
3D Res. 02, 02003 (2011) 
10.1007/3DRes.02(2011)3  

 
 

3DR EXPRESS                                                           w                                                                                          

The 3D Hough Transform for Plane Detection in Point Clouds: A 
Review and a new Accumulator Design 
 
 
Dorit Borrmann • Jan Elseberg • Kai Lingemann • Andreas Nüchter 

 

 

 

 

Received: 13 January 2011 / Revised: 13 February 2011 / Accepted: 10 March 2011 
© 3D Research Center and Springer 2011 

 
Abstract*The Hough Transform is a well-known method 
for detecting parameterized objects. It is the de facto 
standard for detecting lines and circles in 2-dimensional 
data sets. For 3D it has attained little attention so far. Even 
for the 2D case high computational costs have lead to the 
development of numerous variations for the Hough 
Transform. In this article we evaluate different variants of 
the Hough Transform with respect to their applicability to 
detect planes in 3D point clouds reliably. Apart from 
computational costs, the main problem is the representation 
of the accumulator. Usual implementations favor 
geometrical objects with certain parameters due to uneven 
sampling of the parameter space. We present a novel 
approach to design the accumulator focusing on achieving 
the same size for each cell and compare it to existing 
designs. 
 
Keywords Hough Transform, 3D laser scans, plane 
detection, indoor mapping 
 
 
1. Introduction 
 
One of the main research topics in mobile robotics attends 
to create maps of the robot’s surroundings. Mapping is 
often achieved by matching separately collected partial 
views, e.g., laser scans. A laser scan is a set of distance 
values and taken by a robot at different positions, it 
represents the part of the environment that is observable 
from the current pose. The process of joining these partial 
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views into a map is referred to as scan registration. Scan 
registration is subject to matching errors, sensor noise and 
systematic errors in the scans. The structure of indoor 
environments, however, usually comprises a large amount 
of planar surfaces. This can be exploited to reconstruct the 
real structure of the environment. 
Plane extraction, or plane fitting, is the problem of 

modeling a given 3D point cloud as a set of planes that 
ideally explain every data point. The RANSAC algorithm 
is a general, randomized procedure that iteratively finds an 
accurate model for observed data that may contain a large 
number of outliers, (cf. Fischler and Bolles, 1981)1. 
Schnabel et al. (2007)2 have adapted RANSAC for plane 
extraction and found that the algorithm performs precise 
and fast plane extraction, but only if the parameters have 
been fine-tuned properly. For their optimization they use 
knowledge, that is not readily available in point cloud data, 
such as normals, neighboring relations and outlier ratios. 
Bauer and Polthier (2008)3 use the radon transform to 
detect planes in volume data. The idea and the speed of the 
algorithm are similar to that of the Standard Hough 
Transform. Poppinga et al. (2008)4 propose an approach to 
find planes with a combination of region growing and 
plane fitting. Other plane extraction algorithms are highly 
specialized for a specific application and are not in 
widespread use. Lakaemper and Latecki (2006)5 use an 
Expectation Maximization (EM) algorithm to fit planes that 
are initially randomly generated, Wulf et al.6 detect planes 
relying on the specific properties of a sweeping laser 
scanner and Yu et al.(2008)7 developed a clustering 
approach to solve the problem.  
Approaches that work on triangle meshes ask for 

preprocessing of the original point data. Attene et 
al.(2006)8 fit geometric primitives into triangle meshes. 
The proposed prototype works for planes, cylinders and 
spheres but is easily extendible to other primitives. Starting 
from single triangles they extend the cluster into the 
direction that is best represented by one of the primitives. 
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2. The 3D Hough Transform 
The Hough Transform (Hough, 1962)9 is a method for 
detecting parameterized objects, typically used for lines 
and circles. However, we focus on the detection of planes 
in 3D point clouds. Even though many Hough Transform 
approaches work with pixel images as input this is not a 
necessity. In our scenario a set of unorganized points in □³ 
are used as input and the output consists of parameterized 
planes. Planes are commonly represented by the signed 
distance ρ to the origin of the coordinate system and the 
slopes mx and my in direction of the x- and y-axis, 
respectively: 

ρ++= ymxmz yx  
To avoid problems due to infinite slopes when trying to 
represent vertical planes, another usual definition, the 
Hesse normal form, uses normal vectors. A plane is thereby 
given by a point p on the plane, the normal vector n that is 
perpendicular to the plane and the distance ρ to the origin 

ρρ =++=⋅= zzyyxx npnpnpnp  
Considering the angles between the normal vector and the 
coordinate system, the coordinates of n are factorized to 

ρϕθϕϕθ =⋅+⋅⋅+⋅⋅ cossinsin  sincos zyx ppp          (1) 
with θ the angle of the normal vector on the xy-plane and φ 
the angle between the xy-plane and the normal vector in z 
direction as depicted in Fig. 1. φ, θ and ρ define the 3-
dimensional Hough Space (θ, φ, ρ) such that each point in 
the Hough Space corresponds to one plane in ³. 
To find planes in a point set, one calculates the Hough 

Transform for each point. Given a point p in Cartesian 
coordinates, we have to find all planes the point lies on, 
i.e., find all the θ, φ and ρ that satisfy Eq. (1). Marking 
these points in the Hough Space leads to a 3D sinusoid 
curve as shown in Fig. 2. The intersections of two curves in 
Hough Space denote the planes that are rotated around the 
line built by the two points. Consequently, the intersection 
of three curves in Hough Space corresponds to the polar 
coordinates defining the plane spanned by the three points. 
In Fig. 2 the intersection is marked in black. Given a set P 
of points in Cartesian coordinates, one transforms all points 
pi  ∈ P into Hough Space. The more curves intersect in hj 

(∈ θ, φ, ρ), the more points lie on the plane represented by 
hj and the higher is the probability that hj is actually 
extracted from P. 
 
