
DiaFlux: A Graphical Language for
Computer-Interpretable Guidelines

Reinhard Hatko1, Joachim Baumeister2, Volker Belli2, and Frank Puppe1

1 Institute of Computer Science, University of Würzburg, Germany
{hatko, puppe}@informatik.uni-wuerzburg.de

2 denkbares GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
{joachim.baumeister, volker.belli}@denkbares.com

Abstract. In this paper, we introduce the formal representation lan-
guage DiaFlux, that is simple and easy to use on the one hand. On
the other hand, it allows for the definition of Computer-Interpretable
Guidelines (CIGs), that can solve valuable tasks being executed in the
clinical context. Further, we describe a wiki-driven development process
using the stepwise formalization, and allowing for almost self-acquisition
by the domain specialists. The applicability of the approach is demon-
strated by a protocol for sepsis monitoring and treatment developed by
a collaboration of clinicians.

1 Introduction

The work presented in this paper is conducted within the project “CliWE - Clin-
ical Wiki Environments”3. We investigate languages, tools, and methodologies
to collaboratively build Computer-Interpretable Guidelines (CIGs) by domain
specialists themselves. The requirement concerning the language is the develop-
ment of an explicit and executable representation of diagnostic knowledge for
active decision-support systems. Furthermore, we create a development process
for simple and effective knowledge acquisition by domain specialists. Ultimately,
the final knowledge bases will be exported into mixed-initiative devices, that
cooperate with the clinical user during the care process.

In recent years, knowledge engineering research has been heavily influenced
by the emergence of Web 2.0 applications, such as wikis, blogs, and tagging sys-
tems. They provide a simplified access and a light-weight approach for knowledge
acquisition. Furthermore, those systems usually allow for a distributed and (of-
ten) collaborative development process. One of the most popular examples is
the wide-spread use of wikis as flexible knowledge management tools, both in
personal life and business environments. Introducing the semantic interpretation
of wikis, the development of Semantic Wikis [19] allows for a more formalized
definition of the knowledge. Today, Semantic Wikis are mainly used for collab-
orative ontology development, by providing a flexible, web-based interface to
build semantic applications [18].

3 Funded by Drägerwerk AG & Co. KGaA, Lübeck, Germany, 2009-2012.



The main benefit of Semantic Wikis is their possibility to interweave different
formalization types of knowledge in the same context. That way, ontological
concept definitions are mixed with free text and images within the wiki articles.
Such tacit knowledge often serves as documentation of the development process,
or as pursuing additional information not representable in a more formal manner.

In this paper, we introduce the Semantic Wiki KnowWE, that was de-
signed to build decision-support systems, and we propose the graphical lan-
guage DiaFlux, for modeling of executable clinical protocols: The contributions
of this language are its simple application for developing decision-support sys-
tems, since it only provides a limited number of intuitive language elements.
Due to its simplicity it is possible to be used by domain specialists, and thus
eases the application in the knowledge engineering process. Albeit its simplic-
ity, a rich set of diagnostic elements can be integrated into the language, that
are required to build sophisticated (medical) knowledge bases. Furthermore, the
language allows for the incorporation of less explicit knowledge when needed.
To allow for comfortable development of DiaFlux models, we introduce a visual
editor integrated into the Semantic Wiki KnowWE.

The rest of the paper is organized as follows: Section 2 introduces the lan-
guage DiaFlux for Computer-Interpretable Guidelines, using a simple example
protocol. The reasoning engine for DiaFlux models is discussed in Section 3.
Also the integration of the language into the Semantic Wiki KnowWE and the
development process including stepwise formalization is described. Currently,
the approach is evaluated by the development of a medical decision-support sys-
tem. We describe the experiences of this case study in Section 4. The paper is
summarized and concluded in Section 5, also giving an outlook for future work.

2 The DiaFlux Language

This section first describes the application scenario, then a short insight about
guideline models in the diagnostics domain is given. Following, we introduce the
representation language for clinical protocols, called DiaFlux.

