.
This generic family of functions is either equal or order equivalent to
several other interestingness measures proposed in literature, such as
the average function for a = 0, mean test (Grosskreutz 2008) and z-
score (Pieters et al. 2010) for a = 0.5, or impact (Webb 2001) for a = 1.

(b) Generic symmetric mean-based functions: To discover subgroups with
decreased as well as increased target values in a single run of the discov-
ery algorithm, the difference of the target shares can be replaced by the
respective absolute value: qasym(P ) = iP

a · |μP −μ∅|. As an alternative,
we can also use the squared difference instead: qasq(P ) = iP

a ·(μP−μ∅)2.

This results in measures that are order equivalent to q
a
2
sym.

(c) Variance reduction: Another symmetric measure, which has been in-
troduced in the context of regression tree learning, is the variance re-
duction (Breiman et al. 1984; Klösgen 1996): qvr(P ) = iP

i∅−iP
·(μP−μ∅)2
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(d) Interclass variance: The interclass variance was proposed to measure
the correlation between a pattern and a numerical target attribute:
qiv(P ) = iP ·(μP−μ∅)2+i¬P ·(μ¬P−μ∅)2, cf. (Morishita 1998; Morishita
and Sese 2000)

2. Variance-based measures: Aumann and Lindell (2003) proposed to identify
patterns with an unusual variance.
(a) Generic variance-based functions: This can be accomplished by re-

placing the target shares τP , τ∅ with standard deviations σP , σ∅ in the
Klösgen measures, resulting in: qasd(P ) = iP

a · (σP − σ∅), a ∈ [0, 1].
As before, this allows – but also requires – controlling the coverage of
the results using the size parameter a. These measures do not directly
correspond to a statistical significance test. Aumann and Lindell pro-
pose to use an F-Test (Aumann and Lindell 2003) for testing statistical
significance, but this test should be applied carefully due to its strong
sensitivity to the non-normality of the distribution (Box 1953).

(b) t-score: The t-score qt(P ) =
√
iP ·(μP−μ∅)

σP
(Pieters et al. 2010; Klösgen

2002) incorporates the mean μP and the standard deviation σP of the
target values in a subgroup P . It reflects the significance of the deviation
of target values in a subgroup using a Student’s t-test. However, a direct
statistical interpretation of the t-score should be avoided if the target
concept is not normally distributed and the subgroup size is small, e.g.,
iP < 30.

3. Median-based measures: Statistics based on the mean target value of sub-
groups are known to be sensitive to outliers. Therefore, it can be favorable
to use the more stable median instead of the mean value.
(a) Generic median-based measure: A generic family of median-based in-

terestingness measures can again be derived by a small adaptation of
qamean: q

a
med(P ) = iP

a · (medP −med∅), where medP is the median of
target values in the subgroup and med∅ the median in the total pop-
ulation. In general, there is no direct interpretation of these measures
with respect to a statistical significance test.

(b) Median χ2 Test: As proposed in (Pieters et al. 2010), the significance of
a χ2-test that uses the median of the target attribute in the total popu-
lation as a discretization cut-point can be applied as an interestingness
measure. From a computational point of view, this is accomplished by
performing discretization as a pre-processing step and running a sub-
group discovery algorithm for binary targets. Therefore, this measure
will not be discussed with respect to efficient mining in this work.

4. Rank-based measures: A variety of statistical tests for the deviation of
numerical variables use the ranks of the target attribute instead of the
target values themselves. That is, the instance with the highest target
value is mapped to rank one, the instance with the second highest target
value is mapped to rank two, and so on. This reduces the sensitivity to
outliers compared to mean-based tests. Additionally, rank-based methods
can also be applied to ordinal attributes.
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(a) Mann-Whitney measure: Klösgen (1996) and later Pieters et al. (2010)
proposed an interestingness measure based on the Mann-Whitney (also
Wilcoxon-Mann-Whitney) rank sum test on statistical significance. The
measure compares the difference of the mean of ranks in the subgroup
with the overall mean of ranks and computes its significance using a
z-statistic. It is defined as:

qmw(P ) = iP ·
RP

iP
− i∅+1

2√
iP i¬P (i∅+1)

12

∼
√

iP
i¬P

·
(RP

iP
− i∅ + 1

2

)
:= qmw′(P ),

where RP is the sum of ranks within the subgroup P .
(b) AUC measure: This interestingness measure proposed in (Pieters et al.

2010) determines the area under the ROC curve (Fawcett 2006). It can
be computed as:

qauc(P ) =
R¬P − i¬P ·(i¬P+1)

2

iP · i¬P
,

with R¬P being the sum of ranks in the complement of the subgroup
P . This measure is independent of the subgroup’s coverage.

5. (Full) Distribution-based measure (Kolmogorov-Smirnov measure): The sig-
nificance according to a Kolmogorov-Smirnov statistical test has been pro-
posed to discover so called distribution rules (Lucas et al. 2007; Jorge
et al. 2006). The measure is order equivalent to the test statistic of this

test: qks(P ) =
√

iP ·i¬P

i∅
Δ(P,¬P ), where Δ(P,¬P ) is the supremum of differ-

ences in the empirical distribution function induced by the subgroup P and
its complement ¬P . The empirical distribution function is a function that
computes for each value v in the target attribute’s domain the fraction of
pattern instances with a target value smaller or equal to v. This measure
can capture increases as well as decreases of the target values.

Answering the question, when to use which measure, is left to future work.
Instead, we concentrate in this paper on the efficient mining with the presented
measures.

5 Efficient Exhaustive Approaches for Subgroup Discovery with
Numerical Properties of Interest

In this section, we investigate efficient subgroup discovery with numerical tar-
get concepts. We first discuss the adaptation of data structures as well as
options for optimistic estimate pruning for the presented interestingness mea-
sures. After that, we present two algorithms that incorporate these approaches.
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5.1 Data Representations

Specialized data structures allow for the efficient computation of subgroup
statistics required by interestingness measures and optimistic estimate bounds.
Below, we introduce adaptations of two data structures to the setting of sub-
group discovery with numerical target concepts, that is, FP-trees and bitset-
based data structures. We primarily focus on generic mean-based interesting-
ness measures and outline adaptations for other measures only briefly.

5.1.1 Adaptations of FP-trees

FP-trees (Han et al. 2000) have been proposed as efficient data structures for
the mining of frequent itemsets. These extended prefix tree structures store the
relevant information in a compressed way. Each tree node contains a reference
to a selector and a frequency count. Additionally, links between nodes referring
to the same selector are maintained. An FP-tree is built in two passes over
the dataset instances: the initial pass sorts the selectors according to their
frequency in the dataset. In the second pass, data instances are inserted one-by-
one into the FP-tree. The order of the selectors increases the chance of shared
prefixes between data instances, thus decreasing the overall size of the FP-tree.
The resulting FP-tree contains the complete condensed frequency information
for each pattern. A mining algorithm starts with creating an FP-tree for the
initial dataset. Patterns containing exactly one selector are evaluated by the
frequencies collected during the first pass over the dataset. Then, the algorithm
recursively extends those patterns by adding further selectors in a depth-first
manner, building conditional trees conditioned on the current pattern prefix.
In this way, compact and efficient mining of the condensed tree structure is
enabled. For more detailed information on FP-trees in general we refer to (Han
et al. 2000, 2004). In previous work, we have shown how FP-trees can be
transfered to subgroup discovery with binary targets (Atzmueller and Puppe
2006) and to the exceptional model mining setting (Lemmerich et al. 2012).
These approaches, however, did not incorporate optimistic estimate bounds.

FP-trees consist of nodes, which are connected by two link structures, tree
links and auxiliary links. Modifications for subgroup discovery do not affect
the link structures, but extend the information that is stored in each node.
In the case of a binary target, an FP-tree node contains information on the
number of positive and negative instances for the respective instance set. In the
case of a numerical target concept and a mean-based interestingness measure,
the sum of the target values and the instance count is stored instead. This
enables the computation of the mean target value of an instance set and thus
allows for determining the interestingness value. Using these adaptations for
numerical target variables, the case of a binary target is included as a special
case, if the value of the target is set to 1 for true target concepts, or set to 0
for false target concepts, respectively.

In contrast to the binary case, additional information is required to effi-
ciently compute the optimistic estimates for numerical target concepts that
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Table 1 A toy dataset used in the illustrating examples below.

Instance Target value selA selB selC
c1 100 true false false
c2 75 true false false
c3 60 false true false
c4 53 true true true
c5 40 false false false
c6 35 false false false
c7 25 false true false
c8 12 true false false

will be introduced in Section 5.2.4. This information can also be effectively
stored in the tree nodes: to compute the optimistic estimate oe1mean, that
will be presented in Theorem 10, one additional field is used, which is ini-
tialized with 0. For each instance c corresponding to the node, the value
max (0, T (c)− μ∅) is added to this field. Like the other stored values, this field
is then propagated recursively, when conditional trees are built. In doing so, the
value stored in this field of each node reflects the sum

∑
c∈P :T (c)>μ∅

(T (c)−μ∅),
that is, the exact value of the optimistic estimate. Thus, the optimistic esti-
mate is directly available if pruning options are checked. Analogously, for the
optimistic estimate oeamean(P ) = p̃P

a · (Tmax
P − μ∅), see Theorem 12, each

node must keep track of the number of instances p̃ that have a target value
greater than the population mean target value, and the maximum target value
corresponding to this node Tmax. These are propagated accordingly and allow
for the efficient computation of these bounds.

Adaptations for other interestingness measures For other interestingness mea-
sures, different kinds of information need to be captured in the tree nodes. To
apply a variance-based interestingness measure such as the t-score measure
qt(P ), in addition to the sum of values the sum of squared values needs to be
stored to determine the variance within the subgroup, cf. (Lemmerich et al.
2012). Unfortunately, it is difficult to determine optimistic estimates for this
function in general, see Section 5.2.

To compute the symmetric generic mean-based measures, no additional in-
formation is required other than the sum of values and the frequency count of
instances. In order to determine optimistic estimates, it is required to addition-
ally store the sum of target values that are below the population target mean,
and the minimum target value. Similarly, for the variance reduction qvr(P ) the
instance count and the overall sum of target values are required for computing
the interestingness itself. For the computation of optimistic estimate bounds,
the sum of target values higher, resp. lower than the population mean as well
as the minimum and maximum target value are then also required.

The generic median-based measures cannot be computed by applying an
FP-tree-based data structure since more than one pass over the subgroup is
required to compute the median, cf. (Lemmerich et al. 2012).
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∅
count: 8, sum: 400

sum> μ∅: 88, count> μ∅: 4
maxValue: 100

selA
count: 4, sum: 240

sum> μ∅: 78, count> μ∅: 3
maxValue: 100

selB
count: 2, sum: 85

sum> μ∅: 10, count> μ∅: 1
maxValue: 60

selB
count: 1, sum: 53

sum> μ∅: 3, count> μ∅: 1
maxValue: 53

selC
count: 1, sum: 53

sum> μ∅: 3, count> μ∅: 1
maxValue: 53

. . .

. . .

. . .

Fig. 1 The initial FP-tree (without header nodes) for the example toy dataset. The in-
formation stored in the nodes depends on the used interestingness measure. For generic
mean-based measures, each node stores the node count, the sum of target values, the sum
of target values above the population’s target mean, the number of instances with a target
value above the target mean and the maximum target value.

For computing rank-based interestingness measures using a variation of
FP-trees, the ranks of instances must be determined in a preprocessing step.
Afterwards, ranks replace the original target values in the algorithm itself. In
the FP-tree nodes, only the instance count and the sum of ranks is stored
and aggregated. For computing optimistic estimates for the Mann-Whitney
measure, see Theorem 17, additionally the sum of ranks above the population’s
mean rank, the maximum rank, and the number of instances with a rank higher
than the population’s mean rank need to be stored.