 
3. Hough methods 
 
3.1 Standard Hough Transform 
 
For practical applications Duda and Hart (1971)10 propose 
discretizing the Hough Space with ρ′, φ′ and θ′ denoting the 
extent of each cell in the according direction in Hough 
Space. A data structure is needed to store all these cells 
with a score parameter for every cell. In the following, 
incrementing a cell refers to the increasing the score by +1. 
This data structure, called the accumulator, is described in 
more detail in Sec. 4. For each point pi we increment all the 
cells that are touched by its Hough Transform. The 
incrementation process is often referred to as voting, i.e., 
each point votes for all sets of parameters (θ, φ, ρ) that 
define a plane on which it may lie, i.e., if the euclidian  

 
Fig. 1 Normal vector described by polar coordinates 

 

 
Fig. 2 Transformation of three points from ³ into Hough Space (θ, φ, ρ). 
The intersection of the curve (marked in black) depicts the plane spanned 
by the three points. 
 
distance to the plane represented by the center of the cell is 
less than a threshold. The cells with the highest values 
represent the most prominent planes, the plane that covers 
the most points of the point cloud. 
Once all points have voted, the winning planes are 

selected. Due to the discretization of the Hough Space and 
the noise in the input data it is advisable to search not only 
for one cell with a maximal score but for the maximum 
sum in a small region of the accumulator. Kiryati et al. 
(1991)11 use the standard practice for peak detection. In the 
sliding window procedure a small 3-dimensional window is 
defined that is designed to cover the full peak spread. The 
most prominent plane corresponds to the center point of a 
cube in Hough Space with a maximum sum of 
accumulation values. The steps of the procedure are 
outlined in Algorithm 1. 
Due to its high computation time (cf. Sec. 5.3) the 

Standard Hough Transform is rather impractical, especially 
for real-time applications. Therefore numerous variants 
have been devised. Illingworth and Kittler (1988)12 give a 
survey on the early development and applications. 
Kälviäinen et al. (1995)13 compare modified versions of the 
Hough Transform aiming to make the algorithm more 
practical. Some of those procedures are described in the 
following subsections. Sec. 5.3 provides an evaluation of 
these methods with the goal to find the optimal variation 
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for the task of detecting a previously unknown number of 
planes in a 3D point cloud. 
 

Algorithm 1 Standard Hough Transform (SHT) 
1:  for all points in pi in point set P do 
2:    for all cells (θ, φ, ρ) in accumulator A do 
3:      if point pi lies on the plane defined by (θ, φ, ρ)  

then 
4:           increment cell A(θ, φ, ρ) 
5 :      end if 
6 :    end for 
7 :  end for 
8 :  search for the most prominent cells in the  

accumulator, that define the detected planes in P 
 
 
3.2 Probabilistic Hough Transform 
 
The Standard Hough Transform is performed in two stages. 
First, all points pi from the point set P are transformed to 
Hough Space, i.e., the cells in the accumulator are 
incremented. This needs O(|P| · Nφ · Nθ) operations, where 
Nφ is the number of cells in direction of φ, Nθ in direction 
of θ and Nρ in direction of ρ, respectively, when calculation 
a single ρ corresponding to the plane on which a point pi is 
given φ and θ. Second, in a search phase the highest peaks 
in the accumulator are detected in O(Nρ · Nφ · Nθ). Since the 
size of the point cloud |P| is usually much larger than the 
number Nρ · Nφ · Nθ  of cells in the accumulator array, 
major improvements concerning computational expenses 
are made by reducing the number of points rather than by 
adjusting the discretization of the Hough Space. To this end 
Kiryati et al. (1991)11 propose a probabilistic method for 
selecting a subset from the original point set. The 
adaptation of the SHT to the Probabilistic Hough 
Transform (PHT) is outlined in Algorithm 2. 
 

Algorithm 2 Probabilistic Hough Transform (PHT) 
1:  determine m and T 
 2:  randomly select m points to create Pm ⊂ P 
 3:  for all points in m

ip  in point set Pm do 
 4:    for all cells (θ, φ, ρ) in accumulator A do 
 5:     if point pi lies on the plane defined by (θ, φ, ρ) then
 6:        increment cell A(θ, φ, ρ) 
 7:      end if 
 8:    end for 
 9:  end for 
10:  Search for the most prominent cells in the  

accumulator, that define the detected planes in P 
 
m points (m < |P|) are randomly selected from the point 

cloud P . These points are transformed into Hough Space 
and vote for the plane the points may lie on. The dominant 
part of the runtime is proportional to m · Nφ · Nθ. By 
reducing m, the runtime is reduced drastically. 
To obtain similar good results as with the Standard Hough 

Transform it is important that a feature is still detected with 
high probability even when only a subset of m points is 
used. The optimal choice of m and the threshold T depend 
on the actual problem. Sensor noise leads to planes that 
appear thicker than they are in reality. Discretization of the 
Hough Space in combination with the sliding-window 

approach helps to take care of this problem. The more 
planes are present in the point cloud the less prominent are 
peaks in the accumulator. The same effect appears, when 
objects are in the point cloud that do not consist of planes. 
Depending on these factors the optimal number m varies 
between data sets with different characteristics. 
 
 
3.2.1 Adaptive Probabilistic Hough Transform 
 
The size for the optimal subset of points to achieve good 
results with the PHT is highly problem dependent. This 
subset is usually chosen much larger than needed to 
minimize the risk of errors. Some methods have been 
developed to determine a reasonable number of selected 
points. The Adaptive Probabilistic Hough Transform 
(APHT) (Ylä-Jääski and Kiryati, 1994)14 monitors the 
accumulator. The structure of the accumulator changes 
dynamically during the voting phase. As soon as stable 
structures emerge and turn into significant peaks voting is 
terminated. 
Only those cells need to be monitored after each voting 

process that have been touched. The maximal cell of those 
is identified and considered for plane extraction. If several 
cells have the same high score, one of them is chosen. A list 
of potential maximum cells is updated. A comparison of 
consecutive peak lists allows for checking the consistency 
of the peak rankings in the lists. Algorithm 3 outlines this 
procedure. 
 