2.1 Application Scenario

Clinical guidelines have shown their benefits by providing standardized treat-
ment based on evidence-based medicine. Many textual guidelines are readily
available and also shared through the internet, but rely on the proper appli-
cation by the clinician during the actual care process. While clinical guidelines
are mostly textual documents, clinical protocols are an implementation of them,
offering a more specific procedure for diagnosis and treatment in a given clinical
context [11]. Much effort has been put into the development of formal models
for Computer-Interpretable Guidelines (CIGs) and protocols. Clinical decision-
support systems, that execute CIGs, support the clinician in his decision-making
at the point of care. A logical progression in guideline application is their auto-
matic execution by medical devices, as for example described in [14].



Our application scenario are mixed-initiative devices that continuously mon-
itor, diagnose and treat a patient in the setting of an Intensive Care Unit (ICU).
Such semi-closed loop systems interact with the clinician during the care pro-
cess. Both parties, the clinician and the device, are able to initiate actions on
the patient. As some data is continuously available as a result of the monitoring
task, continuous reasoning with this data is performed. An execution environ-
ment for automated clinical care in ICUs and the implementation of a guideline
for weaning from mechanical ventilation are presented in [14].

Based on the described application scenario, we identified the following goals,
that were persued during the development of the language DiaFlux:

1. Repetitive execution of subtasks: Monitoring involves the continuous obser-
vation of sensory data to detect fault states and initiate corrective action.
Therefore, particular actions need to be performed in an iterative manner.

2. Representation of time: An integral part of the language is a built-in repre-
sentation of time and temporal reasoning capabilities, e.g., to reason about
the trajectory of sensory input.

3. Truth maintenance: To revise conclusions by the system and handle inputs by
the user appropriately, a truth maintenance system (TMS) [7] is integrated
into the execution engine. The TMS guarantees to select the appropriate
actions based on the current state, especially in domains with high frequency
data.

4. Parallelism: Subtasks with no fixed order and dependency can be allocated
to additionally spawned threads of control, and thus allow for their parallel
execution. Expressing parallelism is especially necessary for mixed-initiative
systems, in which human and machine initiated actions are carried out con-
currently.

5. Modularity : To alleviate the reuse of formalized knowledge, DiaFlux models
are intended to be reused in different contexts. The modularization also helps
to improve the maintainability of the knowledge base.

6. Testability : The evaluation of a knowledge base is an essential step prior to
its productive use. We provide basic functionality for empirical testing and
anomaly checks tailored to DiaFlux models.

2.2 Language Description

For the specification of a clinical protocol, two kinds of knowledge have to be
effectively combined, namely declarative and procedural knowledge [5]. While
the declarative part encompasses the facts and their relationships, the procedural
one reflects the knowledge about how to perform a task, i.e., the correct sequence
of actions. The declarative knowledge particularly consists of the terminology,
i.e., findings, solutions, and sometimes also treatments and their interrelation.
The procedural knowledge for diagnostics in a given domain is responsible for
the decision which action to perform next, e.g., asking a question or carrying
out a test. Each of these actions has a cost (monetary or associated risk) and a
benefit (for establishing or excluding currently considered solutions) associated



with it. Therefore, the choice of an appropriate sequence of actions is mandatory
for efficient diagnosis and treatment. Guideline languages employ different kinds
of Task Network Models to represent the procedural aspects [16]. They describe
decisions, actions and constraints about their ordering in a guideline plan. Often,
flowcharts are the underlying formalism to explicitly express control flow.

In DiaFlux models, the declarative knowledge is represented by a domain-
specific ontology, which contains the definition of findings and solutions. This
application ontology is an extension of the task ontology of diagnostic prob-
lem solving [1]. The ontology is generated using a special markup. Therefore,
it is strongly formalized and provides the semantics necessary for executing the
guideline. The procedural knowledge is represented by one or more flowcharts,
consisting of nodes and edges. Nodes represent different kinds of actions. Edges
connect nodes to create paths of possible actions. Edges can be guarded by con-
ditions, that evaluate the state of the current session, and thus guide the course
of the care process.