Example 1 Consider the toy dataset with 8 instances and 3 selectors in the
search space shown in Table 1. The initial FP-tree for this dataset (without
header nodes) is depicted in Figure 1. The information stored in the nodes de-
pends on the used interestingness measure. For generic mean-based measures,
each node stores the node count, the sum of target values, the sum of tar-
get values above the population’s target mean, the number of instances with
a target value above the population’s target mean and the maximum target
value.

5.1.2 Adaptation of Bitset-based Data Structures

Vertical data representations such as bitsets, cf. (Klösgen 1995; Lemmerich
et al. 2010), are an alternative to the FP-tree data structures discussed above.
Here, the instances that correspond to a subgroup pattern are stored in words
of single bits. Each word contains as many bits as the dataset contains cases.
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The i-th bit in each word belongs to the i-th instance of the dataset. The bit
is set to 1 if this instance is covered by the respective subgroup description,
and is set to 0 otherwise.

For each selector in the search space one such bitset is generated. To create
bitsets that correspond to conjunctive patterns a logical AND operation is
performed on the bitsets of the involved selectors. The size of a subgroup can
then be derived by determining the cardinality of the bitset, that is, the number
of bits set to 1. For the efficient counting of bits in a bitset which are set to
true, specialized algorithms and even supporting hardware implementations
have been developed, see for example (El-Qawasmeh 2003).

For subgroup discovery with binary targets, one additional bitset reflects
the occurrence of the target concept. To adapt bitset-based, vertical data
structures to numerical target settings and to the introduced ordering-based
bounds, see Section 5.2.2, two adaptations to the data structure in the binary
setting are necessary. First, the instances of the total population are initially
sorted in descending order with respect to the target variable. The ordering
allows for an easy computation of ordering-based optimistic estimate bounds.
Second, the numerical target values are stored in an additional array in de-
scending order. This replaces the additional bitset used for the target concept
in the binary case. The array of target values and the bitsets for the selectors
correspond to each other via the position of the instances, i.e., the target value
of an instance, which is represented by the n-th bit of a bitset, is given at po-
sition n of the array of target values. The computation of (for example) the
mean value of a subgroup selA ∧ selB , requires one iteration over all bits that
are set to true in the bitset that corresponds to this subgroup. For each bit
that is set to true the respective target value of the array is added to a total
sum and the count of instances is incremented. These statistics are then used
to compute the mean value. Internally, each bitset is divided into words (e.g.,
of 32 or 64 bits), on which logical boolean operations (such as OR and AND)
can be applied very efficiently. The fast bounds presented in Section 5.2.3 can
be checked after each word. The construction of the bitsets and the target
value array is accomplished in one single pass through the database. The rest
of the algorithm can then operate exclusively on the generated data structure
representation.

Target:

selA:

selB:

selC :

100 75 60 53 40 35 25 12

1 1 0 1 0 0 0 1

0 0 1 1 0 0 1 0

0 0 0 1 0 0 0 0

Fig. 2 The adapted bitset-based representation for the example dataset from Table 1.

Example 2 As a simple example, the adapted bitset-based data structure for
the example dataset of Table 1 is shown in Figure 2.
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5.2 Optimistic Estimates

Given an interestingness measure and a subgroup, an optimistic estimate is
an upper bound for the interestingness score of all specializations of this sub-
group. It is used to speed up subgroup discovery algorithms: if the optimistic
estimate of a subgroup is lower than the interestingness value required in the
result set, then the specializations of this subgroup can be excluded from the
search. As shown for binary target concepts, e. g., (Wrobel 1997; Grosskreutz
et al. 2008) this can reduce the number of candidate subgroups in discov-
ery algorithms by orders of magnitude. Nonetheless, for subgroup discovery
with numerical target concepts optimistic estimate bounds have only received
limited attention in the literature so far.

This section thoroughly analyzes optimistic estimate pruning for subgroup
discovery with numerical target concepts for a large variety of interestingness
measures. After a short formal definition of optimistic estimates, we discuss
an approach for deriving optimistic estimates for convex interestingness mea-
sures that has been proposed by Morishita and Sese (2000). Extending this
direction of research, we introduce the formalism of ordering-based optimistic
estimate bounds as a tool that allows for deriving optimistic estimates. With
this formalism, optimistic estimates can be determined easily for a wider range
of interestingness measures, including previously unbounded measures. This
is demonstrated for several types of interestingness measures. Afterwards, we
present a novel technique that provides a series of increasingly tighter upper
bounds, which is computed by using only a part of the instances covered by
a subgroup. Additionally, optimistic estimates in closed-form expressions are
derived for the discussed interestingness measures that can be used also in
combination with FP-tree-based data representations.

5.2.1 Formal Definition

Given an interestingness measure q(P ), an optimistic estimate oeq is a function
2Σ → R, such that the interestingness score of each refinement, i.e., a subset of
the current subgroup, is lower or equal to the function value for this subgroup:

∀S ⊃ P : q(S) ≤ oeq(P )

For efficient mining, more precise bounds are beneficial, since they allow for
pruning larger parts of the search space. Tight optimistic estimates are “esti-
mates that are as conservative as possible with respect to the information at
hand” (Grosskreutz 2008). In our scenario, we call an optimistic estimate tight
if a subgroup contains a subset of instances that attains the interestingness
score given by the optimistic estimate.

∃r ⊆ sg(P ) : q(r) = oe(P )

Tight optimistic estimates are the most precise optimistic estimates that can
be derived from the distribution of the target concept in the pattern alone.
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5.2.2 Ordering-based Bounds

Morishita and Sese (2000) proposed a general scheme for determining opti-
mistic estimates for a specific class of interestingness measures, that is, mea-
sures that are convex in a certain space of dimensions defined by subgroup
statistics. In that approach, each subgroup is mapped to a so-called stamp
point in the respective space according to its respective statistics. Then, the
interestingness measure maps each of these points to a score. If this function
is convex, it can be shown that its maximum values within a convex polygon
are attained at the vertices of the polygon.

Regarding numerical target concepts, the authors investigate the inter-
class variance which is a convex function in the two-dimensional parameter
space (Σ T (c), ip) constructed using the sum of the target values Σ T (c) and
the number of subgroup instances ip as its dimensions. A bounding convex
polygon for all points in the space that correspond to the specializations of
a subgroup P can be constructed as follows: the instances of the dataset are
sorted according to their target values. Then, each split point in the target
values is considered. That is, for each different target value, the refinement
that contains all subgroup instances with target values higher than the split
point and the refinement of all instances lower than the split point is evalu-
ated. Since the stamp points of these refinements form a convex polygon that
contains all specializations of P , the maximum interestingness score of the
evaluated refinements is an optimistic estimate for P .

In this section, we show that a similar approach is more generally applicable
and can be used for many (but not all) interestingness measures including
measures that are not convex or are not even functions in the (Σ T (c), ip)
space. We start with a formal definition of the desired property.

Definition 1 Let sdescj (sascj ) be the set of instances that consists of the j
instances of sg(P ) with the highest (lowest) target values. Then, an interest-
ingness measure q is one-pass estimable by ordering, if it holds for any subgroup
P and any refinement r ⊆ sg(P ), that

q(r) ≤ max
(
q(sdesc1 ), . . . , q(sdesciP )

)
.

An interestingness measure q is two-pass estimable by ordering, if it holds for
any subgroup P and any refinement r ⊆ sg(P ) that

q(r) ≤ max
(
q(sdesc1 ), . . . , q(sdesciP ), q(sasc1 ), . . . , q(sasciP )

)
.

In other words, for measures that are one-pass estimable by ordering, the
interestingness score never decreases if one of the instances is exchanged with
another instance that has a greater target value. For such measures, only iP
candidates must be considered to find the best refinement of a subgroup P .

This motivates the following approach for subgroup discovery with numer-
ical target concepts using such interestingness measures: in a preprocessing
step, the instances in the database are sorted in descending order with respect
to their target values. Whenever a subgroup is evaluated, instances are added
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one by one to the subgroup, starting with the one with the highest target value.
After each addition, the interestingness of the instance set is evaluated. The
maximum of these interestingness values is used as a tight optimistic estimate.
In doing so, only a single pass over each subgroup is required. For measures
that are two-pass estimable by ordering, the best subset of instances is found
by traversing the current subgroup twice — once in descending and once in
ascending order of the target values. In both passes, instances are added one
by one to the current set of instances. The overall optimistic estimate is then
given by the maximum of all those scores. In doing so, 2 · iP subsets of the
instances of the current subgroup are considered as candidates to find its best
refinement. As shown in (Morishita and Sese 2000), measures that are convex
in the (Σ T (c), ip) space are two-pass estimable by ordering. The more general
property defined here is not only more generally applicable, but in the authors’
opinion also more convenient to prove.

First, we investigate the generic mean-based interestingness measure qamean.
While these measures are convex in the (Σ T (c), ip) space for the special case
of a = 1, they are not convex for the general case with arbitrary a, see the
appendix for a proof. Nonetheless, the generic mean-based interestingness mea-
sures are one-pass estimable by ordering.

Theorem 1 The interestingness measures qamean(P ) = iP
a · (μP − μ∅) are

one-pass estimable by ordering.

Proof We consider any refinement r ⊆ sg(P ) and compare it to the instance
set r∗ = sdesc|r| . This is the subset with the same number of covered instances

as r, but the highest target values contained in sg(P ). Then, |r∗| = |r| and
μr∗ ≥ μr. It follows that according to a mean-based interestingness measure
the refinement r∗ is at least as interesting as r: qamean(r) = |r|a · (μr − μ∅) ≤
|r∗|a · (μr∗ − μ∅) = qamean(r

∗) ��
Example 3 Consider the pattern PA for the selector selA in the toy dataset
of Table 1. Here, the population mean is μ∅ = 50 and the target values for the
subgroup instances c1, c2, c4, and c8 are 100, 75, 53, and 12. These instances
are sorted in descending order according to their target values (as already
done in this case) to generate the subsets sdescj . For example, the subset sdesc3

contains the 3 instances c1, c2, and c4. For each of the subsets sdesci , i = 1 . . . 4,
the score of the interestingness measure is computed. In this example, the
mean test measure q0.5mean(P ) =

√
iP · (μP − μ∅) is used. The resulting scores

are: q0.5mean(s
desc
1 ) =

√
1(100 − 50) = 50; q0.5mean(s

desc
2 ) =

√
2(87.5 − 50) ≈

53; q0.5mean(s
desc
3 ) =

√
3(76− 50) ≈ 45; q0.5mean(s

desc
3 ) =

√
4(60− 50) = 20. The

maximum of these interestingness scores, in this case q0.5mean(s
desc
2 ) ≈ 53, then

defines an optimistic estimate bound for the subgroup PA.

Theorem 2 The median-based interestingness measures qamed(P ) =
iP

a · (medP −med∅) are one-pass estimable by ordering.

Proof Analogously to Theorem 1, replacing the mean with the median. ��
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Note, that median-based measures cannot be considered as functions in the
(Σ T (c), ip) space at all.

Theorem 3 The rank-based interestingness measures qmw(P ) and −qauc(P )
are one-pass estimable by ordering.

Proof For any refinement r with |r| = j, the sum of the ranks gets maximized
(or minimized, depending on the ordering of the ranking) for sdescj , therefore

q(sdescj ) ≥ q(r) for these interestingness measures. ��
The symmetric mean-based measures are two-pass estimable by ordering.

This could also be shown by the convexity of these functions. However, proving
the property directly is much simpler and more concise.

Theorem 4 The symmetric mean-based measures qasym(P ) = ip
a · |μP − μ∅|

are two-pass estimable by ordering.

Proof Consider any refinement r ⊆ sg(P ). Without loss of generality, let j =
|r| be the number of instances covered by r. If μr ≥ μ∅ then qa(s

desc
j ) ≥

qa(r) in analogy to the proof of Theorem 1. Otherwise, μr < μ∅ and we can
conclude that qa(s

asc
j ) ≥ qa(r) since |sascj | = |r| and μsasc

i
≤ μr and therefore

|μsasc
j

− μ∅| ≥ |μr − μ∅|. ��

Theorem 5 The interestingness measure variance reduction qvr(P ) = iP
i∅−iP

·
(μP − μ∅)2 is two-pass estimable by ordering.