Algorithm 3 Adaptive Probabilistic Hough Transform (APHT) 
1:  while stability order of Sk  is smaller than threshold tk 

and maximum stability order is smaller than threshold 
tmax do 

2:      randomly select a small subset Pm ⊂ P of size n 
3:      for all points m

ip  in Pm do 
4:        vote for the cells in the accumulator 

5 :       choose maximum cell from the incremented cells  
and add it to active list of maxima  

6 :     end for 
7:      merge active list of peaks with previous list of  

peaks 
8:      determine stability order 
9:  end while 

 
To speed up the process the list update is only performed 

after a small batch of points has voted. The list of peaks is 
limited in size and incrementally ordered by the value of the 
cells. When updating the list with a peak the coordinates of 
the peak are taken into account. If two peaks lie in the 
spatial neighborhood of each other, the lower one is 
disregarded or removed from the list. In the early stages of 
the algorithm changes in the order of peaks are frequent. As 
updating proceeds, the structure of the accumulator 
becomes clearer. The stopping rule for the algorithm is 
determined by the stability of the most dominant peaks. 
A set Sk of k peaks in the list is called stable, if the set 
contains all largest peaks before and after one update phase. 
The order within the set is insignificant for the stability. The 
number mk of consecutive lists in which Sk is stable is called 
the stability order of Sk. The maximum stability count is the 
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cardinality k of the set Sk with the highest stability order. In 
case there are two sets with the same stability order the one 
with the higher cardinality is preferred. The stability order 
of the set Sk that has the maximum stability count is referred 
to as maximum stability order. 
The stopping rule for detecting exactly one plane is if the 

stability order of S1 exceeds a predetermined threshold. For 
detecting k objects the stability order of Sk  has to exceed a 
predetermined number. Detecting an arbitrary number of 
planes using several iterations with a fixed k may lead to 
long runtimes. Thus one recommends letting the program 
run until the maximum stability order reaches a threshold. 
The maximum stability count is then the number of found 
objects. 
 
 
3.2.2 Progressive Probabilistic Hough Transform 
 
The Progressive Probabilistic Hough Transform (PPHT) 
(Matas et al., 1998) 15 calculates stopping times for random 
selection of points dependent on the number of votes in one 
accumulator cell and the total number of votes. The 
background of this approach is filtering those accumulation 
results that are due to random noise. The algorithm stops 
whenever a cell count exceeds a threshold of s points that 
could be caused by noise in the input. The threshold is 
calculated each time a point has voted. It is predicated on 
the percentage of votes for one cell from all points that have 
voted. Once a geometrical object is detected, the votes from 
all points supporting it are retracted. 
The stopping rule is exile as stopping at any time leads to 

useful results. Features are detected as soon as the contents 
of the accumulator allow a decision. If the algorithm is not 
stopped it runs until no points are left in the input set. This 
happens when all points have either voted or have been 
found to lie on an already detected plane. Even if the 
algorithm is allowed to knish early it does not mean that all 
points must have voted. Depending on the structure of the 
input many points may have been deleted before voting 
because they belong to a plane that was detected. The PPHT 
is outlined in Algorithm 4. 
 
 
3.3 Randomized Hough Transform 
 
Up et al. (1990)16 describe the Randomized Hough 
Transform (RHT) that decreases the number of cells 
touched by exploiting the fact that a curve with n 
parameters is defined by n points. For detecting planes, 
three points from the input space are mapped onto one point 
in the Hough Space. This point is the one corresponding to 
the plane spanned by the three points. In each step the 
procedure randomly picks three points p1, p2 and p3 from 
the point cloud. The plane spanned by the three points is 
calculated as ρ = n · p1 = ((p3 − p2) × (p1 − p2)) · p1. φ and θ 
are calculated as explained in Section 2 and the 
corresponding cell A(θ, φ, ρ) is accumulated. If the point 
cloud consists of a plane with θ, φ, ρ, after a certain number 
of iterations there will be a high score at A(θ, φ, ρ). 
When a plane is represented by a large number of points, it 

is more likely that three points from this plane are randomly 
selected. Eventually the cells corresponding to actual planes 

receive more votes and are distinguishable from the other 
cells. If points are very far apart, they most likely do not 
belong to one plane. To take care of this and to diminish 
errors from sensor noise a distance criterion is introduced: 
distmax (p1, p2, p3) ≤ distmax, i.e., the maximum point-to-
point distance between p1, p2 and p3 is below a fixed 
threshold; for minimum distance, analogous. The basic 
algorithm is structured as described in Algorithm 5. 
 

Algorithm 4 Progressive Probabilistic Hough Transform (PPHT) 
1:  while still enough points in P do 
2:     randomly select a point pi from point set P  
3:     calculate threshold t 
4:     for all cells (θ, φ, ρ) in accumulator A do 
5:        if point pi lies on the plane defined by (θ, φ, ρ)  

then
6:          increment cell A(θ, φ, ρ) 
7:        end if 
8:     end for 
9:     remove point pi from P and add it to Pvoted 
10:     if highest accumulated cell is higher than threshold 

t then 
11:       select all points from P and Pvoted that are close to 

the plane defined by the highest peak and add  
them to Pplane 

12:       search for the largest connected region Pregion in  
Pplane 

13:        remove from P all points that are in Pregion 
14:        for all point pj  that are in Pvoted and Pregion do 
15:           unvote pj from the accumulator 
16:           remove pj from Pvoted 
17:        end for 
18:        if the area covered by Pregion is larger than a  

threshold then 
19:           add Pregion to the output list 
20:        end if 
21:     end if 
22:   end while 

 
Algorithm 5 Randomized Hough Transform (RHT) 

1:  while still enough points in point set P do 
2:     randomly pick three points p1, p2, p3 from the set of 

points P  
3:     if p1, p2 and p3 fulfill the distance criterion then 
4:        calculate plane (θ, φ, ρ) spanned by p1, p2, p3 
5:        increment cell A(θ, φ, ρ) in the accumulator space 
6:        if the counter |A(θ, φ, ρ)| equals threshold t then 
7:           (θ, φ, ρ) parameterize the detected plane 
8:           delete all points close to (θ, φ, ρ) from P 
9:           reset the accumulator 
10:        end if 
11:     else 
12:        continue 
13:     end if 
14:  end while 

 
The RHT has several main advantages. Not all points have 

to be processed, and for those points considered no 
complete Hough Transform is necessary. Instead, the 
intersection of three Hough Transform curves is marked in 
the accumulator to detect the curves one by one. Once there 
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are three points whose plane leads to an accumulation value 
above a certain threshold t, all points lying on that plane are 
removed from the input and hereby the detection efficiency 
be increased. Since the algorithm does not calculate the 
complete Hough Transform for all points, it is likely that 
not the entire Hough Space needs to be touched. There will 
be many planes on which no input point lies. This calls for 
space saving storage procedures that only store the cells 
actually touched by the Hough Transform. 
 