Fig. 1. The main model and starting point of a simple protocol for monitoring and
treating overweight. The state of the current testing session is highlighted in green and
yellow colors (black and grey in this image, respectively).

In the following, we informally describe the language elements, before we give
an example using a simple protocol for the diagnosis and treatment of overweight,
modeled in DiaFlux.



– Start node: A start node does not imply an action itself, but is a pseudo-
node pointing to the node that represents the first action to take. Multiple
start nodes can provide distinct entry points into a single DiaFlux model.

– Test node: Test nodes represent an action for carrying out a single test
upon activation of the node at runtime. This may trigger a question, the
user has to answer, or data to be automatically obtained by sensors or from
a database. Furthermore, the collected information refines the knowledge
about the patient state.

– Solution node: Solution nodes are used to set the rating of a solution
based on the given inputs. Established solutions generate messages that are
presented to the user and can, e.g., advice him to conduct some action.

– Wait node: Upon reaching a wait node, the execution of the protocol is
suspended until the given period of time has elapsed.

– Composed node: DiaFlux models can be hierarchically structured, as al-
ready defined ones can be reused as modules, represented by a composed
node. This fulfills the aforementioned goal of modularity.

– Snapshot node: Snapshot nodes can be used to mark distinct points of a
model, at which the current execution state is saved, and truth maintenance
will not influence the execution beyond this point. For further details see
Section 3.

– Abstraction node: Abstraction nodes offer the possibility to create ab-
stractions from available data, i.e., assigning values to abstraction questions.
The results of abstraction nodes can be used to influence settings of the host
device.

– Exit node: An exit node terminates the execution of a DiaFlux model, and
returns the control flow to the superordinate model. To express different
results of a model, several distinct labeled exit nodes are supported.

– Comment node: For the documentation of a protocol, comment nodes can
be inserted at arbitrary positions. Though, they can be connected by edges,
and be used to create semi-formal guidelines. They do not represent a specific
action and are ignored during execution.

Figures 1 and 2 show parts of a protocol for the diagnosis and treatment of
overweight modeled in DiaFlux. The main module, which is executed when a
consultation session begins, is depicted in Figure 1. The execution of the module
starts at the start node (1), labeled “Begin consultation”, which is pointing to the
composed node (2). On activation of this node, the submodule “Anamnesis” (cf.
Figure 2) is called, and its start node labeled “Start” is activated. The execution
of the current module is stalled, until the called submodule is processed. Reaching
the test node “Height” (3), data is acquired from the user. After the value for
the body height has been entered, the execution can progress to the test node
“Weight”. In contrast to the first test node, this one acquires new data each
time it is activated, as the weight is supposed to change from one session to the
next. Therefore, the specific testing action is “always ask” instead of “ask”, as
the first one triggers data acquisition even for inputs, that are already known, in
order to update their value. After the value for “Weight” has been acquired, the



Abstraction node (4) calculates the body mass index (BMI), depending on the
previously entered data, and assigns the value to the input “BMI”. Depending
on the value of the BMI the appropriate successor is chosen. For a value in
the range of [18.5; 25[, the execution progresses to the solution node (5), which
establishes the solution “Normal weight”. The reached exit node (6), labeled
“Weight ok”, terminates the execution of the module, and returns the control
flow to the superordinate protocol. For higher values of “BMI”, the appriopriate
solution is established, and the result “Weight problem” is returned as result of
the “Anamnesis” module.

Fig. 2. The anamnesis submodel for acquiring data and establishing the current diag-
nosis.