Proof For any refinement r ⊆ sg(P ) that covers j = |r| instances, it holds

that (μP −μ∅)2 ≤ max
(
(μsdescj

− μ∅)2, (μsasc
j

− μ∅)2
)
. Thus, we can conclude

that qvr(r) ≤ max
(
qvr(s

desc
j ), qvr(s

asc
j )

)
. ��

Theorem 6 The interestingness measure interclass variance qiv(P ) = iP ·
(μP − μ∅)2 + i¬P · (μ¬P − μ∅)2 is two-pass estimable by ordering.

Proof Shown in Morishita and Sese (2000) by the convexity of the measure.
��

Note that due to the symmetry of this measure between the subgroup and its
complement, further optimizations in the implementation are possible.

Although the estimability by ordering seems like an intuitive property for
interestingness measures, it does not hold for all measures:

Theorem 7 The generic variance interestingness measure qasd(P ) = iP
a ·

(σP − σ∅) is not one-pass or two-pass estimable by ordering.

Proof Assume that the standard deviation in a dataset is overall σ∅ = 1 and
the subgroup P4 covers 3 instances with target values T (c1) = 10, T (c2) = 0,
and T (c3) = −10. The subset r∗ with highest standard deviation and therefore
the highest score according to q0sd(P ) then consists of the two instances c1 and
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c3. The mean value for this subset is μr∗ = 0 and its variance is sd2r∗ =
(10−0)2+(0−(−10))2

2−1 = 200. The interestingness score for this subset is then

q0sd(r
∗) = 20 · 200− 1 = 199, which is greater than the interestingness score of

all subsets sdescj or sascj . ��

Theorem 8 The t-score interestingness measure qt(P ) =
√
iP ·(μP−μ∅)

σP
is not

one-pass or two-pass estimable by ordering.

Proof Consider a dataset with μ∅ = 0 and a subgroup P within the dataset
that contains four instances i1, . . . , i4 with the target values T (i1) = 20,
T (i2) = 10, T (i3) = 10 + ε with 0 < ε � 0.1, and T (i4) = 0. Then the
best refinement r∗ contains the instances i2 and i3. The interestingness of r∗

approaches infinity if ε approaches 0. Thus, qt(r
∗) > max(qt(s

desc
i ), qt(s

asc
i ))

for any i given a small ε. This contradicts the definition of one-pass and two-
pass estimability by ordering. ��

The novel algorithm NumBSD , which is introduced in Section 5.3, incor-
porates the presented ordering-based estimates in an efficient algorithm.

5.2.3 Fast Bounds using Limited Information

This section presents a novel method to speed up the computation process by
applying a sequence of less tight upper bounds, which are computed during
the evaluation of a single subgroup. The bounds are determined only using the
refinements sdescj of P , that is, the j instances in P with the highest target
values. For that, we focus exclusively on the generic mean-based interestingness
measures qamean.

The main idea is as follows: as in the previous section, instances are con-
sidered for subgroup evaluation one-by-one in descending order of the target
values. After each instance, the interestingness score for the set sdescj of the
already incorporated j instances is computed. By definition, the maximum of
all interestingness values q(sdescj ) is an optimistic estimate for interestingness
measures that are one-pass estimable by ordering. We now consider a certain
point in time during this pass over the dataset, at which the first n instances
have already been processed. At this point, it is guaranteed that the target
values for all subsequent instances in the subgroup are not greater than the tar-
get value of the current case. This fact is used to determine an upper bound
for all the interestingness values q(sdescj ) that have not yet been computed:
for all instance that have not been visited yet it is assumed that the target
value of these instances is equal to the target value of the instance, which was
added last. By assuming larger target values, the computed interestingness
value according to any generic mean-based interestingness measure qamean al-
ways increases, since the interestingness measure is one-pass estimable. Thus,
we compute the maximum value that is obtained by adding any number of
instances with the current target value. This forms an upper bound for the
remaining interestingness values q(sdescj ), j > n. If this less tight upper bound
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already indicates that none of the refinements of the current subgroup (nor
the current subgroup itself) will be added to the result set, then we can skip
the rest of the evaluation of this subgroup. More formally, we capture this
approach using the following theorem:

Theorem 9 For a subgroup P , let sdescn ⊆ sg(P ) be the n instances with the
highest target values. Furthermore, let σ =

∑
c∈sdescn

T (c) be the sum of target

values for sdescn and θ the lowest target value for the instances in sdescn , that is,
the nth-highest target value in sg(P ). Then, an optimistic estimate for generic
mean-based interestingness measures qamean(P ) = iP

a · (μP − μ∅) is given by:

oeafast(P ) = max
(
qamean(s

desc
1 ), . . . , qamean(s

desc
n ), oearemaining(P )

)
,

oearemaining(P, n) = iP
a ·

(
σ + (iP − n) · θ

iP
− μ∅

)
Proof The theorem is proven by showing that for each subset r ⊆ sg(P )
the interestingness score is not higher than the provided optimistic estimate:
qamean(P ) ≤ oeafast(P ). Since qamean(P ) is one-pass estimable, for each r the
interestingness is lower than the interestingness of the subset that has the same
number of instances but covers the instances with the highest target values:
qamean(r) ≤ qamean(s

desc
|r| ). Thus, the theorem holds for all r with |r| ≤ n.

For all refinements r with |r| > n, it remains to show that qamean(s
desc
|r| ) ≤

oeafast(P ). To do so, the interestingness of sdescj for any j = n + x with x >
0, x ≤ xmax, xmax = iP − n is estimated. Let ck be the instance with the
kth-highest target value. Then, it holds that:

qamean(s
desc
j )(P ) = ja ·

(∑j
k=1 T (ck)

j
− μ∅

)

= (n+ x)a ·
(∑n

k=1 T (ck) +
∑x

k=n+1 T (ck)

n+ x
− μ∅

)
≤ (n+ x)a ·

(
σ + x · θ
n+ x

− μ∅

)
:= fa(x)

This inequality is based on the fact that the target values are in descending
order and it therefore holds for k > n that T (ck) ≤ T (cn) = θ. The function
fa(x) describes an upper bound for the interestingness of the instance set sdescj

that consists of x more instances than the last evaluated instance set sdescn .
Unfortunately, the size j of the instance set with the maximum interestingness
and the respective x-value are not known. However, an upper bound for the
interestingness of q(sdescj )(P ) is given by the maximum value of fa(x). For
this family of functions, it can be shown by computing the first and second
derivative that the maximum value is reached either at x = 0 or at x =
xmax = iP − n. The formal proof is provided in the appendix of this paper.
This means that the maximum upper bound is reached, if either none or all
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remaining instances are added to the last evaluated instance with an assumed
target value of θ. For x = 0, the value of the function fa is equal to the

interestingness score of the instance set sdescn : fa(0) = (n+0)a ·
(

σ+0·θ
n+0 − μ∅

)
=

na · (μsdescn
− μP ) = qamean(s

desc
n ).

As a consequence it holds for all r ⊆ sg(P ) with |r| = j > n that

qamean(r) ≤ q(sdescj )

≤ fa(x)

≤ max (fa(0), fa(iP − n))

= max

(
qamean(s

desc
n ), iP

a · (σ + (iP − n) · θ
iP

− μ∅)
)

≤ oeafast(P )

This proves the theorem. ��

This theorem provides an upper bound for the interestingness score of all
specializations of a subgroup and also for the interestingness of the subgroup
itself. It is based only on a subset of the instances of a subgroup, that is, the
ones with the highest target values. Thus, the above estimates can be checked
during an iteration over the subgroup instances even before this iteration has
finished. If after only a few instances the computed upper bound indicates
that the subgroup itself and all its specializations do not have a sufficient
interestingness for the result set, then the evaluation of the subgroup can be
stopped. In doing so the majority of the subgroup instances does not need
to be considered, thus speeding up the subgroup discovery process. To the
authors’ knowledge, this is the first approach that uses optimistic estimates
that are based only on a part of a subgroup’s instances.

Example 4 Again, consider the subgroup PA for the selector selA in the toy
dataset of Table 1. As before, the population mean is μ∅ = 50 and the target
values for the subgroup instances c1, c2, c4, and c8 are 100, 75, 53, and 12. Ad-
ditionally, it is assumed that a score of at least 150 is currently required by
the result set using the impact interestingness measure q1mean. For the eval-
uation of PA, the instances are added one-by-one, starting with the instance
c1, since it has the highest target value. The interestingness value of a sub-
group that covers only this single instance is q(sdesc1 ) = 1 · (100 − 50) = 50.
To compute the optimistic estimate oeafast(PA) after the first instance, ad-
ditionally the value of oearemaining(PA) is required. This is determined as

iPA
a ·
(

σ+(iPA
−n)·θ

iP1
− μ∅

)
= 4 1 ·

(
100+(4−1)·100

4 − 50
)
= 200. Since 200 exceeds

the minimum required interestingness of 150, the evaluation of PA continues.
Next, the instance c2 is added, as it has the second highest target value. The

corresponding interestingness value is q(sdesc2 ) = 2 ·(87.5−50) = 75. Addition-
ally, the value of oearemaining(PA) is updated: oearemaining(PA)

= 41 ·
(

175+(4−2)·75
4 − 50

)
= 125. It follows that oeafast(PA) =
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max
(
q(sdesc1 ), q(sdesc2 ), oearemaining(P )

)
= max(50, 75, 125) = 125 is an opti-

mistic estimate for the subgroup PA: PA itself and all of its specializations are
guaranteed to have interestingness scores not higher than 125. As the mini-
mum required interestingness value of the result set is 150, the evaluation of
PA can stop without considering the remaining instances c4 and c8.

The formula for the bound described above requires the number of in-
stances covered by a subgroup. This number might not yet be known during
the evaluation iteration of the subgroup. However, a simple upper bound for
the maximum number of instances in a subgroup can be estimated, e.g., by
the known number of instances covered by a generalization of the subgroup.

5.2.4 Optimistic Estimates with Closed Form Expressions

In Section 5.2.2, we discussed a method to derive tight optimistic estimate
bounds. However, since these bounds require an ordering of the instances ac-
cording to the target concept, these bounds cannot be computed with FP-
tree-based data representations (Lemmerich et al. 2012). This section presents
optimistic estimate bounds that have a closed-form expression that uses only
a limited amount of statistics derived from the subgroup. In particular, the
bounds for a single subgroup are computable in a distributed single-pass algo-
rithm. Such statistics can also be determined efficiently in FP-tree-based data
structures, as shown in previous work (Lemmerich et al. 2012). The informa-
tion required by the different measures is described in Section 5.1.1.

Mean-based Interestingness Measures

Theorem 10 As described by Webb (2001), for any subgroup P a tight opti-
mistic estimate for the impact interestingness measure q1mean(P ) = iP · (μP −
μ∅) is given by: oe1mean(P ) =

∑
c∈P :T (c)>μ∅

(T (c)− μ∅).

Proof See Webb (2001) for a proof.

The tight optimistic estimate for the binary case presented in (Grosskreutz
et al. 2008), i.e., pP · (1− τ∅), can be seen as special case of this formula, using
T (c) = 1 for true target values and T (c) = 0 for false target values:

oe1mean(P ) =
∑

c∈sg(P ),T (c)>μ∅

(T (c)− μ∅) =
∑

c∈sg(P ),T (c)=1

(1− τ∅) = pP · (1− τ∅).

This optimistic estimate bound can easily be extended to the other generic
mean-based interestingness measures qamean:

Theorem 11 oe1mean(P ) is an optimistic estimate for any generic mean-based
interestingness measure qamean(P ) = iP

a · (μP − μ∅) with arbitrary a ∈ [0, 1].