 
3.4 Summary of Hough Methods 
 
All methods of the Hough Transform described in this 
section have in common that they transform a point cloud 
into the Hough Space and detect planes by counting the 
number of points that lie on one plane represented as one 
cell in an accumulator. Table 1 summarizes the features in 
which the methods differ.  
 

Table 1 Distinctive characteristic of Hough Transform methods. 

 SHT PHT PPHT APHT RHT

complete/ 
deterministic 

+ - - - - 

stopping rule - - + + + 
adaptive stopping 
rule 

- - + ++ - 

delete detected 
planes from point 
set 

- - + - + 

touch only one cell 
per iteration 

- - - - + 

easy to implement + + + - + 
 
In the SHT the complete HT is performed for all points. 
This makes it the only deterministic Hough variant. The 
PPHT, APHT and RHT have a stopping rule. While for the 
RHT the stopping rule is a simple threshold, e.g., number of 
points left in the point cloud or number of planes detected, 
the PPHT has a stopping rule that is based on the number of 
points already processed. Thus the algorithm is less 
sensitive to noise in the data. The most sophisticated 
stopping rule is applied in the APHT. Here the stability of 
several maxima is monitored over time during the voting 
phase making the algorithm more robust towards the 
negative effects of randomized point selection. In the PPHT 
and the RHT points are removed from the point cloud once 
a plane they lie on is detected. This does not only speed up 
the algorithm due to the decreasing number of points but 
also lowers the risk of detecting a false plane that goes 
through these points, especially in noisy data. The main 
advantage of the RHT is that in each iteration only one cell 
is touched. By avoiding performing the complete Hough 
Transform the large amount of cells that correspond to 
planes only represented by very few points is most likely 
not to be touched by the RHT. The main disadvantage of 
the APHT is its implementation. While the other methods 
are straightforward to implement, the necessity to maintain 
a list of maxima that also takes into account neighborhood 
relations leads to a higher implementation complexity. A 
comparison of the performance of the Hough Transform 
methods follows in Sec. 5.3. 
 

4. New accumulator design 
 

 
(a) Array                                  (b) Cube 

  
(c) Octahedron                           (d) Ball 

Fig. 3 (a) – (d): Mapping of the accumulator designs onto the unit sphere. 
(a) Accumulator array. Also illustrated is  the calculation of the length of a 
longitude circle at φi  that determines the discretization for the ball design. 
The segment in question is the darker colored one. (b) Accumulator cube 
(taken from Censi and Carpin (2009)17). (c) Accumulator octahedron. (d) 
Accumulator ball. 
 
Without prior knowledge of the point cloud it is almost 
impossible to define proper accumulator arrays. An 
inappropriate accumulator, however, leads to detection 
failures of some specific planes and difficulties in finding 
local maxima, displays low accuracy, large storage space, 
and low speed. A tradeoff has to be found between a coarse 
discretization that accurately detects planes and a small 
number of cells in the accumulator to decrease the time 
needed for the Hough Transform. Choosing a cell size that 
is too small might also lead to a harder detection of planes 
in noisy laser data. 
 
 
4.1 Accumulator array 
 
For the standard implementation of the 2-dimensional 
Hough Transform (Duda and Hart, 1971)10 the Hough 
Space is divided into Nρ × Nφ rectangular cells. The size of 
the cells is variable and is chosen problem dependent. Using 
the same subdivision for the 3-dimensional Hough Space by 
dividing it into cuboid cells results in the patches seen in 
Fig. 3(a). The cells closer to the poles are smaller and 
comprise less normal vectors. This means voting favors the 
larger equatorial cells. 
 
 
4.2 Accumulator cube 

Censi and Carpin (2009)17 propose a design for an 
accumulator that is a tradeoff between efficiency and ease 
of implementation. Their intention is to define 
correspondences between cells in the accumulator and small 
patches on the unit sphere with the requirement that the 
difference of size between the patches on the unit sphere is 
negligible. Their solution is to project the unit sphere S² 
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onto the smallest cube that contains the sphere using the 
diffeomorphism 

∞
→ sss /     cube, S: a2ϕ  

Each face of the cube is divided into a regular grid. Fig. 
3(b) shows the resulting patches on the sphere. Zaharia and 
Preteux (2002)18 use a similar design that focuses on the 
same decomposition in the direction of all coordinate axes. 
This is achieved when partitioning the Hough Space by 
projecting the vertices of any regular polyhedron onto the 
unit space. The level of granularity can be varied by 
recursively subdividing each of the polyhedral faces. An 
example is given in Fig. 3(c). Each octrahedron has the 
same subdivision. While both of these designs are invariant 
against rotation of 90° around any of the coordinate axes, 
they have one major drawback in common: when mapping 
the partitions on the unit sphere the patches appear to be 
unequally sized, favoring those planes represented by the 
larger cells. 
 
 
4.3 Accumulator ball 
 
The commonly used designs share one drawback, i.e., the 
irregularity between the patches on the unit sphere. Next, 
we present our novel design for the accumulator with the 
intention of having the same patch size for each cell. To this 
end, the resolution in terms of polar coordinates has to be 
varied dependent on the position on the sphere. Thus, the 
sphere is divided into slices (cf. Fig. 3(a)). The resolution of 
the longitude φ is kept as for the accumulator array. φ′ 
determines the distance between the latitude circles on the 
sphere, e.g., the thickness of the slices. Depending on the 
longitude of each of the latitude circles the discretization 
has to be adapted. One way of discretization is to calculate 
the step width θ′ based on the size of the latitude circle at φi. 
The largest possible circle is the equator located at φ = 0. 
For the unit sphere it has the length maxl = 2π. The length 
of the latitude circle in the middle of the segment located 
above φi is given by lengthi = 2π(φi + φ′). The step width in 
θ direction for each slice is now computed as 

θ
ϕθ Ni

l
i ⋅

⋅°
=′

length
max360

 

The resulting design is illustrated in Fig. 3(d). The image 
shows clearly that all accumulator cells are of similar size. 
Compared to the previously explained accumulator designs, 
the accumulator cube and the polyhedral accumulator, a 
possible drawback becomes obvious when looking at the 
projections on the unit sphere. The proposed design lacks 
invariance against rotations of multiples of 90°. This leads 
to a distribution of the votes to several cells. In practice 
however this problem is negligible since in most cases the 
planes to be detected do not align perfectly with the 
coordinate system, as will be shown in the experimental 
evaluation. 
 