After finishing the submodule, the appropriate successor of the composed
node (2) is chosen based on the returned result. In case of the return value
“Weight ok”, the execution of the protocol ends by reaching the exit node “Fin-
ished”, as there is no superordinate module. If a weight problem has been diag-
nosed, the treatment is chosen based on the history of values of the BMI. The
decision node (7) tests for the gradient of BMI values. If the BMI is declining
(i.e., the patient is loosing weight), the previously selected therapy is continued.
Otherwise, another therapy is chosen within the module “Select Therapy”4. In
both cases the snapshot node (8) is reached. On activation of this node, the
execution state of the protocol is saved and truth maintenance will not retract
any conclusion beyond this point. Furthermore, all active nodes on the incoming
path are deactivated, to allow their repeated execution. A more thorough discus-

4 A therapy is chosen during the first consultation, as the gradient of a single value
is 0.



sion of this feature follows in Section 3. Next, the execution arrives at the wait
node (9), which suspends the execution until the given time of 7 days has lapsed.
Then, a second anamnesis is conducted, and the current BMI is calculated based
on the newly acquired body weight value. If it has decreased, so will the BMI,
and the current therapy is continued. Otherwise, a new therapy is selected, and
applied until a normal body weight is obtained.

3 Reasoning with DiaFlux

The main focus of the DiaFlux language lies in the development of executable
protocols. This section describes the according reasoning engine and the wiki-
based development environment.

3.1 Architecture

The architecture of the DiaFlux execution engine comprises three main parts:
First, a knowledge base, which contains the definition of declarative and procedu-
ral knowledge. Second, a blackboard represents the current state of the session.
Last, a reasoning engine is responsible for executing the DiaFlux model. The
protocol to be executed is defined within the knowledge base. It contains the
application ontology and the flowcharts specifying the clinical care process. All
findings describing the state of the current execution of the protocol are con-
tained in the blackboard. These findings contain the input data as defined in the
application ontology. A finding can either be entered by a user, or be derived by
the system, or can contain data acquired by the system from connected sensors.
To support temporal reasoning, all findings are time-stamped. The reasoning
engine is responsible for interpreting the protocol depending on the current ex-
ecution state, and for triggering its actions. Therefore, the reasoning engine is
notified about all findings, that enter the blackboard.

3.2 Protocol Formalization

DiaFlux models are fully formalized and executable due to the underlying ontol-
ogy of findings and solutions. Those are the basic elements of a diagnostics task,
i.e., findings are used to derive particular solutions. A finding holds a value that
is assigned to a specific input. An input consists of a name, a type (numerical
or nominal), and a domain. Optionally, information like a unit of measurement
and permitted value ranges can be specified. The defined inputs do not only con-
tain external inputs (from sensors or a user) into the system, but also internal
inputs, that describe the state of the execution. Internal inputs are derived by
the system itself, and are then written to the blackboard, and fed back into the
reasoning engine for further reasoning, e.g., abstractions calculated by according
nodes. Findings of internal inputs can also be used to trigger external events,
that have a measurable effect during the care process. For example, the current
value of an internal input can be read by the appliance for adjusting certain



operational parameters. Solutions are special output values, that are set by the
system and presented to the user. They are used to, e.g., instruct the clinical
user to accomplish a certain task.

3.3 Protocol Execution

The execution state of the protocol is given by the activation states of the nodes
and edges contained in the flowcharts, as summarized in Table 1. Each node and
edge can either be active or inactive. The state of a node is given by the state
of its incoming edges. It is active, iff at least one of its incoming edges is active.
An edge in turn is active, iff its starting node is active and the condition, it is
guarded by, is evaluated to true. If an edge changes its state, the corresponding
end node can also change its state. If an edge gets activated, its end node is ac-
tivated, iff it was inactive before, otherwise nothing is done. Upon deactivation
of an edge, its end point is checked for other active incoming edges supporting
its state. If none exists, the node is deactivated. This in turn, can lead to fur-
ther collapsing of formerly active paths. If a node is active, its associated action
has been executed upon its activation as described in Section 2.2, e.g., acquisi-
tion of data or derivation of a solution. In case it gets deactived due to truth
maintenance the action is undone again, which can, e.g., lead to findings being
retracted from the blackboard.