Proof For any refinement r ⊆ sg(P ) with qamean(r) ≥ 0 and any a ∈ [0, 1], it
holds: qamean(r) = |r|a(μr − μ∅) ≤ |r|1(μr − μ∅) = q1mean(r) ≤ oe1mean(P ). ��



Fast Exhaustive Subgroup Discovery with Numerical Target Concepts 23

Theorem 12 An alternative optimistic estimate bound for qamean(P ) = iP
a ·

(μP −μ∅) with arbitrary a ∈ [0, 1] is given by: oeamean(P ) = p̃P
a · (Tmax

P −μ∅),
where p̃P = |{c ∈ sg(P )|T (c) > μ∅}| is the number of instances in the subgroup
with a target value higher than the population mean of the target and Tmax

P is
the maximum target value in the subgroup.

Proof It is proven first that no instance with a target value lower than μ∅
is part of the best refinement: consider any subset r ⊆ sg(P ). Then, let
r+ = {i ∈ r|T (c) > μ∅} be the set of all instances in r that have a target
value higher than the mean of the population and r− = {i ∈ r|T (c) ≤ μ∅}
the complement of this set, so r = r+ ∪ r−. Then, the interestingness score
according to any qamean is always equal or higher, if all instances of r− are
removed from the subgroup. So we need to show that:

qamean(r
+) ≥ qamean(r)

|r+|a(μr+ − μ∅) ≥ |r|a(μr − μ∅)

Similar to the proof of Theorem 10 this can be transformed as follows:

|r+|a
∑

i∈r+(T (c)− μ∅)
|r+| ≥ |r|a

∑
i∈r(T (c)− μ∅)

|r|
|r+|a

∑
i∈r+(T (c)− μ∅)

|r+| ≥ (|r+|+ |r−|)a
∑

i∈r+(T (c)− μ∅) +
∑

i∈r−(T (c)− μ∅)
|r+|+ |r−|

For shorter notation, we define S+ :=
∑

i∈r+(T (c)−μ∅) and S− :=
∑

i∈r−(T (c)−
μ∅). Due to the construction of r+ and r− it holds that S+ ≥ 0 ≥ S−. Thus:

|r+|a S+

|r+| ≥ (|r+|+ |r−|)a S+ + S−

|r+|+ |r−|
(|r+|+ |r−|)|r+|aS+ ≥ |r+|(|r+|+ |r−|)a(S+ + S−)

(|r+|+ |r−|)|r+|aS+ ≥ |r+|(|r+|+ |r−|)aS+ + |r+|(|r+|+ |r−|)aS−

Since S− ≤ 0, it holds that ((|r+|+ |r−|)aS−) ≤ 0. Thus, the above inequality
is satisfied if

(|r+|+ |r−|)|r+|aS+ ≥ |r+|(|r+|+ |r−|)aS+

(|r+|+ |r−|)1−aS+ ≥ |r+|1−aS+

(|r+|+ |r−|)1−a ≥ |r+|1−a

|r+|+ |r−| ≥ |r+|

This is always true. Therefore, the interestingness value of an instance set r
according to any qamean never decreases if all instances with a target value less
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than the mean target in the overall population are removed. Consequently,
there is always a best refinement of a subgroup that does not contain any
instance with target value equal or less than the population mean. The largest
possible number of instances of such a refinement is given by p̃P . Trivially, the
mean value of this refinement never exceeds the largest value of the original
subgroup. Thus p̃P · (Tmax

P − μ∅) is an optimistic estimate for P . ��

Example 5 Once more, we consider the subgroup PA for the selector selA in
the toy dataset of Table 1. The population mean in this dataset is μ∅ = 50 and
the target values for the subgroup instances c1, c2, c4, and c8 are 100, 75, 53,
and 12. Then, the optimistic estimate oe1mean sums over all instances with a
target value greater than 50, that is c1, c2 and c4: oe

1
mean(PA) = (100− 50) +

(75 − 50) + (53 − 50) = 78. By contrast, the optimistic estimate oeamean is
computed as oeamean(PA) = p̃PA

a · (Tmax
PA

− μ∅) = 3a · (100 − 50) = 3a · 50,
since three target values are above the population mean. Depending on the
generality parameter a of the applied interestingness measures this results
in oe1mean(PA) = 150 for a = 1, in oe0.5mean(PA) ≈ 86.6 for a = 0.5, or in
oe1mean(PA) = 50 for a = 0. Comparing these bounds, it is evident that no
bound is superior in every case: for a high value of a such as a = 1, oe1mean(P )
is tighter than oeamean(PA), for a low value of a such as a = 0, oeamean(PA) is
tighter.

As it is evident from the example, both optimistic estimates oe1mean(P ) and
oeamean(P ) are not tight for arbitrary parameters a: for the subgroup P1 the
best refinement r∗ using the mean test measure q0.5mean contains the first two
instances and has the interestingness score

√
2 · 37.5 ≈ 53, which is lower than

both estimates. Both estimates oe1mean(P ) and oeamean(P ) are not exclusive,
but can easily be combined: one can compute the values for both bounds and
use the tighter one, i.e., the one with the smaller value, to apply optimistic
estimate pruning.

Symmetric Mean-based Measures It is easy to extend the optimistic estimates
presented above to symmetric variants:

Theorem 13 An optimistic estimate for the generic symmetric mean-based
functions qasym(P ) = iP

a · |μP − μ∅| is given by:

oeasym(P ) = max
(∑

c∈sg(P ),T (c)<μ∅
(μ∅ − T (c)) ,

∑
c∈sg(P ),T (c)>μ∅

(T (c)− μ∅)
)
.

This bound is tight for q1sym. Another bound is given by:

oeasym(P ) = max
(
p̃P

a · (Tmax
P − μ∅) , ñP

a · (μ∅ − Tmin
P

))
,

where Tmax
P , Tmin

P are the maximum and minimum target values in the sub-
group P , and p̃P = |{c ∈ sg(P )|T (c) > μ∅}|, ñP = |{c ∈ sg(P )|T (c) < μ∅}|
are the numbers of instances in the subgroup with a target value greater (re-
spectively smaller) than the population mean of target values.

Proof This follows straightforward from Theorems 11 and 12 since for the in-
terestingness value of any subset r ⊆ sg(P ) it holds that qasym(r) = |r|a|μr −
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μ∅| = max (|r|a(μr − μ∅),−(|r|a(μr − μ∅)). So in essence, one can just com-
pute an upper bound for qamean(r) and −qamean(r) separately and use the max-
imum of both bounds as a bound for qasym. ��
Theorem 14 For the variance reduction qvr(P ) = iP

i∅−iP
· (μP − μ∅)2, two

optimistic estimates are given by:

oevr(P ) = max

(
iP

i∅ − iP
· (Tmax

P − μ∅)2,
iP

i∅ − iP
· (Tmin

P − μ∅)2
)
,

oevr(P ) = max

⎛
⎜⎜⎜⎜⎜⎝

( ∑
c∈sg(P ), T (c)>μ∅

(T (c)− μ∅)

)2

i∅ − 1
,

( ∑
c∈sg(P ), T (c)<μ∅

(T (c)− μ∅)

)2

i∅ − 1

⎞
⎟⎟⎟⎟⎟⎠ ,

where Tmax
P (Tmin

P ) is the maximum (minimum) target value in the sub-
group P .

Proof The proof of the first estimate is straightforward: The first factor is
strictly increasing with iP and thus reaches its maximum for all specializations
of P at iP , since all specializations cover at most as many instances as P .
The maximum difference in the second factor occurs if the mean value in
the specialization is either maximal or minimal. Trivially, the maximum or
minimum for each specialization is in the interval [Tmin

P , Tmax
P ].

Regarding the second estimate, it holds for any subset r ⊆ sg(P ) with posi-

tive interestingness score that: qvr(r) =
|r|

i∅−|r| (μr − μ∅)
2
= |r|2

(i∅−|r|)|r| (μr − μ∅)
2

= |r|2
(i∅−|r|)|r|

(∑
i∈r(T (c)−μ∅)

|r|
)2

= 1
(i∅−|r|)|r|

(∑
i∈r(T (c)− μ∅)

)2
(i∅ − |r|)|r| gets minimized for |r| = 1. The squared sum is maximized

if the sum is either maximized or minimized. That is accomplished by either
including only positive or only negative summands, that is, only instances with
a target value higher than the population mean target value or with a lower
target value, respectively. This leads to the presented optimistic estimate. ��
Example 6 As in the previous examples, PA has four instances with target
values T (c1) = 100, T (c2) = 75, T (c4) = 53, and T (c8) = 12 in a dataset with
an overall target mean of μ∅ = 50. Additionally, it is assumed that the overall
population consists of 10 instances. Then, the upper bounds according to the
above theorem are given by:

oevr(PA) = max
(

4
8−4 · (100− 50)2, 4

8−4 · (12− 50)2
)

= 502 = 2500, and

oevr(PA) = max
(
1
7 · ((100− 50)2 + (75− 50)2 + (53− 50)2), 1

7 (12− 50)2
)
=

1
7 · (502 + 252 + 32) ≈ 447.7. In this case, the second bound is substantially
tighter (lower) and is therefore used for pruning.

Median-based Measures For median-based interestingness measures, the prac-
tical use of a direct estimate that can be computed in a parallel single pass
algorithm is doubtful since the median itself cannot be computed in such a
way. Nonetheless, a very simple, but loose estimate can be specified:
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Theorem 15 An optimistic estimate for the generic median-based measure
qamed(P ) = iP

a · (medP −med∅) is given by: oeamed(P ) = iP
a · (Tmax

P −med∅).

Proof The maximum median in any refinement cannot exceed the maximum
occurring value in the subgroup, and the size of a refinement cannot exceed
the size of the subgroup. ��
In contrast to the generic mean-based functions, the best refinement for median-
based function can contain values with target values lower than the population
mean as demonstrated in the following example.

Example 7 Consider a subgroup P2 with target values {3, 2, 2, 0,−1,−1} in a
dataset with an overall median target value of 1. Then, for the interestingness
measure q1med the best subset of instances contains the first 5 instances and
has an interestingness score of 5.

(Full) Distribution-based Measures

Theorem 16 An optimistic estimate for the Kolmogorov-Smirnov interest-

ingness measure qks(P ) =
√

iP ·i¬P

i∅
Δ(P,¬P ) for any subgroup P with iP < i∅

2

is given by oeks(P ) =
√

iP (i∅−iP )
i∅

.

Proof The interestingness value of qks is given by
√

iP ·i¬P

i∅
·Δ(P,¬P ). The test

statistic Δ(P,¬P ) is computed as the supremum of differences in the empirical
distribution functions of P and its complement. Since the range of the empiri-
cal distribution function is [0, 1], the supremum of the difference Δ(P,¬P ) ≤ 1.

For a fixed population, the left term
√

iP ·i¬P

i∅
is only dependent on the number

of instances covered by the subgroup. We determine the maximum of this term
for any refinement r of sg(P ). If iP ≤ i∅

2 the term is monotone. In particular,

|r|(i∅ − |r|) < iP (i∅ − iP ). Otherwise a maximum is reached at iP = i∅
2 . How-

ever, this is an overall bound for the interestingness measure and is therefore
not useful for pruning. ��

Given a minimum interestingness value required by the result set, the op-
timistic estimate derived from this theorem implies a minimum number of in-
stances that must (at least) be covered by any subgroup that has a sufficiently
high interestingness score. In contrast to the other introduced optimistic esti-
mates, this bound does not take the distribution of the target variable in the
subgroup into account. Therefore, it could be expected that this bound is less
tight than other optimistic estimates.