 
5. Experimental evaluation 
 
In this section a comparison of the accumulator designs is 
followed by an evaluation of the different Hough methods 
against each other. The experiments are performed on an 

Intel Q9450 2.66 GHz processor with 4 GB RAM using one 
thread. 
 
 
5.1 Comparison of accumulator designs 
 
The different designs for storing the votes of the Hough 
Transform are compared in this section using simulated as 
well as real 3D laser scans. The simple array structure 
where φ and θ are discretized uniformly is the simplest way 
of discretizing the Hough Space. It is interesting to 
investigate whether the obvious flaws of this design come 
into effect in practical applications or if they are negligible. 
Second, out of the two designs that focus on symmetry with 
respect to the coordinate system we chose the cuboid design 
over the polyhedral design, since both designs seem to have 
similar characteristics and the cuboid design appears to be 
easier to manage. Third, the design of our accumulator ball 
with different discretization for each latitude slice of the 
unit sphere is evaluated against those other two designs. 
 
 
5.1.1 Evaluation using simulated data 
 

 
(a)                           (b)                           (c) 

 
(d)                           (e)                           (f) 

Fig. 4 Left to right: array, cube, ball design of the accumulator. The input 
data is the modeled cube rotated by (0, 0, 0) (left) and (45, 45, 45) (right). 
The darker the color, the higher is the count for that cell. 
 
For easier evaluation we reduce the experimental setup to a 
simple test case. A cube with a side length of 400 cm is 
placed around the origin. Each side consists of 10,000 
points which are randomly distributed over the entire face 
of the cube with a maximal noise of 10 cm. Different 
rotations are applied to the cube to simulate different 
orientations of planes. The advantage of using this simple 
model is the existence of ground truth data for the actual 
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planes. The cube possesses a perpendicular structure which 
is characteristic for most man-made indoor environments. 
As pointed out in Section 4 rotating the cube poses 
challenges to the accumulators as the sides are not 
symmetrically aligned with the coordinate axes anymore. 

Quantitative evaluation: The first experiment presents a 
graphical investigation of the ability of the accumulator 
designs to correctly detect planes in the given point cloud. 
For this purpose we apply the SHT to the cube. To achieve 
comparable results the number of cells for each accumulator 
needs to be approximately the same. Nρ = 100 with a 
maximal distance of 600. For the accumulator ball we use 
Nφ = 45 and Nθ = 90. This means that the slice around the 
equator consists of 90 patches. The total number of cells is 
257,100. The accumulator cube has a total number of 
264,600 cells when using 21 × 21 cells on each face. The 
simple accumulator is discretized with Nφ = 38 and Nθ = 76 
leading to 288,800 cells. 

In Fig. 4 the accumulators are plotted after applying 
100,000 iterations of the RHT. For better visibility only the 
slice with 198 < ρ < 204 is shown, i.e., the distance that the 
planes have. The votes are drawn in blue, the darker a cell, 
the more votes it has received. The first three images show 
the results for the perfectly aligned cube and the cube 
rotated by 45° around each axis. The images show that for 
the accumulator array the two planes corresponding to the 
highest and lowest  φ values do not show up. For the ball 
design the peaks show up, but are not as high as the peaks 
around the equator. In practice this means that the several 
cells along the equator have higher votes as the cells around 
the poles and are therefore earlier detected as planes. The 
images (d)–(f) show the same experiments with the rotated 
cube. The six peaks that show up in the accumulator array 
vary in color. The same holds true for the cube. The peaks 
close to the corners of the cube (the faces of the 
accumulator are marked in different colors) show a lighter 
blue. These are the regions where the patches have the 
smallest size. The result is that planes corresponding to 
those cells are less likely to be detected. For the ball design 
the peaks are most evenly colored in this scenario. This 
supports the previously mentioned assumption that the ball 
design is the best for detecting arbitrary planes due to its 
characteristic of having evenly sized patches in the Hough 
space. 

For the next test case we use the laser scan model of the 
cube rotated by (10, 10, 10) and apply the SHT to it using 
all three different accumulators. After the voting phase in 
the SHT, the peaks in the accumulator have to be found and 
a decision has to be made which of those peaks correspond 
to actual planes in the input data. As seen in Fig. 4 the votes 
for one plane spread over a small region in the Hough 
Space. To pick the best representation out of one of these 
regions we implemented a simple peak search strategy that 
is applied after voting. Starting in one corner of the 
accumulator, we run over the complete space with a small 
window, in this experiment 8 × 8 × 8 cells. Within this 
window all values but the highest one are set to zero. This 
simple strategy might favor certain maxima but in our 
experiments this fact showed little influence on the results. 
For the accumulator cube we ran over each face separately. 
In the accumulator ball each slice consists of a different 
number of cells. This might cause problems when applying 
this windowed peak search. However, due to the small 

difference in size of two neighboring slices the covered 
region is not regularly shaped but still connected. 
 

     
(a)                            (b)                           (c) 

     
(d)                            (e)                           (f) 

     
(g)                            (h)                           (i) 

Fig. 5 Planes detected by the SHT using different accumulators. 
Accumulator array (a) - (c): (a) 20 planes with the highest score. (b) After 
peak search procedure, all planes with more than 90% of the maximal 
score. (c) The six planes with the highest score (more than 80% of the 
maximal score). 
Accumulator cube (d) - (f): (d) 20 planes with the highest score (e) After 
peak search procedure, all planes with more than 90% of the maximal 
score. (f) The six planes with the highest score ( > 88%). 
Accumulator ball (g) - (h): (g) 20 planes with the highest score. Note that 
the first six represent already all different faces of the cube. (h) After peak 
search procedure, all planes with more than 90% of the maximal score. 
The resulting planes correspond to the six faces of the cube. (i): The data 
set used for the experiment, a cube with side length 400, placed around the 
origin. Each side consists of 10000 points randomly distributed with a 
maximal noise of 10. 
 

The resulting planes are shown in Fig. 5. The first image 
for each accumulator depicts the 20 planes with the highest 
score using no peak search strategy. Secondly, after 
applying the peak search strategy, for all accumulators all 
planes with a count up to 90 % of the highest score are 
considered to be actual planes. For the accumulator ball 
these planes are very close to the six faces of the cube 
model. For the accumulator cube only two planes are above 
the threshold. For the accumulator array the back and the 
bottom face are not among the top 90 % while the front 
appears three times. For the cube the threshold to correctly 
detect all six faces of the model is 88 %. For the array all 
six faces of cube have a score above 80 %. 