Table 1. States and actions of DiaFlux model elements.

Model
element

Precondition for
activation

On activation On deactivation

Node At least one incom-
ing edge is active

Action of the node is
executed

Action of the node is
retracted

Edge 1. Start node is active
2. Guard condition
evaluates to true

Activate end node, iff it
was not active before

Deactive end node, iff it
has no other active in-
coming edge

The main idea of the DiaFlux reasoning engine is to distinguish between
volatile and non-volatile actions. While non-volatile actions have an effect on
the patient under treatment, volatile actions do not influence the care process.
For example, deriving a finding which is not used to trigger external events can
safely be undone. However, this is not possible, if a finding is used to alter the
treatment of the patient. Therefore, volatile actions can safely be retracted by
the truth maintenance system (TMS), without changing the course of the care
process. This distinction makes it possible to react to changing patient states
accordingly, as long as no action carried out has an effect on the patient.

The transition from volatile to non-volatile actions has to be marked by a
special type of node, namely a snapshot node. Upon reaching a snapshot node
during protocol execution, the contents of the blackboard (the contained find-
ings) are protected from write access, i.e., they can no longer be retracted by the



TMS, but become the definite state for the further progression of the protocol
execution. Additionally, all active nodes that are on the path to the activated
snapshot node are set to inactive without retracting their action. They can
then be activated again during the next monitoring cycle.

To select the entry point into the protocol one flowchart has to be marked
as “autostart”. This leads to the activation of all its start nodes, when the
care process begins. From there on, the protocol execution is driven by findings
entering the blackboard. Each of these findings together with its timestamp
(for temporal reasoning and abstraction) is propagated to the reasoning engine.
Then, all nodes and edges that use the associated input of a finding are checked
for the validity of their state according to the new value of the finding.

3.4 The DiaFlux Modeling Environment

We created an implementation of the DiaFlux reasoning engine for the knowledge-
based system d3web [3]. DiaFlux offers the possibility to model and execute
protocols, that employ the declarative and inferential expressiveness provided
by d3web. The development environment for DiaFlux models is integrated into
the Semantic Wiki KnowWE (cf. Figure 3), using its plugin mechanism [17]. We
created a graphical editor for easy modeling of the flowcharts. The editor is on
the one hand able to reuse ontological concepts that are readily available in the
wiki’s knowledge base. Those can simply be dragged into the flowchart. Depend-
ing on the type of object (input, solution, DiaFlux model), a node of adequate
type is created. On the other hand, the application ontology can be extended by
creating new concepts from within the editor with a wizard. The model’s source
code is encoded in XML, and integrated into the corresponding wiki article, and
saved and versioned together with it. This allows for further documentation of
the protocol by tacit knowledge in the article. When the article is displayed in a
web browser, the model visualization is rendered, instead of displaying its XML
source code.

Modeling Process For the development of DiaFlux models, we propose the
idea of the knowledge formalization continuum [2], where knowledge acquisition
starts with informal knowledge, which is gradually refined until a formal rep-
resentation is reached: At first, informal information can be collected in wiki
articles, e.g. about goals of a protocol. During the next step, a first semi-formal
flowchart can be created using only comment, start and exit nodes, and connect-
ing edges (cf. Figure 4). At this stage of formalization, the flowcharts cannot be
automatically executed, but “manually”. For testing purposes the user can run
through the flowchart by clicking on that outgoing edge of the active node, he
wants to continue the pathway on. The taken pathway is highlighted for easier
tracking. This is especially useful, when parallelism or hierarchically structured
protocols are involved. The last step is the formalization into a DiaFlux model
and the creation of the application ontology, resulting in a fully formalized and
executable knowledge base. By following this process of gradual refinement, the



entry barrier for domain specialists is quite low, while knowledge acquisition can
start from the beginning.