Example 8 Consider again the subgroup PA that covers 4 instances of the 8
instances in the overall dataset. The optimistic estimate for the Kolmogorov-

Smirnov interestingness measure is then given by:
√

4·(8−4)
8 =

√
2. The target

values of the instances covered by the subgroup do not influence the optimistic
estimate.
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Rank-based Measures

Theorem 17 Two optimistic estimate bounds for the Mann-Whitney inter-

estingness measure qmw′(P ) =
√

iP
i¬P

· (RP

iP
− i∅+1

2 ) are given by:

oe1mw′(P ) =
∑

c∈sg(P ),ρ(c)>
i∅+1

2

(
ρ(c)− i∅ + 1

2

)

oemw′(P ) =
√

i+P (ρ
max
P − i∅ + 1

2
),

where ρ(c) is the rank of instance c in order of the target values, ρmax
P is the

maximum rank in the subgroup P and i+P = |{c ∈ sg(P ) | ρ(c) > i∅+1
2 }| is the

number of instances in the subgroup with a rank higher than the population’s
rank mean.

Proof It holds for all refinements r with a positive interestingness value, that

qmw′(P ) =

√
iP
i¬P

(
R
iP

− i∅ + 1

2
) ≤ √

iP (
R
iP

− i∅ + 1

2
).

Since R
iP

is the mean of the ranks within the subgroup and i∅+1
2 is the mean of

the ranks in the overall population, the right part of this equation is equal to
the mean test function q0.5mean if the target values are given by the ranks. Thus,
we can transfer the upper bounds from Theorem 11. However, these bounds
are substantially less tight for this interestingness measure due to the initial
estimation. ��
Example 9 Consider again the subgroup PA in a dataset of 8 instances and
assume that the 4 instances covered by the subgroup have the ranks (in as-
cending order of target values) ρ(c1) = 8, ρ(c2) = 7, ρ(c4) = 5 and ρ(c8) = 1.
That means, for example, that the instance c2 has the seventh lowest target
value in the dataset. Then, the optimistic estimates according to the above
theorem are given by:

oe1mw′(PA) = (8− 9

2
) + (7− 9

2
) + (5− 9

2
) = 6.5

oemw′(PA) =
√
3 · (8− 9

2
) =

√
3 · 3.5

The second bound is tighter in this example and is therefore used as the overall
bound for optimistic estimate pruning.

Theorem 18 If there are no ties in the ranks, then an optimistic estimate for

the area-under-the-curve interestingness measure qauc(P ) =
R¬P − i¬P ·(i¬P+1)

2

iP · i¬P

is given by: oeauc(P ) =
i∅−ρmin

P

i∅−1 , where ρmin
P is the minimum rank for an in-

stance in P .
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Proof Due to the construction of the area-under-the-curve the best subset of
sg(P ) contains only one instance, which is the one with the lowest rank ρmin.

The interestingness of this refinement S is qauc(S) =
R¬S − i¬S(i¬S+1)

2

iSi¬S
=

(i∅+1)i∅
2 − ρmin

P − i∅(i∅−1)
2

1 · (i∅ − 1)
=

i∅ − ρmin
P

i∅ − 1
��

Note that these bounds in closed form for the measure qauc are not guaranteed
to return optimal results in case of ties.

Example 10 Consider again the subgroup PA that covers instances with fol-
lowing ranks with respect to the target concept. ρ(c1) = 8, ρ(c2) = 7, ρ(c4) = 5
and ρ(c8) = 1 in a dataset that consists of 8 instances. Then, the above the-
orem provides the optimistic estimate: oeauc(P ) = 8−1

7 = 1. Since this is an
overall bound for the interestingness measure, pruning cannot be applied here.

5.3 Algorithms for Subgroup Discovery with Numerical Targets

Below, we present two novel algorithms for efficient subgroup discovery that
integrate the presented approaches regarding data structures and optimistic
estimate bounds. Both algorithms employ the same enumeration strategy, that
is, depth-first-search with one level look-ahead, but use different data struc-
tures and – as a consequence – different optimistic estimate bounds.

5.3.1 The SD-Map* Algorithm

The SD-Map* algorithm improves its predecessor SD-Map (Atzmueller and
Puppe 2006) in several directions: while SD-Map focuses exclusively on bi-
nary targets, SD-Map* extends the employed FP-tree data structure in order
to determine statistics of the numerical target concept as described in Sec-
tion 5.1.1. The statistics contained in the nodes of the FP-trees are used to
compute not only the interestingness of subgroups, but also their optimistic
estimates. In that direction, SD-Map* allows the incorporation of pruning
based on the bounds in closed-form expressions, which have been presented
in Section 5.2.4. Ordering-based bounds cannot be applied since the ordering
information is not captured by FP-tree representations, see (Lemmerich et al.
2012) for a formal proof.

Pruning is applied in two different forms within the algorithm: first, se-
lector pruning is performed in the recursive step, when a conditional FP-tree
is built. A (conditioned) branch is omitted if the optimistic estimate for the
conditioning selector is below the threshold given by the k best subgroup qual-
ities. Second, header pruning is used, when a (conditional) frequent pattern
tree is constructed. Here, all the nodes with an optimistic estimate below the
mentioned interestingness threshold can be omitted.

To maximize the efficiency of pruning, the search strategy was also slightly
modified: instead of the basic depth-first-search used in the SD-Map algorithm,
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SD-Map* applies a modified depth-first strategy with look-ahead, similar to
the DpSubgroup algorithm in (Grosskreutz et al. 2008). Reordering of the
search space is performed by sorting of the header nodes: during the iteration
over the candidate selectors for the recursive call, the selectors are reordered
according to their optimistic estimate value. In doing so, more promising selec-
tors are evaluated first. In a top-k approach, this helps to include high scoring
subgroups early into the result set in order to provide higher interestingness
thresholds for more efficient pruning.

5.3.2 The NumBSD Algorithm

Although FP-tree-based approaches have shown excellent performance, they
are not applicable to all interestingness measures. Additionally, they cannot
make use of the tighter ordering-based pruning schemes. Furthermore, the
construction of an initial FP-tree can require significant overhead, particu-
larly if the search is limited to small search depths. Therefore, we present the
exhaustive subgroup discovery algorithm NumBSD as an alternative: it uses
an efficient vertical, bitset-based data structure as described in the previous
section. As search strategy, NumBSD employs a depth-first-search approach
with one level look-ahead, similar to the SD-Map* algorithm. The algorithm
applies efficient pruning strategies, including ordering-based bounds and fast
bounds, see Sections 5.2.2 and 5.2.3.

The algorithm NumBSD and its sub-procedures are shown in Algorithm 1.
It first initializes the vertical data structures and then calls the main recursive
function recurse. This function consists of two parts. In the first part (lines
2-9) all direct specializations, that is, all subgroups created by adding a single
selector to the description of the current subgroup, are considered. For these
specializations the corresponding bitsets, the interestingness value and the
optimistic estimates are computed. This is achieved efficiently in a single run
through the subgroup by the method computeRefinement described below.
If the interestingness value of a specialization is sufficiently high, then it is
added to the result set. This potentially replaces a subgroup with a lower
interestingness score and increases the minimum required interestingness score
of the result set. Only if the optimistic estimate for a specialization exceeds
the minimum interestingness value of the result set, then this refinement is
also considered for the recursive search. In the second part of the function
(lines 10-13), it calls itself recursively for these candidate subgroups.

For the performance of the algorithm, an efficient computation of the bitset,
the interestingness score and the optimistic estimate of a refinement is essen-
tial. This is performed in the function computeRefinement of Algorithm 1.
First, an upper bound for the maximum number of instances of a refinement
is given by the number of instances for the current subgroup and for the ad-
ditional selector. Each bitset technically consists of words of 32 (respectively
64) bits. The bitset representing the instances of the specialization spec is
computed word by word by a logical AND between the bitset of the current
subgroup and the bitset of the new selector. Then, for each bit in this word
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Algorithm 1 NumBSD algorithm
1: function NumBSD(maxDepth)
2: Sort(allInstances) // sort descendingly w.r.t. target values
3: TargetVal ← array of target values
4: for all sel in allSelectors do
5: bitsets(sel) ← createBitset(sel)

6: allT rue ← new bitset, all bits set to 1
7: recurse(allTrue, ∅, allSelectors, maxDepth)

1: function recurse(currentBitset, currentDescription, remainingSels, maxDepth)
2: nextSelectors ← ∅
3: for all sel in remainingSels do
4: nextBitSet ← computeRefinement(currentSG,sel, result.minQ)
5: if nextBitSet.estimate > result .minQ then
6: nextBitsets(sel) ← nextBitset
7: nextSelectors ← nextSelectors ∪ sel
8: if nextBitSet .quality > result .minQ then
9: result .add (currentDescription ∪ sel)

10: if prefix.size < maxDepth then
11: Sort(nextSelectors) // w.r.t. optimistic estimates
12: for all sel in nextSelectors do
13: recurse(nextBitsets(sel), prefix ∪ sel, nextSelectors \ sel, maxDepth)

1: function computeRefinement(currentBitset, sel, minQualThreshold)
2: maxN ← Math.min(currentBitset, bitsets(sel).cardinality)
3: n ← 0
4: sum ← 0
5: maxEstimate ← 0;
6: refinement ← new bitset ()
7: for all i = 0 to countWords (currentBitset) do
8: refinement.word[i] ← currentBitset.word[i] AND bitsets(sel).word[i]
9: for all each bit b in refinement.bitset.word[i], that is set to true do
10: n ← n+1
11: currentValue ← TargetVal [global position of b]
12: sum ← sum + currentValue
13: maxEstimate = max (maxEstimate, computeQuality (n, sum))

14: sumEstimateAtEnd = sum + currentValue · (maxN - n);
15: maxOEatEnd = computeQuality (maxN, sumEstimateAtEnd)
16: if (maxEstimate < minQ ∧ maxOEatEnd < minQ) then
17: refinement.optEstimate = max (maxEstimate, maxOEatEnd)
18: return refinement % exploit fast pruning bounds

19: return refinement

that is set to true (each instance of the refinement) the count and sum of tar-
get values are adjusted. Based on these values the interestingness score of the
current part of the refinement is computed. When considering the i-th bit of
the refinement, the interestingness score is equal to q(sdesci ) for the refinement
spec in the terminology of Theorem 1. Thus the maximum of the interesting-
ness scores computed in this way determines a tight optimistic estimate for
the subgroup under evaluation. Since sdesciP

= sg(P ), the last of these scores is
equal to the interestingness of the overall subgroup.

As a further improvement, the fast optimistic estimates, cf. Theorem 9 are
checked after each word of the bitset. If neither this bound nor any of the al-
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Table 2 A summary of interestingness measure with respect to properties regarding efficient
computation.
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Impact q1mean(P ) iP (μP − μ∅) yes one-pass yes

Mean-based qamean(P ) iP
a(μP − μ∅) yes one-pass yes

z-score qz(P )
√
iP

(μP−μ∅)
σ0

yes one-pass yes

Variance-based qaσ(P ) iP
a(σP − σ∅) no no yes

t-score qt(P )
√
iP

(μP−μ∅)
σP

no no yes

Sym. mean-based qasym(P ) iP
a|μP − μ∅| yes two-pass yes

Variance reduction qvr(P ) iP
(i∅−iP )

(μP − μ∅)2 yes two-pass yes

Generic median qamed(P ) iP
a(meds −med0) (yes)1 one-pass no

Kolmogorov-Smirnov qks(P )
√

iP ·i¬P
i∅

ΔP,¬P yes no2 no

Mann-Whitney qmw(P )
√

iP
i¬P

( R
iP

− i∅
2
) yes one-pass yes

AUC qauc(P )
R̄− i¬P i¬P +1

2
iP i¬P

yes one-pass yes

ready computed values q(sdesci ) are sufficiently high for the result set, then the
evaluation of the current subgroup can stop. Since the subgroup itself and all
of its generalization will not contribute to the result set, the exact values of the
interestingness and the optimistic estimate are not of interest anymore. Thus,
parts of this computation can be safely omitted using the fast bounds intro-
duced previously. In the worst case, the method computeRefinement requires
one complete pass through the instances of the current subgroup.