Qualitative evaluation: The demands towards the HT 
are twofold. First, the planes need to be easily detected, i.e., 
each plane is represented by exactly one dominant 
maximum in the accumulator. In the example this means 
that each of the six highest peaks corresponds to one face of 
the cube. Second, the highest peak for each face is as close 
as possible to the ground truth of the plane. Fig. 6 shows an 
evaluation of the three different accumulator designs with 
respect to these aspects. On the left the ability to correctly 
detect all six planes is depicted. Nine different rotations are 
applied to the cube. The bars indicate the number of 
incorrectly detected planes, i.e., if the six highest peaks  
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Fig. 6 Left: Number of incorrectly detected planes on a logarithmic scale. Right: Angle error of the detected planes. Each set of bars represents one 
orientation of the cuboid laser scan model rotated by (αx, αy, αz) as denoted underneath each set. αx is the rotation around the x-axis, αy around the y-axis and 
αz around the z-axis. 
 
correspond to the six different faces of the cube, the error is 
zero. Each time the next highest peak corresponds to an 
already detected plane before every single face of the cube 
is represented by one peak, the error is incremented by one. 
The results show clearly that the simple array structure has 
significant problems to correctly identify the six cube faces. 
It totally fails when the cube is aligned with the coordinate 
system, as motivated in Section 4. The uneven sizes of the 
patches lead to an uneven distribution of peaks against 
favor of the planes parallel to the xy-plane. This comes 
mostly in effect when the cube is aligned with the 
coordinate system, when rotated the effects diminish but do 
not disappear. 

In Fig. 4 it became obvious that the accumulator ball has 
problems detecting planes that are parallel to the xy-plane. 
If the cap of the ball is divided into several patches, more 
cells intersect at the poles than at the other parts of the 
accumulator. This leads to distribution of the votes over all 
these patches, decreasing the count for each of these cells. 
This problem is solved by creating a circular cell around the 
pole that has the desired size of the patches and proceed 
with the rest of the sphere in the same manner as before. 
Using this design the ball and the cube show similar 
performance. The ball performs better in some test cases, 
the cube in others. On average the ball design slightly 
outperforms the cube. 

The chart on the right of Fig. 6 shows the sum of the 
angle errors for the detected planes. For each side of the 
cube the cell with the highest vote is used and the angle 
between the normal vector and the ground truth normal 
vector of the plane is calculated as error. The results show 
only small, negligible differences between the different 
accumulator designs. This indicates that once a plane is 
detected correctly the parameters are calculated equally 
well with each accumulator design. 
 
 
5.1.2 Evaluation using real laser data 
 
To show the applicability of the Hough Transform to real 
laser data, we apply the RHT to a laser scan of an empty 
office. The result is shown in Fig. 7. All planes were 
correctly detected within less than 600 ms on an Intel Core 
2 Duo 2.0 GHz processor with 4 GB RAM. For further 
evaluation on the applicability of the Hough Transform see 
(Borrmann and Elseberg, 2009)19. 
 

 
Fig. 7 Scan of an empty office with planes detected (RHT). 

 
 
5.2 Standard Hough Transform 
 
For 2D data the Standard Hough Transform is one of the 
standard methods for detecting parameterized objects. But 
even there, enormous computational requirements have lead 
to the emerge of more and more methods to accelerate the 
Hough Transform without loss of precision. For 3D data the 
requirements increase drastically. Therefore, we are dealing 
with the question of applicability of the Standard Hough 
Transform in the 3D case. 

For easier evaluation we use a simulated laser scan model. 
A cube with a side length of 400 cm is placed around the 
origin. Each side consists of 10,000 points which are 
randomly distributed over the entire face of the cube with a 
maximal noise of 10 cm. Different rotations are applied to 
the cube to simulate different orientations of planes. Fig. 5 
shows the data set rotated by 10° around each axis as well 
as the results after applying the SHT to it. Shown are the 
planes with a count up to 90 % of the highest score. These 
planes are very close to the six faces of the cube model. 
 
 
5.3 Evaluation of Hough Transform methods 
 
To evaluate the different Hough methods we use the same 
setup for each method. The first experiment investigates 
how well the Hough methods detect one plane. We express 
this in terms of mean and variance of the result. Using the 
cuboid accumulator design and only one face of the laser 
scan cube model we consider only one face of the 
accumulator. The accumulator face is divided into 22×22 
faces. The slice considered is the one with 198 < ρ < 204. 
The mean is calculated as the sum of all accumulator cells 
weighed by the score of that cell and divided by the number 
of cells. The error plotted is the distance between the 
calculated mean and the supporting point of the optimal 
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plane representation of the face. The variance illustrates the 
distribution of the values in the accumulator face in relation 

to the calculated mean. 
 

 

 
Fig. 8 Top: Comparison of the different point selection strategies. For the SHT all points are used and transformed into Hough Space. For the PHT only x% 
of the points are chosen and the HT applied to them. For the RHT x% times three points are chosen and the cell that corresponds to the plane spanned by 
these three points is accumulated. Plotted are the mean and the variance of one face of the resulting accumulator space. Bottom: Comparison of the runtime 
for the different Hough methods. 
 

 
Fig. 9 The experiments were carried out on the modeled cube scan rotated by (αx, αy, αz) without plane fitting after the HT. Top: Comparison of the RHT 
with the SHT when applying it on the test cube. For RHTx, x triples of points are selected. Center: Comparison of different Hough methods with respect to 
their ability to correctly detect all planes in a data set and their accuracy. Tests were performed on the rotated cube. Bottom: Results for running the APHT 
with different maximum stability counts on the cube data set. 
 