Modeling Tools Collaborative development requires to track the changes of
all participants. Therefore, a frequent task is to compare different versions of
a protocol. For this purpose in general, wikis provide a textual diff comparing
two versions of an article. As a diff of the XML source code is not very helpful
for comparing a visual artifact like a flowchart, a more understandable diff is
provided. On the one hand, a textual summary of the added, removed, and
changed nodes and edges is generated. On the other hand, the previous and the
current version of the DiaFlux model are shown next to each other, highlighting
the changes in different colors for easy comparison, e.g. removed items are red
in the previous version, added items are green in the current one, and changed
items are highlighted in both versions.

After creating a knowledge base in KnowWE, it can directly be tested from
the wiki article containing it, as d3web is also integrated into KnowWE. The cur-
rent execution state of the protocol throughout the test session can be observed.
The traversed pathway through the flowcharts is highlighted, in a similar manner
as in the visual diff (cf. Figure 1). The currently active path is highlighted in
green color. The path that was active, when the last snapshot has been taken,
is marked with yellow color. This immediate visual feedback considerably eases
the interactive testing of the knowledge base. Figures 1 and 2 show the state
during the second consultation, after a period of 7 days. For the later stages of
protocol development, complete test cases can be entered using a special type of
table and then be executed.

3.5 Related Work

Many formal models for Computer-Interpretable Guidelines (CIGs) have been
developed, an overview can be found in [16] and [12]. In the variety of CIG
models, each has its own focus, e.g., GLIF [4] concentrates on the sharability of
guidelines between various institutions, while PROforma [8] focuses on assisting
patient care through active decision support [5]. The DiaFlux language em-
phasizes compactness, offering a limited number of intuitive language elements,
enabling knowledge acquisition by domain specialists themselves.

A related wiki environment for the collaborative creation of clinical guide-
lines is the Modelling Wiki (MoKi) [10], based on Semantic Media Wiki [13].
Originally, it was designed for the creation of enterprise models using a visual
editor, but it also has been used in the Oncocure project [6] to acquire clinical
protocols for breast cancer treatment. Therefore, templates were defined within
the wiki and later their content was exported into skeletal Asbru plans [15].
Though MoKi’s visual editing capabilities for business processes, they were not
employed to graphically model guidelines. Furthermore, the created Asbru plans
are currently not executable within the wiki.



4 Case Study

4.1 The Sepsis Protocol

In the context of the project “CliWE”, we used a prototype of the clinical wiki
environment for the development of a protocol covering the monitoring and ther-
apy of sepsis. Sepsis is a syndrome of a systemic inflammation of the whole body
with a high mortality (30 to 60%). There are two main problems in sepsis ther-
apy. First, it is essential to detect, that a patient fulfills sepsis criteria and second,
if sepsis is diagnosed a complex medical therapy has to be initiated quickly. To-
day, so called patient data management systems are available in many intensive
care units. With these systems, medical data are electronically available. In this
context a clinical decision support system may be a reasonable solution for the
above outlined practical problems, monitoring all patients for sepsis and support
the physician in the initiation of sepsis treatment.

The knowledge base was developed in accordance to the official guideline
of the German Sepsis Society [9]. It is a textual guideline of about 80 pages
describing the prevention, diagnosis, and therapy of sepsis. Our formalization of
the guideline contains so far the diagnostics and parts of the therapy together
with some common tasks for patient admission (cf. Figure 3). At the moment
it contains about 50 nodes in eight modules with several possible pathways,
depending on how the diagnosis can exactly be established and the course of the
therapy. The upper part of the main DiaFlux model contains knowledge about
the decision making and the lower part contains knowledge about the treatment.