This paper focuses on bitsets as vertical data representations. However,
a very similar algorithm could be obtained by employing other vertical data
structures such as TID-lists, see Zaki (2000). These could be expected to per-
form faster if the data is sparse, i.e., if selectors cover only small fractions of
the dataset.

5.4 Summary: Interestingness Measures and their Computational Properties

In the previous sections, we showed that efficiency optimizations for subgroup
discovery with numerical target concepts do strongly depend on the applied
interestingness measures. Some interestingness measures, such as the t-score,
can be determined by SD-Map* , taking full advantage of the more sophisti-
cated, compressed FP-tree data structure. Other interestingness measures in

1 The generic measure itself cannot be computed by SD-Map* .
2 Not yet determined.
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turn, cannot be determined by SD-Map* at all, e.g., median-based measures.
Additionally, ordering-based optimistic estimate bounds could be derived for
a large variety of interestingness measures, but for a few exceptions this was
not possible, e.g., for the t-score.

Table 2 summarizes interestingness measures with respect to their com-
putational properties. In particular, the table shows for each interestingness
measure if there is an optimistic estimate in closed form presented in this work
that can be computed using FP-trees, if it is estimable by ordering, and if the
measure itself is computable by the SD-Map* algorithm.

6 Evaluation

The benefits of the proposed improvements were evaluated in a wide range of
experiments. The algorithms were implemented in the open source subgroup
discovery environment VIKAMINE 3, see (Atzmueller and Lemmerich 2012).
Runtime experiments were performed on a standard office PC with a 2.2 GHz
CPU and 2 GB RAM. Experiments that count the number of evaluated can-
didates were executed on additional machines since results are independent of
the hardware performance.

The experiments used publicly available datasets from the UCI (Lichman
2013) and KEEL (Alcala-Fernandez et al. 2011) data repositories. For nominal
attributes, attribute-value pairs were used as selectors. Numerical attributes
in the search space were discretized into ten intervals by equal-frequency dis-
cretization. Runtimes are reported for the full algorithms including the ini-
tial sorting step (if required), but excluding loading and pre-processing such
as determining the selector set for the search. No overlapping intervals were
generated. Due to their popularity, a focus of the experiments is on generic
mean-based interestingness measures, cf. (Klösgen 1996; Wrobel 1997; Webb
2001; Grosskreutz 2008; Atzmueller and Lemmerich 2009; Lemmerich and Atz-
mueller 2012; Atzmueller and Lemmerich 2013).

The evaluation section is structured as follows: we first investigate the
influences of the adapted data structures and optimistic estimate bounds sep-
arately, before the runtimes of the full-featured algorithms are compared and
specific findings on SD-Map* and NumBSD are discussed. Then, the influence
of the result set size and the impact of the bounds using limited information,
see Section 5.2.3, are evaluated. Finally, we summarize the experimental re-
sults, and discuss implications for the application of the proposed algorithms.

6.1 Effects of Optimistic Estimates

The first set of experiments evaluated the use of the introduced optimistic es-
timate bounds. In that direction, a subgroup discovery algorithm with depth-
first-search with one level look-ahead and no reordering of the search space,

3 Available at www.vikamine.org
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cf. Section 5.3.1, was run. Several interestingness measures were tested with
a fixed maximum search depth, that is, a maximum numbers of selectors in a
description, of d = 5 (d = 4 for two datasets due to long runtimes). For the op-
timistic estimate pruning, a top-1 approach was applied, that is, only the one
subgroup with the top score was sought. Each run was executed three times
in different variations: with no optimistic estimate pruning, with optimistic
estimate pruning using the bounds in closed form and with ordering-based
optimistic estimate pruning. For each variation, the number of evaluated can-
didates in recursive calls, that is, after the initial evaluation of the basic selec-
tors (not including these), was counted. The respective results are summarized
in Table 3, and Table 4.

It is evident that the number of required evaluations is reduced substan-
tially by applying the presented optimistic estimate bounds. Regarding dif-
ferent mean-based interestingness measures, optimistic estimate pruning has
generally less impact if the parameter a in the interestingness measures is
lower (e.g., a = 0.5 and a = 0.1), that is, if deviations of the target concept
are more important (see Table 3). This can be explained by the fact that even
small subgroups can achieve high scores in this scenario and thus the anti-
monotonicity of the subgroup size is more difficult to exploit in these cases.
An exception is the extreme parameter a = 0, which is equivalent to the aver-
age interestingness measure: since the best refinement of a subgroup is already
determined by the single instance with the highest target value, all subgroups
that do not cover one of the instances with high target values can immediately
be pruned by applying the novel estimates of Theorem 12.

For the extreme settings a = 1 and a = 0, the bounds in closed form
are tight, that is, they allow for the same amount of pruning as ordering-
based bounds. For the intermediate settings a = 0.5 and a = 0.1, bounds
in closed forms are considerably less precise. Therefore, often substantially
more candidates must be evaluated in comparison to ordering-based bounds.
However, the optimistic estimate bounds in closed form still reduce the number
of required evaluations by orders of magnitude in comparison to the unpruned
search space. Note that ordering-based bounds cannot be combined with all
data structures and come at higher computational costs.

Also for other interestingness measures, see Table 4, applying optimistic
estimate bounds can lead to a significant reduction of necessary subgroup eval-
uations. However, the amount of that reduction is of course heavily influenced
by the utilized interestingness measure. For the symmetric mean-based mea-
sure and the variance reduction, the number of evaluated candidates is often
decreased to less than 1000, if ordering-based optimistic estimates are applied.
The optimistic estimates in closed form are less tight, but still reduce the num-
ber of required evaluations by an order of magnitude or more. Ordering-based
bounds are also very effective for the other investigated interestingness mea-
sures, that is, the median-based measure q0.5med(P ), the Mann-Whitney measure
qmw(P ), and the area-under-the-curve qauc(P ). Regarding optimistic estimates
in closed form, even relatively simple-to-derive bounds can reduce the number
of required candidate evaluations substantially, as indicated by the results for
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the Kolmogorov-Smirnov interestingness measure. The least effective bounds
were by far the optimistic estimates for the Mann-Whitney, which only was
able to prune about 40% of the candidates on average. Overall, the reduction of
required candidate evaluations was substantial for almost all evaluated inter-
estingness measures and datasets. The remainder of the evaluation will focus
on the mean-based interestingness measures with different parameterizations.

6.2 Influences of Data Structures

In the next series of experiments, the effects of different data structures were
investigated. Regarding that aspect, the runtimes of the presented algorithms
without applying optimistic estimate pruning were measured. This was per-
formed for the NumBSD algorithm, which is based on a bitset-based represen-
tation, as well as for the SD-Map* algorithm, which is based on FP-trees. For
comparison, the task was also solved by a simple depth-first-search without
any specialized data structure (repeated checking of the selection expressions
in memory). Since no optimistic estimate bounds are exploited, the runtime
was (almost) independent from the applied interestingness measure and size
of the result set k, cf. also (Lemmerich et al. 2012). The experiments were per-
formed with different maximum search depths d = 2, . . . , 6. Table 5 displays
representative results for the measure q0.5mean and a result set size of k = 1.

The results show that both introduced data structures – the bitset-based
structure as well as the FP-tree-based representation – substantially outper-
form the simple approach. A direct comparison between the two approaches
is more difficult: for lower search depths (d = 2, 3, 4), bitset-based structures
usually enable faster runtimes than FP-trees. The differences reach an order of
magnitude for some datasets, e.g., for the communities and spambase datasets.
For higher search depths (d = 5, 6), the results are more ambiguous: for some
datasets the bitsets perform better, for some they perform worse than FP-
trees. In particular, for datasets with a high instance count, the FP-tree-based
approach is able to finish the tasks fast. In the census-kdd dataset, which is
the largest tested dataset (in terms of instances), FP-trees perform better than
bitsets already at a search depth of 4. This can be explained by the fact that
the FP-trees achieve a better compression of the data in datasets with a high
instance count. Additionally, for higher search depths, subgroups cover only
small parts of a dataset leading to sparsely populated bitsets. In these cases,
using TID-lists (cf. Zaki (2000)) instead of bitsets might lead to improved
runtimes. This is to be explored in future work.

In summary, FP-trees are the data structure of choice if the dataset con-
tains many instances, and if the maximum allowed number of selectors in a
description is large. By contrast, bitsets are preferred if the search is restricted
to low search depths, or if the instance count is comparatively low. For some in-
terestingness measure, it is not possible to derive optimistic estimate bounds,
e.g., for generic variance-based measures or the t-score. Therefore, the run-
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Table 6 Comparison of the full algorithms: the table shows the runtimes in seconds for
NumBSD (BSD) and for SD-Map* (SDM) with all pruning options enabled for different
interestingness measures. The search was limited to a maximum search depth of d = 5. The
first two columns show results of the algorithms without optimistic estimate pruning for
comparison.

Dataset No Pruning q1mean q0.5mean q0.1mean q0mean
BSD SDM BSD SDM BSD SDM BSD SDM BSD SDM

adults 103.8 42.5 0.8 2.3 11.1 6.1 19.7 14.1 1.3 2.5
ailerons >4 h 10554.0 6.0 1.7 45.3 17.7 95.5 3345.9 0.6 147.0
autos 20.6 36.3 < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.3 < 0.1 < 0.1
breast-w 0.3 0.4 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
census-kdd >4 h >4 h 53.3 52.6 5184.3 1110.2 > 4 h 5795.2 35.0 52.1
communities >4 h >4 h 0.1 0.9 0.1 4.3 2.0 108.0 0.3 0.9
concrete data 0.4 0.5 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
credit-a 4.1 6.6 < 0.1 < 0.1 0.1 0.2 < 0.1 0.2 < 0.1 < 0.1
credit-g 18.8 40.8 < 0.1 0.1 0.2 0.9 0.1 0.9 < 0.1 0.1
diabetes 0.5 0.5 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
elevators 672.1 309.0 0.2 0.9 1.0 2.4 1.9 4.1 0.3 0.9
flare 0.3 0.4 < 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1 < 0.1
forestfires 2.0 2.9 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
glass 0.2 0.3 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
heart-c 1.3 1.8 < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
house 1149.7 464.3 0.2 1.5 0.8 6.1 1.5 7.3 0.6 1.3
housing 2.5 3.5 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
letter 436.6 275.2 0.1 1.3 0.2 3.9 0.7 10.5 0.5 1.5
mv 76.0 27.5 1.0 1.7 1.9 1.4 0.9 2.8 0.9 1.6
pole 430.7 447.8 26.8 1.6 263.0 38.6 186.8 81.0 0.3 2.5
sonar 2971.2 9084.8 < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.4 < 0.1 < 0.1
spambase 4626.0 >4 h 692.9 609.5 7657.5 4269.1 3319.2 1900.3 0.2 151.2
ticdata >4 h >4 h 820.4 56.9 12686.5 >4 h 5588.2 >4 h 0.1 1.0
yeast 0.5 0.7 < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1

times of the algorithms without optimistic estimate pruning shown in Table 5
reflect the actual algorithm runtimes for these measures.

6.3 Runtimes of the Full Algorithms

Another series of experiments compared the runtimes of the full algorithms.
Exemplary results of these evaluations are shown in Table 6 and Table 7.
Experiments depicted in Table 6 utilized different interestingness measures
and a fixed search depth of d = 5 in a top-1 search . By contrast, experiments
shown in Table 7 employed the fixed interestingness measure q0.5mean, but a
variable search depth.