For the evaluation it is necessary to divide the 
accumulation phase and the maximum search phase. 
Therefore we cannot evaluate all Hough methods according 
to this scheme. For the PHT we vary the number of points 

used. The RHT is slightly adapted. Instead of running until 
a threshold is hit, the number of triples picked is determined 
as a percentage of the total number of points on the cube 
face. 
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The average of running 20 times with each setting is 
plotted in Fig. 8. With more than 10% the RHT outperforms 
the SHT. Starting from 30% the error of the PHT is close to 
that of the SHT. The variance of the SHT and the PHT are 
close together. The RHT has a significantly smaller 
variance. Interpreting the results suggests that applying the 
PHT with at least 30% of the points leads to results that 
sufficiently represent the input data. The results for the 
RHT have to be considered very carefully as the RHT 
benefits from the simplicity of the input data. If using only 
one plane as input the RHT has hardly any variance. 
Selecting three points from different planes leads to more 
erroneous results. Due to that a more differentiated test of 
the RHT is needed. 

We use 9 different rotations of the modeled cube to 
compare the different Hough methods further. The 
accumulator used for this evaluation is the ball structure 
with Nφ = 45, Nθ = 90 and Nρ = 100. The average of 20 test 
runs for all Hough methods is plotted in Fig. 9. Shown is 
the number of misdetected planes until each face of the 
cube is found exactly once. The quality of the detected 
planes is calculated as the angle between the perfect normal 
vector and the first normal vector of each detected face. The 
differences of the angle error are within a negligible range. 
The number of incorrectly detected planes differs 
depending on the rotation of the point cloud. In all cases the 
SHT performs noticeably better than the adapted version of 
the RHT (top). However, in its original version the RHT (cf. 
Section 3.3) has a phase where the accumulator is reset and 
the points that belong to an already detected plane are 
deleted. 

The results for the original RHT are shown in Fig. 9 
(middle) along with results on the same experiment for the 
PPHT. The thresholds for the maximal accumulator counts 
for RHT and PPHT are set to 1,000. The results show that 
when deleting the detected planes in between the accuracy 
of the HT with respect to finding each plane exactly once is 
significantly improved. In most cases the first six detected 
planes correspond to six different faces of the cube. 
Noticeable is, that for the PPHT also the error in the 
orientation of the normal vector is significantly smaller. In 
practice the difference does not play an important role if 
plane fitting is used in order to diminish the negative effects 
of the discretization. 

Like the RHT and PPHT the APHT includes a stopping 
rule for when to stop transforming points into Hough Space. 
Instead of detecting a single peak the stability of many 
peaks is analyzed. For detecting an unknown number of 
planes a maximum stability count at which the algorithm 
stops is set. 

Fig. 9 (bottom) shows a brief analysis of the APHT. The 
graph on the right shows an exemplary distribution of 
accumulator counts when using a list of 20 maxima and 
different maximum stability counts as stopping rule. It 
becomes clear that the counts between the detected planes 
and the not detected planes become very distinctive. 
However, the algorithm detects 8 planes for the cube data 
set. The left image shows a more thorough evaluation. The 
lines indicate the number of planes detected by the 
algorithm averaged over 20 runs. The boxes show the 
number of planes of this list that are a best representation 
for a cube faces. It is clear that the algorithm gives a close 

prediction of the actual planes but fails to correctly identify 
all planes in almost any case. 

The remaining question is how far the different methods 
improve the runtime of the algorithm. For this we run each 
algorithm 20 times, measure the time needed and plot the 
average time. For the variations we use different settings. 
The PHT is run with 10, 20 and 50 percent of the points. 
For the RHT and the PPHT maximal counts of 200, 500, 
1,000 and 2,000 are used. For the APHT we used a 
maximum stability count of 100, 200 and 500. Since the 
RHT and PPHT have intermediate phases for deleting the 
points for one detected plane we include this phase into the 
measurements for all algorithms. This means the runtime 
includes the voting phase in the accumulator, the maximum 
search, plane fitting and creation of the convex hull of the 
planes. 

Fig. 8 shows the runtimes for the different Hough 
algorithms. All variations drastically improve the runtime of 
the HT compared to the SHT. As expected, the runtime for 
the PHT decreases proportional to the decrease of points. 
The PPHT yields the best quality results. The runtime is 
similar to the PHT. However, the experiments that lead to 
the results of the quality evaluation were done with a 
maximal accumulator count of 100 which leads to even 
shorter runtimes, as depicted in the graph. Considering that 
the PHT needs to be run with at least 30% of the points, the 
PPHT is considerably faster. The APHT needs 
astonishingly short runtimes. Nevertheless, in the 
configurations used in the experiments the APHT was not 
able to reliably detect all six planes. The RHT outperforms 
all the other HT methods by far concerning runtime. 
Considering that the quality of the detected planes was only 
slightly behind the PPHT the RHT seems to be the method 
of choice for detecting an unknown number of planes in a 
laser scan map in reasonable time. 
 
 
5.4 Comparison with region growing 
 
We have analyzed the Hough Transform and other effective 
methods for plane detection. Since a detailed comparison 
with respect to RANSAC is given in (Tarsha-Kurdi et al., 
2007)20 we focus here on region growing methods. First, we 
evaluate against the approach by Poppinga et al. (2008)4. 
Their approach works for point clouds in Cartesian 
coordinates, which are generated from range images. It 
combines region growing and incremental plane fitting 
followed by a polygonization step. The algorithm starts 
with a randomly selected point from the point cloud and its 
nearest neighbor. Iteratively this set is enlarged by adding 
points that have the smallest distance to the current region, 
are close to the optimal plane through the points of the 
region, and do not lift the mean square error of the optimal 
plane above a threshold. Regions with a too small number 
of points are discarded. To speed up the algorithm the 8 
neighbors in the range image of each newly added point are 
inserted into a priority queue from which the next point is 
chosen. An update strategy for the plane fitting avoids 
expensive recalculations in each step. 
A second state-of-the-art method is the mesh segmentation 

by fitting of primitives (HFP – hierarchical fitting 
primitives) by Attene et al. (2006)8. The algorithm works on  
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Table 2 Runtimes in s for Randomized Hough Transform (RHT), Region Growing (RG) 4 and Hierarcical Fitting of Primitives (HFP) 8 on different laser 
scans. Listed are the times for detecting planes, polygonization (for RHT and RG) and the total time (for all). N is the number of detected planes. 