The diagnosis task involves the assessment of up to eight clinical parameters
(conducted in the modules “Septic parameters” and “Extended septic param-
eters”) and an established or suspected infection. The monitoring is repeated
until a sepsis can be established within different cycles, depending on which
parameters are acquired and their evaluation. If there is sufficient evidence to
support a suspected sepsis, then a warning to the clinician is generated. If the
clinician agrees with the conclusion, the diagnosis “Sepsis” is established and in-
structions for starting the therapy are given. The treatment for sepsis consists of
the three bundles causal therapy (treating the cause of the infection), supportive
therapy (stabilizing the patients circulation) and adjunctive therapy (supporting
fighting off the infection). Those bundles are modeled as self-contained modules
and reused as composed nodes in the main module.

4.2 Experiences

The knowledge acquisition mainly took place in two workshops, approximately
six hours each, involving two domain experts. The DiaFlux editor was handled
by a knowledge engineer, entering the knowledge artifacts provided by the do-
main specialists. The remaining participants followed the authoring process on
a projector.

During the first session, we followed the idea of the knowledge formalization
continuum and started with textual descriptions of most modules. As the second



Fig. 3. The main module of the sepsis monitoring and treatment protocol, opened in
the web-based editor. On the left side the declarative knowledge, that has already been
defined, is contained and can be used to model the process.

step, we created semi-formal flowcharts giving an outline of the protocol, as ex-
emplified in Figure 4. Next, we started to further formalize these flowcharts into
executable DiaFlux models and to create the according declarative knowledge.
The second session began with the acquisition of test cases of typical sepsis pa-
tients. As they were only informally entered in a wiki article and not executable
so far, we stepped manually through the model by highlighting the correct path-
way. The found inconsistencies were corrected during the second half of the
session, together with further elaboration of the knowledge base. In a third ses-
sion of about one hour, one of the experts created a small module by himself,
while being observed by a knowledge engineer. The expert shared his screen us-
ing an internet screen sharing software, and was supported in formalizing the
knowledge and the usage of the DiaFlux editor.

Overall, the wiki-based approach showed its applicability and usefulness, as
the combination of formal and informal knowledge and its gradual refinement was
intensely used during the acquisition of the protocol and the test cases. Further,
the developed knowledge base was accessible to all participants immediately
after the workshops, as it took place in a password protected wiki, which can be
accessed over the internet.

So far, the knowledge acquisition was conducted in workshops involving do-
main experts and knowledge engineers. After the initial workshops and the suc-



Fig. 4. An early semi-formal version of the sepsis protocol.

cessful tele-knowledge acquisition session, we are confident to proceed with fur-
ther workshops, that require less support by the knowledge engineers.

5 Conclusion

This paper presented work in the context of the project “CliWE - Clinical Wiki
Environments” for collaborative development and evolution of clinical decision-
support systems. We introduced the language DiaFlux that can incorporate
declarative and procedural diagnostic knowledge for modeling executable clini-
cal protocols. Its main focus is the construction of protocols that are executed
by mixed-initiative appliances in the setting of ICUs. The development environ-
ment is integrated into the Semantic Wiki KnowWE to support the collaborative
development by a community of experts. The case study demonstrated the ap-
plicability and benefits of the approach during the development of a clinical
protocol for sepsis monitoring and treatment. Due to the wiki-based approach,
the knowledge can evolve easily. It is accessible without depending on specialized
software, as long as an internet connection is available. Furthermore, domain spe-
cialists can almost instantly start contributing. Formalization of the knowledge
can then happen at a later time, after familiarizing with the semantics.

As next steps we plan the integration of refactoring capabilities into the
editor, for the easier evolution of DiaFlux models. We will also enhance the tool
support for the gradual knowledge formalization.