The results in Table 6 indicate that for a search depth of d = 5, the ap-
plication of optimistic estimate bounds leads to a substantial reduction of
runtimes in comparison to the variations without optimistic estimate pruning
in almost all cases, cf. Table 5. The largest improvements can be observed
for the interestingness measures q1mean and q0mean. This corresponds the re-
spective reduction in necessary candidate evaluations, see Table 3. Although
the applied pruning bounds are in theory tighter for the NumBSD algorithm,
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Table 7 Comparison of the full algorithms: the table shows the runtimes in seconds of
NumBSD (BSD), and SD-Map* (SDM) with all pruning options enabled for different max-
imum search depths d. As interestingness measure, the mean test q0.5mean was used.

Dataset d = 2 d = 3 d = 4 d = 5 d = 6
BSD SDM BSD SDM BSD SDM BSD SDM BSD SDM

adults 2.5 3.7 5.0 4.3 8.4 5.1 11.1 6.1 12.5 7.0
ailerons 3.1 4.6 7.9 5.8 20.9 9.1 45.3 17.7 78.4 41.3
autos < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <0.1 < 0.1 0.1 < 0.1 0.1
breast-w < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
census-kdd 92.2 96.6 353.6 199.1 1490.7 462.8 5184.3 1110.2 > 4 h 3469.5
communities 0.2 4.0 0.2 4.0 0.2 4.1 0.1 4.3 0.2 4.4
concrete data < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
credit-a 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2
credit-g 0.1 0.3 0.1 0.5 0.2 0.7 0.2 0.9 0.2 1.0
diabetes < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
elevators 0.6 2.1 0.8 2.2 0.9 2.2 1.0 2.4 1.1 2.3
flare < 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1
forestfires < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
glass < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
heart-c < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 0.1
house 0.7 5.3 0.7 5.5 0.7 5.6 0.8 6.1 0.7 5.6
housing < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1
letter 0.2 3.7 0.2 3.8 0.2 3.8 0.2 3.9 0.2 3.8
mv 1.7 1.4 1.7 1.2 1.7 1.2 1.9 1.4 1.7 1.3
pole 3.5 2.7 18.6 5.9 79.8 14.7 263.0 38.6 699.2 90.2
sonar < 0.1 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 0.1
spambase 6.0 21.2 87.6 131.2 865.4 781.6 7657.5 4269.1 > 4 h > 4 h
ticdata 10.0 88.5 125.9 539.1 1429.2 2939.1 12686.5 > 4 h > 4 h > 4 h
yeast < 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.1

the speedups are often larger for the SD-Map* algorithm. This has two rea-
sons: first, pruning in SD-Map* is exploited twice, as header pruning and as
selector pruning when conditional trees are built. Since the size of the condi-
tional trees is reduced by pruning, not only fewer candidate evaluations are
required with optimistic estimates, but each candidate evaluation also takes
less time to compute. Second, the computation of the ordering-based bounds
in NumBSD is more costly in itself. In one single experiment with unfavor-
able pruning properties, the computational costs for determining the bounds
in this algorithm outweighed the use of pruning, that is, for the spambase
dataset and the interestingness measure q0.5mean. For the interestingness mea-
sure q0mean, the runtimes of SD-Map* are surprisingly high in the datasets
spambase and aileron. This could be explained by the fact that for this in-
terestingness measure and these datasets very specific subgroups have to be
found early to exploit the optimal bounds. Additionally many ties occur in
the sorting based on the optimistic estimates, which are differently solved in
the different algorithm implementations. Therefore, SD-Map* explores more
candidates than necessary in the best case. However, there is still a substantial
speedup in comparison to unpruned algorithm variants.

The runtimes of both proposed algorithms differ significantly in several
cases. Unfortunately, a recommendation for choosing between the two novel
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algorithms for a certain task remains difficult. As a tendency, SD-Map* is
preferred for the interestingness measures that select subgroups with higher
coverage (q1mean and q0.5mean) if the runtime is not very short (< 5 seconds)
anyway. On the other hand, NumBSD is in general faster for q0.1mean and q0mean.
However, there are several exceptions for this rule of thumb.

Table 7 displays the algorithm runtimes for different search depth using
the interestingness measure q0.5mean. A comparison to the unpruned algorithms,
see Table 5, shows substantial runtime improvements in most cases. The im-
provements were in particular strong for larger search depths, i.e., d = 5 and
d = 6, where most runtimes decreased by more than an order of magnitude.
For several datasets, the runtime did not (or only marginally) increase with
higher search depths, e.g., for the datasets autos, communities, or elevators.
This is a sharp contrast to the variants which do not employ optimistic esti-
mate pruning and can be explained by the fact that already at search level
two or three all further candidates can be pruned. Also for medium search
depths d = 3 and d = 4, substantial runtime improvements can be observed
in most cases with runtimes > 5 seconds, but the performance gains are not
as large as for the high depth searches. For the minimum search depth d = 2,
the gains for SD-Map* were only moderate, while NumBSD took even more
time than its variation without pruning. At this low search depth, the effects
of the pruning seems to have less influence than the additional computational
costs for computing the bounds. However, for this search depth the runtimes
of NumBSD were very low in most cases anyway. For a few datasets the costs
for computing the optimistic estimates exceeded the gains from utilizing the
pruning bounds even for higher search depth, e.g., in the datasets ticdata and
spambase. This was never the case for the SD-Map* algorithm.

Comparing both novel algorithms with each other, SD-Map* excels for
higher search depths (d ≥ 4), where it outperforms NumBSD for most exper-
iments with relevant runtimes, that is, if tasks take more than five seconds
to complete. By contrast, for the lower search depths d = 3 and especially
d = 2, NumBSD performs better. In these cases, the overhead necessary for
the FP-trees in SD-Map* seems to be too high to be worth it. These results
are in general in line with the previous recommendations for the unpruned
algorithm versions. However, since SD-Map* does profit more from the opti-
mistic estimate bounds than NumBSD , it also performs better at the medium
search depths d = 3 and d = 4 in several cases. The runtimes and thus the
preferences of the algorithms do not correlate as strongly with the dataset size
as in the unpruned variants, but also depend strongly on the pruning opportu-
nities in the respective datasets. Unfortunately, the respective properties are
difficult to determine beforehand.

In additional experiments, similar runtime improvements as for the mean-
based interestingness measure could also be observed for other interestingness
measures, such as median-based measures. As observed for the mean-based
measures, the actual algorithm runtimes are highly correlated with the number
of required candidate evaluations for the respective measure, cf. Table 4.
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6.4 Influence of the Result Set Size

In a top-k approach, the size of the result set k influences the effects of opti-
mistic estimate pruning. Since it is exploited that candidates receive for sure
a lower score than the best k subgroups found so far, pruning can be applied
less often and more candidate subgroups must be explored for larger values
of k. In another series of experiments we studied the influence of the result
set size k on the number of required subgroup evaluations. Table 8 shows the
number of candidate evaluations that were performed in a depth-first-search
with one level look-ahead for different mean-based interestingness measures
and different sizes k of the result set. The search depth was limited to d = 5
(d = 4 for some datasets with high runtimes). For pruning, ordering-based
bounds were applied.

The results show that the number of evaluated candidates increases with
the size of the result set. Nonetheless, the number of evaluated candidates is
still smaller by orders of magnitudes than in a search without optimistic esti-
mates. Fortunately, the (relative) increase is much more moderate for datasets
that require large numbers of subgroup evaluations even with optimistic esti-
mate pruning, see the datasets spambase and ticdata. This can be explained by
the fact that the large amount of evaluations is required, because the dataset
contains many subgroups with similar scores according to the applied interest-
ingness measure. In this case, the number of required evaluations is also less
influenced by the size of the result set k.

Additionally, we also tested the runtime of the full algorithms for higher
settings of k. Table 9 shows the runtimes for k = 100. In comparison with the
previous results, see Table 6, the runtimes are in many cases only marginally
increased. However, for some datasets and interestingness measures the algo-
rithms take significantly more time. In particular, for the average interesting-
ness measure q0.0mean the runtimes for SD-Map* are increased in comparison to
a top-1 search, see for example the datasets census-kdd or ticdata. Nonethe-
less, the algorithms are still substantially faster than their counterparts that
do not employ optimistic estimate pruning. Overall, the presented optimistic
estimate bounds are also clearly useful for larger result set sizes.

6.5 Effects of the Fast Pruning Bounds

Section 5.2.3 introduced a new category of optimistic estimates that can al-
ready be applied if only a part of the current subgroup is analyzed. These are
incorporated in the NumBSD algorithm and were also included in the previous
experiments. To measure the effects of the novel bounds, the runtimes of the
full NumBSD algorithm was compared with a variation that did not employ
these bounds. The search employed a maximum search depth of d = 5 and
differently parametrized mean-based interestingness measures. The results are
shown in Table 10. Datasets, for which the tasks could be solved very fast
(< 0.2 seconds) by both variants, are omitted.
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Table 9 Comparison of the full algorithms with a larger result set size: the table shows the
runtimes in seconds for NumBSD (BSD) and for SD-Map* (SDM) with all pruning options
enabled for different interestingness measures. The search was limited to a maximum search
depth of d = 5 and used a result set size of k = 100.

Dataset q1mean q0.5mean q0.1mean q0mean
BSD SDM BSD SDM BSD SDM BSD SDM

adults 3.1 4.3 24.6 8.4 32.8 15.8 1.7 9.0
ailerons 6.8 2.4 57.7 19.9 219.7 3,379.0 0.7 459.1
autos < 0.1 < 0.1 0.1 0.1 0.1 0.3 < 0.1 0.1
breast-w < 0.1 < 0.1 0.1 0.1 0.1 0.1 < 0.1 0.1
census-kdd 122.8 71.3 5,505.0 1,150.7 > 4 h 5,914.2 36.1 1,876.5
communities 0.3 0.8 1.6 8.8 7.2 184.3 0.3 1.0
concrete data < 0.1 < 0.1 0.1 0.1 < 0.1 0.1 < 0.1 0.1
credit-a 0.1 0.1 0.3 0.3 0.1 0.3 0.1 0.1
credit-g 0.2 0.1 1.3 1.9 0.1 1.3 < 0.1 0.8
diabetes < 0.1 < 0.1 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
elevators 0.7 1.4 3.6 2.9 3.9 4.5 0.4 1.5
flare < 0.1 0.1 0.2 0.1 0.2 0.1 < 0.1 0.1
forestfires < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
glass < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
heart-c < 0.1 < 0.1 0.2 0.2 < 0.1 0.1 < 0.1 0.1
house 0.9 2.7 3.4 9.9 2.7 8.7 0.6 2.3
housing < 0.1 < 0.1 0.1 0.1 < 0.1 0.1 < 0.1 0.1
letter 0.8 2.6 2.8 7.9 1.1 11.8 0.5 3.4
mv 2.0 2.9 8.0 3.2 2.9 4.0 1.1 3.3
pole 29.0 2.4 273.9 40.5 280.3 95.8 0.3 7.6
sonar 0.1 0.1 0.2 0.3 0.1 0.5 0.1 < 0.1
spambase 701.2 618.6 7,708.3 4,306.6 3,338.9 1,906.4 0.2 812.7
ticdata 843.7 58.9 12,880.8 > 4 h 6,354.5 > 4 h 1.1 2,030.8
yeast < 0.1 0.1 0.2 0.1 0.1 0.1 < 0.1 0.1

The results indicate that the influence of the additional bounds that can be
computed early in the evaluation process is somewhat limited. The runtimes
are most improved for the interestingness measure q1mean: For this measure, the
improvements for most datasets are between 10% and 40%. Pruning bounds
for this measure seem to be more easily exploitable since this measure requires
subgroups that cover many instances.

For other interestingness measure the benefits are less significant: they
do not exceed 10% in many cases. However, only in a single setting (for the
dataset mv), the computational efforts of determining the additional bounds
were higher than the saved efforts. Potentially, this kind of pruning requires
additional optimization in the implementations to show its full benefits, e.g.,
by checking the additional bounds only at certain points in the evaluation.