 # points RHT N RHT C N RG N HFP

empty room 325,171 

0.072

5 

0.088

5 

5.31 

>> 5 

78.4 

+ 0.599 + 0.730 + 2.33 
= 0.671 = 0.818 = 7.64 

empty room 81,631 

0.096

5 

0.092

5 

1.22 

9 

14.2 

+ 0.195 + 0.200 + 0.5 
= 0.291 = 0.292 = 1.72 

simulated 81,360 
0.049

5 
0.055

5 
1.33 

8 
18.7 

+ 0.182 + 0.199 + 0.49 
= 0.231 = 0.254 = 1.82 

hall 81,360 
2.813

16 
1.818

17 
1.35 

13 
36.0 

+ 0.234 + 0.277 + 0.4 
= 3.047 = 2.095 = 1.75 

arena 144,922 
13.960

18 
6.930

18 
2.13 

11 
16.0 

+ 0.477 + 0.662 + 0.57 
= 13.960 = 7.592 = 2.70 

 
triangle meshes. In the beginning each triangle is 
considered as a cluster. Each cluster is assigned a primitive. 
The clusters are subsequently enlarged into the direction 
that is best represented by a primitive. The prototype 
presented in Attene et al. (2006)8 supports planes, spheres 
and cylinders. Neighboring sets of triangles are merged into 
one cluster if the resulting cluster can be approximated by a 
primitive. The cost of merging two sets is the error of the 
approximation, i.e., the distance of the vertices from the 
primitive. Sorting the neighborhood relationships into a 
priority queue based on the merging costs a hierarchy is 
created. In each step the merging operation with the lowest 
cost is performed, the costs for the new cluster are 
recalculated and updated in the queue. To achieve 
comparability we only used the plane fitting part of the 
prototype of this approach and neglected the sphere and 
cylinder fitting functionalities. As the algorithm works on 
triangle meshes the data was converted beforehand. 
We test both region growing procedures on different laser 

range images. First, we use two laser scans of different 
resolution taken in an empty office room. The left wall 
consists mainly of windows and heating installations. On 
the right wall there is a whiteboard. Challenging are the 
wave-like systematic errors on the floor and the ceiling, that 
are especially present in the image with lower resolution. 
Second, we simulate a laser scan with the same wave-like 
structures. Third, a laser scans from a hall where eight 
hallways meet. Last, a 360° laser scan from the Mobile 
Robot Test Arena at Jacobs University. 

We apply two variants of the RHT. After a voting phase 
all points are selected that lie on the highest ranking plane. 
In the first variant a plane is fitted through these points and 
the convex hull of all these points is built. In the second 
variant an occupancy grid of the fitted plane is calculated 
and a two-pass clustering algorithm (see Dillencourt et al., 
1992)21 is applied to the selected points. Only the largest 
cluster is removed from the point set. If the variance of the 
fitted plane is above a threshold, the plane is neglected. The 
accumulator is discretized with ρ′ = 20 cm, φ′ = 176 and θ′ 
= 88. The threshold t for the maximum accumulator value is 
set to 50. The maximum value for ρ, the threshold for the 

stopping rule, the maximum point to plane distance and the 
distance for clustering are chosen dependent on the data. 
For scans with a lower resolution a larger distance is 
allowed for neighboring points. For scans with a lower 
accuracy, a higher point to plane distance is allowed. The 
same values are used for RG. The chosen polygonization is 
also the convex hull. 
The distance for clustering is used in the triangulation to 
ignore triangles with too large edges. 
Table 2 compares the runtimes of the four approaches. 

Three times measurements are listed for each data set and 
method. First, the runtime for the voting phase of the RHT 
and region growing respectively, second, the time for 
clustering and calculating the convex hull, and third, the 
sum of both parts. Additionally, the number of planes found 
by the algorithms is listed. For the mesh segmentation only 
the entire runtime is given. Comparison of the runtimes 
shows the competitiveness of the RHT. The mesh 
segmentation performs the worst but the runtimes need to 
be considered with care as a complete hierarchy of planes is 
generated. For data sets that consist mainly of planes (rows 
1 to 3) the RHT outperforms the RG. The runtime of the 
RHT grows mainly with the number of planes and the 
number of non-planar points in the data, while the runtime 
of RG grows with the number of points. This is shown 
through the runtimes in the forth and fifth row. However, 
the runtimes remain in a considerable range. 
The scans with the found planes are shown in Fig. 10. All 

algorithms succeed in finding planar structures. From the 
experiments it appears that the RHT performs better in 
finding large planes while RG and HFP find planes 
accurately but tend to detecting several smaller planes 
rather than one large plane where errors are present in the 
data. This becomes obvious when looking at the ceiling of 
the empty room or the simulated scan. RHT nicely fits one 
plane through the ceiling while RG finds several smaller 
slices. The same is true for the arena. While the outlines of 
the building are nicely found by the RHT, RG finds smaller 
planes within the building that are completely ignored by 
the RHT. For the HFP the N best planes are depicted, where 
N is the larger number of planes detected by the other two 
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algorithms. The HFP performs similar to the RG approach 
as it represents smaller regions. In the cluttered 
environments, the hall and the arena, the detected planar 

patches are very accurate. However, main structures such as 
floor and ceiling are missing. 

 

Fig. 10 Left: Results with the RHT. Middle: Region growing. Right: Hierarchical primitive fitting. From top to bottom: 1. empty room (high resolution) 2. 
empty room (low resolution) 3.simulated scan, 4. hall, 5.+6. rescue arena. 
 
6. Conclusions and future work 
 
In this paper we evaluate the Hough Transform with respect 
to the task of detecting planar structures in laser range 
images. We present the accumulator ball as an accumulator 
design. The advantage of this design is that it does not 
unjustifiably favor planes with specific parameters, due to 
the equal size of the patches. The evaluation of the different 
Hough methods shows clearly that the Randomized Hough 
Transform is the method of choice when dealing with 3-
dimensional data due to its exceptional performance as far 
as runtime is concerned. The randomized selection of points 
does not diminish but rather improve the quality of the 
result. Because points are removed from the data set once 
they have been found to lie on a plane, accuracy for the next 
plane increases. Comparison with the region growing by 
Poppinga et al. (2008)4 and the hierarchical fitting of 
primitives by Attene et al. (2006)8 shows that the RHT also 
competes with other plane extraction methods. 
Furthermore the results show that it is a good choice when 

trying to detect the underlying structures of the environment, 
as its main advantage lies in the detection of large structures. 

Future work includes the implementation of a more 
sophisticated clustering procedure. We intend to apply the 
RHT to high resolution laser scans acquired with the Riegl 
VZ-400 scanner. 
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