References

1. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: A semantic wiki for knowl-
edge engineering. Applied Intelligence (2010)

2. Baumeister, J., Reutelshoefer, J., Puppe, F.: Engineering intelligent systems on the
knowledge formalization continuum. International Journal of Applied Mathematics
and Computer Science (AMCS) 21(1) (2011)

3. Baumeister, J., et al.: The knowledge modeling environment d3web.KnowME.
open-source at: http://d3web.sourceforge.net (2008)



4. Boxwala, A.A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q.T., Wang, D., Patel,
V.L., Greenes, R.A., Shortliffe, E.H.: GLIF3: a representation format for sharable
computer-interpretable clinical practice guidelines. J. of Biomedical Informatics
37(3), 147–161 (2004)

5. de Clercq, P., Kaiser, K., Hasman, A.: Computer-interpretable guideline for-
malisms. In: ten Teije, A., Miksch, S., Lucas, P. (eds.) Computer-based Medical
Guidelines and Protocols: A Primer and Current Trends, pp. 22–43. IOS Press,
Amsterdam, The Netherlands (2008)

6. Eccher, C., Rospocher, M., Seyfang, A., Ferro, A., Miksch, S.: Modeling clinical
protocols using Semantic MediaWiki: the case of the oncocure project. In: K4HelP:
ECAI 2008 Workshop on the Knowledge Management for Healthcare Processes.
pp. 20–24. University of Patras (2008)

7. Forbus, K.D., de Kleer, J.: Building problem solvers. MIT Press, Cambridge, MA,
USA (1993)

8. Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the pro-
forma approach. Artificial Intelligence in Medicine 14(1-2), 157 – 182 (1998), se-
lected Papers from AIME ’97

9. German Sepsis-Society: Sepsis guideline. http://www.sepsis-
gesellschaft.de/DSG/Englisch

10. Ghidini, C., Kump, B., Lindstaedt, S.N., Mahbub, N., Pammer, V., Rospocher,
M., Serafini, L.: MoKi: The enterprise modelling wiki. In: ESWC’09: The Semantic
Web: Research and Applications. LNCS, vol. 5554, pp. 831–835. Springer (2009)

11. Hommersom, A., Groot, P., Lucas, P., Marcos, M., Mart́ınez-Salvador, B.: A
constraint-based approach to medical guidelines and protocols. In: Teije, A.t.,
Miksch, S., Lucas, P. (eds.) Computer-based Medical Guidelines and Protocols:
A Primer and Current Trends, Studies in Health Technology and Informatics, vol.
139, pp. 213–222. IOS Press (2008)

12. Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: A review.
International Journal of Medical Informatics 77(12), 787 – 808 (2008)

13. Krötzsch, M., Vrandecić, D., Völkel, M.: Semantic MediaWiki. In: ISWC’06: Pro-
ceedings of the 5th International Semantic Web Conference, LNAI 4273. pp. 935–
942. Springer, Berlin (2006)

14. Mersmann, S., Dojat, M.: SmartCaretm - automated clinical guidelines in critical
care. In: ECAI’04/PAIS’04: Proceedings of the 16th European Conference on Ar-
tificial Intelligence, including Prestigious Applications of Intelligent Systems. pp.
745–749. IOS Press, Valencia, Spain (2004)

15. Miksch, S., Shahar, Y., Johnson, P.: Asbru: A task-specific, intention-based, and
time-oriented language for representing skeletal plans. In: UK, Open University.
pp. 9–1 (1997)

16. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Miksch, S.,
Quaglini, S., Seyfang, A., Shortliffe, E.H., Stefanelli, M., et al.: Comparing
computer-interpretable guideline models: A case-study approach. JAMIA 10 (2003)

17. Reutelshoefer, J., Lemmerich, F., Haupt, F., Baumeister, J.: An extensible seman-
tic wiki architecture. In: SemWiki’09: Fourth Workshop on Semantic Wikis – The
Semantic Wiki Web (CEUR proceedings 464) (2009)

18. Schaffert, S.: IkeWiki: A semantic wiki for collaborative knowledge management.
In: STICA’06: 1st International Workshop on Semantic Technologies in Collabo-
rative Applications. Manchester, UK (2006)

19. Schaffert, S., Bry, F., Baumeister, J., Kiesel, M.: Semantic wikis. IEEE Software
25(4), 8–11 (2008)