Overall, it has to be reported that for now the novel advanced (“fast”)
type of bounds does not have the decisive effect yet. Instead, it is more of a
minor addition in order to optimize the algorithm. However, in the future, this
kind of pruning could be exploited with possibly stronger effects in distributed
subgroup mining: if nodes are assigned to computational units according to
their target values, and pruning bounds can already be applied at one unit,
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then the other units are not required to be involved, thus potentially reducing
the overall communication costs significantly.

Table 10 Evaluation of the full NumBSD (BSD) algorithm with a variation that does not
employ the fast pruning bounds that can already be exploited by evaluating a part of the
subgroup (NoFP). The comparison was performed with a maximum search depth of d = 5
and different mean-based interestingness measures. Datasets, for which the tasks could be
solved very fast (< 0.2 seconds) by both variants, are omitted.

Dataset q1mean q0.5mean q0.1mean q0mean
NoFP BSD NoFP BSD NoFP BSD NoFP BSD

adults 1.7 0.8 14.4 11.1 27.4 19.7 1.4 1.3
ailerons 6.5 6.0 47.1 45.3 110.9 95.5 0.6 0.6
census-kdd 89.6 53.3 5872.8 5184.3 >4 h >4 h 35.6 35.0
communities 0.2 0.1 0.4 0.1 3.9 2.0 0.3 0.3
credit-g 0.1 < 0.1 0.4 0.2 0.1 0.1 < 0.1 < 0.1
elevators 0.3 0.2 1.3 1.0 3.2 1.9 0.3 0.3
house 0.5 0.2 1.2 0.8 3.2 1.5 0.6 0.6
letter 0.4 0.1 0.7 0.2 1.0 0.7 0.5 0.5
mv 0.7 1.0 1.3 1.9 1.0 0.9 0.8 0.9
pole 34.0 26.8 282.6 263.0 204.8 186.8 0.3 0.3
spambase 853.1 692.9 7989.2 7657.5 3555.2 3319.2 0.2 0.2
ticdata 1019.4 820.4 >4 h 12686.5 6440.6 5588.2 0.4 0.1

6.6 Evaluation Summary

The experiments clearly showed the effectiveness of the proposed improve-
ments. The presented optimistic estimates were able to substantially reduce
the number of required candidate evaluations for almost all interestingness
measures. As expected, ordering-based bounds had even stronger effects, but
bounds in closed forms were good approximations most of the time. Regarding
data structures, both novel data structures outperformed a simple approach
by far. While for searches with high search depths and large datasets the FP-
tree structure enabled faster completion of the tasks, a bitset-based structure
is better suited for the other tasks. A comparison of the full algorithms showed
that improvements on data structures and optimistic estimate bounds can be
combined well. The incorporation of the bounds further reduced the runtimes
by an order of magnitude. The SD-Map* algorithm did profit more from the
additional pruning bounds since also the computational costs for single can-
didate evaluations are reduced. Although increasing the size of the result set
reduces pruning possibilities, still the vast majority of the search space can be
pruned in most cases. Unfortunately, a clear recommendation between the two
novel algorithms remains difficult. As a tendency, SD-Map* is to be preferred
for more demanding tasks with higher search depths, while NumBSD performs
better for low search depths.
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7 Conclusions

In this paper, we investigated efficient exhaustive subgroup discovery with nu-
merical target concepts. In order to provide a broad overview, we first surveyed
interestingness measures for this setting from literature. These included mean-
based, variance-based, median-based, and rank-based interestingness measures
as well as a measure based on the Kolmogorov-Smirnov statistical test.

After that, we presented novel techniques to enable efficient exhaustive
mining: we presented the adaptation of efficient data structures for the nu-
merical target setting, that is, FP-trees and bitset-based data structures. Ad-
ditionally, we investigated optimistic estimate bounds for pruning the search
space and derived novel bounds for the discussed interestingness measures.
In this context, we introduced ordering-based bounds as a flexible formalism
that allows to derive optimistic estimates for interestingness measures with no
previously known bounds. Additionally, we presented fast bounds that require
only limited information about a subgroup and bounds in closed form that can
also be determined in FP-trees. The proposed techniques, i.e., data structures
and optimistic estimates, were incorporated in two novel algorithms, SD-Map*
and NumBSD . Using these, we provided an extensive experimental evaluation
with 24 publicly available datasets. As a result, both novel algorithms outper-
formed simple approaches by orders of magnitudes. Possible advantages of one
algorithm over the other were discussed.

For future work, a comparison of exhaustive and heuristic search algorithms
in terms of runtime and result quality is planned. Additionally, the integra-
tion of methods for numeric attributes in the search space, see (Grosskreutz
and Rüping 2009; Mampaey et al. 2012), and numeric target concepts will
be of high relevance for practical applications. Furthermore, case studies that
show the advantages and disadvantages of the discussed interestingness mea-
sures seem like an interesting direction for future research. Finally, we aim
to investigate the option of generalized optimistic estimates for an extended
view on subgroup discovery techniques, e. g., considering exceptional model
mining (Leman et al. 2008; Duivesteijn et al. 2010; Lemmerich et al. 2012;
Atzmueller et al. 2015), and generalization-aware methods (Lemmerich and
Puppe 2011; Lemmerich et al. 2013).
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Appendix

Lemma 1 Using the notations of Theorem 9, the function fa(x)(n + x)a ·(
σ+x·θ
n+x − μ∅

)
has no local maxima inside its domain of definition:

fa(x) ≤ max(f(0), f(xmax))

Proof We distinguish three cases by the parameter a of the applied generic
mean interestingness measure:

first, for a = 1, it holds that

f1(x) = (n+ x)1 ·
(
σ + x · θ
n+ x

− μ∅

)
= σ + θx− μ∅n− μ∅x
= (θ − μ∅) · x+ σ − μ∅n

As this is a linear function in x, the function f1(x) is strictly increasing for
θ > μ∅ and strictly decreasing otherwise. Thus, the theorem holds for a = 1.

Second, we consider the case (a �= 1)∧(σ = θn), that is, the first n instances
all had the same target value. In this case, the function fa(x) is given by
fa(x) = (n+ x)a(θ − μ∅). This is strictly monotone since n > 0, x > 0. Thus,
again fa(x) has no local maximum.

Third, the case (a �= 1) ∧ (σ �= θn) is considered in detail: since σ was
computed as a sum of n values that are at least as large as θ it can be assumed
that θ ·n < σ. In the following, the maxima of fa(x) is determined by deriving
this function twice.

fa ′(x) =
d

dx
fa(x) = (n+ x)a ·

(
σ + x · θ
n+ x

− μ∅

)
= (n+ x)a

(
d

dx

(
θx+ σ

n+ x
− μ∅

))
+

(
θx+ σ

n+ x
− μ∅

)
·
(

d

dx
(n+ x)a

)
= (n+ x)a

(
d

dx

(
θx+ σ

n+ x

))
+

(
θx+ σ

n+ x
− μ∅

)
· a(n+ x)a−1

= (n+ x)a
(

θ

n+ x
− θx+ σ

(n+ x)2

)
+

(
θx+ σ

n+ x
− μ∅

)
· a(n+ x)a−1

= (n+ x)a−2 ((θ(n+ x)− (θx+ σ)) + a (θx+ σ − μ∅(n+ x)))

= (n+ x)a−2(θn− σ + aθx+ aσ − aμ∅n− aμ∅x))

= (n+ x)a−2 ((x(aθ − aμ∅) + aσ − aμ∅n+ θn− σ)

In line 2, the product rule is used. In line 3 the chain rule is applied, substi-
tuting (n+x). μ∅ can be omitted, as it is constant with respect to x. In line 4
the quotient rule is used. Finally, in line 5 (n+ x)a−2 is factored out.

Since x > 0, n > 0 by definition, the first factor is obviously greater than
zero for any valid x. For a = 0 or θ = μ∅, the second factor of this function
is independent from x, so it has no root, thus f(x) has no maxima except
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the definition boundaries in this case. Otherwise the root of this function and
therefore the only candidate for a maximum of fa(x) is given at the point

x∗ =
−aσ + anμ∅ − θn+ σ

a(θ − μ∅)
.

In the following, it is shown that x∗ can not be a maximum value in our
setting. For that purpose, the second derivative of f(x) is computed at the
point x∗:

fa ′′(x) =
d

dx
f ′(x)

= (n+ x)a−3(a− 2)(x(aθ − aμ∅)

+ aσ − an+ θn− σ) + (aθ − aμ∅)(n+ x)a−2

= (n+ x)a−3((a− 2)(x(aθ − aμ∅)
+ aσ − anμ∅ + θn− σ) + (aθ − aμ∅)(n+ x))

= (n+ x)a−3(a2xθ − a2xμ∅ + a2σ − a2μ∅n+ aθn− aσ − 2xaθ

+ 2axμ∅ − 2aσ + 2anμ∅ − 2θn+ 2σ + aθn− anμ∅ + aθx− axμ∅)

= (n+ x)a−3(a− 1)(aθx+ aσ − anμ∅ − axμ∅ + 2θn− 2σ)

= (n+ x)a−3(a− 1)(x(aθ − aμ∅) + aσ − anμ∅ + 2θn− 2σ)

We now can determine the second derivative of f in x∗:

fa ′′(x∗) = (n+ x∗)a−3(a− 1)(x∗(aθ − aμ∅) + aσ − anμ∅ + 2θn− 2σ)

= (n+ x∗)a−3(a− 1)(−aσ + anμ∅ − θn+ σ

a(θ − μ∅)
(aθ − aμ∅) + aσ − anμ∅ + 2θn− 2σ

)
= (n+ x∗)a−3(a− 1)(−aσ + anμ∅ − θn+ σ + aσ − anμ∅ + 2θn− 2σ)

= (n+ x∗)a−3(a− 1)(θn− σ)

= (n+ x∗)a−3(a− 1)(θn− σ)

Since fa(x) is defined only for positive x, the first factor is always positive.
Since by premise a < 1 and θn < σ, the second derivative at point x∗ is always
positive. Thus, if x∗ is an extreme value of f(x), then it is a local minimum.
Since it was shown above that f(x) has no other candidates for extreme values
besides x∗, this proves the lemma.

Lemma 2 The generic mean-based measures qamean are convex for a = 1 in
the (

∑
T (c), iP ) space. They are not convex for arbitrary a.

Proof For a = 1, the interestingness measure is given by q1mean(P ) = iP ·(μP −
μ∅) = iP · (

∑
c∈P T (c)

iP
− μ∅) =

∑
c∈P T (c) − iPμ∅. This function is linear in

both
∑

T (C) and iP . Since linear functions are known to be convex, q1mean is
convex.
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To show that generic mean-based measures are not convex in general, we
show an example where the definition of convex for a function f(x), that is,
∀x, y, λ ∈ (0, 1) : f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y), is violated. In our
case, x and y are each two-dimensional points in the (

∑
T (c), iP ) space. In

that regard, we consider a dataset with μ∅ = 0 and the mean test interesting-
ness measure q0.5mean. Then, the considered interestingness measure is given by

q0.5mean = i0.5P ·(μP −μ∅) =
∑

c∈P T (c)√
iP

:= f(x). As two points in the (
∑

T (c), iP )

space for which the convexity condition is violated we choose x = (−100, 2)
and y = (−100, 10). Additionally, we choose λ = 0.5. Then, the convexity
inequality is violated:

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

f((0.5x+ 0.5y) ≤ 0.5 · f(x) + 0.5 · f(y)
f((−100, 6)) ≤ 0.5 · f((−100, 2)) + 0.5 · f(−100, 10)

−100√
6

≤ 0.5 · −100√
2

+ 0.5 · −100√
10

≈ −40.82 ≤ ≈ −51.17

Since the definition of convexity is violated in at least one example, the mean
test interestingness measure q0.5mean is not convex.

The non-convexity of q0.5mean is also evident by a surface plot of the function
for μ∅ = 0, see Figure 3. ��

Fig. 3 A surface plot of the mean test interestingness measure q0.5mean for μ∅ = 0 shows the
non-convexity of this measure.


